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Abstract—The problem of optimizing hardware cost un-
der functional safety requirement is a desirable work for
a safety-critical embedded application. The state-of-the-art
algorithms called enhanced explorative hardware cost op-
timization (EEHCO) and simplified EEHCO (SEEHCO) have
been used to study this problem for a distributed embed-
ded application by iteratively removing some processors
from opened processors (i.e., open-to-close). However, EE-
HCO has powerful cost optimization capability but inferior
time efficiency, and vice versa for SEEHCO in large-scale
heterogeneous distributed embedded systems. This study
presents a price performance-driven hardware cost opti-
mization (PPHCO) method, which is the combination of
PPHCO1 and PPHCO2, to achieve powerful cost optimiza-
tion capability and superior time efficiency simultaneously.
PPHCO1 iteratively selects the processor with the maxi-
mum price performance to open and overcomes the inferior
time efficiency (i.e., close-to-open). PPHCO2 iteratively se-
lects the processor with the minimum price performance to
close and further optimizes the hardware cost on the basis
of PPHCO1 without losing time efficiency (i.e., open-to-
close). Through significantly reducing the iteration count,
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PPHCO overcomes the inferior time efficiency of the open-
to-close method. Through adopting union fast functional
safety verification (UFFSV), PPHCO achieves powerful cost
optimization capability. Experiments confirm that PPHCO
not only achieves stronger cost optimization capability but
also has better time efficiency than state-of-the-art EEHCO
and SEEHCO algorithms.

Index Terms—Functional safety, hardware cost, price
performance.

I. INTRODUCTION

W E HAVE entered the era of Industrie 4.0, which creates a
smart factory. Within the modular structured smart fac-

tory, cyber-physical systems (CPS) monitor physical processes,
create a virtual copy of the physical world, and make decen-
tralized decisions [1]. Therefore, the smart factory is essentially
an industrial CPS (ICPS) [2]. As cloud computing technology
provides powerful computing capabilities for Industrie 4.0, the
manufacturing process is increasingly refined, and the comput-
ing scale of applications has become increasingly large. Industrie
4.0 expands the embedded systems through the information
communication technology (ICT) on the basis of automation,
and thus forming large-scale heterogeneous distributed embed-
ded systems (e.g., smart grid, factory automation, and process
industry) to complex distributed applications. For example, fast
Fourier transform (FFT) is a large-scale distributed embedded
application used for harmonic analysis in a smart grid and
requires complex scientific computation [3]. Such distributed
embedded application involves end-to-end computation and
communication and can be described as a directed acyclic graph
(DAG) [4], [5]. In addition, large-scale distributed embedded
applications accordingly require a large amount of processors to
support their execution. For example, the square kilometre array
(SKA), which is a typical project for FFT application, aims to de-
ploy the world’s largest radio-telescope for the next decades [6],
[7]. The SKA project uses a many-core platform, specifically
the Kalray MPPA (multipurpose processing array) processor
integrates 256 cores [6], [7]. In view of so many processor cores,
large-scale heterogeneous distributed embedded systems could
consume very high hardware costs, which can be understood
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Fig. 1. Main functional safety standards with the areas of applications.

as the price of purchasing processors. The hardware cost of the
required processor increases with the continuous growth of the
application scale [5]. Currently, the unit price of processors for a
typical industrial field bus of the controller area network (CAN)
are from $25 to $110 [5], [8]. Most processors are not fully uti-
lized in actual large-scale distributed embedded systems. Some
additional processors can be removed to optimize hardware cost
as long as such operation does not affect the correct execution of
the embedded application. Therefore, optimizing hardware cost
by reducing the number of processors is highly desirable [5].

In addition to optimizing hardware cost, an important issue of
safety needs to be addressed in distributed embedded systems.
In view of Industrie 4.0 and the safety industry as a whole, the
costs of work-related accidents and injuries reach 476 billion
Euros a year according to new global estimates [9]. That is,
industrial safety issue is relatively severe; thus, how to ensure an
embedded application’s safety operation without physical injury
and damage to the health of people is crucial. Functional safety
means the freedom from unacceptable risk of physical injury or
of damage to the health of people, either directly or indirectly
as a result of damage to property or to the environment [10]. A
safety-critical embedded application should comply with related
functional safety standards for safe operation. Safety issues exist
in automotive electronics, industrial safety components, factory
automation, process industry, nuclear power instrument control,
rail traffic signals, smart grid, and many other safety-related
areas. Fig. 1 lists the main functional safety standards in the field
of applications. Notice that chapters that consider functional
safety (i.e., only partial chapters not all chapters of the standard
book describe functionally safety) are also included in Fig. 1.

IEC 61 508, which is titled functional safety of electri-
cal/electronic/programmable electronic safety-related systems
(E/E/PES), is a basic functional safety standard applicable to
all types of industries [10]. Functional safety standards for
special industrial applications include the IEC 61 511 standard
for the process industry, the IEC 61 513 standard for nuclear

power plants, the IEC 62 061 standard for machinery, and the
IEC 61 784 standard for industrial communication, etc. These
standards are based on the IEC 61 508 standard and complement
IEC 61 508 in specific areas. These standards will change over
time; for instance, the latest version of IEC 61 513 is IEC
61 513:2011 released in 2011.

Reliability and response time are critical functional safety
properties [5]. Reliability is the probability of survival in a
given period of time, whereas response time is the time that the
functional unit reacts to a given input. Reliability and real-time
are two important measurable functional safety attributes during
the design phase. Other properties (e.g., stability [11]) May also
be the functional safety properties but are not the concern in
this article (i.e., systems are assumed to be stable). Therefore,
both reliability requirement and real-time requirement must be
simultaneously satisfied towards satisfying functional safety re-
quirement [5], [12]. Reliability requirement means to guarantee
that the reliability value reaches a specified reliability goal,
whereas real-time requirement means to guarantee response
within a specified time constraint. Both requirements must be si-
multaneously satisfied. Considering high demand or continuous
mode in IEC 61 508, the probability of dangerous failure per hour
must be larger than or equal to 10−9 and less than 10−8 in safety
integrity level (SIL) 4 [13]. As long as one of the requirements
cannot be satisfied, the corresponding personal safety will not
be guaranteed [5], [12].

A state-of-the-art method [5] has been proposed to address
the problem of hardware cost optimization for a distributed
embedded application under its functional safety requirement
by proposing enhanced explorative hardware cost optimization
(EEHCO) and simplified EEHCO (SEEHCO) algorithms. EE-
HCO iteratively closes some processors from all opened ones
until the application’s functional safety requirement cannot be
satisfied (i.e., the open-to-close method). SEEHCO simplifies
the iteration details to overcome the time inefficiency of EE-
HCO. EEHCO has powerful cost optimization capability but in-
ferior time efficiency, and vice versa for SEEHCO. Such perfor-
mance for EEHCO and SEEHCO is unacceptable in large-scale
heterogeneous distributed embedded systems (e.g., smart grid),
which are configured with many processors (at least hundreds
of processors). The scale of a distributed embedded application
running in such systems is relatively large (at least thousands of
tasks).

Large-scale embedded applications require a large number of
processors to participate in large-scale computation; however,
the use of EEHCO will cause time inefficiency, thereby resulting
in the long lifecycle. Meanwhile, embedded applications also
require optimizing the hardware cost considerably for high
production profit; however, the SEEHCO is powerless. In view
of these problems, we need to present a new method that can si-
multaneously achieve powerful cost optimization capability and
superior time efficiency in large-scale heterogeneous distributed
embedded systems.

This article is oriented to large-scale heterogeneous dis-
tributed embedded systems. We introduce the concept of
price performance and present a price performance-driven
hardware cost optimization (PPHCO) algorithm. By price
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performance-driven close-to-open and open-to-close methods,
PPHCO solves the problem that EEHCO and SEEHCO cannot
be compatible with both powerful cost optimization capability
and superior time efficiency simultaneously when applied in
large-scale heterogeneous distributed embedded systems. The
detailed contributions compared with state-of-the-art EEHCO
and SEEHCO proposed in [5] are summarized as follows.

1) We present the first price performance-driven hardware cost
optimization (PPHCO1) algorithm (Algorithm 1), considering
the time inefficiency of the open-to-close EEHCO algorithm.
PPHCO1 iteratively selects the processor with the maximum
price performance to open until the functional safety require-
ment is satisfied (i.e., close-to-open).

2) We present the second price performance-driven hardware
cost optimization (PPHCO2) algorithm (Algorithm 2), consid-
ering that partial PPHCO1-generated processors can be closed
while still satisfying the functional safety requirement. PPHCO2
iteratively selects the processor with the minimum price perfor-
mance to close until the functional safety requirement cannot be
satisfied. It also further optimizes the hardware cost on the basis
of PPHCO1 without losing time efficiency.

3) We present the PPHCO algorithm (Algorithm 3) by com-
bining PPHCO1 and PPHCO2 algorithms, considering that
PPHCO2 can be involved multiple times until a stable value
is reached. Through significantly reducing the iteration count,
PPHCO overcomes the inferior time efficiency of the open-to-
close method. Through adopting union fast functional safety
verification (UFFSV) proposed in [12], PPHCO achieves pow-
erful cost optimization capability.

4) Experiments confirm that PPHCO not only achieves
stronger cost optimization capability but also has better time ef-
ficiency than state-of-the-art EEHCO and SEEHCO algorithms.
Particularly, PPHCO just consumes 1112 s with good time
efficiency, but EEHCO requires as much as 129 h with poor
time efficiency to optimize hardware cost in the case of 320
processors.

II. RELATED WORK

In this section, we review recent related works in cost opti-
mization of DAG applications.

1) Resource cost optimization. Resource cost refers to
system resource consumption. Optimizing resource cost under
real-time requirement [14] and reliability requirement [15] has
been studied in heterogeneous systems. These works either
consider the real-time or reliability requirements and do not
simultaneously include these two requirements.

2) Development cost optimization. Development cost refers
to the workload of developing an application during the develop-
ment lifecycle. The authors in [16] and [17] optimized the devel-
opment cost under real-time requirement by presenting genetic
algorithm-based and tabu search-based meta-heuristics, respec-
tively. They made an important contribution to the modeling
and optimization of development cost but ignored the reliability
requirement. The authors in [18] optimized the development
cost under reliability requirement; however, the real-time re-
quirement was ignored.

Fig. 2. Architecture of heterogeneous distributed embedded systems.

3) Hardware cost optimization. The authors in [19] opti-
mized the hardware cost under real-time and security require-
ments by presenting integer linear programming and heuristics,
respectively; however, the authors focused on security require-
ments rather than reliability requirements. The authors in [5]
presented the EEHCO and SEEHCO algorithms to optimize
the hardware cost under functional safety requirements. As
discussed in Section I, neither EEHCO nor SEEHCO can achieve
powerful cost optimization capability and superior time effi-
ciency simultaneously in large-scale heterogeneous distributed
embedded systems. In the next sections, we will present a new
method that can simultaneously achieve these two objectives.

III. MODELS

A. System Architecture and Application Model

Many processors mounted to the same industrial bus (e.g.,
LonWorks, Profibu, CAN-FD, and WorldFIP) comprise of large-
scale heterogeneous distributed embedded systems, as shown in
Fig. 2.

Fig. 2 illustrates the simple execution process of a distributed
embedded application. From Fig. 2, processor p1 receives the
data from the sensor to trigger the first task (i.e., the entry task
of the application), which is represented as n1 in DAG. After n1

is executed completely in p1, a message m1,2 is sent from n1

to its successor task n2, which will be executed in processor p4.
m1,2 is transmitted in the CAN bus. After triggering a series of
tasks with data dependence, the final task (i.e., the exit task) is
allocated to a processor and completes the process by sending
the performing action to actuators.

On the basis of the architecture and execution process anal-
ysis, we let P = {p1, p2, . . ., p|P |} represent a set of heteroge-
neous processors in heterogeneous distributed embedded sys-
tems, where |P | is the size of set P . For any set X , we use |X| to
denote its size. A motivational example of distributed embedded
application is shown in Fig. 3, and the DAG parameters G are
explained as follows.
N represents a set of tasks in G, and ni ∈ N represents the

ith task of G. Fig. 3 shows 10 tasks for the distributed embedded
application. From the figure, n1 is the entry task, and n10 is the
exit task. Data dependence relationships exist between the tasks.
For example, after n1 is executed completely, messages m1,2,
m1,3, m1,4, m1,5, and m1,6 (denoted in edges) must be sent
from n1 to its successor tasks n2, n3, n4, n5, n6, respectively.
The weight value of each message represents the worst case
response time (WCRT) of communication between tasks. For
example, c1,2 is the communication time from n1 to n2 in the
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Fig. 3. Motivational distributed embedded application.

TABLE I
WCETS OF TASKS IN DIFFERENT PROCESSORS

worst case. Using the worst case ensures the real-time commu-
nication of the distributed embedded application from a safety
perspective. Similarly, worst case execution time (WCET) is the
execution time of a task in the worst case for safety design [20].
A task has different WCETs values in different processors due
to the heterogeneity of processors. Table I presents the WCET
matrix |N | × |P | of tasks in different processors (p1, p2, p3,
and p4) of the motivational distributed embedded application.
For example, the weight 14 of n1 and p2 in Table I represents
the WCET of n1 in p2, denoted by w1,2 = 14. Further details
about the application model can be found in [5].

We consider nonpreemptive scheduling for processors that are
consistent with the CAN bus for simplicity. The motivational
distributed embedded application in Fig. 3 is used to explain the
proposed algorithms in the study. For simplicity, all the units of
all parameters are ignored in the motivational application.

B. Hardware Cost Model

Heterogeneous processors are used in this study; thus,
all processors have individual unit prices. Hence, let
{price1, price2, . . ., price|P |} represent the set of unit prices
of heterogeneous processors. Table II shows that the example
of the hardware costs of four processors p1, p2, p3, and p4 are

TABLE II
PROCESSOR PARAMETERS OF THE MOTIVATIONAL APPLICATION

10, 20, 30, and 40, respectively. λk will be explained in the next
section.

The hardware cost of the application is the sum of those of all
opened processors and is calculated by

HC(G) =
∑

pk∈Popened

pricek (1)

where Popened represents the opened processor set in heteroge-
neous distributed embedded systems.

C. Reliability Model

Random hardware failures occur unpredictably during the
life cycle of a hardware element, and they follow a probability
distribution [5], [12], [21], [22]. Transient failures obeying the
Poisson distribution has been widely observed in numerous
works [5], [12], [21], [22]. Let λk be the failure rate of processor
pk. Then, the reliability of ni executed in pk is denoted by

R (ni, pk) = e−λkwi,k (2)

where wi,k represents the WCET of ni in pk.
This study only considers the processor failures and ignores

communication failures, because the CAN protocol not only pro-
vides the differential transmission specification in the physical
layer but also provides the subpacket verification rule by using
CRC and ACK segments in the data link layer. Such measures
can ensure that the failure rate of a CAN packet in a normal
environment is 10−9 [23], which is considerably lower than a
processor failure rate of 10−6 [24]. Therefore, the reliability of
the distributed embedded application is then calculated by [5],
[12], and [22]

R(G) =
∏

ni∈N
R(ni, ppr(i)) (3)

where ppr(i) represents the assigned processor of ni.

D. Problem Formulation

Consider an end-to-end industrial application with functional
safety requirement in heterogeneous distributed embedded sys-
tems. Then, similar to [5], the problem to be addressed in
this study is to reduce the hardware cost of the application
without violating its functional safety requirement. The formal
description is to minimize the hardware cost; that is

HC(G) =
∑

pk∈Pactive

pricek

under the functional safety requirement of <Rreq(G),
RTreq(G)>, that is

R(G) � Rreq(G) (4)
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TABLE III
EEHCO-GENERATED RESULTS WHEN ONLY ONE PROCESSOR IS ASSUMED

TO BE REMOVED WHILE THE OTHER PROCESSORS ARE OPENED IN THE
FIRST ITERATION

and

RT (G) = AFT (nexit) � RTreq(G). (5)

Rreq(G) andRTreq(G) represent the reliability and response time
requirements, respectively.AFT (nexit) represents the actual fin-
ish time of the exit task and the response time of the application
G. The problem to be addressed in this study is an NP-hard
optimization problem [5], because scheduling tasks with qual-
ity of service requirement for optimality in multiprocessors is
NP-hard [25].

E. Existing EEHCO and SEEHCO Algorithm

The EEHCO algorithm is the most powerful algorithm for
hardware cost optimization thus far [5]. The main idea of
EEHCO is that it iteratively removes the processors, without
which the minimum hardware cost is generated under the func-
tional safety requirement, from Popened until the application’s
functional safety requirements cannot be satisfied. Particularly,
EEHCO adopts a reliability enhancement technique (RET) to
satisfy the functional safety requirement as much as possible.
RET aims to maximize reliability under real-time requirement
and is essentially equivalent to the second FFSV (FFSV2) in
UFFSV [12], whereas the first FFSV (FFSV1) aims to minimize
response time under reliability requirement (see Section IV-A
for more details about UFFSV).

We assume that the functional safety requirement is < 0.95,
97>, that is, the reliability requirement is Rreq(G) = 0.95 and
the real-time requirement is RTreq(G) = 97.

1) In the initial state, EEHCO assumes that all processors
in heterogeneous distributed embedded systems are opened. In
view of the motivational distributed embedded application, the
opened processor set is Popened = {p1, p2, p3, p4}.

2) Table III shows EEHCO-generated results when only one
processor is assumed to be removed while the other processors
are opened in the first iteration. From the table, removing each
processor can satisfy the functional safety requirement of the
distributed embedded application (for how to obtain the relia-
bility and response time values, please refer to [5]). Removing
p4 will have the minimum hardware cost of 60, followed by p3,
p2, and p1; thus, EEHCO really removes p4 (denoted with red
color) in this iteration. Therefore, the opened processor set is
correspondingly updated to Popened = {p1, p2, p3}.

3) Table IV shows EEHCO-generated results when only one
processor is assumed to be removed while the other proces-
sors are opened in the second iteration. From Table IV, only

TABLE IV
EEHCO-GENERATED SCHEDULE RESULTS WHEN EACH PROCESSOR IS IN

THE SLEEP STATE IN THE SECOND ITERATION

removing p1 can satisfy the functional safety requirement of the
distributed embedded application, whereas removing p2 or p3
cannot. Therefore, EEHCO removes p1 (denoted with red color)
in this iteration. The opened processor set is correspondingly
updated to Popened = {p2, p3}.

4) Removing p2 or p3 from Popened = {p2, p3} to execute the
application in one processor obviously cannot satisfy the func-
tional safety requirement. Therefore, the final opened processor
set isPopened = {p2, p3}, and the hardware cost is price2 + price3
= 20 + 30 = 50.

As explained in Section I, the main limitation of EEHCO is
time inefficiency. As reported in [5], the time complexity of
EEHCO reaches O(|N |2 ×|P |3). The experiments show that,
for a large-scale distributed embedded application with 1151
tasks executed in 320 processors, EEHCO needs 131 h to obtain
valid results. To address this issue, [5] simplified EEHCO and
further presented the SEEHCO algorithm.

1) Similar to EEHCO, SEEHCO also assumes that all proces-
sors are opened in the initial state, that is, Popened = {p1, p2, p3,
p4}.

2) Similar to EEHCO, SEEHCO attempts to remove each pro-
cessor and compares the results in the first iteration. Removing
p4 will have the minimum hardware cost of 60, followed by p3,
p2, and p1; thus, p4 is removed in this iteration (denoted by the
red color in Table III).

3) In the succeeding iterations, SEEHCO no longer attempts
to remove each processor and compares the results but only
directly uses the removing order in the first iteration. Such
a simplification makes the time complexity of SEEHCO be
reduced to O(|N |2 ×|P |2) as reported in [5]. However, SEE-
HCO May result in higher hardware cost than EEHCO. For
example, the removing order in the first iteration is p4, p3,
p2, and p1, such that the second iteration should remove p3.
Unfortunately, removing p3 will violate the functional safety
requirement of the distributed embedded application. Therefore,
SEEHCO-generated final opened processor set is Popened = {p1,
p2, p3}, and the hardware cost is price1 + price2 + price3 = 10
+ 20 + 30 = 60, which is higher than that of EEHCO.

As discussed in Section I, although SEEHCO overcomes the
time inefficiency of EEHCO, it is powerless in hardware cost
optimization. According to our experiments, for a distributed
embedded application with 1100 tasks and 256 processors,
SEEHCO obtains valid results in 44 min, whereas EEHCO
needs 131 h. In summary, neither EEHCO nor SEEHCO can
simultaneously achieve powerful cost optimization capability
and superior time efficiency. To solve the problems of EEHCO
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Algorithm 1: The PPHCO1 Algorithm.

Input: P = {p1, p2, . . ., p|P |}, G, and RTreq(G), Rreq(G)
Output: HC(G)
1: Let all the processors be closed.
2: Sort all the processors in the closed processor list

Pclosed according to the descending order of the price
performance values.

3: Define the opened processor list Popened and its initial
value is NULL;

4: while(Pclosed is not null) do
5: pk ← Pclosed.remove();
6: Popened.add(pk);
7: Verify whether the application’s functional safety

requirement <RTreq(G), Rreq(G)> can be satisfied
in the opened processor list Popened by using the
FFSV1 and FFSV2 algorithms;

8: if(if FFSV1 or FFSV2 returns true) then
9: Calculate the application’s hardware cost HC(G)

using (1);
10: break;
11: end if
12: end while

and SEEHCO, we present a new method that can simultaneously
achieve powerful cost optimization capability and superior time
efficiency.

IV. HARDWARE COST OPTIMIZATION BY CLOSE-TO-OPEN

A. PPHCO1 Algorithm

Contrary to EEHCO’s opening of all processors, we let all
of them be closed in advance. In other words, the hardware
cost optimization is a close-to-open method rather than an open-
to-close method. We initially provide the algorithm description
(Algorithm 1), and then explain each line of the algorithm by
combining the motivational distributed embedded application.

1) In Line 1, PPHCO1 allows all the processors to be closed,
that is, Pclosed = {p1, p2, . . ., p|P |}. In other words, no processor
is provided for the application’s execution in the initial state.

2) In Line 2, PPHCO1 sorts all the processors in the listPclosed

according to the descending order of the price performance
values to provide an opening order of all the processors. The
price performance is defined as follows.

Definition 1(Price performance). The price performance of
the processor refers to the reliability performance divided by the
unit price (i.e., an inverse ratio), which can be expressed as

PP (pk) =
e−λk

pricek
. (6)

In economics and engineering, price performance refers to
a product’s capability to deliver performance of any sort for
its price. Generally, products with a high price performance is
desirable [26]. In other words, the processors’ opening order is:
the higher the price performance, the higher the priority. Table V
shows the price performance values of four processors, from

TABLE V
PRICE PERFORMANCE VALUES OF FOUR PROCESSORS

which we can obtain the processors’ opening order, that is, p1,
p2, p3, and p4.

3) In Line 3, PPHCO1 defines the opened processor list
Popened, and its initial value is null. In other words, Popened is
ready to load the processors that will be opened.

4) In Lines 4–12, PPHCO1 iteratively selects the processor
with the maximum price performance to open until the func-
tional safety requirement is satisfied. The details in the loop are
as follows.

a) In Line 5, PPHCO1 takes out the processor with the
maximum price performance from Pclosed and adds this
processor into Popened in Line 6.

b) In Line 7, PPHCO1 verifies whether the application’s
functional safety requirement <Rreq(G), RTreq(G)> can
be satisfied when executed in Popened by UFFSV. UFFSV
technique pertains to checking if the application satis-
fies a safe requirement set (i.e., real-time and reliability
requirements) of design specifications [12]. The UFFSV
technique has been solved in [12] by proposing the FFSV1
and FFSV2 algorithms. The FFSV1 algorithm solves
the problem of minimizing the response time under re-
liability requirement, and the verification result can be
assessed by comparing the obtained response time with
the given real-time requirement. The FFSV2 algorithm
solves the problem of maximizing the reliability under
real-time requirement, and the verification result can be
assessed by comparing the obtained reliability with the
given reliability requirement. As long as either verifica-
tion algorithm returns true, the verification returns true;
otherwise, returns false. In this study, we directly use
FFSV1 and FFSV2 together to verify the functional safety
requirement (see [12] for more details about the FFSV1
and FFSV2 algorithms).

c) In Lines 8–11, if FFSV1 or FFSV2 returns true (i.e., the
functional safety requirement is satisfied), then we can
obtain a valid hardware cost using (1) in Line 9. When
the functional safety requirement is satisfied, the iteration
process (i.e., loop) can be stopped (i.e., break in Line 10).

B. Iteration Process of PPHCO1

In view of the motivational distributed embedded application,
we execute the iteration process as follows.

1) We initially open processor p1, which has the highest price
performance. In this case, only one processor is used to execute
the application. The response time and reliability values are 130
and 0.924 964, respectively, as shown in the first and second lines
of Table VII. Obviously, neither FFSV1 nor FFSV2 enables the
verification to be passed.

2) Subsequently, we open processor p2, which has the second
highest price performance. In this case, two processors p1 and
p2 are used to execute the application. The reliability value
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TABLE VI
PERFORMANCE ANALYSIS OF THE PROPOSED PPHCO1, PPHCO2, AND PPHCO ALGORITHMS

TABLE VII
ITERATION PROCESS USING PPHCO1 FOR THE MOTIVATIONAL APPLICATION

Fig. 4. Task mapping of the motivational application in processors {p1,
p2, p3} by using FFSV1.

(0.947 716) is less than the reliability value of 0.95; thus, neither
FFSV1 nor FFSV2 enables the verification to be passed.

3) We continue to open the processor p3, which has the third
highest price performance. In this case, three processors p1, p2,
p3 are used to execute the application. By invoking FFSV1, we
can obtain the response time of 80 (less than 95) and reliability of
0.956 380 (larger than 0.95). By invoking FFSV2, we can obtain
the response time of 97 (equal to real-time requirement of 97)
and reliability of 0.964 544 (larger than reliability requirement
of 0.95). That is, both FFSV1 and FFSV2 enable the UFFSV to
be passed in this case (denoted with red color), and the iteration
process is stopped without opening processor p4, which has the
lowest price performance.

Fig. 4 shows the task mapping of the motivational application
in processors {p1, p2, p3} by using FFSV1. The arrows in

TABLE VIII
ITERATION PROCESS USING PPHCO2 FOR THE MOTIVATIONAL APPLICATION

the figure represent the communication between tasks if they
have immediate data dependency relationships. For example,
the arrow between n1 and n4 represents the communication
between n1 and n4, and the WCRT is 9 (i.e., c1,4 = 9). The
WCRT in this study is a theoretical WCRT upper bound rather
than the actual communication time. In other words, the WCRT
is pessimistic but safe and is useful for safety design. When
the reliability satisfies R(G) = 0.956 380 > Rreq(G) = 0.95
and the response time satisfies RT (G) = 80 < RTreq(G) = 97
(i.e., the functional safety requirement is satisfied), the obtained
hardware cost is valid and that is HC(G) = price1 + price2 +
price3 = 10 + 20 + 30 = 60.

The performance analysis (including time complexity and
main advantages) of the proposed PPHCO1 algorithm is shown
in Table VI.

V. HARDWARE COST OPTIMIZATION BY OPEN-TO-CLOSE

A. PPHCO2 Algorithm

Similar to PPHCO1, we first provide the algorithm description
(Algorithm 2) and then explain each line of the algorithm by
combining the motivational distributed embedded application.

1) In Line 1, PPHCO2 sorts all the processors in the list
Popened according to the ascending order of the price performance
values. Contrary to PPHCO1, the processors’ opening order for
PPHCO2 is: The lower the price performance, the higher the
priority.
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Algorithm 2: PPHCO2 Algorithm.

Input: P = {p1, p2, . . ., p|P |}, G, and RTreq(G), Rreq(G),
PPHCO1-generated results

Output: HC(G)
1: Sort all the processors in the list Popened according to

the ascending order of the price performance values;
2: while(there is a processor that has not been obtained

from Popened) do
3: pk ← Popened.get();
4: Verify whether the application’s functional safety

requirement <RTreq(G), Rreq(G)> can be satisfied
in the processor set (Popened − pk) by using the
FFSV1 and FFSV2 algorithms;

5: if(FFSV1 or FFSV2 returns true) then
6: Popened.remove(pk);
7: end if
8: end while
9: Calculate the application’s new hardware cost HC(G)

using (1);

2) Similar to the PPHCO1 algorithm (Algorithm 1), only one
while loop exists for the PPHCO2 algorithm (Algorithm 2)

a) In Line 3, PPHCO2 obtains processor pk, which has the
lowest price performance value from Popened. pk remains
in Popened and has not been removed.

b) In Line 4, PPHCO2 verifies whether the application’s
functional safety requirement <Rreq(G), RTreq(G)> can
be passed in the opened processor list (Popened − pk) by
using the FFSV1 and FFSV2 algorithms.

c) In Lines 5–7, if FFSV1 or FFSV2 returns true, then
PPHCO2 removes pk from Popened.

3) After all the processors are obtained from Popened

(Lines 2–8), we then calculate the application’s hardware cost
HC(G) using (1).

B. Iteration Process of PPHCO2

We perform the following iteration process considering the
motivational application.

1) We first obtain processor p3, which has the lowest price
performance value from Popened = {p1, p2, p3}. In this case,
p1 and p2 are used to execute the application. The response
time and reliability values are 94 and 0.947 716, respectively, as
shown in the first and second lines of Table VIII. Therefore, the
functional safety requirement < 0.95, 97> cannot be satisfied,
and p3 cannot be removed from Popened.

2) We then obtain the processor p2, which has the second
lowest price performance value from Popened = {p1, p2, p3}.
In this case, p1 and p3 are used to execute the application. By
invoking FFSV1, the response time and reliability values are
94 and 0.953 897, respectively, as shown in the third line of
Table VIII. Therefore, the functional safety requirement < 0.95,
97> can be satisfied, and p2 can be removed from Popened, such
that Popened is updated to Popened = {p1, p3} (denoted with red
color). Notice that the response time and reliability values are
98 and 0.960 789, respectively, by invoking FFSV2, and the

Fig. 5. Task mapping of the motivational application in processors {p1,
p3} by using FFSV1.

TABLE IX
ITERATION PROCESS BY FURTHER USING PPHCO2 FOR THE

MOTIVATIONAL APPLICATION

functional safety requirement < 0.95, 97> cannot be satisfied
in this case. The above results show that the use of UFFSV with
FFSV1 and FFSV2 is more likely to satisfy the functional safety
requirement than EEHCO with only FFSV2, thus it is possible
to optimize hardware cost further.

3) We continue to obtain processor p1 fromPopened = {p1, p3},
and the result shows that p1 cannot be removed from Popened.

Fig. 5 shows the task mapping of the motivational application
in processors {p1, p3} by using FFSV1. From Fig. 5, when the
reliability satisfies R(G) = 0.953 897 > Rreq(G) = 0.95 and
the response time satisfies RT (G) = 94 <RTreq(G) = 97 (i.e.,
the functional safety requirement is satisfied), the obtained hard-
ware cost is valid and that is HC(G) = price1 + price3 = 10
+ 30 = 40.

The performance analysis (including time complexity and
main advantages) of the proposed PPHCO2 algorithm is shown
in Table VI.

C. PPHCO Algorithm

Our hardware cost optimization method has not ended yet
after using PPHCO2. In view of the motivational distributed
embedded application, the final opened processor set is Popened

= {p1, p3} after using PPHCO2. However, we can further use
PPHCO2 to remove possible processors from Popened = {p1,
p3} without violating the functional safety requirement of the
distributed embedded application. Table IX shows the iteration
process in which PPHCO2 is further used for the motivational
application.

PPHCO2 cannot satisfy the functional safety requirement in
the case of {p1, p2, p3} - p3 = {p1, p2} (Table VIII). However, it
May be occurred in PPHCO2 that it satisfies the functional safety
requirement in {p1, p3} - p3 = {p1} (Table IX). The processor
number is small for the motivational application; thus, Table IX
can not indicate that the hardware cost is further optimized.
However, this possibility exists for other applications, because
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Fig. 6. Flowchart of the presented PPHCO algorithm.

Algorithm 3: The PPHCO Algorithm.

Input: P = {p1, p2, . . ., p|P |}, G, and RTreq(G), Rreq(G)
Output: HC(G)
1: The initial hardware cost HC(G) the distributed

embedded application is generated by invoking
PPHCO1;

2: while(true) do
3: Obtain the new hardware cost HCnew(G) of the

distributed embedded application by invoking
PPHCO2;

4: if(HCnew(G)<HC(G)) then
5: HC(G)← HCnew(G);
6: else
7: break; //HCnew(G)==HC(G)
8: end if
9: end while

a task has different WCETs in different processors due to the
heterogeneity of processors; this characteristic could occur in
the situation that using fewer opened processors does not mean
worse response time and reliability compared with using more
opened processors.

The PPHCO algorithm is presented based on the aforemen-
tioned analysis, as shown in Algorithm 3. The flowchart of
PPHCO has been shown in Fig. 6.

1) Line 1 shows that the initial hardware cost HC(G) is
generated by PPHCO1.

2) In the while loop (Lines 2–9), PPHCO obtains the new
hardware cost HCnew(G) of the distributed embedded applica-
tion by invoking PPHCO2.

a) If the new hardware cost HCnew(G) is less than HC(G),
then update HC(G) to HCnew(G) (i.e., HC(G) ←
HCnew(G)). In other words, the hardware cost reduction
is achieved through HC(G)← HCnew(G) (Lines 4–6).
A processor is removed from the opened processor set in
invoking PPHCO2 (Line 3) if the result is HCnew(G) <
HC(G) (Line 4).

b) If the new hardware cost HCnew(G) is equal to HC(G),
then the while loop is stopped. In other words, the hard-
ware cost reaches a stable value.

The performance analysis (including time complexity and
main advantages) of the proposed PPHCO algorithm is shown
in Table VI.

VI. EXPERIMENTS

A. Experimental Conditions and Instructions

The algorithms compared with PPHCO1, PPHCO2, and
PPHCO are state-of-the-art iterative hardware cost optimization
(IHCO) [27], EEHCO [5], and SEEHCO [5]. IHCO iteratively
removes many processors with a high hardware cost until the
application’s functional safety requirement cannot be satis-
fied [5]. EEHCO and SEEHCO have been explained in detail in
Section III-E.

To implement fair comparison, we also use the equal appli-
cation and processor parameters to [5] as a test bed (2.6 GHz
Intel CPU and 4 GB memory) to perform experiments, that is,
10 ms � wi,k � 100 ms, 10 ms � ci,j � 100 ms, 0.000 001/ms
� λk � 0.000 009/ms, $25 � pricek � $110. Similar to [5],
we also use the hardware cost HC(G), the number of opened
processors |Popened| for applications, and computational time of
the algorithm as the metrics.

Many distributed embedded applications can be represented
by DAGs. In this study, we use two typical distributed embedded
applications, namely, FFT and Gaussian elimination (GE). FFT
implements the transform between time (or space) and frequency
and can be used for harmonic analysis in a smart grid. GE solves
linear equations and can be used for topology analysis in a
smart grid. These two applications have also been implemented
in embedded systems [7], [28]. We use these two applications
because they have well-defined structures; particularly, FFT is
a high-parallelism application, whereas GE is a low-parallelism
application (refer to [29] for more details about their structures).
We can fully reflect the advantages and characteristics of the
proposed algorithm by comparing two representative applica-
tions with good structure and opposite parallelism with the same
scale.

All the algorithms involve open and close operation of pro-
cessors; thus, we analyze the performance of these algorithms
under different numbers of processors. Similar to [5], we set the
real-time and reliability requirements as RTreq(G) = LB(G)
and Rreq(G) = Rheft(G), respectively. LB(G) and Rheft(G)
represent lower bound and reliability values generated by the
heterogeneous earliest finish time (HEFT) algorithm. The lower
bound refers to the minimum response time of an application
without any constraint. Scheduling tasks with minimum re-
sponse time in multiprocessors is known to be an NP-hard opti-
mization problem; thus, the HEFT algorithm presented in [29]
is a well-studied list scheduling algorithm and has been used
to obtain the approximate lower bound in numerous works [5],
[12] (Please refer to [29] for further details of how to obtain the
lower bound).

The response time and reliability values are no longer pro-
vided because all the five algorithms aim to optimize the hard-
ware cost under the functional safety requirements. Therefore,
we directly observe the generated hardware costs, number of
opened processors, and computational time values.
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TABLE X
COMPUTATION TIME OF ALGORITHMS WHEN EXECUTING FFT APPLICATION

FOR DIFFERENT NUMBERS OF PROCESSORS

TABLE XI
ITERATION COUNTS OF ALGORITHMS WHEN EXECUTING FFT APPLICATION

FOR DIFFERENT NUMBERS OF PROCESSORS

B. Experimental Details and Analyses

Experiment 1. This experiment observes the hardware costs,
number of opened processors of the high-parallelism FFT appli-
cation with 1151 tasks, and computational time values of the five
algorithms under different numbers of processors. The processor
number is changed from 64 to 320 with 64 increments.

Table X shows the computational time of all the algorithms.
PPHCO’s computational time includes the computational time
of invoking PPHCO1 once and PPHCO2 multiple times. In com-
parison with other algorithms, EEHCO is quite time-consuming,
especially with more processors. For example, when the task
number is 256 and 320, the computational time values of EE-
HCO reach 40 and 131 h, respectively. IHCO has the best time
efficiency in most cases; however, IHCO’s cost optimization ca-
pability is extremely limited. A promising result is that PPHCO
yields better time efficiency than SEEHCO, with the exception
of |P | = 64. PPHCO only requires 1/2003 time of SEEHCO to
get the result when |P | = 320, respectively. Although PPHCO
has high time complexity, its actual time efficiency is better than
that of SEEHCO.

To find out why PPHCO has superior time efficiency, we
list the iteration counts of algorithms when executing FFT
applications for different numbers of processors, as shown in
Table XI. The results show that the iteration counts of PPHCO
are much less than those of EEHCO. For example, when |P |
= 320, PPHCO just needs 100 iterations to obtain the opti-
mized hardware cost of $951, whereas EEHCO and SEEHCO
needs 50799 and 347 iterations to obtain the optimized cost
of $958 and $18 524, respectively. The hardware costs can
be found in Fig. 7(a). Notice that the sum of iteration counts
of PPHCO1 and PPHCO2 is not always equal to the iteration
count of PPHCO in each column because PPHCO2 May be
invoked multiple times. Overall, the potential reason for the
superior time efficiency of PPHCO is that it needs much less
iteration counts than EEHCO and SEEHCO. Further analysis,
the essential reason for low iteration count of PPHCO is adopting

Fig. 7. Results of FFT application for different numbers of processors.
(a) Hardware cost (unit: $). (b) Number of opened processors.

the price performance-driven close-to-open and open-to-close
methods: 1) PPHCO1 quickly excludes most of the processors
driven by price performance (i.e., close-to-open); 2) PPHCO2
quickly continues to exclude some processors from the opened
processor driven by price performance (open-to-close); and 3)
the iteration count of PPHCO2 is decreasing).

After analyzing the time efficiency, we analyze the hardware
optimization capability. The curves in Fig. 7(a) indicate that
IHCO and SEEHCO are at a relatively high cost level, whereas
EEHCO, PPHCO1, PPHCO2, and PPHCO are at a relatively
low cost level. Generally, IHCO constantly produces the highest
hardware costs, followed by SEEHCO. With the increasing
number of processors, the hardware costs of IHCO and SEE-
HCO increase correspondingly, whereas EEHCO, PPHCO1,
PPHCO2, and PPHCO do not show similar linear growth. In
general, the hardware cost difference between EEHCO and
PPHCO is not extremely large; however, in the case of a large
number of processors, PPHCO has a stronger hardware cost
optimization capability than EEHCO; particularly, when |P |
= 256, the hardware cost of PPHCO is only about half of
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TABLE XII
COMPUTATIONAL TIME OF ALGORITHMS WHEN EXECUTING GE APPLICATION

FOR DIFFERENT NUMBERS OF PROCESSORS

EEHCO and is about 1/10 of SEEHCO. These results show
that PPHCO performs better than EEHCO in hardware cost
optimization capability. The essential reason for the stronger
hardware cost optimization capability of PPHCO than EEHCO
and SEEHCO is that PPHCO not only uses FFSV1 but also
FFSV2 to increase the likelihood to satisfy the functional safety
requirement, whereas EEHCO and SEEHCO only use FFSV2,
such that PPHCO is more thorough than EEHCO and SEEHCO
in optimizing hardware cost.

In addition to hardware cost optimization capabilities, we aim
to determine how many processors are opened to analyze the
potential reasons. The trend of the curves in Fig. 7(a) and (b)
are generally consistent. The percentage of processors opened
by IHCO and SEEHCO exceeded 92% and 82%, respectively.
IHCO cannot even close any processor. The number of opened
processors using EEHCO is between 30–56, whereas that using
PPHCO is between 27–39 in all cases. Hence, the number
of opened processors using PPHCO is unaffected by the total
number of processors. This result is due to the fact that PPHCO
initially determines the processors that must be opened quickly
on the basis of the maximum price performance of each proces-
sor by PPHCO1 and then quickly determines the processors that
must be closed on the basis of the minimum price performance of
each processor. Such operations thus avoid attempting to close
each processor and schedule other processors.

These results show that PPHCO is superior to SEEHCO
and EECHCO in terms of time efficiency and hardware cost
optimization capability. PPHCO does not aim to make a trade-
off between time efficiency of SEEHCO and hardware cost
optimization capability of EEHCO but to achieve better cost
optimization capability and time efficiency than SEEHCO and
EEHCO simultaneously.

Experiment 2. This experiment observes the hardware costs,
number of opened processors of the low-parallelism GE appli-
cation with 1175 tasks and the computational time values of the
five algorithms under different numbers of processors. Similar
to Experiment 1, the processor number is changed from 64 to
320 with 64 increments.

Similar to Table X for high-parallelism FFT application,
Table XII for low-parallelism GE application shows that PPHCO
is the more time-efficient algorithm than SEEHCO in the case
of a large number of processors. For example, when |P | =320,
PPHCO only needs 1/37 time of that of SEEHCO to obtain the
results; meanwhile, EEHCO is relatively time-consuming and
needs 46 and 129 h to obtain the results.

TABLE XIII
ITERATION COUNTS OF ALGORITHMS WHEN EXECUTING GE APPLICATION

FOR DIFFERENT NUMBERS OF PROCESSORS

Fig. 8. Results of GE application for different numbers of processors.
(a) Hardware cost (unit: $). (b) Number of opened processors.

Table XIII lists iteration counts of algorithms when executing
GE applications for different numbers of processors. Similar
to the results in Table XI for the FFT application, Table XIII
also shows that PPHCO needs much less iteration counts than
EEHCO to obtain superior time efficiency.

The comparison of Figs. 7(a) and 8(a) indicates that EE-
HCO and PPHCO can generate lower hardware costs for low-
parallelism GE application than for high-parallelism FFT appli-
cation. Similar to Fig. 7(a), Fig. 8(a) shows that the hardware
cost difference between EEHCO and PPHCO is small. When the
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processor numbers are 128, 196, 256, and 320, PPHCO still out-
performs EHECO. Although the hardware cost optimization ad-
vantage of PPHCO is weaker than EEHCO for low-parallelism
applications, the results show that PPHCO is still powerful
in hardware optimization capability for low-parallelism GE
applications.

Furthermore, the trend of the curves in Fig. 8(a) and (b) is
generally consistent. The comparison of Fig. 8(a) and (b) shows
that EEHCO and PPHCO needs fewer number of processors for
low-parallelism GE applications than that for high-parallelism
FFT application. For example, the number of opened processors
using EEHCO is merely between 11 and 20, whereas that using
PPHCO is merely between 12 and 17.

The above analysis indicates that EEHCO and PPHCO are
more powerful in hardware cost optimization capability for
low-parallelism application than that for high-parallelism ap-
plication. In addition, PPHCO still maintains superior time
efficiency, whereas EEHCO is quite time-consuming for a large
number of processors. Therefore, PPHCO is better than SEE-
HCO and EEHCO in terms of time efficiency and hardware cost
optimization capability in large-scale heterogeneous distributed
embedded systems.

VII. CONCLUSION

In this article, we present a novel hardware cost optimization
algorithm called PPHCO, which can optimize the hardware
cost to the extreme and reach a stable state driven by price
performance. The greatest innovation of PPHCO is that it ini-
tially eliminates most of the processors no longer concerned
by adopting the close-to-open method, such that it overcomes
the time inefficiency of the existing open-to-close method. The
greatest contribution of PPHCO is that it does not aim to make
a tradeoff between the time efficiency of SEEHCO and the
hardware cost optimization capability of EEHCO but simul-
taneously achieves powerful cost optimization capability and
superior time efficiency simultaneously compared with EEHCO
and SEEHCO. We summarized the essential reasons for supe-
rior time efficiency and powerful hardware cost optimization
capability of PPHCO by experiments: 1) PPHCO needs much
less iteration counts than EEHCO and SEEHCO to finish the cost
optimization quickly by price performance-driven close-to-open
and open-to-close methods; and 2) PPHCO uses both FFSV1 and
FFSV2 to increase the likelihood of satisfying the functional
safety requirement towards thorough hardware cost optimiza-
tion, whereas EEHCO and SEEHCO only use FFSV2. By using
PPHCO, engineering managers can quickly get the hardware
cost required for a given design requirement to enable system
designers to complete system design. The future work could
study the hardware cost optimization for dynamic distributed
embedded application.
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