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Abstract—The problem of minimizing the energy
consumption of a real-time parallel application on a hetero-
geneous system has been studied recently, and slack time
reclamation based on the dynamic voltage and frequency
scaling (DVFS) energy-efficient design technique has
been proposed as a solution. However, the state-of-the-art
algorithms merely minimize energy consumption through
an “upward” approach (i.e., from exit to entry tasks) and
do not apply the “downward” approach (i.e., from entry
to exit tasks) to energy consumption minimization. This
study solves the same problem by employing “downward”
and “upward” approaches. The concepts of deadline-slack
and task level are introduced to transfer the deadline of
the parallel application to each task, that is, “downward”
energy consumption minimization is implemented. “Up-
ward” energy consumption minimization by reclaiming
the slack time is then included to implement “downward”
and “upward” energy consumption minimization with low
time complexity. Results of the experiments using real
parallel applications show that the proposed algorithm can
generate the minimum energy consumption compared with
the state-of-the-art algorithms under different real-time and
scale conditions.
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I. INTRODUCTION

A. Background

THE ongoing progress in semiconductor technology has
allowed for constructing fascinating, complex heteroge-

neous microprocessors systems [1]–[6]. However, this techno-
logical progress has led computing hit a power and complexity
wall. Thus, energy efficiency has become the key driver be-
hind performance scaling and energy consumption minimiza-
tion is one of the primary design requirements on all scales,
from portable devices, such as smartphones and tablet PCs,
to high-performance computing systems. The popular energy
consumption optimization technique dynamic voltage and fre-
quency scaling (DVFS) achieves energy-efficient optimization
by simultaneously scaling down both the supply voltage and fre-
quency of the processor while tasks are running [1], [6]–[12].

B. Motivation

The deadline is an important design constraint for real-time
applications; missing the deadlines of these applications could
cause serious disastrous consequences, such as damage, injury,
and even death [13]. Some studies have been recently con-
ducted to minimize energy consumption while satisfying the
deadline constraint [14], [15]; however, these studies are re-
stricted to independent tasks. As heterogeneous multiprocessors
continue to be scaled up, distributed and parallel applications
with precedence-constrained tasks, such as fast Fourier trans-
form and Gaussian elimination applications, are increasing in
number on heterogeneous systems [16]. A parallel application
with precedence-constrained tasks is represented by a directed
acyclic graph (DAG), in which the nodes represent the tasks and
the edges represent the communication messages between tasks
[3], [16]–[18].

The problem of minimizing the energy consumption of a real-
time application with precedence-constrained tasks has been
solved recently in a number of studies [9], [19]. However,
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these studies are merely interested in homogeneous systems.
The same problem has been studied for heterogeneous systems
by reclaiming the slack time [20], [21] from the exit to the en-
try tasks based on the latest finish time (LFT); however, this
strategy merely minimizes the energy consumption through an
“upward” approach (i.e., from exit to entry tasks), and does not
apply the “downward” approach (i.e., from entry to exit tasks) to
energy consumption minimization. For a distributed parallel ap-
plication, applying both “downward” and “upward” approaches
to energy consumption minimization may be more efficient.

C. Main Contributions

The contributions of this study are summarized as follows.
1) The “downward” energy consumption minimization

(DECM) algorithm is proposed. “Downward” means that en-
ergy consumption minimization is implemented from the entry
to the exit tasks according to the descending order of rank up-
ward values (ranku ). In DECM, the concepts of deadline-slack
and task level are introduced for the parallel application to trans-
fer the deadline for an application to each task. In this way, all
the tasks can be finished within individual deadlines without
concerning for the deadline of the application, such that a low
time complexity can be achieved.

2) The “upward” energy consumption minimization algo-
rithm is integrated into DECM to implement “downward”
and “upward” energy consumption minimization (DUECM).
“Upward” means that energy consumption minimization is im-
plemented from the exit to the entry tasks according to the
descending order of LFTs. DUECM can eliminate or reduce the
slacks between adjacent tasks in the same processor while still
satisfying the deadline constraint of the application.

3) Experiments using fast Fourier transform and Gaussian
elimination applications are extensively conducted and the re-
sults of these experiments consistently verify that the proposed
DUECM can generate the minimum energy consumption com-
pared with the state-of-the-art algorithms under different real-
time and scale conditions.

II. RELATED WORK

Energy consumption optimization for processors by DVFS
has been extensively studied since the mid-1990s. Weiser et al.
[22] first proposed an approach to optimize energy consumption
by using fine-grained control for CPU speed of an operating sys-
tem scheduler. The aforementioned studies inspired a substantial
number of investigations on energy consumption and energy re-
duction by slack time reclamation, which is an important energy
consumption minimization method employed to solve the prob-
lem of scheduling independent or precedence-constrained tasks
to optimize energy consumption of a uniprocessor or multipro-
cessors [23], [24].

Low-power and energy-efficient design techniques and algo-
rithms aim at minimizing energy consumption while still meet-
ing certain requirements, especially on deadline constraints. The
problems of minimizing the expected energy consumption for a
single task with a deadline and randomized execution time for a
uniprocessor [25] and homogeneous multiprocessors have been
presented [14]. Li [26] studied the power-aware task scheduling

of independent sequential tasks on homogeneous multiproces-
sors with DVFS as combinatorial optimization problems. Li
et al. [27] studied the problem of scheduling a collection of
independent tasks on heterogeneous systems with deadline and
energy consumption constraints.

Energy consumption optimization for parallel applications
with precedence-constrained tasks has been studied recently.
Zong et al. [28] considered energy-aware duplication scheduling
algorithms for a parallel application on homogeneous systems.
Lee and Zomaya [29] presented energy-conscious scheduling
to simultaneously minimize the energy consumption and sched-
ule length of a parallel application on heterogeneous systems.
However, the aforementioned studies do not consider the dead-
line constraint of the application. The problem of minimizing the
energy consumption of a real-time application with precedence-
constrained sequential tasks [9] and precedence-constrained
parallel tasks (i.e., a parallel application) [19] has been pre-
sented in different studies. However, these studies are merely
interested in homogeneous multiprocessors with shared mem-
ory (i.e., without communication time between tasks). Huang
et al. [20] studied the problem of minimizing energy consump-
tion of a real-time parallel application on heterogeneous systems
by the enhanced energy-efficient scheduling (EES) algorithm,
which reclaims time through the upward approach. Tang et al.
[21] solved the same problem by presenting the DVFS-enabled
energy-efficient workflow task scheduling (DEWTS), which in-
troduces the feature of turning off the relatively inefficient pro-
cessors to realize the EES-based slack time reclamation [20].
However, in DEWTS, the slack time reclamation by turning off
the processors is practically unrealistic and increases the time
complexity. Moreover, the state-of-the-art algorithms [20], [21]
merely minimize energy consumption through an “upward” ap-
proach and do not apply the “downward” approach to energy
consumption minimization. This study solves the same prob-
lem by simultaneously applying the “downward” and “upward”
approaches to implement low time-complexity energy consump-
tion minimization.

III. MODELS AND PRELIMINARIES

A. Application Model

In this study, U = {u1 , u2 , . . . , u|U |} represents a set of het-
erogeneous processors. A parallel application is represented by
the DAG [3], [6], [11], [12], [16]–[18], [20], [21] G = (N , M ,
W ). N represents a set of nodes in G, and each node ni ∈ N
represents a task with different execution time on different pro-
cessors. Given that systems with variable processing frequencies
are considered in this study, the execution time of task ni cor-
responds to the execution time under the maximum processing
frequency fmax on a processor [12]. M is a set of communica-
tion edges, and each edge mi,j ∈M represents the communi-
cation message from ni to nj . Accordingly, ci,j represents the
communication time of mi,j . The sets of immediate predecessor
and successor tasks of ni are denoted by pred(ni) and succ(ni),
respectively. The task that has no predecessor task is denoted
by nentry; and the task that has no successor task is denoted by
nexit. W is an |N | × |U | matrix where wi,k denotes the execu-
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Fig. 1. Standard example of a DAG-based parallel application
[16]–[18].

TABLE I
EXECUTION TIME MATRIX IN FIG. 1 [16]–[18]

Task u1 u2 u3

n1 14 16 9
n2 13 19 18
n3 11 13 19
n4 13 8 17
n5 12 13 10
n6 13 16 9
n7 7 15 11
n8 5 11 14
n9 18 12 20
n1 0 21 7 16

tion time of ni running on the processor uk with the maximum
frequency.

Fig. 1 shows a standard example of a DAG-based parallel
application with assigned task and edge weights. This exam-
ple has been employed in numerous studies [16], [18]. Table I
presents a matrix of the execution time for the tasks in Fig. 1.
This example shows ten tasks executed on three processors. The
weight 14 for n1 on u1 in Table I represents the execution time
with the maximum frequency and is denoted by w1,1 = 14. The
same task has different execution time on different processors
owing to the heterogeneity of the processors. The weight 18 of
the edge between n1 and n2 represents the communication time
denoted by c1,2 .

The motivating example will be used to explain the proposed
methods in this paper. For simplicity, all the units of all param-
eter values are omitted in the example.

B. Power Model

Given the nearly linear relationship between the supply volt-
age and operating frequency, DVFS scales down the supply
voltage alongside the processing frequency to optimize energy
consumption. As in [11] and [12], the term frequency change in
this study refers to the coupled change in the supply voltage and
processing frequency. Considering a DVFS-capable system, the
system-level power model used in [11] and [12] is also adopted
in this study. In this model, the system power consumption at

frequency f is given by

P (f) = Ps + h(Pind + Pd) = Ps + h(Pind + Ceff
m ) (1)

where Ps represents the static power, which can be removed only
by turning off the entire system; Pind represents the frequency-
independent dynamic power, which can be removed by setting
the systems into the sleep state; Pd represents the frequency-
dependent dynamic power, which depends on the processing
frequencies; and h represents the system state and indicates
whether the dynamic powers are currently consumed in the
system (when the system is active, h = 1; otherwise, h = 0); Cef

represents the effective switching capacitance; and m represents
the dynamic power exponent, which is at least 2. Both Cef and
m are processor-dependent constants.

No excessive overhead is associated with the turning ON/OFF

of a system; Ps is always consumed and unmanageable [11],
[12]. As in the aforementioned studies, this study concen-
trates on managing the dynamic powers (i.e., Pind and Pd).
Owing to the frequency-independent dynamic power Pind, a
lower frequency-dependent dynamic power Pd does not result
in lower energy consumption. Thus, a minimum energy-efficient
frequency fee exists [11], [12], and it is denoted by

fee = m

√
Pind

(m− 1)Cef
. (2)

If the operating frequency of a processor varies from the mini-
mum available frequency fmin to the maximum frequency fmax,
then the lowest frequency for executing a task should be

flow = max(fmin, fee). (3)

Therefore, any actual effective frequency fh should satisfy the
following relation: flow � fh � fmax.

Given that the number of processors is |U | in the sys-
tem and these processors are completely heterogeneous, each
processor should have an individual frequency-independent
dynamic power Pind; frequency-dependent dynamic power
Pd; and an actual effective frequency set. This study
defines the frequency-independent dynamic power set as
{P1,ind, P2,ind, . . . , P|U |,ind}, the frequency-dependent dynamic
power set as {P1,d, P2,d, . . . , P|U |,d}, the effective switching ca-
pacitance set as {C1,ef, C2,ef, . . . , C|U |,ef}, the dynamic power
exponent set as {m1,m2, . . . ,m|U |}, the minimum energy-
efficient frequency set as {f1,ee, f2,ee, ..., f|U |,ee}, and the actual
effective frequency set as⎧⎪⎪⎪⎨

⎪⎪⎪⎩

{f1,low, f1,α , f1,β , . . . , f1,max},
{f2,low, f2,α , f2,β , . . . , f2,max},

. . . ,

{f|U |,low, f|U |,α , f|U |,β , . . . , f|U |,max}

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

.

C. Preliminaries

The heterogeneous earliest finish time (HEFT) algorithm is
the most popular DAG-based scheduling algorithm for reducing
the schedule length to a minimum while achieving low complex-
ity and high performance in heterogeneous systems [16].

Upward rank value: HEFT uses the upward rank value (ranku )
of a task [see (4)] as the task priority standard. In this case, the
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TABLE II
UPWARD RANK VALUE, LOWER BOUNDS, AND DEADLINES FOR TASKS OF

THE APPLICATION IN FIG. 1

Task n1 n2 n3 n4 n5 n6 n7 n8 n9 n1 0

ranku (ni ) 108 77 80 80 69 63.3 42.7 35.7 44.3 14.7
LB (ni ) 9 40 28 26 38 42 49 62 68 80
L(ni ) 1 2 2 2 2 2 3 3 3 4
D (ni ) 14 50 38 36 48 52 64 77 83 100

tasks are ordered according to the descending order of ranku .
Table II shows the upward rank values of all the tasks in Fig. 1;
these values are obtained by (4)

ranku (ni) = wi + max
nj ∈succ(ni )

{ci,j + ranku (nj )} (4)

where wi represents the average execution time of task ni and
calculated by wi = (

∑|U |
k=1 wi,k )/|U |.

Table II shows the upward rank values of all the tasks of
the application in Fig. 1 and the task assignment order in G is
{n1 , n3 , n4 , n2 , n5 , n6 , n9 , n7 , n8 , n10}.

Earliest finish time: The attributes EST(ni, uk , fk,max) and
EFT(ni, uk , fk,max) represent the earliest start time (EST) and
earliest finish time (EFT), respectively, of task ni on the proces-
sor uk , with the maximum frequency fk,max. EFT(ni, uk , fk,max)
is considered the task assignment criterion because it can meet
the local optimum of each task. The aforementioned attributes
are calculated by⎧⎨

⎩EST(n entry,uk ,fk , m a x ) = 0

EST(ni ,uk ,fk , m a x ) = max
{

avail[k ], max
n x ∈pred(n i )

{AFT(nx )+c
′
x , i }

} (5)

and
EFT(ni, uk ) = EST(ni, uk ) + wi,k . (6)

In (6), avail[k] is the earliest available time when processor uk

is ready for task execution, AFT(nx) is the actual finish time
(AFT) of task nx , and c

′
x,i represents the communication time

between nx and ni . If nx and ni are assigned to the same
processor, then c

′
x,i = 0; otherwise, c

′
x,i = cx,i .

Lower bound and deadline: Similar to the state of the art
[13], [20], [21], this study also employees HEFT to assess
the lower bound of a parallel application. The lower bound,
which refers to the minimum schedule length of an applica-
tion when all the processors are monopolized by the applica-
tion by using the standard DAG-based scheduling algorithm, is
calculated by

LB(G) = min
uk ∈U
{ EFT(nexit, uk , fk,max)}. (7)

Fig. 2 shows the HEFT-based task assignment and scheduling
of the parallel application G in Fig. 1, where LB(G) = 80. The
arrows in Fig. 2 represent the generated communication time
on different processors. A relative deadline (i.e., D(G)) for
the application is provided based on the actual physical time
requirement after a hazard analysis and risk assessment.

Maximum energy consumption: Given that the maximum
frequency is used to calculate the EFT of each task on each
processor, HEFT is employed to assess the maximum energy
consumption of a parallel application in this study. Calculated

Fig. 2. HEFT-generated scheduling of the application in Fig. 1.

by (8), the maximum energy consumption is reached when the
lower bound is obtained

Emax(G) =
|N |∑
i=1

E
(
ni, upr(i) , fpr(i),max

)

=
|N |∑
i=1

(
Ppr(i),ind + Cpr(i),ef × (fpr(i),max)

mp r ( i )
)

× wi,pr(i) (8)

where E(ni, uk , fpr(i),max) represents the energy consumption
of the task ni assigned to the processor upr(i) with the
maximum frequency fpr(i),max . The energy consumption
values of the application G is Emax(G) = 159.49.

IV. ENERGY CONSUMPTION MINIMIZATION

A. Problem Description

Let E(ni, uk , fk,h) represent the energy consumption of ni

on the processor uk with frequency fk,h and be calculated by

E(ni, uk , fk,h) = (Pk,ind + Ck,ef × (fk,h)mk )× wi , k ×fk , m a x
fk , h

.
(9)

The schedule length of the application G is calculated by

SL(G) = min
uk ∈U

{
min

fk , h ∈[fk , low, fk , m a x ]
{EFT(nexit, uk , fk,h)}

}
.

(10)
Suppose a distributed system with a parallel application and

heterogeneous processors, which support different frequency
levels. Then, the problem to be addressed in this study is to
assign an available processor with a proper frequency to each
task while minimizing energy consumption and ensuring that
the generated schedule length of the application is safe (i.e., not
exceeding the deadline). The formal description is to find the
processor and frequency assignments for all the tasks and to
minimize energy consumption

E(G) =
|N |∑
i=1

E(ni) =
|N |∑
i=1

E
(
ni, upr(i) , fpr(i),hz (i)

)
(11)

where upr(i) and fpr(i),hz (i) represent the assigned processor
and frequency of ni , respectively, subject to

SL(G) � D(G)

and

fpr(i),low � fpr(i),hz (i) � fpr(i),max

for ∀i : 1 � i � |N |, upr(i) ∈ U .
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B. Deadline Slack

Definition 1: (Deadline slack): The deadline slack of an ap-
plication represents the value of the deadline minus the lower
bound of the application, that is,

DS(G) = D(G)− LB(G) . (12)

Given that the HEFT algorithm is used to calculate LB(G),
then DS(G) is actually determined by D(G). In this study, the
deadline of the application is divided into tasks according to
their task levels. The task level of each task is calculated by{

L(nentry) = 1
L(ni) = max

nx ∈pred(ni )
{L(nx) + 1} . (13)

In this study, the deadline slacks of all the tasks are equal to
the deadline slack of the application, i.e., DS(ni) = DS(G).
Thereafter, the deadline of task ni (ni ∈ N ) can be generated.
Thus,

D(ni) = LB(ni) + DS (G)
L(n exit)

× L(ni) (14)

where LB(ni) represents the lower bound of ni , which is equal
to AFT(ni) in the HEFT algorithm. That is, all tasks have in-
dividual lower bounds. For example, when D(G) = 100, the
deadlines of all the tasks in Fig. 1 are those shown in Table II.

The HEFT algorithm executes all the tasks with the maxi-
mum frequencies and minimum EFT on all the processors, as
mentioned in Section III-C. After defining a deadline for each
task [see (14)], a proper processor upr(i) and corresponding
frequency fpr(i),hz (i) for the task ni that minimize the energy
consumption for each task should be determined as follows:

E(ni) = min
uk ∈U

{
min

fk , h ∈[fk , low, fk , max]
{E(ni, uk , fk,h)}

}

subject to

EFT(ni, uk , fk,h) � D(ni)

where

EFT(ni, uk , fk,h) = EST(ni, uk , fk,h) + wi,k × fk,max

fk,h

(15)
and

fpr(i),low � fpr(i),hz (i) � fpr(i),max

for ∀i : 1 � i � |N |, upr(i) ∈ U . Consequently, the energy con-
sumption problem of the application is transferred to that of each
task. The actual start time (AST) of ni on the processor upr(i)
with frequency fpr(i),hz (i) should be

AST(ni) = AFT(ni)− fpr(i),max ×
wi,pr(i)

fpr(i),hz (i)
. (16)

C. DECM Algorithm

The DECM algorithm to minimize energy consumption is
presented in this section. The steps of DECM are provided in
Algorithm 1.

In DECM, all the processors for all the tasks are assigned
in advance by using the HEFT algorithm; DECM is mainly to

Algorithm 1: The DECM Algorithm.

Input: U = {u1 , u2 , . . . , u|U |}, G
Output: SL(G), E(G)

1: Sort the tasks in a list downward task list according to
the descending order of ranku values.

2: Call the HEFT algorithm [16] to obtain the assigned
processor and AFT of each task and the lower bound
LB(G) of the application G;

3: Compute DS(G) by (12);
4: while (there are tasks in downward task list) do
5: ni = downward task list.out();
6: Compute D(ni) by (14);
7: Get the assigned processor upr(i) of ni , which has

been obtained based on HEFT algorithm;
8: var fpr(i),hz (i) = NULL, AFT (ni) = NULL,

E(ni) =∞;
9: for (each frequency fk,h in the scope of [fk,low,

fk,max]) do
10: Compute EFT(ni, upr(i) , fpri(i),h) value using

(15) based on the insertion-based scheduling
policy;

11: if (EFT(ni, upr(i) , fpr(i),h) � D(ni)) then
12: Calculate E(ni, pr(i), fpr(i),h ) by (9);
13: if (E(ni, upr(i) , fpr(i),h) < E(ni)) then
14: fpr(i),hz (i) = fpr(i),h ;
15: AFT(ni) = EFT(ni, upr(i) , fpr(i),h);
16: E(ni) = E(ni, upr(i) , fpr(i),h);
17: end if
18: end if
19: end for
20: end while
21: Calculate SL(G) by (10);
22: Calculate E(G) by (11).

scale down the maximum frequency to a lower level for each
task on the same processor. That is, each task selects the proces-
sor’s frequency that generates the minimum energy consumption
within its deadline constraint. The core details are explained as
follows.

1) In Line 2, all the assigned processors of the tasks have been
obtained by using the HEFT algorithm.

2) In Line 6, the deadline D(ni) of the task ni has been
obtained before assigning it.

3) In Lines 9–19, all the frequencies of processor upr(i)
(the precision is known) are traversed, and the frequency with
the minimum energy consumption satisfying the condition
EFT(ni, uk , fk,h) � D(ni) is selected.

4) Given that task ni scales down the processing frequency
within its D(ni) on the fixed processor, the execution increment
of ni , which is less than the deadline slack DS(ni), could also
be extended to all of its immediate or mediate successors with
the same size. Therefore, the final AFT of the exit task would be
less than or equal to its deadline. That is, the SL(G) computed
by the DECM algorithm is safe and always less than or equal to
D(G).



XIE et al.: MINIMIZING ENERGY CONSUMPTION OF REAL-TIME PARALLEL APPLICATIONS USING DOWNWARD AND UPWARD APPROACHES 1073

TABLE III
POWER AND FREQUENCY PARAMETERS OF THE PROCESSORS (u1 , u2 , AND

u3 )

Processor Pk , ind Ck , ef mk fk , low fk , max

u1 0.03 0.8 2.9 0.22 1.0
u2 0.04 0.8 2.5 0.21 1.0
u3 0.07 1.0 2.5 0.29 1.0

TABLE IV
DECM-GENERATED TASK ASSIGNMENT OF THE APPLICATION IN FIG. 1

Task Assigned Frequency AST AFT Deadline Energy
processor consumption

n1 u3 0.65 0 13.8461 14.0 5.6856
n3 u3 0.79 13.8461 37.8967 38.0 15.0247
n4 u2 0.61 22.8461 35.9609 36.0 3.5737
n2 u1 0.72 31.8461 49.9017 50.0 6.1130
n5 u3 0.99 37.8967 47.9977 48.0 10.5574
n6 u2 1.0 35.9609 51.9609 52.0 13.4400
n9 u2 0.71 65.9017 82.8031 83.0 6.4193
n7 u3 0.69 47.9977 63.9398 64.0 7.4206
n8 u1 0.5 66.9609 76.9609 77.0 1.3717
n1 0 u2 0.59 87.9609 99.8253 100.0 3.0124

SL(G) = 99.8253 < D (G) = 100, E (G) = 72.6187

HEFT has been proved to perform very competitively, and it
has a low time complexity of O(|N |2 × |U |). Similarly, DECM
also has a low time complexity of O(|N |2 × |U |+ |N |2 × |F |),
when the discrete frequencies are introduced. |F | represents the
maximum number of discrete frequencies from the lowest to
the maximum actual effective frequencies. Therefore, DECM
implements the energy consumption minimization without in-
creasing time complexity.

D. Example of the DECM Algorithm

This section illustrates an example to show the results of the
DECM algorithm. The frequency-independent dynamic power
Pk,ind, effective switching capacitance Ck,ef, and the dynamic
power exponent mk for all the processors are assumed to be
known, and their values are in Table III. The lowest energy-
efficient frequency fk,low for each processor is obtained accord-
ing to (3). Meanwhile, the maximum frequency fk,max for each
processor is assumed to be 1.0.

Example 1: In this example, D(G) = 100 and the values of
the power and frequency parameters of the processors are shown
in Table III. Table IV lists the task assignment of the parallel
application in Fig. 1. Each row represents a task assignment and
its corresponding values. For example, n1 is assigned to u3 with
a frequency of 0.65; the AST of n1 is 0, and the AFT of n1
is 13.8461, which is lower than its deadline 14; as a result, the
consumed energy for n1 is 5.6856. For the rows in bold fonts
of values, the frequencies of the tasks are scaled down to values
lower than the maximum frequency 1.0, and the corresponding
energy consumption values are reduced by DECM compared
with energy consumption values on the same processors by the

Fig. 3. DECM-generated task scheduling of the application in Fig. 1.

HEFT algorithm. Specifically, the AFT of each task does not
exceed its deadline by DECM.

Fig. 3 also shows the scheduling of application G. In this
figure, the energy consumption values of the tasks in red boxes
are reduced by scaling down their frequencies to lower values,
such that their execution time is longer. For example, when
HEFT is used, n9 is assigned to u2 with a frequency of 1,
and AST(n9) = 56 and AFT(n9) = 68, as shown in Fig. 2.
When DECM is used, n9 is still assigned to u2 ; however, the
assigned frequency is scaled down to 0.71, and AST and AFT
are changed to AST(n9) = 65.9017 and AFT(n9) = 82.8031,
respectively, as shown in Fig. 3. This figure also shows that the
precedence constraints are not violated among all the tasks and
the deadline of the application is also satisfied. Finally, the tasks
satisfy the condition AFT(ni) � D(ni); the DECM-obtained
schedule length of the application is lower than its deadline
(i.e., SL(G) = 99.8253 < D(G) = 100). The final energy con-
sumptions of the application using DECM is E(G) = 72.6187,
which is also lower than Emax(G) = 159.49 when HEFT is used.

E. Latest Finish Time

The DECM-obtained schedule length is safe, but DECM
merely considers the energy consumption minimization from
a “downward” perspective. If LB(G) is equal to D(G), then
DECM is not applicable because DS(G) = 0. However, slacks
may exist between two adjacent tasks on the same processor,
and these slacks can be eliminated or reduced. In this section,
the DUECM algorithm is presented to solve the problem from
both “downward” and “upward” perspectives. “Upward” means
that energy consumption minimization is implemented from the
exit task to the entry task according to the descending order of
AFT.

The main idea of DUECM is that the DECM-obtained
AFT(ni) can be extended to LFT(ni) because slacks exist be-
tween adjacent tasks in the same processor [20], [21]. LFT(ni)
is calculated by [20], [21]⎧⎪⎨
⎪⎩

LFT(nexit) = D(G)

LFT(ni ) = min
{

min
n j ∈succ(n i )

{AST(nj )− c
′
i ,j }, AST(ndn (i) )

}
(17)

where ndn(i) represents the downward neighbor task of ni . For
example, ndn(2) = n8 and ndn(9) = n10 , as shown in Fig. 2.
Given that slacks exist in processors, LFT(ni) � AFT(ni) for
any task ni . For example, AFT(n9) = 77.89, as shown in
Fig. 3, but LFT(n9) should be 83. Therefore, the actual ex-
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Algorithm 2: The DUECM Algorithm.

Input: U = {u1 , u2 , . . . , u|U |}, G
Output: SL(G), E(G)

1: Call the DECM algorithm (Algorithm 1) to implement
downward energy consumption minimization;
2: Sort the tasks in the list upward task list according to
the descending order of AFT(ni) values;
3: while (tasks exist in upward task list) do
4: ni = upward task list.out();
5: Calculate LFT(ni) by (17);
6: Calculate new frequency fpr(i),nhz (i) by (18)

and (19);
7: Update AET(ni) by (20);
8: Update AFT(ni)← LFT(ni);
9: Update AST(ni)← (LFT(ni)− AET(ni)) by (21);

10: Update fpr(i),hz (i) ← fpr(i),nhz (i) ;
11: Calculate E(ni) by (9);
12: end while
13: Calculate E(G) by (11).

ecution time (AET) is changed from AFT(ni)− AST(ni) to
LFT(ni)− AST(ni), and the new frequency can be obtained as
follows:

fpr(i),nhz (i) = fpr(i),hz (i) × AFT(ni)− AST(ni)
LFT(ni)− AST(ni)

. (18)

Given that the lowest frequency to execute a task is fpr(i),low,
fpr(i),nhz (i) should be

fpr(i),nhz (i) = max{fpr(i),nhz (i) , fpr(i),low}. (19)

Finally, the new AET(ni) with the new frequency fpr(i),nhz (i)
should be updated as

AET(ni) = fpr(i),hz (i) × LFT(ni)− AST(ni)
fpr(i),nhz (i)

(20)

and the new AST should be updated as

AST(ni) = AFT(ni)− AET(ni). (21)

F. DUECM Algorithm

On the basis of above equations, the DUECM algorithm de-
scribed in Algorithm 2 is proposed. The core details of DUECM
are explained as follows.

1) In Line 2, the tasks in the list upward task list is sorted
according to the descending order of AFT(ni) values, which are
obtained by DECM (i.e., from exit to entry tasks).

2) In Lines 4–7, LFT(ni); consequently, the frequency and
AET(ni) are updated.

3) In Lines 8–11, AFT(ni) and AST(ni) are updated.
4) In Line 13, the new E(G) is calculated.
DUECM has low time complexity of O(|N |2 × |U |+
|N |2 × |F |). In fact, the time complexity for Lines 2–13 is
merely O(|N |2). Corresponding to DECM, Line 1 accounts for
the major time complexity.

TABLE V
DUECM-GENERATED TASK ASSIGNMENT OF THE APPLICATION IN FIG. 1

Task Processor Frequency AST AFT LFT Energy

n1 0 u2 0.58 87.9609 100.0 100.0 2.9490
n9 u2 0.54 65.9017 87.9609 87.9609 4.6638
n8 u1 0.5 66.9609 76.9609 76.9609 1.3717
n7 u3 0.48 48.0442 70.9609 70.9609 5.2622
n6 u2 1.0 35.9609 51.9609 51.9609 13.4400
n2 u1 0.72 31.8461 49.9017 49.9017 6.1130
n5 u3 0.99 37.9432 48.0442 48.0442 10.5574
n3 u3 0.79 13.8925 37.9432 37.9432 15.0247
n4 u2 0.61 22.8461 35.9609 35.9609 3.5737
n1 u3 0.65 0 13.8461 13.8461 5.6856

SL(G) = D (G) = 100, E (G) = 68.6415

Fig. 4. DUECM-generated scheduling of the application in Fig. 1.

G. Example of the DUECM Algorithm

Example 2: In this example, D(G) = 100 and values of the
power and frequency parameters of the processors are the same
values shown in Table III. Table V presents the task assignment
of the parallel application in Fig. 1. For the rows in bold fonts
of values, the tasks’s ASTs or AFTs of the tasks are changed
using the DUECM algorithm (see Table V).

Fig. 4 also shows the DUECM-derived scheduling of applica-
tion G. For example, when DECM is used, n9 is assigned to u2
with a frequency of 0.71, and AST(n3) = 65.9017 and AFT(n3)
= 82.8031 as shown in Fig. 3. When DUECM is used, n9 is still
assigned to u2 ; however, the assigned frequency is scaled down
to 0.54, and AST and AFT are changed to AST(n3) = 65.9017
and AFT(n3) = 87.9609, respectively, as shown in Fig. 4 using
DUECM. This figure also shows that the precedence constraints
are not violated among all the tasks, and the deadline of the ap-
plication is also satisfied.

All the tasks can satisfy the condition AFT(ni) � LFT(ni),
and the DUECM-generated schedule length of the application
is equal to its deadline (i.e., SL(G) = 100=D(G) = 100). The
final energy consumption of the application using the DUECM is
E(G) = 68.6415, which is lower than the E(G) value (72.6187)
obtained using the DECM algorithm. Finally, as roughly shown
in Fig. 4, DECM is to minimize energy consumption values of
the tasks near the entry task, and DUECM is to minimize energy
consumption values of the tasks near the exit task.

H. Implementation Issues

Currently, the mainstream manufacturers, such as Intel, ARM,
and AMD, provide processors that support for DVFS processor
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technology, such as enhanced Intel SpeedStep technology for
Intel, intelligent energy manager, and adaptive voltage scaling
for ARM, and PowerNow for AMD. A typical DVFS-enabled
heterogeneous system can be implemented as follows.

1) Select concrete processors (e.g., AMD Athlon-64, Intel
Pentium M, AMD Opteron 2218, and AMD Turion MT-34) and
build a distributed system, where these processors are mounted
on the same communication bus, such as controller area net-
work. Note that different processors have different DVFS levels.

2) Set the workload and frequency on each time range of each
processor for the parallel application according to the schedule
results using the proposed algorithm. Note that the processor
chip clock varies with frequency.

3) Calculate corresponding voltage based on the new
frequency, and then inform the power management module to
adjust the CPU voltage. Note that special power management
chips, such as Freescale’s MC13783 or NS’s PowerWise-
enabled family of power management chips, are required
because they are capable of supporting very small voltage
regulation (25 mV) and enabling voltage regulation in a very
short time (tens of microseconds).

4) In addition, when adjusting the frequency and voltage, pay
special attention to the order of adjustment. When decreasing the
frequency from high to low, one should first drop the frequency,
and then drop the voltage; on the contrary, when raising the
frequency, one should first raise the voltage, and then raise the
frequency.

Some problems should be concerned in the real DVFS-
enabled systems.

1) There are communication, network card, and volt-
age/frequency switching overheads for the application,
and these overhead would affect the precision of sched-
ule.

2) Tasks state saving and recovery, and phase-locked loop’s
shock and stability would affect the precision of DVFS.

3) In addition to the energy consumption of the processors,
other components also generate considerable energy con-
sumption, such as memory, interconnect networks, power
supplies, etc. These components would lead to increased
energy consumption of the system. Moreover, leakage
current is increasing.

V. EXPERIMENTS

A. Experimental Metrics and Data

Considering that this study aims to minimize the energy con-
sumption of real-time parallel application, we use the actual en-
ergy consumption E(G) [see (11)] and the final schedule length
SL(G) of the application as performance metrics to get very
intuitive comparison results. The algorithms compared with the
proposed DUECM are the state-of-the-art EES [20] and DEWTS
[21]. The values of the processor and application parameters
taken from [11] and [12] are as follows: 10 ms � wi,k � 100 ms,
10 ms � ci,j � 100 ms, 0.03 � Pk,ind � 0.07, 0.8 � Ck,ef �
1.2, 2.5 � mk � 3.0, and fk,max = 1 GHz. All frequencies are
discrete, and the precision is 0.1 GHz. These parameter val-
ues basically reflect the characters of some high-performance

Fig. 5. Example of the fast Fourier transform application with ρ = 4.

Fig. 6. Example of the Gaussian elimination parallel application with ρ
= 5.

embedded processors, such as Intel Mobile Pentium III and
ARM Cortex-A9.

Two types of real parallel applications (fast Fourier transform
and Gaussian elimination) are used to provide experimental
results. Fig. 5 shows an example of the fast Fourier transform
application with ρ = 4. ρ is used as the size of the fast Fourier
transform application, and the total number of tasks is |N | =
(2× ρ− 1) + ρ× log 2

ρ , where ρ = 2y for some integer y [16].
In the fast Fourier transform application with the size ρ, ρ exit
tasks exist. To adapt the application model to this study, just
a virtual exit task is added, and the last ρ tasks are set as the
immediate predecessor tasks of the virtual task. Fig. 6 shows
an example of the Gaussian elimination application with ρ = 5,
and the total number of tasks is |N | = ρ2 +ρ−2

2 [16].
Similar to most studies [11], [12], [20], [21], the parallel ap-

plications are executed on a simulated heterogeneous system
based on a real processor and application parameter values. A
main advantage of simulation is that it can greatly reduce de-
velopment cost during the design phase and effectively provide
certain optimization guide to the implementation phase.

B. Fast Fourier Transform Application for Varying
Deadlines

Experiment 1: This experiment is conducted to compare the
actual schedule length and final energy consumption of the fast
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TABLE VI
FINAL ENERGY CONSUMPTION (UNIT: KWS) AND ACTUAL SCHEDULE

LENGTH (UNIT: MS) OF THE FAST FOURIER TRANSFORM APPLICATION WITH
ρ = 256 (I.E., |N | = 2560) FOR VARYING DEADLINE CONSTRAINTS

HEFT [16] EES [20] DEWTS [21] DUECM

|N | Em a x (G) LB (G) D (G) E (G) SL(G) E (G) SL(G) E (G) SL(G)

2560 46874.01 1192 1192 37224.61 1192 37038.36 1192 37224.61 1192
2560 46874.01 1192 1311.2 35141.05 1311.2 35965.29 1311.2 28130.93 1311.2
2560 46874.01 1192 1430.4 32330.34 1430.4 38126.84 1430.4 24193.81 1430.4
2560 46874.01 1192 1549.6 30178.00 1549.6 39440.82 1549.6 22051.42 1549.6
2560 46874.01 1192 1668.8 27663.53 1668.8 40283.02 1668.8 20365.40 1668.8

Fourier transform application for varying deadline constraints.
The size of the application is limited to ρ = 256 (i.e., |N | =
2560) and change D(G) from LB(G)× 1.0 to LB(G)× 1.4.

Table VI shows the results of the fast Fourier transform ap-
plication for varying deadline constraints by using the three
algorithms. The schedule lengths obtained by the three algo-
rithms are equal to the given deadlines, that is, all the algorithms
can satisfy the deadline constraints by using LFT and the “up-
ward” approach. The maximum energy consumption for HEFT
is Emax(G) = 45667.23 kWs (1 J = 1 W × 1 s = 1 kWs),
and all the compared three algorithms can reduce the energy
consumption to a certain extent. When D(G) = LB(G)× 1.0,
DEWTS allows for a slightly lower energy consumption than
EES and DUECM. The reason for the above results can be
explained as follows: 1) when using EES and DUECM, the
LFT of the exit task cannot be extended in this case (i.e.,
D(G) = LB(G)× 1.0), and only a small part of tasks can be
optimized and the total energy consumption reduction is lim-
ited; 2) when using DEWTS, as the deadline is equal to lower
bound, only a few processors are turned OFF, then all the tasks
in fact experience a reassignment on processors; such process
is equivalent to using a low energy consumption task reschedul-
ing algorithm. That is, DEWTS implements a low energy con-
sumption task assignment, such that it can reduce more energy
consumption than EES and DUECM in this case. Although this
study can also include such a feature into DUECM, it is practi-
cally unrealistic and the algorithm requires high time complex-
ity. Moreover, DEWTS consumes more energy consumption
than DUECM in other cases. Particulary, the energy consump-
tion using DUECM is about half of that using DEWTS when
D(G) = LB(G)× 1.4. Note that DUECM can generally save
more energy consumption than EES and DEWTS except for the
case that D(G) = LB(G)× 1.0. Specifically, as the deadlines
increase, DUECM-generated energy consumption values are
reduced gradually from 37224.61 to 20365.40 kWs, whereas
DEWTS (from 37038.36 to 40283.02 kWs) not only fail to
further reduce energy consumptions but also increase energy
consumptions in some cases. When D(G) = LB(G)× 1.4,
DUECM is better than EES and DEWTS by 26.38% and
49.44%, respectively, in terms of energy consumption mini-
mization. Such results indicate that: 1) the energy consumption
reduction space is limited by merely applying the “upward”
approach even if the processors are turned OFF and the tasks

TABLE VII
FINAL ENERGY CONSUMPTIONS (UNIT: KWS) AND ACTUAL SCHEDULE

LENGTHS (UNIT: MS) OF FAST FOURIER TRANSFORM APPLICATIONS WITH
THE DEADLINE CONSTRAINT D(G) = LB(G) × 1.4 FOR VARYING

NUMBERS OF TASKS

HEFT [16] EES [20] DEWTS [21] DUECM

|N | Em a x (G) LB (G) D (G) E (G) SL(G) E (G) SL(G) E (G) SL(G)

224 4954.46 711 995.4 3016.37 995.4 5004.42 995.4 2178.49 995.4
512 11362.46 880 1232 6872.98 1232 10327.18 1232 4863.11 1232
1152 22985.53 1051 1471.4 13344.87 1471.4 20510.57 1471.4 9586.49 1471.4
2560 47255.23 1174 1643.6 26506.49 1643.6 42132.36 1643.6 19445.66 1643.6

moved; 2) synthetically applying both “downward” and “up-
ward” approaches can reduce energy consumption more than
by merely applying the “upward” approach, and the superior-
ity of the former is more significant when the deadline-slack is
large.

C. Fast Fourier Transform Application for Varying Scales

Experiment 2: To observe the performance on different scales
of applications, an experiment is conducted to compare the final
energy consumption values and actual schedule lengths of fast
Fourier transform applications for varying numbers of tasks. Let
D(G) = LB(G)× 1.4 and ρ is changed from 32 to 256, that is,
the numbers of tasks vary from 224 (small scale) to 2560 (large
scale).

Table VII shows the results of the fast Fourier transform
applications for varying numbers of tasks by using the three
algorithms. Similar to the results of Experiment 1, the sched-
ule lengths obtained using the algorithms are equal to the given
deadlines, and the energy consumption values are reduced to a
certain extent. For all the three algorithms, the generated energy
consumption increases gradually with an increase in the number
of tasks. In all cases, DUECM can reduce consumption more
than EES and DEWTS and outperform the two state-of-the-art
algorithms by 27.78% and 56.47% in the best case (|N | = 224).
These results further verify that DUECM, which is syntheti-
cally implements the “downward” and “upward” approaches,
can more efficiently minimize energy consumption than EES
and DEWTS, both of which apply the “upward” approach.

D. Gaussian Elimination Application for Varying
Deadlines

Experiment 3: This experiment is conducted to compare the
actual schedule lengths and final energy consumption values of
a Gaussian elimination application for varying deadline con-
straints. The size of the application is limited to ρ = 71 (i.e.,
|N | = 2555, which is approximately equal to the number of
tasks of the fast Fourier transform application in Experiment 1),
and change D(G) from LB(G)× 1.0 to LB(G)× 1.4.

Table VIII shows the results of the Gaussian elimination ap-
plication for varying deadline constraints by using the three
algorithms. Compared with the results of Experiment 1 in
Table VI, the Gaussian elimination application has a longer
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TABLE VIII
FINAL ENERGY CONSUMPTIONS (UNIT: KWS) AND ACTUAL SCHEDULE

LENGTHS (UNIT: MS) OF THE GAUSSIAN ELIMINATION APPLICATION WITH
ρ = 71 (I.E., |N | = 2555) FOR VARYING DEADLINE CONSTRAINTS

HEFT [16] EES [20] DEWTS [21] DUECM

|N | Em a x (G) LB (G) D (G) E (G) SL(G) E (G) SL(G) E (G) SL(G)

2555 50569.59 7212 7212 33656.17 7212 33181.77 7212 33656.17 7212
2555 50569.59 7212 7933.2 32280.59 7933.2 60767.70 7933.2 29728.24 7933.2
2555 50569.59 7212 8654.4 30259.70 8654.4 58588.55 8654.4 26700.64 8654.4
2555 50569.59 7212 9375.6 27587.61 9375.6 56166.23 9375.6 25101.30 9375.6
2555 50569.59 7212 10096.8 24574.10 10096.8 57862.86 10096.8 22505.48 10096.8

schedule length than the fast Fourier transform application in
all cases. For example, the lower bounds of the fast Fourier
transform and Gaussian elimination applications with the use of
HEFT are 1192 and 7212 ms, respectively. The lower bound of
the former is merely 16.5% of the latter.

Similar to the results of Experiment 1 in Table VI, DUECM
can reduce energy consumption more than EES and DEWTS,
except for the case in which D(G) = LB(G)× 1.0. When
D(G) = LB(G)× 1.4, DUECM is better than EES and
DEWTS by 8.42% and 61.1%, respectively, in terms of en-
ergy consumption minimization. Although the results of the
Gaussian elimination application are lower than those of the
fast Fourier transform application on the same scale, their over-
all trends are similar. First, with an increase in the deadline,
the generated energy consumption using DUECM is reduced
gradually, whereas DEWTS not only fails to reduce energy con-
sumption but also increases energy consumption in some cases.
The results show that DUECM is effective in different types of
parallel applications, and its effectiveness is stable.

All the results of the fast Fourier transform and Gaussian
elimination applications show that the proposed DUECM il-
lustrates more effective energy consumption minimization than
EES and DEWTS in a variety of different conditions with dif-
ferent deadline constraints.

VI. CONCLUSION

An effective energy consumption minimization algorithm
called DUECM is presented for real-time parallel applications.
First, DUECM is designed for heterogeneous systems, and it has
low time complexity. Second, DUECM demonstrates more ef-
fective energy consumption minimization than the state-of-the-
art algorithms as it reduces energy consumption by applying
both “downward” and “upward” approaches. Third, DUECM
is highly efficient for different types of real parallel applica-
tions under a variety of different conditions. DUECM can effec-
tively facilitate the energy-aware design for real-time parallel
applications in heterogeneous environments. In future work, a
“global” approach by reclaiming slack time on different pro-
cessors for each task would be considered. In addition, het-
erogeneous DVFS-enabled systems are not very popular in
some embedded systems, so it is also necessary to study low
energy consumption task scheduling method for non-DVFS

environments. The real systems will be implemented to run
real applications and evaluate their effectiveness in practice.
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