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5 Abstract—Reliability requirement is one of the most important quality of services (QoS) and should be satisfied for a reliable workflow

6 in cloud computing. Primary-backup replication is an important software fault-tolerant technique used to satisfy reliability requirement.

7 Recent works studied quantitative fault-tolerant scheduling to reduce execution cost by minimizing the number of replicas while

8 satisfying the reliability requirement of a workflow on heterogeneous infrastructure as a service (IaaS) clouds. However, a minimum

9 number of replicas does not necessarily lead to the minimum execution cost and shortest schedule length in a heterogeneous IaaS

10 cloud. In this study, we propose the quantitative fault-tolerant scheduling algorithms QFEC and QFEC+ with minimum execution costs

11 and QFSL and QFSL+ with shortest schedule lengths while satisfing the reliability requirements of workflows. Extensive experimental

12 results show that (1) compared with the state-of-the-art algorithms, the proposed algorithms achieve less execution cost and shorter

13 schedule length, although the number of replicas are not minimum; (2) QFEC and QFEC+ are designed to reduce execution cost, and

14 QFEC+ is better than QFEC for all low-parallelism and high-parallelism workflows; and (3) QFSL and QFSL+ are designed to decrease

15 schedule length, and QFSL+ is better than QFSL for all low-parallelism and high-parallelism workflows.

16 Index Terms—Infrastructure as a service (IaaS), quantitative fault-tolerance, reliability requirement, execution cost, schedule length

Ç

17 1 INTRODUCTION

18 1.1 Background

19 CLOUD computing assembles large networks of virtual-
20 ized information and communication technology (ICT)
21 services such as hardware resources (e.g., CPU, storage,
22 and network), software resources (e.g., databases, applica-
23 tion servers, and web servers) and applications [1], [2].
24 These services are referred to as infrastructure as a service
25 (IaaS), platform as a service (PaaS), and software as a service
26 (SaaS) in industry [1]. Workflows have been frequently used
27 to model large-scale scientific problems in areas such as bio-
28 informatics, astronomy, and physics [3]. Cloud computing
29 has shown a great deal of promise as a cost-effective com-
30 puting model for supporting scientific workflows [4]. With
31 old, slow machines being replaced with new, fast machines
32 continuously, cloud computing systems are believed to
33 become more heterogeneous [5], [6]. IaaS clouds provide
34 virtualized machines (VMs) for users to deploy their own

35applications, and therefore are most suitable for executing
36scientific workflows [7], [8]. Real-world IaaS cloud services
37such as Amazon EC2, provide VM instances with different
38CPU capacities to meet different demands of various appli-
39cations [7]. Meanwhile, the frequency of transient failures
40has increased dramatically in executing workflows in IaaS
41clouds [9], [10]. As the scale and complexity of IaaS clouds
42increase, failures occur frequently and adversely affect
43resource management and scheduling [11]. Transient fail-
44ures of machines have caused serious problems in quality
45of service (QoS) [10], [12], particularly in reliability require-
46ment. As indicated by [10], in practice, many cloud-based
47services failed to fulfill their reliability requirements. How-
48ever, reliability requirement is one of the most important
49QoS [13], [14] and should be satisfied for reliable workflow
50in heterogeneous IaaS clouds.

511.2 Motivation

52Cloud computing offers elastic computing capacity, visual-
53ized resources, and pay-as-you-go billing models [4], [15].
54These capabilities enable users to do so by paying only for
55the resources they used rather than requiring large upfront
56investments. Therefore, cost is one major criterion consid-
57ered in cloud services, and high cost has an adverse impact
58on the system performance, especially when the resources
59are limited. Moreover, for the economic attributes of cloud
60services, more resource consumption comes with higher
61economic cost. Therefore, cost should be reduced as far as
62possible while satisfying the reliability requirement.
63Scientific workflows demand massive resources from
64various computing infrastructures to process massive
65amount of big data on clouds [16]. Many workflows are
66commonly modeled as a set of tasks interconnected via data
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67 or computing dependencies [3]. A workflow with prece-
68 dence constrained tasks is described as a directed acyclic
69 graph (DAG) [3], [7], in which the nodes represent the tasks
70 and the edges represent the communication messages
71 between tasks. The problem of scheduling tasks on multi-
72 processors is NP-hard [17], and the scheduling of work-
73 flows on clouds is an NP-hard optimization problem [3],
74 [7], [16]. Similarly, scheduling a workflow while satisfying
75 the reliability requirement on heterogeneous IaaS clouds is
76 also an NP-hard optimization problem.
77 Fault-tolerant scheduling is an effective method to
78 enhance the reliability of a workflow, and primary-backup
79 replication is an important software fault-tolerant tech-
80 nique used to satisfy the reliability requirement. Existing
81 fault-tolerant scheduling algorithms either use one backup
82 for each primary to tolerate one failure based on the pas-
83 sive replication scheme [18], [19], [20], which cannot toler-
84 ate potential multiple failures, or use fixed " backups for
85 each primary to tolerate " failures in the same time based
86 on active replication scheme, which can satisfy the reli-
87 ability requirement, but can cause high redundancy and
88 cost [21], [22], [23], [24]. Recent studies presented the
89 quantitative fault-tolerant scheduling algorithms MaxRe
90 [25] and RR [26] by exploring minimum numbers of repli-
91 cas (including primary and backups) to reduce cost while
92 satisfying the reliability requirement of a workflow in het-
93 erogeneous IaaS clouds. The main difference between
94 MaxRe and RR is the methods of calculating the sub-reli-
95 ability requirement of each task (refer to Section 4.2 for
96 more details). Quantitative fault-tolerant scheduling
97 means that different tasks may have different numbers of
98 replicas and could generate less cost than the previous
99 active replication scheme, in which all the tasks have

100 equal and fixed "+1 replicas, as indicated by [25], [26].
101 However, a major limitation of MaxRe and RR is that the
102 minimum number of replicas does not mean minimum
103 execution cost and shortest schedule length in heteroge-
104 neous IaaS clouds because the same task has different exe-
105 cution times on different VMs.

106 1.3 Our Contributions

107 The main contributions of this study are as follows.

108 (1) We propose the quantitative fault-tolerance with
109 minimum execution cost (QFEC) and QFEC+ algo-
110 rithms for a workflow. QFEC is implemented by iter-
111 atively selecting available replicas and VMs with the
112 minimum execution time for each task until its sub-
113 reliability requirement is satisfied. QFEC+ is imple-
114 mented by filtering out partial QFEC-selected repli-
115 cas and VMs for each task with less redundancy
116 while still satisfying its sub-reliability requirement.
117 (2) We propose the quantitative fault-tolerance with
118 shortest schedule length (QFSL) and QFSL+ algo-
119 rithms for a workflow. QFSL is implemented by itera-
120 tively selecting available replicas and VMs with the
121 minimum earliest finish time (EFT) for each task until
122 its sub-reliability requirement is satisfied. QFSL+ is
123 implemented by filtering out partial QFSL-selected
124 replicas and VMs for each task with less redundancy
125 while still satisfying its sub-reliability requirement.

126(3) Extensive experiments on five real workflows, includ-
127ing linear algebra, Gaussian elimination, diamond
128graph, complete binary tree, and fast Fourier trans-
129form, were conducted. Experimental results verify
130that the effectiveness of the proposed algorithms in
131reducing execution cost and schedule length.
132The rest of this paper is organized as follows. Section 2
133reviews related research. Section 3 presents the models.
134Section 4 presents quantitative fault-tolerance with mini-
135mum execution cost. Sections 5 presents quantitative fault-
136tolerance with shortest schedule length. Section 6 verifies all
137the presented algorithms. Section 7 concludes this study.

1382 RELATED WORK

139Given that this study focuses on the fault-tolerance of work-
140flows on heterogeneous IaaS clouds, this section reviews
141related fault-tolerant scheduling of theDAG-basedworkflow.
142The widely accepted reliability model was presented by
143Shatz and Wang [27], in which the transient failure of each
144VM is characterized by a constant failure rate per time unit
145�. The reliability during the interval of time t is e��t. That is,
146the failure occurrence follows a constant parameter Poisson
147law [11], [12], [25], [26], [27]. In [28], [29], Benoit et al. proved
148that evaluating the reliability of a DAG-based workflow
149belongs to an NP-complete problem.
150Intuitively, a higher reliability could result in a longer
151schedule length of a workflow and the problem of optimizing
152schedule length and reliability is considered a typical bi-crite-
153ria optima or Pareto optima problem [30], [31], [32], [33].
154Active replication scheme [21], [22], [23], [24], [25], [26] and
155passive replication (i.e., backup/restart) scheme [11], [18],
156[19], [20],which correspond to resource and time redundancy,
157respectively, arewidely applied in scheduling to provide high
158reliability. Replication on the same processor is a restart
159scheme and thus is considered as an improved version of the
160passive replication scheme [21], [25], [26]. The reason is that
161the system is subsequently restartedwhen a processor crashes
162to continue just as if no failure had occurred.
163For the passive replication scheme, whenever a VM fails,
164the task will be rescheduled to proceed on a backup VM. The
165main representative methods include efficient fault-tolerant
166reliability cost driven [18], efficient fault-tolerant reliability
167driven [19], and minimum completion time with less replica-
168tion cost [20]. With regard to their limitations, first, these
169approaches assume that no more than one failure occurs at
170one moment; they are too ideal to tolerate potential multiple
171failures. Second, passive replication also supports multiple
172backups for each primary [11], but is unsuitable for a work-
173flow that must satisfy the reliability requirement. The reason
174is that, once a VM failure is detected, the scheduler should
175reschedule the task located on the failed VMand reassign it to
176a new VMs and generate randomized numbers of replicas,
177which will lead to unpredictable execution cost and schedule
178length as pointed out in [26]. Problems with the backup/
179restart scheme become even more complex when a random-
180ized number is used [26].
181For the active replication scheme, each task is simulta-
182neously replicated on several VMs, and the task will suc-
183ceed if at least one of the VMs does not fail. Each task uses
184fixed " backups for each primary to tolerate " failures [21],
185[22], [23], [24], [34]. The active replication scheme is suitable
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186 for a workflow that must satisfy reliability requirements
187 because adding any one replica can provide enhancement
188 of reliability for the workflow. The main problem with this
189 approach is that it must tolerate " failures with high redun-
190 dancy to satisfy the reliability requirement of the workflow,
191 as indicated by [25]. Although the reliability requirement
192 can be satisfied, high redundancy causes high execution
193 cost and long schedule length.
194 Given the problems of active and passive replication
195 schemes, recent studies began to explore quantitative backups
196 for each task approach to satisfy the reliability requirement of
197 a workflow [25], [26]. In [25] and [26], the authors proposed
198 the fault-tolerant scheduling algorithms MaxRe and RR,
199 which incorporate reliability analysis into the active replica-
200 tion scheme and exploit a minimum number of backups for
201 different tasks by considering the sub-reliability requirement
202 of each task.However, as discussed in Section 1.2, in heteroge-
203 neous IaaS clouds, a minimum number of replicas does not
204 meanminimum execution cost and shortest schedule length.

205 3 MODELS AND PRELIMINARIES

206 Table 1 lists important notations and their definitions that
207 are used in this study.

208 3.1 Workflow Model

209 Let U ¼ fu1; u2; . . . ; ujU jg represent a set of heterogeneous
210 VMs on IaaS clouds, where jU j is the size of set U . In this
211 study, for any set X, jXj is used to denote size. Similar to
212 [25], [35], [36], [37], we also presume that communication
213 can be overlapped with computation, which means data
214 can be transmitted from one VM to another while a task is
215 being executed on the recipient VM.
216 A workflow running on VMs is represented by a DAG
217 G ¼ ðN , W , M, C) with known values [3], [7], [8], [25], [26],
218 [35], [36], [37]. (1) N represents a set of nodes in G, and each
219 node ni 2 N is a task with different execution times on dif-
220 ferent VMs. predðniÞ is the set of immediate predecessor
221 tasks of ni, while succðniÞ is the set of immediate successor
222 tasks of ni. Tasks without predecessor tasks are denoted by

223nentry; and tasks with no successor tasks are denoted by
224nexit. If a workflow has multiple entry or multiple exit tasks,
225then a dummy entry or exit task with zero-weight depen-
226dencies is added to the graph. W is a jN j � jUj matrix in
227which wi;k denotes the execution time of ni running on uk.
228In addition, task executions of a given workflow are
229assumed to be non-preemptive which is possible in many
230systems [25], [26], [35], [36], [37].
231(2) Two tasks with immediate precedence constraints
232need to exchange messages. M is a set of communication
233edges, and each edge mi;j 2M represents a communication
234from ni to nj. C represents the corresponding communica-
235tion time set of M. Accordingly, ci;j 2 C represents the com-
236munication time of mi;j if ni and nj are assigned to different
237VMs. If both tasks ni to nj are allocated to the same VM, ci;j
238becomes zero because we assume that the intra-VM com-
239munication cost is negligible [25], [26], [35], [36], [37]. The
240execution time is also neglected if tasks are mapped to dif-
241ferent VMs on the same physical machine because these
242VMs have the same shared memory. In this study, we
243assume each physical machine only contains one VM for
244better explaining the proposed algorithms.
245Fig. 1 shows a motivating workflow with tasks and mes-
246sages [35], [36], [37]. Table 2 is a matrix of the execution

TABLE 1
Important Notations in This Study

Notation Definition

ci;j Communication time between the tasks ni and nj

wi;k Execution time of the task ni on the VM uk
wi Average execution time of the task ni

rankuðniÞ Upward rank value of the task ni

jXj Size of the setX
�k Constant failure rate per time unit of the VM uk
numi Number of replicas of the task ni

NRðGÞ Total number of the replicas of the workflowG

costðGÞ Total execution cost of the workflowG

SLðGÞ Total schedule length of the workflowG

nx
i xth replica of the task ni

uprðnx
i
Þ Assigned VM of the replica nx

i

Rðni; ukÞ Reliability of the task ni on the VM uk
RðniÞ Reliability of the task ni

RðGÞ Reliability of the workflowG

RseqðGÞ Reliability requirement of the workflowG

RseqðniÞ Sub-reliability requirement of the task ni

Rup seqðniÞ Upper bound on reliability requirement of the task ni Fig. 1. Motivating example of a DAG-based workflow with ten tasks [35],
[36], [37].

TABLE 2
Execution Times of Tasks on Different

VMs of the Motivating Workflow
[35], [36], [37]

Task u1 u2 u3

n1 14 16 9
n2 13 19 18
n3 11 13 19
n4 13 8 17
n5 12 13 10
n6 13 16 9
n7 7 15 11
n8 5 11 14
n9 18 12 20
n10 21 7 16
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247 times shown in Fig. 1. The example shows 10 tasks executed
248 on 3 VMs fu1; u2; u3g. The weight 14 of n1 and u1 in Table 2
249 represents execution time of n1 on u1, denoted by w1;1 ¼ 14.
250 Clearly, the same task has different execution times on dif-
251 ferent VMs due to the heterogeneity of the VMs. The weight
252 18 of the edge between n1 and n2 represents communication
253 time, denoted by c1;2 if n1 and n2 are not assigned to the
254 same VM. For simplicity, all the units of all parameters are
255 ignored in the example.

256 3.2 Reliability Model

257 Two major types of failures exist, that is, transient failure
258 and permanent failure; this study considers the transient
259 failure of VMs. In general, the occurrence of transient failure
260 for a task in a DAG-based workflow follows a Poisson dis-
261 tribution [25], [26], [27], [28], [32]. The reliability of an event
262 in unit time t is denoted by

R tð Þ ¼ e��t;
264264

265 where � is the constant failure rate per time unit for a VM. We
266 use �k to represent the constant failure rate per time unit of
267 the VM uk. The reliability of ni executed on uk in its execu-
268 tion time is denoted by

R ni; ukð Þ ¼ e��kwi;k ; (1)
270270

271 and the failure probability for ni without using the active
272 replication scheme is

1�R ni; ukð Þ ¼ 1� e��kwi;k : (2)274274

275

276 Similar to [26], we also use the active replication scheme
277 to implement fault-tolerance in this study. The reason has
278 been explained in Section 2. Considering that each task has
279 a certain number of replicas with the active replication
280 scheme, we define numi (numi4jU j) as the number of repli-
281 cas of ni. Thus, the replica set of ni is fn1

i ; n
2
i ; . . . ; n

numi
i g,

282 where n1
i is the primary and the others are the backups.

283 Then, the total number of replicas for the workflow is

NRðGÞ ¼
XjNj
i¼1

numi: (3)
285285

286

287 As long as one replica of ni is successfully completed,
288 then we can recognize that no failure occurs for ni, and the
289 reliability of ni is updated to

R nið Þ ¼ 1�
Ynumi

x¼1
1�R nx

i ; uprðnx
i
Þ

� �� �
; (4)

291291

292 where uprðnx
i
Þ represents the assigned VM of nx

i . Note that
293 replication on the same processor is not allowed because it
294 is an improved version of the passive replication scheme as
295 pointed out earlier. Then, the reliability of the workflow
296 with precedence-constrained tasks should be

RðGÞ ¼
Y
ni2N

RðniÞ: (5)
298298

299

300 In [26], communication and computation failures are con-
301 sidered; however, some communication networks themselves
302 provide fault-tolerance. For instance, routing information

303protocol and open shortest path first are designed to reroute
304packets to ensure that they reach their destination [38]. There-
305fore, similar to [20], [25], [39], this study only considers VM
306failure and assumes reliable communication.

3073.3 Cost Model

308The cost model in this study is based on a pay-as-you-go
309condition, and the users are charged according to the
310amount of time that they have used processors according to
311the current commercial clouds [40]. Each processor has an
312individual unit price because processors in the system are
313completely heterogeneous [41], [42]. Therefore, the compu-
314tation execution cost of the workflow is the sum of the exe-
315cution time values of all replicas of tasks and the
316corresponding execution cost unit prices of VMs; that is,

costðGÞ ¼
X
ni2N

costðniÞ ¼
X
ni2N

Xnumi

y¼1
wi;prðny

i
Þ � gprðny

i
Þ

 !
; (6)

318318

319where gprðny
i
Þ represents the execution cost unit price of the

320VM uprðny
i
Þ.

3213.4 Fault-Tolerant Scheduling

322Scheduling tasks for a DAG-based workflow with fastest
323execution is a well-known NP-hard optimization problem
324and heterogeneous earliest finish time (HEFT) is one of the
325most famous scheduling algorithms [35]. List scheduling is
326the most well-known method for a DAG-based workflow
327and includes two phases: the first phase orders tasks based
328on the descending order of priorities (task prioritization),
329whereas the second phase allocates each task to the appro-
330priate VM (task allocation). Similarly, fault-tolerant schedul-
331ing for a DAG-based workflow is also an NP-hard problem
332[28], [29], and fault-tolerant list scheduling also contains the
333following two phases.
334(1) Task prioritization. Similar to HEFT [35] and state-of-
335the-art MaxRe [25] and RR algorithms [26], this study also
336uses the well-known upward rank value (ranku) of a task
337(Eq. (7)) as the task priority standard. In this case, the tasks
338are ordered by descending order of ranku, which are
339obtained by Eq. (7) [35], as follows:

rankuðniÞ ¼ wi þ max
nj2succðniÞ

fci;j þ rankuðnjÞg; (7)

341341

342in which wi represents the average execution times of task

343ni and is calculated by wi ¼ ð
PjUj

k¼1 wi;kÞ=jU j. Table 3 shows
344the upward rank values of all the tasks of the motivating
345example. ni can be allocated to VM only if all the predeces-
346sors of ni have been assigned. We assume that two tasks ni

347and nj satisfy rankuðniÞ > rankuðnjÞ; if there is no prece-
348dence constraint between ni and nj, ni does not necessarily
349take precedence for nj to be assigned. Finally, the task
350assignment order in the motivating example G is fn1; n3; n4;
351n2; n5; n6; n9; n7; n8; n10g.

TABLE 3
Upward Rank Values for Tasks of the Motivating Workflow

Task n1 n2 n3 n4 n5 n6 n7 n8 n9 n10

rankuðniÞ 108 77 80 80 69 63.3 42.7 35.7 44.3 14.7
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352 (2) Task allocation. Two types of fault-tolerant scheduling
353 exist for workflow, namely, the strict schedule and the gen-
354 eral schedule [28], [43]. In the strict schedule, each task
355 should wait for the completion (including success and fail)
356 of all the replicas of its predecessors before starting its exe-
357 cution. In the general schedule, the execution of each task
358 can start as soon as one replica of each predecessor has suc-
359 cessfully completed. In other words, the strict schedule is
360 equivalent to a compile-time static scheduling, whereas the
361 general schedule is equivalent to a run-time dynamic sched-
362 uling. In this study, we only discuss the strict schedule for
363 predictable schedule result during the design phase.
364 We let the attributes EST nx

i ; uk

� �
and EFT nx

i ; uk

� �
repre-

365 sent the earliest start time (EST) and the earliest finish time,
366 respectively, of the replica nx

i on the VM uk. We let EFT ðnx
i ;

367 ukÞ be the task allocation criterion in this study because it sat-
368 isfies the local optimum of each precedence-constrained task
369 by using the greedy policy. Given that the strict schedule is
370 used, the aforementioned attributes are calculated as follows:

EST nxentry;uk

� �
¼0

EST nx
i
;ukð Þ¼max

avail½k�;
max

nh2predðniÞ;v2½1;numhÞ�
AFT ðnv

hÞ þ c
0
h;i

n o8<
:

9=
;;

8>>>>>><
>>>>>>:

(8)

372372

373 and

EFT nx
i ; uk

� � ¼ EST nx
i ; uk

� �þ wi;k: (9)
375375

376 avail½k� is the earliest available time when VM uk is ready
377 for task execution. AFT ðnv

hÞ is the actual finish time of the
378 replica nv

h and is calculated by

AFT ðnv
hÞ ¼ EFT ðnv

h; uprðnv
h
ÞÞ: (10)

380380

381 c
0
h;i represents the communication time between nv

h and nx
i .

382 If nv
h and nx

i are allocated to the same VM, then c
0
h;i ¼ 0; oth-

383 erwise, c
0
h;i ¼ ch;i. n

x
i is allocated to the VM with the mini-

384 mum EFT by using the insertion-based scheduling policy
385 that nx

i can be inserted into the slack with the minimum
386 EFT.
387 The final schedule length of the workflow is the AFT of
388 the replica of the exit task nexit; this replica has the maxi-
389 mum AFT among all replicas of nexit. That is, we have

SLðGÞ ¼ max
y2½1;numexit�

fEFT ðny
exitÞg: (11)

391391

392

393 4 QUANTITATIVE FAULT-TOLERANCE WITH

394 MINIMUM EXECUTION COST

395 4.1 Problem Description

396 The problem of minimizing execution cost with reliability
397 requirement can be formally described as follows:We assume
398 that we are given a workflow G and a heterogeneous VM set
399 U . The problem is to assign replicas and corresponding VMs
400 for each task; at the same time, we must minimize the execu-
401 tion cost of theworkflow and ensure that the obtained reliabil-
402 ity value RðGÞ satisfies the reliability requirement RseqðGÞ.
403 The formal description is to find the replicas and VM assign-
404 ments of all tasks tominimize execution cost

costðGÞ ¼
X
ni2N

costðniÞ ¼
X
ni2N

Xnumi

y¼1
wi;prðny

i
Þ � gprðny

i
Þ

 !
;

406406

407subject to reliability requirement:

RðGÞ ¼
Y
ni2N

R nið Þð Þ 5 RreqðGÞ;
409409

410for 8i : 1 4 i 4 jN j.

4114.2 Satisfying Reliability Requirement

412The heuristic MaxRe [25] and RR [26] algorithms was pre-
413sented to transfer the reliability requirement of the workflow
414to the sub-reliability requirement of each task. However,
415there are two issues should be concerned to improve execu-
416tion cost.
417(1) Calculate sub-reliability requirements of all tasks. In
418MaxRe, the sub-reliability requirement of each task is still
419calculated by RreqðniÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
RreqðGÞjNjp . Such calculation was

420improved in RR, where the sub-reliability requirement of
421the entry task is still calculated by Rreqðn1Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
RreqðGÞjNjp ,

422and the sub-reliability requirements of the remainder of
423tasks (i.e., non-entry tasks) are calculated continuously
424based on the actual reliability achieved by previous alloca-
425tions

RreqðnseqðjÞÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

RreqðGÞQj�1
x¼1 RðnseqðxÞÞ

jN j�jþ1
s

; (12)

427427

428where nseqðjÞ represents the jth assigned task. However, RR
429merely recalculates the sub-reliability requirement (Eq. (12))
430of the task nseqðxÞ based on the actual reliability achieved by
431previous allocations of nseqðxÞ, not based on succeeding tasks
432of nseqðjÞ.
433(2) Satisfy sub-reliability requirements of all tasks. Both
434MaxRe and RR iteratively select available replicas and VMs
435with the maximum reliability value for each task to mini-
436mize the number of replicas, and thereby to reduce execu-
437tion cost, until the sub-reliability of the task is satisfied.
438However, the minimum number of replicas does not mean
439minimum execution cost and shortest schedule length
440because of the heterogeneity of VMs.
441We make the following improvement to solve the afore-
442mentioned two problems:
443(1) In calculating sub-reliability requirements of all tasks,
444we let

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
RreqðGÞjN jp be the upper bound on the reliability

445requirement of the task ni, that is,

Rup reqðniÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
RreqðGÞjN j

q
: (13)

447447

448Then, we have the following strategy: we assume that the
449task to be assigned is nseqðjÞ, where nseqðjÞ represents the jth
450assigned task, then fnseqð1Þ; nseqð2Þ; . . . ; nseqðj�1Þg represents
451the task set with assigned tasks and fnseqðjþ1Þ; nseqðjþ2Þ; . . . ;
452nseqðjNjÞg represents the task set with unassigned tasks. We
453presuppose that each task in fnseqðjþ1Þ; nseqðjþ2Þ; . . . ; nseqðjNjÞg
454is assigned to the VM with reliability value on the upper
455bound (Eq. (13)) to ensure that the reliability of theworkflow is
456satisfied at each task assignment. Thus, when assigning nseqðjÞ,
457the reliability requirement of G is bound (Eq. (13)). Hence,
458when assigning nseqðjÞ, the reliability requirement ofG is

XIE ET AL.: QUANTITATIVE FAULT-TOLERANCE FOR RELIABLE WORKFLOWS ON HETEROGENEOUS IAAS CLOUDS 5
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RreqðGÞ ¼
Yj�1
x¼1

RðnseqðxÞÞ �RreqðnseqðjÞÞ �
YjNj

y¼jþ1
Rup reqðnseqðyÞÞ:

460460

461 Then, the sub-reliability requirement of the task nseqðjÞ
462 should be

RreqðnseqðjÞÞ ¼ RreqðGÞQj�1
x¼1 RðnseqðxÞÞ �

QjNj
y¼jþ1 Rup reqðnseqðyÞÞ

: (14)
464464

465

466 (2) In satisfying the sub-reliability requirements of all
467 tasks, we iteratively select available replicas and VMs
468 that have the minimum execution time for each task to
469 reduce its execution cost, rather than the minimum num-
470 ber of replicas, until its sub-reliability requirement is
471 satisfied.

472 4.3 The QFEC Algorithm

473 On the basis of the aforementioned optimizations, we pres-
474 ent the heuristic algorithm QFEC described in Algorithm 1
475 to reduce execution cost while satisfying the reliability
476 requirement of the workflow.

477 Algorithm 1. The QFEC Algorithm

478 Input: G ¼ ðN;W;M;CÞ, U , RreqðGÞ
479 Output:NRðGÞ, costðGÞ, SLðGÞ, RðGÞ and related values
480 1: Order tasks according to a descending order of
481 rankuðni; ukÞ using Eq. (7);
482 2: for ðj 1; j 4 jN j; j++Þ do
483 3: Calculate RreqðnseqðjÞÞ using Eq. (14);
484 4: numseqðjÞ  0;
485 5: RðnseqðjÞÞ  0; // initial value is 0
486 6: for ðk 1; k 4 jU j; k++Þ do
487 7: Calculate R nseqðjÞ; uk

� �
for the task nseqðjÞ using Eq. (1);

488 8: Calculate EFT nseqðjÞ; uk

� �
for the task nseqðjÞ using

489 Eq. (9);
490 9: end for
491 10: while (RðnseqðjÞÞ < RreqðnseqðjÞÞ) do
492 11: Select available replica nx

seqðjÞ and VM uprðnx
seqðjÞÞ with the

493 minimum execution time wseqðjÞ;prðnx
seqðjÞÞ;

494 12: numseqðjÞ++;
495 13: Calculate AFT ðnx

seqðjÞÞ  EFT ðnx
seqðjÞ; uprðnx

seqðjÞÞÞ using
496 Eq. (10);
497 14: Calculate RðnseqðjÞÞ using Eq. (4);
498 15: end while
499 16: end for
500 17: CalculateNRðGÞ using Eq. (3);
501 18: Calculate costðGÞ using Eq. (6);
502 19: Calculate SLðGÞ using Eq. (11);
503 20: Calculate RðGÞ using Eq. (5);

504 The main idea of QFEC is that the reliability requirement
505 of the workflow is transferred to the sub-reliability require-
506 ment of each task. Then, QFEC simply iteratively selects
507 available replicas and VMs with the minimum execution
508 time for each task until its sub-reliability requirement is sat-
509 isfied. The main steps are explained as follows:

510 (1) In Line 1, QFEC orders task based on a descending
511 order of rankuðni; ukÞ using Eq. (7).
512 (2) In Lines 2-16, QFEC iteratively selects available repli-
513 cas and VMs with the minimum execution time for

514each task until its sub-reliability requirement is satis-
515fied. In particular, the sub-reliability requirement of
516each task is obtained in Line 3. Then, QFEC selects
517available replicas nx

seqðjÞ and VMs uprðnx
seqðjÞÞ with the

518minimum execution time wseqðjÞ;prðnx
seqðjÞÞ in the itera-

519tive process in Line 11.

520(3) In Lines 17-20, QFEC calculates the number of repli-
521cas NRðGÞ, execution cost costðGÞ, schedule length
522SLðGÞ, and actual reliability value RðGÞ of the
523workflow.
524Compared with the RR algorithm [26], the main improve-
525ments of the presentedQFEC algorithm are as follows:

526(1) QFEC recalculates the sub-reliability requirement of
527each task based not only on its previous assignments
528(fnseqð1Þ; nseqð2Þ; . . . ; nseqðj�1Þg) but also on succeeding pre-
529assignments fnseqðjþ1Þ; nseqðjþ2Þ; . . . ; nseqðjNjÞg, whereas
530RR ismerely based on previous assignments.
531(2) QFEC iteratively selects available replicas and VMs
532with the minimum execution time to reduce its exe-
533cution cost until its sub-reliability requirement is
534satisfied, whereas RR iteratively selects available
535replicas and VMs with the maximum reliability
536value to reduce the number of replicas, and thereby
537to reduce execution cost. A minimum number of
538replicas does not mean minimum execution cost
539and shortest schedule length in heterogeneous IaaS
540clouds.
541The time complexity of the QFEC algorithm is analyzed
542as follows: All tasks should be traversed once, which can be
543conducted in O(jNj) time. The number of replicas should be
544lower or equal to the number of VMs, which can be com-
545pleted in O(jU j) time. Calculating the AFT of each replica
546should be conducted in O(jNj � jU j) time. Thus, the time
547complexity of the QFEC algorithm is O(jNj2 � jUj2), which
548is similar to that of the RR algorithm. Thus, QFEC imple-
549ments efficient fault-tolerance without increasing the time
550complexity.

551Example 1. We assume that the constant failure rates for
552three VMs are �1 ¼ 0:001, �2 ¼ 0:002, and �3 ¼ 0:003. We
553assume that the execution cost for three VMs are g1 ¼ 2,
554g2 ¼ 1:5, and g3 ¼ 1. Moreover, we assume that the reli-
555ability requirement of the motivating workflow in Fig. 1
556is RseqðGÞ ¼ 0:9. Table 4 lists the replicas, selected VM,
557and reliability value of each task using the QFEC algo-
558rithm. Each row shows the selected VMs (denoted with
559boxed) and corresponding reliability values. For example,
560the sub-reliability requirement of n1 is Rreqðn1Þ ¼

ffiffiffiffiffiffiffi
0:9½10�p ¼

5610:98951926; QFEC selects the VMs u3 and u2 with the
562minimum and second minimum execution costs of 9 and
56324, respectively, to satisfy the sub-reliability requirement.
564Then, the actual reliability value of n1 is Rðn1Þ ¼
5650:99916105, which is calculated by Eq. (4) and is larger
566than Rreqðn1Þ ¼ 0:98951926. The remaining tasks use the
567same pattern with n1. Finally, the number of replicas is
568NRðGÞ ¼ 15, the execution cost is costðGÞ ¼ 240, and
569the actual reliability value of the workflow G is RðGÞ ¼
5700:91295642, which are calculated by Eqs. (3), (6), and (5),
571respectively.
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572 4.4 The QFEC+ Algorithm

573 On one hand, although the QFEC algorithm can reduce exe-
574 cution cost by iteratively selecting available replicas and
575 VMs with the minimum execution times until its sub-reli-
576 ability requirement is satisfied, we find that such a process
577 may still cause additional redundancy for some tasks. Given
578 that minimum execution time does not mean maximum reli-
579 ability value for a replica, we find that some redundant rep-
580 licas for a task can be removed while still satisfying its sub-
581 reliability requirement. For example, as shown in Table 4,
582 when selecting replicas and VMs for n5, QFEC first selects
583 u3 with minimum execution time 10 and then selects u1

584 with second minimum execution time 12 to satisfy its sub-
585 reliability requirement 0.98776561. However, if we merely
586 select u1 with execution time 12, then its actual sub-reliabil-
587 ity value is 0.98807171, which can also satisfy its sub-reli-
588 ability requirement 0.98776561. Such a fact reveals the
589 necessity of filtering out partial QFEC-selected replicas and
590 VMs by selecting the VM with the maximum reliability
591 value to reduce redundancy. We consider the example that
592 n5 selects u3 (Rðn5; u3Þ ¼ 0:97044553) and u1 (Rðn5; u1Þ ¼
593 0:98807171) using QFEC; then, u3 can be removed. There-
594 fore, in this study, we call the filter process as the QFEC+
595 algorithm.
596 On the other hand, although the QFEC+ algorithm can
597 filter out partial replicas and VMs for a task ni with less
598 redundancy, the actual obtained reliability value for ni is
599 decreased. Given that the total reliability requirement of the
600 workflow is fixed, such an operation may result in higher
601 sub-reliability requirements for its succeeding tasks. There-
602 fore, more replicas may be generated for succeeding tasks.
603 Considering the aforementioned possible contradictory
604 results using QFEC+, we cannot determine which is supe-
605 rior between QFEC and QFEC+. Therefore, extensive
606 experiments are needed (please refer to Section 6 for more
607 experimental details on QFEC and QFEC+).
608 The description of the QFEC+ algorithm is shown in
609 Algorithm 2 and its time complexity is also O(jN j2 � jU j2),
610 which is the same as that of the QFEC algorithm. That is,
611 QFEC+ also does not increase time complexity.
612 The main idea of QFEC+ is described as follows: 1) similar
613 to QFEC, QFEC+ first iteratively selects available replicas and
614 VMs with the minimum execution times for each task until its
615 sub-reliability requirement is satisfied; 2) QFEC+ reserves
616 the selectedVMs and clears theprevious allocations of the task

617Algorithm 2. The QFEC+ Algorithm

618Input: G ¼ ðN;W;M;CÞ, U , RreqðGÞ
619Output: NRðGÞ, costðGÞ, SLðGÞ, RðGÞ and related values
6201: Order tasks according to a descending order of
621rankuðni; ukÞ using Eq. (7);
6222: for ðj 1; j 4 jN j; j++Þ do
6233: Calculate RreqðnseqðjÞÞ using Eq. (14);
6244: RðnseqðjÞÞ ¼ 0; // initial value is 0
6255: Define a list replicas reliability listðnseqðjÞÞ to store the
626replicas of nseqðjÞ;
6276: for ðk 1; k 4 jU j; k++Þ do
6287: Calculate R nseqðjÞ; uk

� �
for the task nseqðjÞ using Eq. (1);

6298: Calculate EFT nseqðjÞ; uk

� �
for the task nseqðjÞ using

630Eq. (9);
6319: end for
63210: while (RðnseqðjÞÞ < RreqðnseqðjÞÞ) do
63311: Select available replica nx

seqðjÞ and VM uprðnx
seqðjÞÞ with the

634minimum execution time wseqðjÞ;prðnx
seqðjÞÞ;

63512: Put nx
seqðjÞ into the list replicas reliability listðnseqðjÞÞ;

63613: Calculate RðnseqðjÞÞ using Eq. (4);
63714: end while
63815: Sort the replicas in the list replicas reliability listðnseqðjÞÞ
639by descending order of reliability values of replicas.
64016: Clear the previous allocations of ni in Lines 10-14;
64117: numseqðjÞ  0;
64218: RðnseqðjÞÞ  0; // reset the reliability value of nseqðjÞ to 0;

64319: while (RðnseqðjÞÞ < RreqðnseqðjÞÞ) do
64420: Select available replica nx

seqðjÞ and VM uprðnx
seqðjÞÞ with the

645maximum reliability value R nx
seqðjÞ; uprðnx

seqðjÞÞ
� �

in the

646list replicas reliability listðnseqðjÞÞ;
64721: Remove the replica nx

seqðjÞ from the list

648replicas reliability listðnseqðjÞÞ;
64922: numseqðjÞ++;
65023: Calculate AFT ðnx

seqðjÞÞ  EFT ðnx
seqðjÞ; uprðnx

seqðjÞ
ÞÞ using

651Eq. (10);
65224: Calculate RðnseqðjÞÞ using Eq. (4);
65325: end while
65426: end for
65527: Calculate NRðGÞ using Eq. (3);
65628: Calculate costðGÞ using Eq. (6);
65729: Calculate SLðGÞ using Eq. (11);
65830: Calculate RðGÞ using Eq. (5);

659and then iteratively selects available replicas and VMs with
660the maximum reliability values for each task in the reserved
661VMs until its sub-reliability requirement is satisfied. The
662main steps are explained as follows:

663(1) In Line 1, similar to QFEC, QFEC+ orders tasks
664based on a descending order of rankuðni; ukÞ using
665Eq. (7).
666(2) In Lines 2-14, similar to QFEC, QFEC+ iteratively
667selects available replicas and VMs with the mini-
668mum execution times for each task until its sub-
669reliability requirement is satisfied.
670(3) In Line 15, QFEC+ reserves the selected VMs and sorts
671the replicas in the list replicas reliability listðnseqðjÞÞ
672by descending order of reliability values of the
673replicas.

TABLE 4
Task Assignment of the Motivating Workflow

Using the QFEC Algorithm

ni RreqðniÞ wi;1 � g1 wi;2 � g2 wi;3 � g3 numi RðniÞ
n1 0.98951926 28 24 9 2 0.99916105
n3 0.97997050 22 19:5 19 2 0.99857801
n4 0.97108055 26 12 17 1 0.98412732
n2 0.97640101 26 28.5 18 2 0.99932104
n5 0.97044553 24 19.5 10 1 0.97044553
n6 0.98582658 26 24 9 2 0.99916105
n9 0.97631346 36 18 20 2 0.99861899
n7 0.96753856 14 22.5 11 1 0.96753856
n8 0.98939492 10 16.5 14 1 0.99501248
n10 0.97210312 42 10:5 16 1 0.98393272

NRðGÞ ¼ 15, costðGÞ ¼ 240, RðGÞ ¼ 0:90198016
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674 (4) In Lines 16-18, QFEC+ clears the previous allocations
675 (Lines 10-14) of ni. The objective of the above two
676 steps is to prepare reassignment for the replicas.
677 (5) In Lines 19-25, QFEC+ iteratively selects available
678 replicas and VMs with the maximum reliability val-
679 ues for each task in the reserved VMs until its sub-
680 reliability requirement is satisfied.
681 (6) In Lines 26-29, QFEC+ calculates the number of rep-
682 licas NRðGÞ, execution cost costðGÞ, schedule length
683 SLðGÞ, and actual reliability value RðGÞ of the
684 workflow.

685 Example 2. The same parameter values (�1 ¼ 0:001, �2 ¼
686 0:002, �3 ¼ 0:003, g1 ¼ 2, g2 ¼ 1:5, g3 ¼ 1, and RseqðGÞ ¼
687 0:9) as the aforementioned examples are used. Table 5
688 shows the task assignment for each task of the motivating
689 workflow using the QFEC+ algorithm. Each row shows
690 the selected VMs (in boxed), the removed VMs (in boxed
691 strikeout), and the actual reliability value of the work-
692 flow. For example, when QFEC+ filters out u3 with mini-
693 mum execution cost 18 for n2 and u3 with minimum
694 execution cost 11 for n7, the sub-reliability requirements
695 of n5 and n9 remain satisfied. Finally, the number of repli-
696 cas is NRðGÞ ¼ 14, the execution cost is costðGÞ ¼ 220:5,
697 and the actual reliability value of the workflow G is
698 RðGÞ ¼ 0:91722446; these values are calculated by
699 Eqs. (3), (6), and (5), respectively.

700 5 QUANTITATIVE FAULT-TOLERANCE WITH

701 SHORTEST SCHEDULE LENGTH

702 5.1 Problem Description

703 The problem of minimizing schedule length with reliability
704 requirement can be formally described as follows: We
705 assume that we are given a workflow G and a heteroge-
706 neous VM set U . The problem is to assign replicas and corre-
707 sponding VMs for each task; at the same time, we must
708 minimize the schedule length of the workflow and ensure
709 that the obtained reliability value RðGÞ satisfies the reliabil-
710 ity requirement RseqðGÞ. The formal description is to find
711 the replicas and VM assignments of all tasks to minimize
712 schedule length

SLðGÞ ¼ max
x2½1;numexit �

ðAFT ðnx
exitÞÞ;

714714

715subject to reliability requirement:

RðGÞ ¼
Y
ni2N

R nið Þð Þ5RreqðGÞ;
717717

718for 8i : 1 4 i 4 jN j.

7195.2 The QFSL Algorithm

720Iteratively selecting available replicas and VMs with the
721minimum execution times can achieve minimum execution
722cost using QFEC. Correspondingly, selecting available repli-
723cas and VMs with the minimum EFTs could achieve the
724shortest schedule length. Algorithm 3 describes the QFSL
725algorithm to minimize schedule length while satisfying the
726reliability requirement of the workflow.

727Algorithm 3. The QFSL Algorithm

728Input: G ¼ ðN;W;M;CÞ, U , RreqðGÞ
729Output: NRðGÞ, costðGÞ, SLðGÞ, RðGÞ and related values
7301: Order tasks according to a descending order of
731rankuðni; ukÞ using Eq. (7);
7322: for ðj 1; j 4 jN j; j++Þ do
7333: Calculate RreqðnseqðjÞÞ using Eq. (14);
7344: numseqðjÞ  0;
7355: RðnseqðjÞÞ  0; // initial value is 0
7366: for ðk 1; k 4 jU j; k++Þ do
7377: Calculate R nseqðjÞ; uk

� �
for the task nseqðjÞ using Eq. (1);

7388: Calculate EFT nseqðjÞ; uk

� �
for the task nseqðjÞ using

739Eq. (9);
7409: end for
74110: while (RðnseqðjÞÞ < RreqðnseqðjÞÞ) do
74211: Select available replica nx

seqðjÞ and VM uprðnx
seqðjÞÞ with the

743minimum EFT;
74412: numseqðjÞ++;
74513: Calculate AFT ðnx

seqðjÞÞ  EFT ðnx
seqðjÞ; uprðnx

seqðjÞ
ÞÞ using

746Eq. (10);
74714: Calculate RðnseqðjÞÞ using Eq. (4);
74815: end while
74916: end for
75017: Calculate NRðGÞ using Eq. (3);
75118: Calculate costðGÞ using Eq. (6);
75219: Calculate SLðGÞ using Eq. (11);
75320: Calculate RðGÞ using Eq. (5);

754Compared with Algorithm 1 and Algorithm 3, the sole
755change between QFEC and QFSL is that “Select available
756replica nx

seqðjÞ and VM uprðnx
seqðjÞÞ with the minimum execution

757time wseqðjÞ;prðnx
seqðjÞÞ” in Line 11 in QFEC is changed to “Select

758available replica nx
seqðjÞ and VM uprðnx

seqðjÞÞ with the minimum

759EFT wseqðjÞ;prðnx
seqðjÞÞ” in QFSL.

760Example 3. The same parameter values (�1 ¼ 0:001,
761�2 ¼ 0:002, �3 ¼ 0:003, and RseqðGÞ ¼ 0:9) as the afore-
762mentioned examples are used. Table 6 shows the task
763assignment for each task of the motivating workflow
764using QFSL algorithm. Each row shows the selected VMs
765(in boxed) and actual reliability value of the workflow.
766QFSL iteratively selects available replicas and VMs with
767minimum EFTs. For example, the sub-reliability require-
768ment of n5 is Rreqðn5Þ ¼ 0:98776561; QFSL selects the VMs
769u3 and u2 with the minimum and second minimum EFTs,

TABLE 5
Task Assignment of the Motivating Workflow

Using the QFEC+ Algorithm

ni RreqðniÞ wi;1 � g1 wi;2 � g2 wi;3 � g3 numi RðniÞ
n1 0.98951926 28 24 9 2 0.99916105
n3 0.97997050 22 19:5 19 2 0.99857801
n4 0.97108055 26 12 17 1 0.98412732
n2 0.97640101 26 28.5 �1�8 1 0.98708414
n5 0.97880978 24 19:5 10 2 0.99924149
n6 0.96928634 26 24 9 1 0.97336124
n9 0.98537671 36 18 20 2 0.99861899
n7 0.97639765 14 22.5 �11 1 0.99302444
n8 0.97295116 10 16.5 14 1 0.99501248
n10 0.96757973 42 10:5 16 1 0.98609754

NRðGÞ ¼ 14, costðGÞ ¼ 220:5, RðGÞ ¼ 0:91722446
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770 respectively, to satisfy the sub-reliability requirement.
771 Finally, the number of replicas is NRðGÞ ¼ 13, the execu-
772 tion cost is costðGÞ ¼ 131, and the actual reliability value
773 of the workflow G is RðGÞ ¼ 0:91295642.
774 Fig. 2 also shows the scheduling of the motivating
775 workflow G using QFSL, where the schedule length is
776 SLðGÞ ¼ 89.
777 Similar to QFEC, QFSL can also be extended to QFSL+
778 with the same pattern. Considering space limitations, we
779 do not provide the description of the QFSL+ algorithm in
780 this study. Actually, the QFSL+ algorithm is similar to
781 the QFEC+ algorithm, and the only difference between
782 between QFSL+ and QFEC+ is that “Select available rep-
783 lica nx

seqðjÞ and VM uprðnx
seqðjÞÞ with minimum execution

784 times wseqðjÞ;prðnx
seqðjÞÞ” in Line 11 in QFEC+ is changed to

785 “Select available replica nx
seqðjÞ and VM uprðnx

seqðjÞÞ with

786 minimum EFTs EFT ðseqðjÞ; prðnx
seqðjÞÞÞ” in QFSL+.

787 6 EXPERIMENTS

788 6.1 Experimental Workflows and Metrics

789 We select fault-tolerant scheduling algorithm (FTSA) [21],
790 MaxRe [25], and RR [26] for comparison in the experiments.
791 FTSA is a heuristic bi-criteria approach to reduce the schedule
792 length for a workflow in heterogeneous systems by using the
793 active replication strategy to allocate "+ 1 replicas of each task
794 to "+ 1 VMs. Note that the original FTSA orders tasks using
795 rankuðniÞ þ rankdðniÞ, and it is called FTSA(u+d) in [26].

796Zhao implemented another version of FTSA by ordering tasks
797using rankuðniÞ, and this version is called the FTSA(u)
798algorithm. The results show that FTSA(u) outperforms FTSA
799(u+d) in terms of schedule length [26]. Hence, similar to [26],
800we also use FTSA(u) for comparison in this study. Both
801MaxRe and RR study the same problem of quantitative fault-
802tolerance for reliable workflows. Themetrics are final number
803of replicas, execution cost, and schedule length under the reli-
804ability requirement is satisfied.
805Many cloud providers do provide the relevant information
806for their actual platforms, such as Amazon EC2 andMicrosoft
807Azure et al. [8]. In this study, we use the relevant information
808of Amazon EC2 as test bed to do the experiments because it
809has been widely used in most works [3], [44], [45]. The simu-
810lated heterogeneous cloud platform contains of 64 VMs with
811different computing abilities and unit prices, where the prices
812of VMs are based on the Amazon EC2 [44]. As this study uses
813the VM specification of short term lease (i.e., pay-as-you-go),
814the prices for VMs are from $0.095 to $0.38 per hour [44]. In
815practice, the mean time between failures (MTBF, 1/�) is often
816reported instead of the failure rates to represent the reliability
817[44], [45]. The MTBF of each VM could belong to the scope of
818100,000 h and 1,000,000 h. Therefore, the failure rates belongs
819to the scope of 10�7/hour and 10�6/hour. The execution time
820values of tasks and communication time values of messages
821could be the scope of: 1 h� wi;k � 128 h, 1 h� ci;j � 128 h [15].
822We use five types of workflows, namely, linear algebra
823[46], Gaussian elimination [12], [35], diamond graph [46],
824complete binary tree [46], and fast Fourier transform [12],
825[35], to extensively validate the effectiveness of the pro-
826posed algorithms. These workflows are also used to com-
827pare the results of all the algorithms. Figs. 3a, 3b, 3c, 3d, and
8283e show the examples of linear algebra with the size r=5 and
829the total number of tasks is jN j ¼ rðrþ 1Þ=2, the Gaussian
830elimination with the size r ¼ 5 and the total number of tasks
831is jN j ¼ r2þr�2

2 , the diamond graph with the size r ¼ 4 and

TABLE 6
Task Assignment of the Motivating Workflow

Using the QFSL Algorithm

ni RreqðniÞ EFT ðni; u1Þ EFT ðni; u2Þ EFT ðni; u3Þ numi RðniÞ
n1 0.98951926 14 16 9 2 0.99962966

n3 0.97951111 32 39 45 1 0.98906028

n4 0.97996567 45 31 40 1 0.98412732

n2 0.98533480 45 51 50 1 0.98708414

n5 0.98776561 57 44 35 2 0.99924149

n6 0.97775779 58 60 44 2 0.99965594

n9 0.96784316 76 73 81 1 0.97628571

n7 0.98096227 65 68 66 1 0.99302444

n8 0.97749966 70 84 87 1 0.99501248

n10 0.97210312 107 89 102 1 0.98609754

NRðGÞ ¼ 13, costðGÞ ¼ 131, RðGÞ ¼ 0:91295642

Fig. 2. Scheduling of the motivating workflow using QFSL.

Fig. 3. Five different types of workflows.
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833 with the size r ¼ 5 and the total number of tasks is
834 jNj ¼ 2r � 1, the fast Fourier transform with the size r ¼ 4
835 and the total number of tasks is jNj ¼ ð2� r� 1Þ þ r� log 2

r,
836 respectively.
837 Table 7 shows the average schedule lengths of these work-
838 flows with approximate equal task numbers using the stan-
839 dard HEFT algorithm. The schedule lengths of linear algebra,
840 Gaussian elimination, and diamond graph (6,483-9,542) are
841 larger than those of complete binary tree and fast Fourier
842 transform (1,086-1,544) in the approximate equal scales. The
843 results indicate that linear algebra, Gaussian elimination, and
844 diamond graph are low-parallelismworkflows,whereas com-
845 plete binary tree and fast Fourier transform are high-parallel-
846 ism workflows. The readers can refer to [47] with regard to
847 the parallelism degree of a DAG-basedworkflow.

848 6.2 Low-Parallelism Workflows

849 Experiment 1. This experiment compares the total numbers
850 of replicas, execution costs, and schedule lengths of large-
851 scale low-parallelism workflows (including linear alge-
852 bra, Gaussian elimination, and diamond graph). RreqðGÞ
853 is changed from 0.91 to 0.99 with 0.02 increments.

854 Table 8 shows the results of linear algebra workflow with
855 r ¼ 71 and jN j ¼ 2556 for varying reliability requirements.
856 The total numbers of replicas, execution costs, and schedule
857 lengths increase with the increase in reliability requirements
858 using all the algorithms except for FTSA(u). That is, more
859 resources are needed to satisfy higher reliability require-
860 ments. The following observations are drawn:

861 (1) In all cases, RR generates the minimum number of
862 replicas followed by MaxRe, QFEC+, QFEC, QFSL+,
863 QFSL, FTSA(u). The results verify that RR and
864 MaxRe implement resource reduction by exploring
865 less resource redundancy.
866 (2) In all cases, QFEC+ generates minimum execution
867 costs followed by QFEC, QFSL+, QFSL, RR, MaxRe,
868 and FTSA(u). QFEC and QFEC+ are used to reduce
869 execution cost, and QFEC+ is slightly better than
870 QFEC. The results indicate that QFEC+ is more effec-
871 tive in reducing execution cost than QFSL+, QFSL,
872 QFEC, RR, MaxRe, and FTSA(u), for low-parallelism
873 linear algebra workflows.
874 (3) In all cases, QFSL+ generates the shortest schedule
875 length, followed by QFSL, QFEC (or QFEC+), RR,
876 MaxRe, and FTSA(u). The results indicate that QFSL
877 + is slightly better than QFSL in reducing schedule
878 length and its advantages are obvious compared
879 with QFEC, QFEC+, RR, and MaxRe, and FTSA(u).

880(4) An obvious phenomenon is that the results pro-
881duced by FTSA(u) do not change with the reliability
882requirements. This is because FTSA(u) is a heuristic
883bi-criteria approach and it does not need to comply
884with the reliability requirement.
885Table 9 shows the results of Gaussian elimination with
886r ¼ 71 and jN j ¼ 2;555 for varying reliability requirements,
887similar to the results of Table 8 for linear algebra. Table 9
888shows that QFEC+ and QFSL+ continue to generate the
889minimum execution costs and shortest schedule lengths,
890respectively. The results of the number of replicas and

TABLE 7
Average Schedule Lengths (Unit: h) of Workflows Using HEFT

Workflow Task
number

Average schedule
lengths (unit:h)

Linear Algebra 2,556 6,483
Gaussian elimination 2,555 9,148
Diamond graph 2,601 9,542
Complete binary tree 2,047 1,086
Fast Fourier transform 2,559 1,544

TABLE 8
Results of Linear Algebra with jNj ¼ 2556

Reliability

requirement

Numbers of replicas

FTSA(u) MaxRe RR QFEC QFEC+ QFSL QFSL+

0.91 5,114 2,610 2,568 3,020 2,837 3,498 3,243

0.93 5,114 2,830 2,626 3,286 3,074 3,720 3,447

0.95 5,114 3,419 2,906 3,601 3,382 3,926 3,719

0.97 5,114 4,692 3,542 3,974 3,761 4,246 4,060

0.99 5,114 5,114 4,574 4,525 4,439 4,674 4,576

Reliability

requirement

Execution cost (unit: $)

FTSA(u) MaxRe RR QFEC QFEC+ QFSL QFSL+

0.91 40,761 27,398 27,100 9,014 8,559 22,003 19,629

0.93 40,761 28,963 27,507 9,902 9,373 23,072 20,730

0.95 40,761 32,379 29,236 10,919 10,391 23,573 21,834

0.97 40,761 38,930 32,882 12,162 11,670 24,334 23,772

0.99 40,761 40,761 38,117 13,907 13,747 25,036 24,218

Reliability

requirement

Schedule lengths (unit: h)

FTSA(u) MaxRe RR QFEC QFEC+ QFSL QFSL+

0.91 39,041 25,443 29,063 59,257 8,559 22,003 19,629

0.93 39,041 27,079 25,101 61,173 60,888 6,159 5,916

0.95 39,041 30,777 26,063 65,418 63,881 6,288 6,161

0.97 39,041 39,318 26,210 65,414 65,765 6,470 6,416

0.99 39,041 39,041 35,744 69,911 66,429 6,670 6,641

TABLE 9
Results of Gaussian Elimination with jN j ¼ 2555

Reliability

requirement

Numbers of replicas

FTSA(u) MaxRe RR QFEC QFEC+ QFSL QFSL+

0.91 5,110 3,126 2,702 2,624 2,613 3,330 3,185

0.93 5,110 3,295 2,735 2,731 2,716 3,475 3,340

0.95 5,110 3,532 3,054 2,911 2,882 3,700 3,566

0.97 5,110 3,966 3,411 3,208 3,190 3,987 3,873

0.99 5,110 4,777 4,225 3,861 3,852 4,430 4,362

Reliability

requirement

Execution cost (unit: $)

FTSA(u) MaxRe RR QFEC QFEC+ QFSL QFSL+

0.91 33,010 28,585 25,166 8,623 8,482 20,930 19,344

0.93 33,010 29,445 26,222 9,668 9,547 22,638 20,762

0.95 33,010 30,370 27,597 11,269 11,003 23,401 21,820

0.97 33,010 31,582 29,246 13,253 13,182 24,926 23,434

0.99 33,010 32,808 31,648 15,813 15,797 26,781 26,423

Reliability

requirement

Schedule lengths (unit: h)

FTSA(u) MaxRe RR QFEC QFEC+ QFSL QFSL+

0.91 26,477 21,976 18,610 12,798 12,769 9,833 9,657

0.93 26,477 23,327 19,751 12,832 12,823 9,936 9,852

0.95 26,477 24,230 20,956 12,741 12,870 10,504 10,282

0.97 26,477 25,188 23,062 13,098 13,147 10,834 10,737

0.99 26,477 26,313 25,184 13,687 13,622 11,311 11,210
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891 execution costs for Gaussian elimination using all the algo-
892 rithms remain approximately equal to those that use linear
893 algebra. The main difference is that Gaussian elimination
894 has longer schedule lengths than linear algebra. Linear alge-
895 bra has merely 67 percent of the schedule lengths of Gauss-
896 ian elimination. Another main difference is that QFEC+
897 rather than RR generates the minimum numbers of replicas
898 for Gaussian elimination.
899 Table 10 shows the results of the diamond graph with
900 r ¼ 51 and jNj ¼ 2;601 for varying reliability requirements.
901 The workflow illustrates a similar pattern as those Gaussian
902 elimination workflows for all the algorithms in the approxi-
903 mate equal scale. That is, QFEC+, QFEC+, and QFSL+ still
904 generate the minimum numbers of replicas, minimum exe-
905 cution costs, and shortest schedule length, respectively, for
906 the diamond graph.
907 By combining the results of Tables 8, 9, and 10, we find
908 that QFEC+ and QFSL+ can be used to minimize execution
909 cost and schedule length, respectively, for low-parallelism
910 workflows. Moreover, for the approximate equal scale and
911 reliability requirement, all the workflows obtain approxi-
912 mately equal numbers of replicas and execution costs.

913 6.3 High-Parallelism Workflows

914 Experiment 2. This experiment compares the total numbers
915 of replicas, execution costs, and schedule lengths of large-
916 scale high-parallelism workflows (including complete
917 binary tree and fast Fourier transform). RreqðGÞ is also
918 changed from 0.91 to 0.99 with 0.02 increments.

919 Table 11 shows the results of the complete binary tree
920 with r ¼ 11 and jNj ¼ 2;047 for varying reliability require-
921 ments. Compared with low-parallelism workflows in
922 Tables 8–10, RR and QFEC+ still generate the minimum
923 numbers of replicas and minimum execution costs, respec-
924 tively, for the complete binary tree workflow. Moreover, for

925the approximate equal scale and reliability requirement, the
926workflow also obtains the approximate equal numbers of
927replicas and execution costs to low-parallelism workflows.
928The results also show that QFSL+ generates shorter sched-
929ule lengths than QFSL for high-parallelism workflows.
930Table 12 shows the results of the fast Fourier transform
931with r ¼ 256 and jNj ¼ 2;559 workflow for varying reliabil-
932ity requirements. Similar to the results for the complete
933binary tree, QFEC+, QFEC+, and QFSL+ still generate the
934minimum numbers of replicas, minimum execution costs,
935and shortest schedule length, respectively, for fast Fourier

TABLE 10
Results of Diamond Graph with jN j ¼ 2;601

Reliability

requirement

Numbers of replicas

FTSA(u) MaxRe RR QFEC QFEC+ QFSL QFSL+

0.91 5,202 3,152 2,768 2,601 2,600 3,179 3,045

0.93 5,202 3,387 2,886 2,702 2,696 3,310 3,190

0.95 5,202 3,677 3,123 2,899 2,895 3,544 3,396

0.97 5,202 4,085 3,505 3,252 3,244 3,827 3,723

0.99 8,233 4,900 4,311 3,965 3,952 4,390 4,333

Reliability

requirement

Execution cost (unit: $)

FTSA(u) MaxRe RR QFEC QFEC+ QFSL QFSL+

0.91 33,370 38,799 33,053 11,222 11,220 19,747 17,738

0.93 33,370 40,687 34,792 12,496 12,442 19,939 18,386

0.95 33,370 42,318 37,214 14,626 14,542 20,732 19,222

0.97 33,370 43,886 40,029 17,350 17,319 21,780 20,791

0.99 33,370 45,434 43,733 20,537 20,439 22,955 22,823

Reliability

requirement

Schedule lengths (unit: h)

FTSA(u) MaxRe RR QFEC QFEC+ QFSL QFSL+

0.91 33,370 29,792 25,657 12,514 12,514 9,959 9,785

0.93 33,370 30,972 27,061 12,646 12,701 10,033 9,892

0.95 33,370 31,741 28,586 12,746 12,774 10,136 10,256

0.97 33,370 32,733 30,317 12,988 13,121 10,412 10,401

0.99 33,370 33,327 32,534 13,611 13,619 10,718 10,710

TABLE 11
Results of Complete Binary Trees with jN j ¼ 2;047

Reliability

requirement

Numbers of replicas

FTSA(u) MaxRe RR QFEC QFEC+ QFSL QFSL+

0.91 4,096 2,303 2,084 2,048 2,046 2,469 2,388

0.93 4,096 2,443 2,178 2,094 2,089 2,632 2,524

0.95 4,096 2,594 2,332 2,188 2,182 2,778 2,643

0.97 4,096 2,921 2,576 2,387 2,371 2,975 2,867

0.99 4,096 3,678 3,177 2,948 2,927 3,412 3,309

Reliability

requirement

Execution cost (unit: $)

FTSA(u) MaxRe RR QFEC QFEC+ QFSL QFSL+

0.91 32270 24,411 20,507 9,301 9,241 15,606 14,652

0.93 32270 26,326 22,293 10,841 10,763 16,331 15,572

0.95 32270 27,860 24,604 13,329 13,311 17,466 17,183

0.97 32270 29,789 27,088 10,841 10,763 16,331 15,572

0.99 32270 31,893 30,249 13,329 13,311 17,466 17,183

Reliability

requirement

Schedule lengths (unit: h)

FTSA(u) MaxRe RR QFEC QFEC+ QFSL QFSL+

0.91 16,917 11,844 9,363 4,598 4,598 1,249 1,201

0.93 16,917 13,793 10,148 4,598 4,598 1,363 1,338

0.95 16,917 14,698 12,199 4,674 4,674 1,423 1,386

0.97 16,917 15,915 13,905 4,743 4,743 1,482 1,461

0.99 16,917 16,824 15,891 4,778 4,778 1,593 1,574

TABLE 12
Results of Fast Fourier Transform with jN j ¼ 2;559

Reliability

requirement

Numbers of replicas

FTSA(u) MaxRe RR QFEC QFEC+ QFSL QFSL+

0.91 5,118 2,660 2,660 2,559 2,557 3,127 2,993

0.93 5,118 3,157 2,757 2,578 2,572 3,268 3,107

0.95 5,118 3,365 2,956 2,748 2,734 3,439 3,321

0.97 5,118 3,799 3,296 3,044 3,024 3,750 3,602

0.99 5,118 4,709 4,124 3,762 3,746 4,287 4,132

Reliability

requirement

Execution cost (unit: $)

FTSA(u) MaxRe RR QFEC QFEC+ QFSL QFSL+

0.91 36,382 29,745 24,975 8,931 8,921 18,176 16,510

0.93 36,382 30,994 26,286 98,512 96,425 129,982 127,260

0.95 36,382 32,334 28,568 131,071 128,487 174,325 170,651

0.97 36,382 34,157 31,175 139,022 136,357 185,401 181,020

0.99 36,382 36,110 34,488 155,967 153,182 208,519 203,237

Reliability

requirement

Schedule lengths (unit: h)

FTSA(u) MaxRe RR QFEC QFEC+ QFSL QFSL+

0.91 13,898 10,782 9,413 6,419 6,419 1,621 1,530

0.93 13,898 11,443 9,649 6,442 6,442 1,595 1,567

0.95 13,898 12,034 10,388 6,619 6,509 1,663 1,639

0.97 13,898 12,983 11,471 6,752 6,744 1,757 1,742

0.99 13,898 13,756 13,064 7,138 7,183 1,865 1,857
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936 transform. The results further indicate that QFSL+ is better
937 than QFSL in reducing the schedule lengths for high-paral-
938 lelism workflows.

939 6.4 Workflows Statistics

940 Experiment 3. This experiment shows the percentages
941 using different algorithms that have minimum numbers
942 of replicas, minimum execution costs, and shortest sched-
943 ule lengths of workflows. RreqðGÞ is generated randomly
944 and belongs to the scope of 0.91 and 0.99.

945 Table 13 shows that QFEC+ and QFSL+ generate mini-
946 mum execution costs and schedule lengths, respectively, for
947 all high-parallelism and low-parallelism workflows in most
948 cases. Such results further indicate that QFEC+ is better
949 than QFEC in reducing execution cost regardless of the par-
950 allelism of workflows. In other words, we can determine
951 that QFEC+ can generate minimum execution cost among
952 the seven algorithms. For the percentages of shortest sched-
953 ule lengths, we observed that QFSL+ can generate the short-
954 est schedule lengths in most cases. That is, we can
955 determine that QFSL+ can generate minimum schedule
956 lengths among the seven algorithms.

957 6.5 Summary of Experiments

958 The following summarizations are made based on the afore-
959 mentioned experimental results:

960 (1) Compared with the state-of-the-art algorithms, all
961 the proposed algorithms achieve less execution costs
962 and shorter schedule lengths, although the numbers
963 of the replicas are not necessarily the smallest.
964 (2) QFEC and QFEC+ are designed to reduce execution
965 cost, whereas QFSL and QFSL+ are designed to
966 decrease schedule length.
967 (3) Whatever the workflow is high-parallelism or low-
968 parallelism, QFEC+ is consistently better than QFEC

969in minimizing execution cost. Therefore, QFEC+ can
970be used for cloud services systems where economic
971cost is the main concern.
972(4) Whatever the workflow is high-parallelism or low-
973parallelism, QFSL+ is consistently better than QFSL
974in minimizing schedule length. Therefore, QFSL+
975can be used for high-performance cloud computing
976systems where execution time is the main concern.

9777 CONCLUSION

978We developed quantitative fault-tolerant scheduling algo-
979rithms QFEC and QFEC+ with minimum execution costs
980and QFSL and QFSL+ with shortest schedule lengths for a
981workflow in heterogeneous IaaS clouds. QFEC and QFSL
982iteratively select available replicas and VMs with the mini-
983mum execution times and minimum EFTs, respectively,
984for each task until its sub-reliability requirement is satis-
985fied. QFEC+ and QFSL+ filter out partial QFEC-selected
986and QFSL-selected replicas and VMs for each task, respec-
987tively, by selecting available replicas and processors with
988the maximum reliability value until the sub-reliability
989requirement of the task is satisfied. Extensive experimental
990results show that QFEC+ is the best algorithm in reducing
991execution cost for both high-parallelism and low-parallel-
992ism workflows, whereas QFSL+ is the best algorithm in
993decreasing schedule length for both high-parallelism and
994low-parallelism workflows.

995ACKNOWLEDGMENTS

996The authors would like to express their gratitude to the
997associate editor and three anonymous reviewers whose con-
998structive comments have helped to improve the manuscript.
999This work was partially supported by the National Key
1000Research and Development Plan of China under Grant No.
10012016YFB0200405, the National Natural Science Foundation
1002of China with Grant Nos. 61702172, 61672217, 61432005,
100361379115, and 61502405, the CCF-Venustech Open Research
1004Fund under Grant No. CCF-VenustechRP2017012, the
1005China Postdoctoral Science Foundation under Grant No.
10062016M592422, the Fundamental Research Funds for the
1007Central Universities, the Natural Science Foundation of
1008Fujian Province under Grant No. 2018J01571, the CERNET
1009Innovation Project under Grant No. NGII20161003, and the
1010Fujian Educational Bureau under Grant No. JA15368.

1011REFERENCES

1012[1] R. Ranjan, L. Wang, A. Y. Zomaya, D. Georgakopoulos, X.-H. Sun,
1013and G. Wang, “Recent advances in autonomic provisioning of big
1014data applications on clouds,” IEEE Trans. Cloud Comput., vol. 3,
1015no. 2, pp. 101–104, Apr. 2015.
1016[2] Y. Kong, M. Zhang, and D. Ye, “A belief propagation-based
1017method for task allocation in open and dynamic cloud environ-
1018ments,” Knowl.-Based Syst., vol. 115, pp. 123–132, Jan. 2017.
1019[3] M. A. Rodriguez and R. Buyya, “Deadline based resource provision-
1020ing and scheduling algorithm for scientific workflows on clouds,”
1021IEEE Trans. Cloud Comput., vol. 2, no. 2, pp. 222–235, Apr. 2014.
1022[4] K. Keahey, I. Raicu, K. Chard, and B. Nicolae, “Guest editors
1023introduction: Special issue on scientific cloud computing,” IEEE
1024Trans. Cloud Comput., vol. 4, no. 1, pp. 4–5, Jan. 2016.
1025[5] G. Xie, G. Zeng, Y. Chen, Y. Bai, Z. Zhou, R. Li, and K. Li,
1026“Minimizing redundancy to satisfy reliability requirement for a
1027parallel application on heterogeneous service-oriented systems,”
1028IEEE Trans. Serv. Comput., vol. PP, no. 99, p. 1, Feb. 2016,
1029doi: 10.1109/TSC.2017.2665552.

TABLE 13
Percentages Using Different Algorithms

Workflow Percentages of obtaining minimum numbers of replicas

FTSA(u) MaxRe RR QFEC QFEC+ QFSL QFSL+

Linear Algebra 0% 0% 100% 0% 0% 0% 0%

Gaussian elimination 0% 0% 0% 100% 0% 0% 0%

Diamond graph 0% 0% 0% 100% 0% 0% 0%

Complete binary tree 0% 0% 0% 100% 0% 0% 0%

Fast Fourier transform 0% 0% 0% 100% 0% 0% 0%

Workflow Percentages of obtaining minimum execution costs

FTSA(u) MaxRe RR QFEC QFEC+ QFSL QFSL+

Linear Algebra 0% 0% 0% 0% 100% 0% 0%

Gaussian elimination 0% 0% 0% 13% 87% 0% 0%

Diamond graph 0% 0% 0% 9% 91% 0% 0%

Complete binary tree 0% 0% 0% 11% 89% 0% 0%

Fast Fourier transform 0% 0% 0% 1% 99% 0% 0%

Workflow Percentages of obtaining shortest schedule lengths

FTSA(u) MaxRe RR QFEC QFEC+ QFSL QFSL+

Linear Algebra 0% 0% 0% 0% 0% 2% 99%

Gaussian elimination 0% 0% 0% 0% 0% 4% 96%

Diamond graph 0% 0% 0% 0% 0% 2% 98%

Complete binary tree 0% 0% 0% 0% 8% 1% 99%

Fast Fourier transform 0% 0% 0% 0% 0% 1% 99%

12 IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. 5, NO. X, XXXXX 2017



IEE
E P

ro
of

1030 [6] Q. Liu, W. Cai, J. Shen, Z. Fu, X. Liu, and N. Linge, “A speculative
1031 approach to spatial-temporal efficiency with multi-objective opti-
1032 mization in a heterogeneous cloud environment,” Security Com-
1033 mun. Netw., vol. 9, no. 17, pp. 4002–4012, Nov. 2016.
1034 [7] C. Q. Wu, X. Lin, D. Yu, W. Xu, and L. Li, “End-to-end delay mini-
1035 mization for scientific workflows in clouds under budget con-
1036 straint,” IEEE Trans. Cloud Comput., vol. 3, no. 2, pp. 169–181,
1037 Apr. 2015.
1038 [8] J. Li, M. Qiu, Z. Ming, G. Quan, X. Qin, and Z. Gu, “Online optimi-
1039 zation for scheduling preemptable tasks on IaaS cloud systems,”
1040 J. Parallel Distrib. Comput., vol. 72, no. 5, pp. 666–77, May 2012.
1041 [9] W. Chen, R. F. da Silva, E. Deelman, and T. Fahringer, “Dynamic
1042 and fault-tolerant clustering for scientific workflows,” IEEE Trans.
1043 Cloud Comput., vol. 4, no. 1, pp. 49–62, Jan. 2016.
1044 [10] A. Zhou, S Wang, B Cheng, Z Zheng, F. Yang, R. Chang, M. Lyu,
1045 and R. Buyya, “Cloud service reliability enhancement via virtual
1046 machine placement optimization,” IEEE Trans. Serv. Comput.,
1047 vol. 10, no. 6, pp. 902–913, Dec. 2017.
1048 [11] J. Mei, K. Li, X. Zhou, and K. Li, “Fault-tolerant dynamic resched-
1049 uling for heterogeneous computing systems,” J. Grid Comp.,
1050 vol. 13, no. 4, pp. 507–525, Dec. 2015.
1051 [12] C.-Y. Chen, “Task scheduling for maximizing performance and
1052 reliability considering fault recovery in heterogeneous distributed
1053 systems,” IEEE Trans. Parallel Distrib. Syst., vol. 27, no. 2, pp. 521–
1054 532, Feb. 2016.
1055 [13] G. Xie, Y. Chen, Y. Liu, Y. Wei, R. Li, and K. Li, “Resource con-
1056 sumption cost minimization of reliable parallel applications on
1057 heterogeneous embedded systems,” IEEE Trans. Ind. Informat.,
1058 vol. 13, no. 4, pp. 1629–1640, Aug. 2017.
1059 [14] X. Tang, K. Li, and G. Liao, “An effective reliability-driven tech-
1060 nique of allocating tasks on heterogeneous cluster systems,” Clus-
1061 ter Comput., vol. 17, no. 4, pp. 1413–1425, Dec. 2014.
1062 [15] W. Chen, G. Xie, R. Li, Y. Bai, C. Fan, and K. Li, “Efficient task
1063 scheduling for budget constrained parallel applications on hetero-
1064 geneous cloud computing systems,” Future Generation Comput.
1065 Syst., vol. 74, pp. 1–11, Sep. 2017.
1066 [16] F. Zhang, J. Cao, K. Hwang, K. Li, and S. U. Khan, “Adaptive
1067 workflow scheduling on cloud computing platforms with iterati-
1068 veordinal optimization,” IEEE Trans. Cloud Comput., vol. 3, no. 2,
1069 pp. 156–168, Apr. 2015.
1070 [17] J. D. Ullman, “Np-complete scheduling problems,” J. Comput.
1071 Syst. Sci., vol. 10, no. 3, pp. 384–393, Jun. 1975.
1072 [18] X. Qin, H. Jiang, and D. R. Swanson, “An efficient fault-tolerant
1073 scheduling algorithm for real-time tasks with precedence con-
1074 straints in heterogeneous systems,” in Proc. Int. Conf. Parallel Pro-
1075 cess., 2002, pp. 360–368.
1076 [19] X. Qin and H. Jiang, “A novel fault-tolerant scheduling algorithm
1077 for precedence constrained tasks in real-time heterogeneous sys-
1078 tems,” Parallel Comput., vol. 32, no. 5, pp. 331–356, Jan. 2006.
1079 [20] Q. Zheng, B. Veeravalli, and C.-K. Tham, “On the design of fault-
1080 tolerant scheduling strategies using primary-backup approach for
1081 computational grids with low replication costs,” IEEE Trans. Com-
1082 put., vol. 58, no. 3, pp. 380–393, Mar. 2009.
1083 [21] A. Benoit, M. Hakem, and Y. Robert, “Fault tolerant scheduling of
1084 precedence task graphs on heterogeneous platforms,” in Proc.
1085 IEEE Int. Symp. Parallel Distrib. Process., 2008, pp. 1–8.
1086 [22] S. Gopalakrishnan andM. Caccamo, “Task partitioning with repli-
1087 cation upon heterogeneous multiprocessor systems,” in Proc. 12th
1088 IEEE Real-Time Embedded Technol. Appl. Symp., Apr. 2006, pp. 199–
1089 207.
1090 [23] A. Benoit and M. Hakem, “Optimizing the latency of streaming
1091 applications under throughput and reliability constraints,” in
1092 Proc. Int. Conf. Parallel Process., 2009, pp. 325–332.
1093 [24] N. Tabbaa, R. Entezari-Maleki, and A. Movaghar, “A fault tolerant
1094 scheduling algorithm for DAG applications in cluster environ-
1095 ments,” in Digital Information Processing and Communications. Bre-
1096 lin, Germany: Springer, 2011, pp. 189–199.
1097 [25] L. Zhao, Y. Ren, Y. Xiang, and K. Sakurai, “Fault-tolerant schedul-
1098 ing with dynamic number of replicas in heterogeneous systems,”
1099 in Proc. 12th IEEE Int. Conf. High Perform. Comput. Commun., 2010,
1100 pp. 434–441.
1101 [26] L. Zhao, Y. Ren, and K. Sakurai, “Reliable workflow scheduling
1102 with less resource redundancy,” Parallel Comput., vol. 39, no. 10,
1103 pp. 567–585, Oct. 2013.
1104 [27] S. M. Shatz and J.-P. Wang, “Models and algorithms for reliability-
1105 oriented task-allocation in redundant distributed-computer sys-
1106 tems,” IEEE Trans. Rel., vol. 38, no. 1, pp. 16–27, Apr. 1989.

1107[28] A. Benoit, L.-C. Canon, E. Jeannot, and Y. Robert, “Reliability
1108of task graph schedules with transient and fail-stop failures:
1109Complexity and algorithms,” J. Scheduling, vol. 15, pp. 1–13,
1110Oct. 2012.
1111[29] A. Benoit, F. Dufoss�e, A. Girault, and Y. Robert, “Reliability
1112and performance optimization of pipelined real-time systems,”
1113J. Parallel Distrib. Comput., vol. 73, no. 6, pp. 851–865, Jun.
11142013.
1115[30] A. Dogan and F. Ozguner, “Matching and scheduling algorithms
1116for minimizing execution time and failure probability of applica-
1117tions in heterogeneous computing,” IEEE Trans. Parallel Distrib.
1118Syst., vol. 13, no. 3, pp. 308–323, Mar. 2002.
1119[31] A. Do�gan and F. €Ozg€uner, “Biobjective scheduling algorithms for
1120execution time–reliability trade-off in heterogeneous computing
1121systems,” Comput. J., vol. 48, no. 3, pp. 300–314, Jan. 2005.
1122[32] A. Girault and H. Kalla, “A novel bicriteria scheduling heuris-
1123tics providing a guaranteed global system failure rate,” IEEE
1124Trans. Dependable Secure Comput., vol. 6, no. 4, pp. 241–254,
1125Oct. 2009.
1126[33] J. J. Dongarra, E. Jeannot, E. Saule, and Z. Shi, “Bi-objective sched-
1127uling algorithms for optimizing makespan and reliability on het-
1128erogeneous systems,” in Proc. 19th Annu. ACM Symp. Parallel
1129Algorithms Archit., 2007, pp. 280–288.
1130[34] A. Benoit, M. Hakem, and Y. Robert, “Contention awareness and
1131fault-tolerant scheduling for precedence constrained tasks in het-
1132erogeneous systems,” Parallel Comput., vol. 35, no. 2, pp. 83–108,
1133Feb. 2009.
1134[35] H. Topcuoglu, S. Hariri, and M.-Y. Wu, “Performance-effective
1135and low-complexity task scheduling for heterogeneous
1136computing,” IEEE Trans. Parallel Distrib. Syst., vol. 13, no. 3,
1137pp. 260–274, Mar. 2002.
1138[36] M. A. Khan, “Scheduling for heterogeneous systems using con-
1139strained critical paths,” Parallel Comput., vol. 38, no. 4, pp. 175–
1140193, May 2012.
1141[37] G. Xie, R. Li, and K. Li, “Heterogeneity-driven end-to-end syn-
1142chronized scheduling for precedence constrained tasks and mes-
1143sages on networked embedded systems,” J. Parallel Distrib.
1144Comput., vol. 83, pp. 1–12, Sep. 2015.
1145[38] A. Verma and N. Bhardwaj, “A review on routing information
1146protocol (RIP) and open shortest path first (OSPF) routing proto-
1147col,” Int. J. Future Generation Commun. Netw., vol. 9, no. 4, pp. 161–
1148170, Apr. 2016.
1149[39] Q. Zheng and B. Veeravalli, “On the design of communication-
1150aware fault-tolerant scheduling algorithms for precedence con-
1151strained tasks in grid computing systems with dedicated commu-
1152nication devices,” J. Parallel Distrib. Comput., vol. 69, no. 3,
1153pp. 282–294, Mar. 2009.
1154[40] S. Abrishami, M. Naghibzadeh, and D. H. Epema, “Deadline-
1155constrained workflow scheduling algorithms for infrastructure as
1156a service clouds,” Future Generation Compt. Syst., vol. 29, no. 1,
1157pp. 158–169, Jan. 2013.
1158[41] H. Arabnejad and J. G. Barbosa, “A budget constrained schedul-
1159ing algorithm for workflow applications,” J. Grid Comput., vol. 12,
1160no. 4, pp. 665–679, Dec. 2014.
1161[42] H. Arabnejad, J. G. Barbosa, and R. Prodan, “Low-time complex-
1162ity budget–deadline constrained workflow scheduling on hetero-
1163geneous resources,” Future Generation Comp. Syst., vol. 55, pp. 29–
116440, Feb. 2016.
1165[43] A. Girault, E. Saule, and D. Trystram, “Reliability versus perfor-
1166mance for critical applications,” J. Parallel Distrib. Comput., vol. 69,
1167no. 3, pp. 326–336, Mar. 2009.
1168[44] G. Koslovski, W.-L. Yeow, C. Westphal, T. T. Huu, J. Montagnat,
1169and P. Vicat-Blanc, “Reliability support in virtual infrastructures,”
1170in Proc. IEEE 2nd Int. Conf. Cloud Comput. Technol. Sci., 2010,
1171pp. 49–58.
1172[45] A. C. Zhou, B. He, and C. Liu, “Monetary cost optimizations for
1173hosting workflow-as-a-service in IaaS clouds,” IEEE Trans. Cloud
1174Comput., vol. 4, no. 1, pp. 34–48, Jan. 2016.
1175[46] K. Li, “Scheduling precedence constrained tasks with reduced
1176processor energy on multiprocessor computers,” IEEE Trans. Com-
1177put., vol. 61, no. 12, pp. 1668–1681, Dec. 2012.
1178[47] S. Bansal, P. Kumar, and K. Singh, “An improved duplication
1179strategy for scheduling precedence constrained graphs in multi-
1180processor systems,” IEEE Trans. Parallel Distrib. Syst., vol. 14,
1181no. 6, pp. 533–544, Jun. 2003.

XIE ET AL.: QUANTITATIVE FAULT-TOLERANCE FOR RELIABLE WORKFLOWS ON HETEROGENEOUS IAAS CLOUDS 13



IEE
E P

ro
of

1182 Guoqi Xie received the PhD degree in computer
1183 science and engineering from Hunan University,
1184 China, in 2014. He is an associate professor of
1185 computer science and engineering with Hunan
1186 University. He was a postdoctoral researcher
1187 with the Nagoya University, Japan, from 2014 to
1188 2015, and with the Hunan University, from 2015
1189 to 2017. He has received the best paper award
1190 from ISPA 2016. His major interests include
1191 embedded and cyber-physical systems, parallel
1192 and distributed systems, software engineering
1193 and methodology. He is a member of the IEEE,
1194 ACM, and CCF.

1195 Gang Zeng received the PhD degree in informa-
1196 tion science from the Chiba University, in 2006. He
1197 is an associate professor in the Graduate School of
1198 Engineering, Nagoya University. From 2006 to
1199 2010, he was a researcher, and then assistant pro-
1200 fessor in the Center for EmbeddedComputing Sys-
1201 tems (NCES), the Graduate School of Information
1202 Science, Nagoya University. His research interests
1203 mainly include power-aware computing and real-
1204 time embedded system design. He is a member of
1205 the IEEEand IPSJ.

1206Renfa Li is a professor of computer science and
1207electronic engineering, with the Hunan University,
1208China. He is the director of the Key Laboratory for
1209Embedded and Network Computing of Hunan
1210Province, China. He is also an expert committee
1211member of National Supercomputing Center in
1212Changsha, China. His major interests include
1213computer architectures, embedded computing
1214systems, cyber-physical systems, and Internet of
1215things. He is a member of the council of CCF, a
1216senior member of the IEEE, and ACM.

1217Keqin Li is a SUNY Distinguished Professor of
1218computer science in the State University of New
1219York. He is also a Distinguished Professor of Chi-
1220nese National Recruitment Program of Global
1221Experts (1000 Plan) at Hunan University, China.
1222He was an Intellectual Ventures endowed visiting
1223chair professor at the National Laboratory for
1224Information Science and Technology, Tsinghua
1225University, Beijing, China, during 2011-2014. His
1226current research interests include parallel com-
1227puting and high-performance computing, distrib-
1228uted computing, energy-efficient computing and communication,
1229heterogeneous computing systems, cloud computing, big data comput-
1230ing, CPU-GPU hybrid and cooperative computing, multicore computing,
1231storage and file systems, wireless communication networks, sensor net-
1232works, peer-to-peer file sharing systems, mobile computing, service com-
1233puting, Internet of things and cyber-physical systems. He has published
1234over 530 journal articles, book chapters, and refereed conference papers,
1235and has received several best paper awards. He is currently or has served
1236on the editorial boards of IEEE Transactions on Parallel and Distributed
1237Systems, IEEE Transactions on Computers, IEEE Transactions on Cloud
1238Computing, IEEE Transactions on Services Computing, and IEEE
1239Transactions on Sustainable Computing. He is a Fellow of IEEE.

1240" For more information on this or any other computing topic,
1241please visit our Digital Library at www.computer.org/publications/dlib.

14 IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. 5, NO. X, XXXXX 2017


