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Abstract—Both response time and reliability are impor-
tant functional safety properties that must be simultane-
ously satisfied learning from the automotive functional
safety standard ISO 26262. Safety verification pertains to
checking if an application meets a safe set of design spec-
ifications and complies with regulations. Introducing veri-
fication in the early design phase not only complies with
the latest automotive functional safety standard but also
avoids unnecessary design effort or reduces the design
burden of the late design optimization phase. This study
presents a fast functional safety verification (FFSV) method
for a distributed automotive application during the early de-
sign phase. The first method FFSV1 finds the solution with
the minimum response time under the reliability require-
ment, and the second method FFSV2 finds the solution
with the maximum reliability under the response time re-
quirement. We combine FFSV1 and FFSV2 to create union
FFSV (UFFSV), which can obtain acceptance ratios higher
than those of current methods. Experiments on real-life
and synthetic distributed automotive applications show that
UFFSV can obtain higher acceptance ratios than their exist-
ing counterparts.

Index Terms—Automotive functional safety, ISO 26262,
verification.
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I. INTRODUCTION

A. Motivation

AUTOMOTIVE system is a highly safety-critical indus-
trial electronic system. Many active and passive safety

applications have been developed to enhance safe driving, such
as antilock braking system, brake-by-wire, and adaptive cruise
control [1]. In particular, the road vehicles—functional safety
standard ISO 26262 was officially released in 2011 for adapting
safety of automotive applications [2]–[4]. Functional safety has
become the preferential direction of automotive system devel-
opment, and it refers to the absence of unreasonable risk caused
by systematic failures and random hardware failures [2].

Safety usually refers to satisfying the response time re-
quirement (i.e., real-time requirement, timing constraint, and
deadline constraint) and reliability requirement (i.e., reliability
goal, reliability assurance, and reliability constraint) of an appli-
cation. Safety verification pertains to checking if an application
meets a safe set of design specifications and complies with
regulations. Automotive industry is cost sensitive to the mass
market, and thus, the development cost, hardware cost, and re-
source cost design optimization for safety-critical distributed
automotive applications have been studied [5]–[8]. However,
the aforementioned works only focused on either satisfying the
response time or reliability requirement rather than functional
safety requirement. Response time and reliability requirements
are nonfunctional requirements in requirements engineering dis-
cipline [9]; however, response time and reliability are important
functional safety properties learning from the ISO 26262 stan-
dard; their requirements must be simultaneously satisfied for
automotive functional safety [2]. Before cost design optimiza-
tion, we should verify the feasibility of design optimization.
If design optimization is infeasible, then designers can avoid
unnecessary design effort. If it is feasible, then designers can
reduce the design burden by using verification results as basis
because verification is part of the design process. Introducing
verification in the early design phase not only complies with
the latest automotive functional safety standard but also avoids
unnecessary design effort or reduces the design burden of the
late design optimization phase.

A directed acyclic graph (DAG) can be used to represent a dis-
tributed automotive application with end-to-end computation,
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Fig. 1. Pareto curve for a bicriteria between response time and expo-
sure [10], [11].

in which the nodes represent tasks and the edges represent the
communication messages between tasks [1], [12]. The prob-
lem is that response time and reliability may not be satisfied
simultaneously in practice because increasing reliability intu-
itively increases the response time of a DAG-based distributed
application [10], [11]. ISO 26262 defines the exposure to rep-
resent the relative expected frequency of the operational condi-
tions, in which hazardous events may occur and cause hazards
and injuries [2]. That is, reliability is just the inverse expres-
sion of exposure. Response time minimization and exposure
minimization (i.e., reliability maximization) are conflicting pro-
cesses, such that verifying functional safety is a bicriteria optima
problem. In Fig. 1, each point x1–x7 represents a solution of a
bicriteria minimization problem [10], [11]. The points x1 , x2 ,
x3 , x4 , and x5 are Pareto optima; the points x1 and x5 are weak
optima, whereas the points x2 , x3 , and x4 are strong optima. The
set of all Pareto optima is called Pareto curve. In [10], Girault and
Kalla presented a bicriteria scheduling heuristic (BSH) to gen-
erate an approximate Pareto curve of nondominated solutions,
among which the designers can verify the functional safety by
finding the points that satisfy the reliability and response time
requirements simultaneously. However, the time complexity of
BSH is as high as O(|N | × 2|U |), where |N | and |U | are the num-
ber of tasks and electronic control units (ECUs), respectively.
Currently, a high-end automotive system comprises at least 70
heterogeneous ECUs, and the number of ECUs is expected to
increase further in future automotive systems [1], [12]. Consid-
ering that the automotive industry is cost-sensitive, shortening
the application’s development cycle to reduce development cost
is crucial. Therefore, a fast functional safety verification (FFSV)
method with low time complexity should be proposed from a
cost control perspective.

B. Overview of the Study

A life cycle of industrial software development usually in-
volves the analysis, design, implementation, and testing phases
[8], [13]–[15]. In this work, we focus on the early design phase,
in which verification is used to determine the feasibility of de-
sign optimization in advance. The overview of this paper is
shown in Fig. 2. The main contents are as follows.

1) In the analysis phase, we first assess the reliability
requirement in Section III-C and the response time
requirement in Section III-D. Even if the reliability re-
quirement and the response time requirement are satisfied

Fig. 2. Overview of this study for fast functional safety verification.

independently, the functional safety requirement contain-
ing reliability requirement and response time requirement
may not be satisfied, because reliability maximization
and response time minimization are conflicting.

2) In the early design phase, we propose two FFSV meth-
ods. One method called FFSV1 is to find the solution with
the minimum response time under the reliability require-
ment, and the second method called FFSV2 is to find the
solution with the maximum reliability under the response
time requirement. We combine FFSV1 and FFSV2 to
form a union FFSV (UFFSV). As long as either verifica-
tion method returns true, the verification returns true.

3) In the late design phase, if at least one of the two meth-
ods can find a solution, then designers can present the
cost optimization schemes based on the corresponding
solutions.

C. Contribution of the Study

The main contributions of this study are to introduce func-
tional safety verification in the early design phase for distributed
automotive application development and propose two heuristic
verification methods to achieve fast union verification. The de-
tails are summarized as follows.

1) The FFSV1 method solves the problem of minimizing re-
sponse time under reliability requirement. The problem
is divided into two subproblems, namely, satisfying reli-
ability requirement and minimizing response time. The
first subproblem is solved by transferring the reliability
requirement of the application to each task. The second
subproblem is solved by assigning each task to the ECU
with the minimum earliest finish time (EFT) under sat-
isfying the reliability requirement of the application. Fi-
nally, the verification result can be judged by comparing
the obtained response time with the given response time
requirement.

2) The FFSV2 method solves the problem of maximizing re-
liability under response time requirement. The problem is
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also divided into two subproblems, namely, satisfying re-
sponse time requirement and maximizing reliability. The
first subproblem is solved by transferring the response
time requirement of the application to each task. The sec-
ond subproblem is solved by migrating partial tasks to
the ECUs with the maximum reliability values under sat-
isfying the response time requirement of the application.
Finally, the verification result can be judged by com-
paring the obtained reliability with the given reliability
requirement.

3) We combine FFSV1 and FFSV2 to form UFFSV. As long
as either verification method returns true, the verification
returns true, otherwise returns false.

II. RELATED WORK

As stated in ISO 26262, random hardware failures (i.e., tran-
sient failures in most studies) occur unpredictably during the
life cycle of a hardware element, but they follow a probabil-
ity distribution [2]. A widely accepted reliability model was
presented by Shatz and Wang [16], in which the transient fail-
ure of each hardware follows a constant-parameter Poisson law
[8], [10].

Automotive industry is cost-sensitive to the mass market, as
pointed out in Section I-A. The development cost, hardware
cost, and resource consumption cost design optimization for
safety-critical distributed automotive applications were studied
in [5]–[8]. In [5] and [6], Gan et al. presented development cost
minimization to satisfy the response time requirement by pre-
senting genetic algorithm-based and tabu search-based meta-
heuristics, respectively. In [7], Gu et al. presented hardware
cost minimization to satisfy the response time and security re-
quirements. Despite the introduction of these methods, both
reliability and response time requirements must be simultane-
ously satisfied learning from automotive functional safety stan-
dard. Response time minimization and reliability maximization
(i.e., exposure minimization) are conflicting in scheduling a
DAG-based application, and optimizing them is a bicriteria op-
timization problem as pointed out in Section I-A [10]. In [17],
Zhao et al. presented a shared recovery-based frequency as-
signment technique to reduce energy consumption with a re-
liability requirement and a response time requirement for a
DAG-based distributed application on a single processor. How-
ever, multiprocessors have been used in most embedded sys-
tems, such as automotive embedded systems. In [8], Xie et al.
solved the problem of minimizing the resource consumption
cost by satisfying the reliability requirement without using fault-
tolerance on heterogeneous embedded systems. In [11], Xie
et al. solved the problem of minimizing the redundancy by
satisfying the reliability requirement using fault-tolerance on
heterogeneous service-oriented systems. Considering the lim-
ited resources of embedded systems, fault-tolerance may be
unsuitable [8].

III. MODELS

Table I lists notations and their definitions that are used in
this study.

TABLE I
NOTATIONS IN THIS STUDY

Notation Definition

wi,k WCET of the task ni on the ECU uk

ci,j WCRT between the tasks ni and nj

ranku (ni ) Upward rank value of the task ni

upr(i) Assigned ECU of the task ni

|X | Size of the set X
λk Failure rate of the ECU uk

nseq(y ) yth assigned task of the application
R(ni , uk ) Reliability of the task ni on the ECU uk

R(ni ) Reliability of the task ni

Rreq(ni ) Reliability requirement of the task ni

Rmax(ni ) Maximum reliability of the task ni

R(G) Reliability of the application G
Rmax(G) Maximum Reliability of the application G
Rreq(G) Reliability requirement of the application G
RR(G) Reliability ratio of the application G
Rrrp(G) Ratio-based reliability pre-assignment of the application G
Rrrp(ni ) Ratio-based reliability pre-assignment of the task ni

LB(G) Lower bound of the application G
RT(G) Response time of the application G
EST(ni , uk ) Earliest start time of the task ni on the ECU uk

EFT(ni , uk ) Earliest finish time of the task ni on the ECU uk

AST(ni ) Actual start time of the task ni

AFT(ni ) Actual finish time of the task ni

RTreq(ni ) Response time requirement of the task ni

RTreq(G) Response time requirement of the application G

Fig. 3. Integration architecture of automotive electronic systems [1].

A. System Architecture and Models

Each application is implemented by a single ECU in an early
automotive architecture where ECUs use point-to-point commu-
nication with a low degree of coupling. The next federated archi-
tecture enables the exchange of information between different
applications through the network. New integrated architecture
is the mainstream architecture of today’s automobiles [18], [19].
We consider a distributed integrated architecture where several
processors are mounted on the same controller area network
(CAN) bus, as shown in Fig. 3 [6]. A task executed completely
in one ECU sends messages to all its successor tasks, which
may be located in the different ECUs. For example, task n1 is
executed on ECU u1 . It then sends a message m1,2 to its suc-
cessor task n2 located in u6 . U = {u1 , u2 , ..., u|U |} represents
a set of heterogeneous ECUs, where |U | represents the size of
set U . Note that for any set X , this study uses |X| to denote its
size.

A distributed application is represented by a DAG G = (N ,
W , M , C) [1], [20], where the related parameters are described
as follows.

1) N represents a set of tasks in G, and ni ∈ N repre-
sents the ith task of G. pred(ni) represents the set of the
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Fig. 4. Motivating example of a DAG-based distributed application with
ten tasks [8], [20].

immediate predecessor tasks of ni , whereas succ(ni) rep-
resents the set of the immediate successor tasks of ni . The
task with no predecessor task is denoted by nentry, whereas
the task with no successor task is denoted by nexit. Con-
sidering an automotive application (e.g., brake-by-wire)
may be released by receiving collected data from multi-
ple sensors and is completed by sending the performing
action to multiple actuators, multiple nentry or multiple
nexit tasks may exist. To adapt to the application model
with only one entry task and one exit task, a dummy entry
or exit task with zero-weight dependencies is added to the
graph in this case.

2) W is a |N | × |U | matrix, where wi,k denotes the
worse-case execution time (WCET) of ni on the ECU
uk . Each task ni ∈ N has different WCET values on
different ECUs due to the heterogeneity of ECUs [21].
All the WCETs of the tasks are determined through anal-
ysis methods performed (i.e., WCET analysis) during the
analysis phase [1].

3) The communication between tasks mapped to different
ECUs is performed through message passing over the bus.
Hence, M is a set of communication edges, and each edge
mi,j ∈M represents the communication message from
ni to nj . Accordingly, ci,j ∈ C represents the worst-case
response time (WCRT) of mi,j [1]. All the WCRTs of
the messages are also determined through analysis meth-
ods performed (i.e., WCRT analysis) during the analysis
phase [1].

Scheduling in automotive systems can be either preemptive
(e.g., OSEKTime) or nonpreemptive (e.g., eCos) [1]. Consider-
ing that many DAG-based distributed application scheduling
algorithms generally use nonpreemptive scheduling [1], [8],
[20], we consider nonpreemptive scheduling for ECUs in this
study. Of course, the method of this paper can also be applied
to preemptive scheduling.

Fig. 4 shows a motivating distributed application with tasks
and messages [8], [20]. The example shows ten tasks executed
on three ECUs {u1 , u2 , u3}. The weight 18 of the edge between
n1 and n2 represents WCRT, denoted by c1,2 if n1 and n2 are
not assigned to the same ECU. Table II presents the WCET
matrix |N | × |U | of tasks on different ECUs. For example, the

TABLE II
WCETS OF TASKS ON DIFFERENT ECUS OF THE MOTIVATING

DISTRIBUTED APPLICATION [8], [20]

Task u1 u2 u3

n1 14 16 9
n2 13 19 18
n3 11 13 19
n4 13 8 17
n5 12 13 10
n6 13 16 9
n7 7 15 11
n8 5 11 14
n9 18 12 20
n10 21 7 16

weight 14 of n1 and u1 in Table II represents WCET of n1 on
u1 , denoted by w1,1 = 14. The same task has different WCETs
on different ECUs due to the heterogeneity of the ECUs. The
motivating example will be used to explain the proposed ver-
ification methods in the paper. For simplicity, all units of all
parameters are ignored in the example.

B. Reliability Model

There are two major temporal types of failures, namely, the
transient failure (i.e., random hardware failures) and the per-
manent failure [8], [10]. This study only considers the transient
failure of ECUs because the automotive functional safety stan-
dard ISO 26262 only combines the random hardware failures
and reliability together [2]. ISO 26262 specifies that random
hardware failures occur unpredictably during the life cycle of a
hardware but follows a probability distribution [2]. In general,
transient fault for a task in a DAG-based distributed application
follows the Poisson distribution [8], [10]. The reliability of an
event in unit time t is denoted by R (t) = e−λt , where λ is the
constant failure per time unit (i.e., failure rate) for an ECU [16].
We let λk represent the constant failure rate per time unit of
the ECU uk , and the reliability of ni executed on uk and its
execution time is denoted by

R (ni, uk ) = e−λk wi , k . (1)

The reliability of the DAG-based distributed application is cal-
culated by [8], [10]

R(G) =
∏

ni ∈N

R(ni, upr(ni )) (2)

where upr(ni ) represents the assigned ECU of ni . As CAN bus
has high fault-tolerance capacity, this study only considers ECU
failure and does not factor the communication failure into the
problem (i.e., communication is assumed reliable).

C. Reliability Requirement Assessment

As the WCET of each task on each ECU has been deter-
mined by the WCET analysis method during the analysis phase,
the maximum reliability value of task ni can be obtained by
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TABLE III
UPWARD RANK VALUES FOR TASKS OF THE MOTIVATING DISTRIBUTED

APPLICATION

Task n1 n2 n3 n4 n5 n6 n7 n8 n9 n10

ranku

(ni )
108 77 80 80 69 63.3 42.7 35.7 44.3 14.7

traversing all the ECUs, and it is calculated by

Rmax(ni) = max
uk ∈U

R(ni, uk ). (3)

As the reliability of application G is the product of reliability
values of all the tasks, [see (2)], the maximum reliability value
of application G is calculated by

Rmax(G) =
∏

ni ∈N

Rmax (ni). (4)

The reliability requirement Rreq(G) must be less than or
equal to Rmax(G). Hence, Rreq(G) must have the following
constraint:

Rreq(G) � Rmax(G) (5)

otherwise, the reliability requirement assessment cannot be
passed.

For example, we assume that the failure rates of ECUs u1 ,
u2 , and u3 are λ1 = 0.0002, λ2 = 0.0005, and λ3 = 0.0009, re-
spectively. We can calculate that the maximum reliability value
of the application is Rmax(G) = 0.974335. We let reliability
requirement Rreq(G) = 0.96, which can pass the assessment,
because

0.96 � 0.974335

according to (5) of the reliability requirement assessment.

D. Response Time Requirement Assessment

Considering the problem of mapping tasks to multiple pro-
cessors (ECUs) is NP-hard [22], obtaining a minimum end-to-
end response time of a distributed automotive application is an
NP-hard optimization problem [20]. The heterogeneous EFT
(HEFT) algorithm is a widely accepted heuristic list-scheduling
algorithm for minimizing response time [20], and it is applied
for the response time requirement assessment of distributed au-
tomotive applications [1]. The two-phase HEFT algorithm has
the following important steps.

1) Prioritizing task. The HEFT algorithm uses the upward
rank value (ranku ) of a task [see (6)] as the task priority
standard. In this case, the tasks are arranged according to
the descending order of ranku , which is obtained by

ranku (ni) = wi + max
nj ∈ succ(ni )

{ci,j + ranku (nj )} (6)

where wi represents the average WCET of task ni .
Table III shows the upward rank values of all the tasks in
Fig. 4. Note that only if all the predecessors of ni have
been assigned will ni prepare to be assigned. We assume

Fig. 5. Task scheduling for lower bound calculation.

that two tasks ni and nj satisfy ranku (ni) > ranku (nj );
if no precedence constraint exists between ni and nj ,
ni does not necessarily take precedence for nj to be
assigned. Therefore, the task assignment order in G is
{n1 , n3 , n4 , n2 , n5 , n6 , n9 , n7 , n8 , and n10}.

2) Response time minimization. The attributes EST(ni, uk )
and EFT(ni, uk ) represent the earliest start time (EST)
and EFT, respectively, of task ni on ECU uk . EFT(ni, uk )
is considered the task allocation criterion because it can
meet the local optimal of each task. The aforementioned
attributes are calculated as follows:⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩
EST(n entry,uk )=0;

EST(ni ,uk )=max

⎧⎪⎪⎨
⎪⎪⎩

avail[k],

max
nh ∈ pred(ni )

{AFT(nh) + c
′
h,i}

⎫⎪⎪⎬
⎪⎪⎭

(7)
and

EFT(ni, uk ) = EST(ni, uk ) + wi,k . (8)

avail[k] is the earliest available time when ECU uk is
ready for task execution. AFT(nh) is the actual finish
time (AFT) of task nh . c

′
h,i represents the WCRT between

nh and ni . If nh and ni are allocated to the same ECU,
then c

′
h,i = 0; otherwise, c

′
h,i = ch,i . ni is allocated to

the ECU with the minimum EFT by using the insertion-
based scheduling strategy, where ni can be inserted into
the slack with the minimum EFT.

The response time requirement assessment processes are as
follows.

1) The response time obtained by the HEFT algorithm rep-
resents the application’s lower bound. The lower bound
means the minimum response time of a distributed ap-
plication by the HEFT algorithm and is calculated as
follows:

LB(G) = AFT(nexit) (9)

where nexit represents the exit task as mentioned earlier.
Fig. 5 shows the scheduling of lower bound calculation
of the motivating example, where LB(G) = 80. Note that
the arrows in Fig. 5 represent the generated communica-
tions between precedence constrained tasks.

2) A known response time requirement RTreq(G) (i.e., dead-
line) is then provided for the application on the basis of
the actual physical time requirement after hazard analysis

0.0005, 0.0002,
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and risk assessment (see Fig. 5). RTreq(G) must be larger
than or equal to LB(G). Hence, RTreq(G) must derive the
following constraint:

LB(G) � RTreq(G) (10)

otherwise, the response time requirement assessment can-
not be passed. For this motivating example, we let the
response time requirement as RTreq(G) = 90, which can
pass the assessment, because

80 � 90

according to (10) of the reliability requirement
assessment.

E. Problem Statement

In this study, the problem to be solved is to verify whether a
solution exists for the following conditions:

RT(G) � RTreq(G) (11)

R(G) � Rreq(G) (12)

can be simultaneously satisfied. If the result is true, then the
functional safety verification is passed and the late cost design
optimization is feasible; otherwise, functional safety verification
is failed and the late cost design optimization is infeasible.

IV. MINIMIZING RESPONSE TIME UNDER RELIABILITY

REQUIREMENT

This section presents the first verification method by mini-
mizing the response time under the reliability requirement.

A. Satisfying Reliability Requirement

In [8], Xie et al. solved the problem of minimizing the re-
source consumption cost under the reliability requirement by
proposing the MRCRG algorithm, where the strategy of satis-
fying the reliability requirement is as follows. Assume that the
task to be assigned is ns(y ) , where s(y) represents the yth as-
signed task (sequence number), {ns(1) , ns(2) , ... , ns(y−1)} rep-
resents the task set where the tasks have been assigned, and
{ns(y+1) , ns(y+2) , ... , ns(|N |)} represents the task set where the
tasks have not been assigned. The tasks are arranged according
to the descending order of ranku values as done in the HEFT
algorithm. To ensure that the reliability of the application is
satisfied at each task assignment, we presuppose that each unas-
signed task in {ns(y+1) , ns(y+2) , ... , ns(|N |)} is assigned to the
ECU with the maximum reliability value. Therefore, when as-
signing ns(y ) , the reliability of G has the following constraint:

Rs(y )(G) =
y−1∏
x=1

R
(
ns(x)

)

×R
(
ns(y )

)× |N |∏
z=y+1

Rmax
(
ns(z )

)
� Rreq(G)

then, R
(
ns(y )

)
must derive the following constraint:

R(ns(y )) � Rreq(G)∏y−1
x=1 R(ns(x))×

∏|N |
z=y+1 Rmax(ns(z ))

.

In the following, MRCRG lets the reliability requirement of the
task ns(y ) be

Rreq(ns(y )) =
Rreq(G)∏y−1

x=1 R(ns(x))×
∏|N |

z=y+1 Rmax(ns(z ))
.

(13)
The reliability requirement of the application is transferred to
each task, and the actual reliability must have the following
constraint:

R(ns(y )) � Rreq(ns(y )).

However, a major limitation for the above-mentioned transfer
is that the reliability pre-assignment with the maximum reli-
ability value for unassigned tasks is severely pessimistic to-
ward an unfair reliability usage among tasks and thus results
in the limited minimization of the response time. In view of
the pessimistic reliability pre-assignment for unassigned tasks
in MRCRG, this section presents an optimistic reliability pre-
assignment method.

We first define the reliability ratio of the application.
Definition 1 (Reliability Ratio): The reliability ratio of the

application is the ratio of the reliability requirement of the ap-
plication to the maximum reliability of the application:

RR(G) =
|N |
√

Rreq(G)
|N |
√

Rmax(G)
. (14)

We obtain RR(G) � 1 because Rreq(G) � Rmax(G) accord-
ing to (5) in the previous reliability requirement assessment.

Unlike in MRCRG, in which each unassigned task in
{ns(y+1) , ns(y+2) , ... , ns(|N |)} is pre-assigned to the ECU
with the maximum reliability, the ratio-based reliability pre-
assignment calculated by (15) is pre-assigned for these unas-
signed tasks in this study:

Rrrp(ns(z )) = Rmax(ns(z ))× RR(G). (15)

Obviously, we have

Rrrp(ns(z )) � Rmax(ns(z )) (16)

because RR(G) � 1 [see (14)]. Correspondingly, the reliability
requirement of task ns(y ) is then changed to

Rreq(ns(y )) =
Rreq(G)∏y−1

x=1 R(ns(x))×
∏|N |

z=y+1 Rrrp(ns(z ))
. (17)

The sole difference between (13) and (17) is that Rmax(ns(y ))
in the former is replaced with Errp(ns(y )) in the latter. In this
manner, the reliability requirement of the application can still be
transferred to each task. We prove the correctness in Theorem 1.

Theorem 1: When the ratio-based reliability pre-assignment
Rrrp(ni) [see (15)] is used, each task ni in the distributed au-
tomotive application G can always find an available ECU to
satisfy the reliability requirement Rreq(G) of the application.
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Proof: We prove the theorem step by step as follows.
First, we let the product of the ratio-based reliability pre-

assignments of all tasks be

Rrrp(G) =
∏

ni ∈N

Rrrp(ni). (18)

If we can prove that the product of the ratio-based reliability pre-
assignments of all tasks is larger than or equal to the given reli-
ability requirement of the application, then the pre-assignment
method is feasible and the theorem is proved.

Second, we substitute (15) into (18) and obtain

Rrrp(G) =
∏

ni ∈N

Rrrp(ni) =
∏

ni ∈N

(Rmax(ni)× RR(G))

=
∏

ni ∈N

Rmax(ni)×
∏

ni ∈N

RR(G). (19)

Third, we substitute (14) into (19) and yield

Rrrp(G) =
∏

ni ∈N

Rmax(ni)×
∏

ni ∈N

|N |
√

Rreq(G)
|N |
√

Rmax(G)

= Rmax(G)× Rreq(G)
Rmax(G)

= Rreq(G). (20)

Finally, given that Rrrp(G) is equal to Rreq(G) under the ratio-
based reliability pre-assignment for tasks in (20), we can find
assigned ECUs to satisfy Rreq(G). Thus, Theorem 1 is proved.

The reliability requirement of each task is valid according to
Theorem 1. That is, just let the actual reliability value of ns(y )
satisfy the following constraint:

R(ns(y )) � Rreq(ns(y )).

Hence, when assigning task ns(y ) , the reliability requirement
Rreq(ns(y )) of ns(y ) can be directly considered and the reliability
requirement of the application G is not a concern. In this manner,
a low time complexity heuristic algorithm can be achieved.

B. Minimizing Response Time

Similar to the HEFT algorithm [20], we also let ni be allo-
cated to the ECU with the minimum EFT by using the insertion-
based scheduling strategy, which is a local optimal heuristic
strategy. Local optimality means that when allocating each task,
minimum EFT is optimal for the current task; however, min-
imum EFT is not global optimal for the application. In other
words, local optimality is related to the current task, whereas
global optimality is related to the application. Considering that
the reliability requirement of each task has been satisfied in the
previous section, we just minimize the AFT of each task by
traversing all available ECUs under its reliability requirement.
That is, the assigned ECU upr(i) for ni is determined by

EFT(ni, upr(i)) = min
uk ∈U,R(ni ,uk )�R req(ni )

{EFT(ni, uk )}.
(21)

In this manner, the same low complexity heuristic algorithm as
the HEFT algorithm is achieved.

Algorithm 1: The FFSV1 Algorithm.

Input: U = {u1 , u2 , ... , u|U |}, G, Rreq(G), RTreq(G)
Output: R(G), RT(G), verification result
1: Sort the tasks in a list task list by descending order of

ranku values;
2: Calculate RR(G) using (14);
3: while (there are tasks in task list) do
4: ni ← ns(y ) ← task list.out();
5: Calculate Rreq(ni) using (17);
6: for (each ECU uk ∈ U ) do
7: Calculate R(ni, uk ) using (1);
8: if (R(ni, uk ) < Rreq(ni)) then
9: continue;

10: end if
11: Calculate EFT(ni, uk ) using (8);
12: end for
13: Select the ECU upr(i) with the minimum EFT;
14: AFT(ni) ← EFT(ni, upr(i));
15: end while
16: Calculate the reliability R(G) using (2);
17: RT(G) ← AFT(nexit);
18: if (RT(G) < RTreq(G)) then
19: return true;
20: else
21: return false;
22: end if

Then, we assign ni to upr(i) based on (21), and the actual AFT
and AST of ni are calculated as follows:

AFT(ni) = EFT(ni, upr(i)) (22)

AST(ni) = AFT(ni)− wi,pr(i) . (23)

The first functional safety verification (FFSV1) algorithm is
proposed, as shown in Algorithm 1.

The idea of FFSV1 is that the reliability requirement of the
application is transferred to each task using a ratio-based relia-
bility pre-assignment, and each task just selects the ECU with
the minimum EFT under the reliability requirement. The main
details are explained as follows.

1) Prioritizing task. In line 1, FFSV1 sorts all tasks in a list
task list by descending order of ranku values. In line 2,
FFSV1 calculates the reliability ratio using (14). In the
following, all tasks will be traversed.

2) Satisfying the reliability requirement. In line 5, FFSV1
calculates the reliability requirement of the current task
ni using (17). Specifically, in lines 8–10, FFSV1 skips
the ECUs that do not satisfy the reliability requirement
of ni .

3) Minimizing the response time. In lines 6–13, FFSV1
selects the ECU with the minimum EFT for the cur-
rent task ni that satisfies the condition of R(ni, uk ) �
Rreq(ni).

4) Verifying functional safety. In lines 16 and 17, FFSV1 cal-
culates the final reliability R(G) and the response time
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TABLE IV
TASK ASSIGNMENT OF THE MOTIVATING DISTRIBUTED APPLICATION

GENERATED BY FFSV1

ni Rreq(ni ) EFT(ni , u1 ) EFT(ni , u2 ) EFT (ni , u3 ) R(ni )

n1 0.995329 – 16 – 0.996805
n3 0.994451 39 29 – 0.997403
n4 0.993972 – 37 – 0.998401
n2 0.990318 47 56 – 0.993521
n5 0.992716 59 50 – 0.997403
n6 0.991933 60 66 39 0.991933
n9 0.994838 – 75 – 0.997603
n7 0.992769 59 90 – 0.996506
n8 0.992588 69 86 – 0.997503
n10 0.992209 – 87 – 0.998601

RT(G) = 87, R(G) = 0.966185 > Rreq(G) = 0.96

Fig. 6. Task scheduling of the motivating distributed application gener-
ated by FFSV1.

RT(G) of the application, respectively. In lines 18–22,
FFSV1 judges the verification result by comparing the
obtained response time with the given response time re-
quirement.

The time complexity of the FFSV1 algorithm is analyzed as
follows: scheduling all the tasks of the application must traverse
all tasks, which can be done within O(|N |) time; calculating
the EFT value of the current task must traverse its immediate
precedence tasks, all ECUs, which can be done in O(|N | × |U |)
time. Therefore, the time complexity of the FFSV1 algo-
rithm is O(|N |2 × |U |), which is equal to that of the HEFT
algorithm.

C. Example of the FFSV1 Method

Table IV shows the task assignments of the motivating exam-
ple using FFSV1, where each row represents a task assignment.
The values in the bold text mean that the ECU is selected with the
minimum EFT. The values denoted with “–” mean that assign-
ing a task to the ECU cannot satisfy the reliability requirement
of the task. We can see that the actual reliability value of each
task is larger than its reliability requirement. The final reliability
is R(G) = 0.9662, which can satisfy the reliability requirement
of 0.96. Fig. 6 also shows the task scheduling of the motivating
distributed application generated by FFSV1, where the response
time is 87, which satisfies the response time requirement of 90.
The arrows in Fig. 6 represent generated communications be-
tween tasks. Therefore, the functional safety requirement of the
motivating distributed application can be satisfied and verifica-
tion result is true by using FFSV1.

V. MAXIMIZING RELIABILITY UNDER RESPONSE TIME

REQUIREMENT

This section presents the second verification method by max-
imizing reliability under response time requirement.

A. Satisfying Response Time Requirement

To implement fast verification, this section aims to transfer
the response time requirement of the application to each task.
The objective of satisfying the response time requirement of
distributed application G is to assure that all the tasks are fin-
ished in RTreq(G) without violating the precedence constraints
among tasks. Obviously, the previous response time require-
ment assessment using the HEFT algorithm in Fig. 5 satisfies
the response time requirement, but the reliability value is ex-
cessively low. Therefore, we can further enhance the reliability
after using the HEFT algorithm.

We can migrate the tasks to other ECUs to achieve reliability
enhancement without violating the response time requirement of
the application and precedence constraints among tasks. Some
slacks may exist per ECU, and tasks previously assigned to other
ECUs can be migrated to these slacks as long as such migration
can obtain a higher reliability than the previous assignment for
the current task. In this section, contrary to the HEFT algorithm
and FFSV1, the tasks are arranged according to the ascending
order of ranku values to implement the RTreq extension of tasks.

To implement task migration without violating the precedence
constraints among tasks, we first make the following revisions
of EST and RTreq(ni) calculations as follows.

1) The EST defined in (7) considers the earliest available
time avail[k] that ECU uk is ready for task execution.
However, as we consider task migration in this section,
the task ni should not be restricted by avail[k], but can be
migrated; thus, we update EST as follows:{

EST(n entry,uk )=0
EST(ni ,uk )= max

n x ∈ pred(n i )
{ AST(nx )+c

′
x , i }

. (24)

2) Only if the task is migrated to another ECU, will larger
reliability value be generated; thus, each task must have
individual RTreq(ni, uk ) on different ECUs, as follows:{

RTreq(n exit,uk )= RTreq(G)
RTreq(ni ,uk )= min

n j ∈ succ(n i )
{AST(nj )−c

′
i , j }

. (25)

For example, the ESTs and RTreq of n10 on all slacks can
be obtained as⎧⎪⎨
⎪⎩

EST(n10 , u1) = 81
EST(n10 , u2) = 73
EST(n10 , u3) = 81

⎧⎪⎨
⎪⎩

RTreq(n10 , u1) = 90
RTreq(n10 , u2) = 90
RTreq(n10 , u3) = 90

.

Even though the EST and RTreq are extended to each ECU for
each task, task migration must be further constrained because
each ECU is not always available at all times after the HEFT
algorithm is used. Some slacks remain in the ECUs due to
response time requirement assessment, and task migration or
task assignment is conducted by task insertion. The slack set for



4386 IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, VOL. 65, NO. 5, MAY 2018

ECU uk is defined as follows:

Si,k = {Si,k,1 , Si,k ,2 , Si,k ,|Sk |}
where Si,k,1 represents the first slack on uk for ni . Each slack
has a start time (ST) and end time (ET), and we define the yth
slack Si,k,y as follows:

Si,k,y = [ts(Si,k,y ), te(Si,k,y )]

where ts(Si,k,y ) and te(Si,k,y ) represent ST and ET, respec-
tively. As the application has a given response time requirement,
the ET of the last slack must be te(Si,k,|Sk |) = RTreq(G). For
example, when assigning the task n10 in Fig. 5, the slacks on
u1 , u2 , and u3 are⎧⎪⎨

⎪⎩
S10,1 = {[0, 27], [40, 57], [62, 90]}
S10,2 = {[0, 18], [42, 56], [68, 90]}
S10,3 = {[49, 90]}

.

Notably, n10 must be removed from u2 , such that optimal slacks
can be selected for it.

To avoid violating the precedence constraints among tasks,
task ni should be assigned to the slacks that satisfy the new EST
and RTreq constraints:

EST(ni, uk ) = max {EST(ni, uk ), ts(Si,k,t)} (26)

RTreq(ni, uk ) = min {RTreq(ni, uk ), te(Si,k,t)} . (27)

For example, the new EST and RTreq values of n10 on all ECUs
are updated to⎧⎪⎨
⎪⎩

EST(n10 , u1) = 81
EST(n10 , u2) = 73
EST(n10 , u3) = 81

⎧⎪⎨
⎪⎩

RTreq(n10 , u1) = 90
RTreq(n10 , u2) = 90
RTreq(n10 , u3) = 90

.

B. Maximizing Reliability

This section iteratively assigns each task to the ECU with the
maximum reliability under the response time requirement, such
that FFSV can be achieved. Considering that task assignment is
actually task insertion, we must determine whether task insertion
is feasible on each ECU before task assignment. The reason is
that small slacks may not accommodate the insertions of tasks
with long WCETs. We make the following constraints before
the task assignment.

1) The maximum execution time (MET) for ni on uk must
be derived as follows:

MET(ni, uk ) = RTreq(ni, uk )− EST(ni, uk ). (28)

For example, when assigning task n10 based on Fig. 5,
the METs for n10 should be⎧⎪⎨

⎪⎩
MET(n10 , u1) = 9 < 21 = w10,1

MET(n10 , u2) = 17 > 7 = w10,2

MET(n10 , u3) = 9 < 16 = w10,3

. (29)

2) The constraint given as follows must be satisfied, else ni

cannot be inserted into the slack:

MET(ni, uk ) � wi,k . (30)

For example, n10 cannot be inserted into u1 because
MET(n10 , u1) = 9 is less than w10,1 = 21, which is the
WCET of n10 on u1 , shown in (30).

3) The strategy of maximizing reliability involves the fol-
lowing steps: considering that the response time require-
ment of each task has been satisfied in the previous sec-
tion, we only maximize the reliability of each task by
traversing all available ECUs under the task that can be
inserted into the slacks of ECUs. That is, the assigned
ECU upr(i) is determined by

R(ni, upr(i)) = max
uk ∈U,MET(ni ,uk )�wi , k

{R(ni, uk )}.
(31)

R(ni, upr(i)) must satisfy the following constraint:

R(ni, upr(i)) � Rheft(ni)

where Rheft(ni) represents the reliability value of ni ob-
tained by the HEFT algorithm. The reason is that when
the reliability values of ni on other ECUs are less than
Rheft(ni), then ni is still assigned to the original ECU
obtained by the HEFT algorithm.

4) Then, we assign ni to upr(i) based on (31), and the actual
AFT and AST of ni are updated as follows:

AFT(ni) = RTreq(ni, upr(i)) (32)

AST(ni) = RTreq(ni, upr(i))− wi,pr(i) . (33)

The FFSV2 algorithm is proposed, as shown in Algorithm 2.
In FFSV2, the response time requirement of the application

is transferred to each task by task migration, and each task just
selects the ECU with the maximum reliability under the task that
can be inserted into the slack of the ECU without violating the
precedence constraints of tasks and response time requirement.
The main details are explained as follows.

1) Prioritizing task. In line 1, FFSV2 invokes the HEFT al-
gorithm to obtain the initial assignments of task in the
application G. In line 2, FFSV2 sorts all tasks in a list
task list in ascending order of ranku values. In the fol-
lowing, all tasks will be traversed.

2) Satisfying response time requirement. In line 6, FFSV2
calculates the response time requirements of the current
task ni on all ECUs. In lines 8–10, FFSV2 skips the ECU
that ni cannot be inserted into.

3) Maximizing reliability. In lines 5–13, FFSV2 selects the
ECU with the maximum reliability value for the current
task ni that satisfies the condition of MET(ni, uk ) �
wi,k .

4) Verifying functional safety. In lines 16 and 17, FFSV2 cal-
culates the final reliability R(G) and the response time
RT(G) of the application, respectively. In lines 18–22,
FFSV2 judges the verification result by comparing the
obtained reliability value with the given reliability re-
quirement.

The time complexity of the FFSV2 algorithm is also
O(|N |2 × |U |), which remains equal to that of the HEFT al-
gorithm. FFSV2 also implements low-time complexity FFSV.
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Algorithm 2: The FFSV2 Algorithm.

Input: U = {u1 , u2 , ... , u|U |}, G, Rreq(G), RTreq(G)
Output: R(G), RT(G), verification result
1: Invoke the HEFT algorithm to obtain the initial

assignments of task in the application G;
2: Sort the tasks in a list task list by ascending order of

ranku values;
3: while (there are tasks in task list) do
4: ni ← task list.out();
5: for (each ECU uk ∈ U ) do
6: Calculate RTreq(ni, uk ) using (25);
7: Calculate MET(ni, uk ) using (30);
8: if (MET(ni, uk ) < wi,k ) then
9: continue;

10: end if
11: Calculate R(ni, uk ) using (1);
12: end for
13: Select the ECU upr(i) with the maximum reliability

value;
14: AFT(ni) ← RTreq(ni, upr(i));
15: end while
16: Calculate the reliability R(G) using (2);
17: RT(G) ← AFT(nexit);
18: if (R(G) < Rreq(G)) then
19: return true;
20: else
21: return false;
22: end if

Fig. 7. FFSV2-generated scheduling of n10 and n8 .

Fig. 8. Task scheduling of the motivating distributed application gener-
ated by FFSV2.

C. Example of the FFSV2 Method

Figs. 7 and 8 show the Gantt charts of scheduling the moti-
vating example using FFSV2. The task n10 extends its AST and
AFT on u2 as denoted with shadows in Fig. 7. When reassigning
n8 , it is migrated from u2 to u1 where maximum reliability value

Fig. 9. Flow chart of the union verification.

of 0.997802 can be obtained without violating the precedence
constraints among tasks.

Finally, the final response time of the application is 90, which
can satisfy the response time requirement of 90, as shown in
Fig. 8. The reliability of application is calculated as 0.964737,
which satisfies the reliability requirement of 0.96. Therefore,
the functional safety requirement of the motivating distributed
application can also be satisfied and verification result is true by
using FFSV2.

D. Union Verification

Finally, we combine FFSV1 and FFSV2 to form a UFFSV.
The flow chart of the union verification is presented in Fig. 9. As
long as either verification method returns true, the verification
returns true. Regardless, both FFSV1 and FFSV2 should be
invoked for the following reasons.

1) FFSV1 and FFSV2 have different emphases, but they
are complementary; FFSV1 discusses the minimization
of response time under reliability requirement, while
FFSV2 explores the maximization of reliability under re-
sponse time requirement. Combining these two methods
achieves the maximum acceptance rate.

2) Considering that both FFSV1 and FFSV2 are fast veri-
fication methods with low time complexity, UFFSV ex-
hibits low time complexity and does not affect running
efficiency.

3) Using their individual verification results as basis, FFSV1
and FFSV2 can guide individual cost design optimization
solutions in the late design phase.

Besides union verification, the following methods can also be
considered in the future.

1) We have partially considered important aspect in require-
ment and design phases shown in Fig. 2. However, escape
risk design, safety adequacy assessment for safety aspect
can also be considered [23], [24]. Escape risk assessment
and design increase reliability and ensure confidence in
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functioning. They can also increase the opportunity to
satisfy functional safety requirements. Escape risk as-
sessment and design are common in both minimizing
response time and enhancing reliability. Therefore, con-
sidering escape risk assessment and design methods to
handle emergency situations when stochastic or system-
atic failures arise is an interesting work in both require-
ment and design phases.

2) Multicriteria decision method can also be used to solve
the bicriteria between response time and reliability [25].
However, traditional methods, such as weighted combi-
nation method, efficacy coefficient method, ideal point
method, multiplication division method, and minimax
method, are imprecise in solving the nonlinear optimiza-
tion problem. Intelligent methods, such as particle swarm
optimization and genetic algorithms, are able to find the
precise solution, but they are extremely time-consuming
and not suitable for cost-sensitive automotive applica-
tions from a cost control perspective.

VI. EXPERIMENTAL EVALUATION

A. Real-Life Benchmark

We use the real-life benchmark of an automotive case study
adopted from [8]. This application consists of six functional
blocks: engine controller with seven tasks (n1–n7), automatic
gear box with four tasks (n8–n11), antilocking brake system
with six tasks (n12–n17), wheel angle sensor with two tasks
(n18–n19), suspension controller with five tasks (n20–n24), and
body work with seven tasks (n25–n31). The ECU number of
the system is 16, and the failure rate of each task is within the
range of 10−6–16× 10−6 /μs. The WCETs of the tasks and the
WCRTs of the messages are within the range of 100–400 μs.
Considering that this paper presents two types of verification
methods, we first compare these two algorithms with their ex-
isting counterparts.

Experiment 1: This experiment is conducted to compare the
response time values of actual application for varying reliability
requirements. To the best of our knowledge, MRCRG is a state-
of-the-art method to minimize the resource consumption cost
under the reliability requirement for a DAG-based distributed
application on heterogeneous architectures [8]; we name such
approach as minimizing response time with pessimism (MRTP)
and compare it with FFSV1 in this study. Considering that the
maximum reliability value is Rmax(G) = 0.986271, the relia-
bility requirement is changed from 0.9 to 0.98 with 0.01 in-
crement; 0.9–0.98 fall within the range of exposure E3 in ISO
26262. Considering that the actual reliability values are always
larger than or equal to the corresponding reliability requirements
using MRTP and FFSV1, we do not list the reliability values in
this experiment. The response time values for varying reliability
requirements are shown in Fig. 10 , where the x-axis and y-axis
represent the reliability requirement and actual response time,
respectively.

1) Although the response time values do not increase propor-
tionally with the increase of reliability requirements, in-
creasing the reliability will increase the response times on

Fig. 10. Response time values of the real-life application for varying
reliability requirements.

the whole, especially on higher reliability requirements.
The curve indicates that response time minimization and
reliability maximization are conflicting in general.

2) According to the analysis of the relationship between re-
sponse time and reliability, an FFSV1-generated curve in
Fig. 10 should be a Pareto optima curve. However, it is
not. We can see that the response time values obtained
with reliability requirements from 0.9 to 0.92 are higher
than those with 0.93. As shortened development cycle is
extremely critical for the development cost control of the
automotive industry, the FFSV1 algorithm tradeoffs accu-
racy for saving time to ensure development progress, thus
affecting the accuracy of the results. Therefore, FFSV1
cannot guarantee that the Pareto optima curve in Fig. 1
can be obtained.

3) FFSV1 generates shorter (or equal) response response
time values than (or to) MRTP on all the cases. When re-
liability requirements are more than 0.95, FFSV1 is more
prominent than MRTP in minimizing response time val-
ues. FFSV1 can reduce as much as 68.06% of response
time compared with MRTP when the reliability require-
ment is 0.97 because FFSV1 uses a relative optimistic
reliability pre-assignment toward unfair reliability usage
among tasks; thus, FFSV1 can achieve shorter response
time values than MRTP. Therefore, FFSV1 is confirmed
as a good choice for the first type of functional safety
verification (i.e., minimizing response time under the re-
liability requirement).

Experiment 2: This experiment is conducted to compare the
reliability values of the actual application for varying response
time requirements. To the best of our knowledge, the FFSV2
method has no similar research. We know that the HEFT algo-
rithm is a well-studied assessment algorithm for a distributed
application, and it can always satisfy the response time require-
ment. Therefore, we let the HEFT algorithm be the comparative
algorithm for FFSV2. The lower bound of the application is
LB(G) = 736 μs. Therefore, the response time requirement is
changed from 736 to 1536 μs with 100 μs increments, as shown
the x-axis in Fig. 11 . Considering that actual response time
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Fig. 11. Reliability values of the real-life application for varying re-
sponse time requirements.

values are always less than or equal to the corresponding
response time requirements using the HEFT algorithm and
FFSV2, we do not list the response time values in this ex-
periment. The reliability values for varying response time re-
quirements are shown in Fig. 11, where the x-axis and y-axis
represent the response time requirement and actual reliability,
respectively.

1) As we expect, the HEFT-generated reliability values are
fixed and do not change with the increment of response
time requirements. The reason is that it is merely to obtain
a lower bound and does not involve reliability enhance-
ment.

2) FFSV2 always generates higher reliability values than
the HEFT algorithm on all the cases. Even if the response
time requirement is equal to the lower bound, FFSV2
still generates a higher reliability value of 0.019211 than
the HEFT algorithm. The reliability values increase with
the increase of response time requirement using FFSV2.
When the response time requirement is 1536 μs, the
reliability difference reaches 0.03126 between HEFT
algorithm and FFSV2. The increased curve of FFSV2
indicates that larger response time requirement can form
larger slacks, resulting in larger reliability values. The in-
creased reliability values by FFSV2 confirm that FFSV2
is a good choice for the second type of functional safety
verification (i.e., maximizing reliability under the re-
sponse time requirement).

B. Synthetic Applications

Given the increasing complexity of automotive systems, fu-
ture automotive applications are likely to include at least 50 tasks
and at most 100 tasks. To further validate the effectiveness, we
use additional simulated applications with the same real param-
eter values of the real-life application to observe the results.
Randomly generated distributed applications can be generated
by the task graph generator.1 The ECU number and failure rates

1[Online]. Available: https://sourceforge.net/projects/taskgraphgen/

TABLE V
ACCEPTANCE RATIOS OF SYNTHETIC APPLICATIONS FOR VARYING NUMBERS

OF TASKS

|N | = 50 |N | = 60 |N | = 70 |N | = 80 |N | = 90 |N | = 100

MRTP [8] 75% 53% 57% 20% 31% 28%
HEFT [20] 75% 50% 57% 14% 17% 0%
BSH [10] 86% 72% 63% 54% 44% 40%
FFSV1 89% 63% 63% 49% 42% 42%
FFSV2 88% 73% 71% 53% 50% 47 %
UFFSV 92% 80% 76% 57% 56% 50%

of ECUs, WCETs of the tasks, and WCRTs of the messages are
the same as the real-life applications.

Experiment 3: This experiment shows the acceptance ratios
of synthetic applications for various tasks using six verification
methods. We set the application parameters as follows: the aver-
age WCET is 200 μs, the communication-to-computation ratio
is 1, the shape parameter is 1, and the heterogeneity factor is
0.5. The heterogeneity factor values are in the 0–1 scope in the
task graph generator, where 0.1 and 1 are the lowest and highest
heterogeneity factors, respectively. Task numbers are changed
from 50 to 100 with 10 increments. The reliability requirement
is changed from 0.9 with 0.01 increments until reaching the
maximum reliability values. The response time requirement is
changed from lower bound values with a 100 μs with the same
number iteration of reliability requirement. Table V shows the
acceptance ratios of synthetic applications for various tasks us-
ing the six verification methods.

1) The MRTP and HEFT algorithms have lower acceptance
ratios than FFSV1 and FFSV2, respectively, under differ-
ent task numbers. The advantages of FFSV1 and FFSV2
are apparent when comparing with the MRTP and HEFT
algorithms, respectively. A special case is that the accep-
tance ratio using the HEFT algorithm is 0 when the task
number is 100 because the HEFT algorithm merely ob-
tains the maximum reliability of 0.893546, which is less
than 0.9.

2) FFSV2 has slightly higher acceptance ratios than FFSV1
in most cases, but the results are not absolute. We cannot
determine whether FFSV1 or FFSV2 is better because
they are dual problems, and they adopt completely dif-
ferent ideas.

3) Although BSH can obtain relative higher acceptance ra-
tios than MRTP and HEFT in most cases, the values are
less than those by UFFSV; the reason is that BSH is also
an approximate heuristic method and it cannot find a good
enough solution. In addition, BSH consumes about 100 s
for each case, where UFFSV can be finished in about
1 ms. The reason is that BSH has high time complexity
of O(|N | × 2|U |). Considering that BSH cannot complete
computation within an acceptable time when the ECU
number reaches 70, it is not suitable for new-generation
automotive systems.

4) The union verification method UFFSV shows higher ac-
ceptance ratios than FFSV1 and FFSV2 alone. The union
verification is definitely better than individual indepen-
dent verifications. UFFSV can improve as much as 37%
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(when N = 80) and 50% (when N = 100) acceptance
ratios than the MRTP and HEFT algorithms, respectively.
In summary, the union verification method UFFSV shows
good results for both real-life and synthetic distributed
applications compared with other counterparts.

VII. CONCLUSION

We proposed a novel FFSV method called UFFSV for dis-
tributed automotive applications on heterogeneous architecture
in the early design phase of industrial electronic software de-
velopment. UFFSV is a fast heuristic method and it can shorten
the application’s development lifecycle. UFFSV can improve
as much as 37% and 50% acceptance ratios than their existing
counterparts, respectively, by experiments. If the verification
does not pass, then analysts need to re-analyze the factors that
affect the verification results. If the verification passes, then
designers can present the cost optimization schemes based on
the corresponding verification solutions. Therefore, in our fu-
ture work, we will improve the system analysis to achieve the
predetermined verification requirement if the verification does
not pass and implement cost design optimization based on the
results of UFFSV if the verification passes.
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