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Abstract—We study the worst case response time (WCRT)
analysis and evaluation for sporadic message-processing tasks in a
multicore automotive gateway of a controller area network (CAN)
cluster. We first build a multicore automotive gateway on CAN
clusters. Two WCRT analysis methods for message-processing
tasks in the multicore gateway are subsequently presented based
on global and partitioned scheduling paradigms. We evaluate the
WCRT results of two analysis methods with real message sets
provided by the automaker, and present the design optimization
guide.

Index Terms—Automotive gateway, global scheduling,
multicore, partitioned scheduling, worse case response
time (WCRT).

I. INTRODUCTION

A. Background

TODAY’s automotive electrical and electronic architecture
has evolved into integrated architecture [1], [2], in

which automotive systems are distributed over a multitude of
subsystems (e.g., body subsystems, powertrain systems, and
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entertainment subsystems) because of the required constraints
on size, weight, and power consumption for cost and
performance benefit. A typical integrated system is a controller
area networks (CANs) cluster where more than four or five
CAN buses are integrated by a central gateway [3]–[5]. Large-
scale CAN clusters are desirable to satisfy the increased
bandwidth requirements of in-vehicle networks. CAN is a
half duplex, static priority, and nonpreemptive scheduling
communication protocol and is currently the most used in
vehicles [6]–[8], and the gateway is an important node that
connects and allows CAN clusters to pass messages from one
bus to another [9], as it needs to copy thousands of CAN
messages from one bus to the other bus(es) to complete many
distributed cross-bus functionalities. For example, the engine
controller of the powertrain subsystem should take input sig-
nals from the body subsystem through the gateway, and the
dashboard of the body subsystem displays information from
other subsystems [10]. However, the gateway becomes a bot-
tleneck in message transmission because it introduces a large
body of message-processing delay. Furthermore, most cur-
rent commercial gateway products are only configured with a
single-core CPU, and most studies also investigated message-
processing delay based on a single-core gateway [11]–[13]. To
eliminate or reduce the bottleneck in message transmission, the
dual-core automotive gateway (e.g., MPC5668G is a dual-core
system-on-chip 32-bit microcontroller [14]) has emerged with
the development of advanced communication and processor
technologies. With the increased distributed cross-bus func-
tionalities causing message transmission delay in automobiles,
using more CPU cores in the gateway is a solution to elimi-
nate or reduce the bottleneck. However, adding more cores is
not always feasible because the automotive industry is a highly
cost-sensitive industry for the mass market. Therefore, we need
to know the actual possible message transmission delay in
a given multicore gateway in advance before designing the
gateway.

Message transmission delay can be obtained by using worst
case response time (WCRT). The WCRT of a message-
processing task in the gateway is the maximum response
time among all possible real response time values when the
message-processing task is executed. The response time of the
message represents the sum of its delay and executione time
WCRT analysis is a typical method to find out the exact WCRT
or derive a WCRT upper bound from all possible real response
time values. Considering that automotive systems are highly
safety-critical systems, the estimation of WCRT is necessary.
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B. Motivation

Experimental measurements are the approaches primarily
used to analyze the message-processing delay in the gateway
in recent years [11], [13]. The transmission time of one
packet for a CAN bus with a speed of 500 Kb/s is approxi-
mately 250 μs [10], [11], and the execution time for each
message-processing task in the gateway with a Freescale
MPC555 microcontroller with two independent CAN 2.0 A/B
communication controllers is approximately 40 μs when two
buses are connected by a gateway [12]. The gateway task is
interfered by at most one high-priority message-processing task
because the speed of the gateway processing is faster than that of
the message transmission process. As a result, the message can
go through the gateway immediately with a negligible process-
ing time. However, for a gateway with large-scale CAN clusters,
the message-processing delays obtained by experimental mea-
surements are unsafe, because the message-processing task can
be interfered by other high-priority message-processing tasks
from multiple buses. In this situation, the interfering delay
would exceed the message-processing time.

The priority level-i busy period was used to calculate the
WCRTs of static priority tasks. The busy period was also
applied to the WCRT analysis of the CAN messages in the
in-vehicle network [5], [6] and general tasks with multiple
execution units in the multicore processor [15]–[18]. However,
if the level-i busy period is applied to event-triggered sporadic
tasks, the obtained WCRT could be very pessimistic because it
treats the minimum interarrival time as the period to involve
WCRT calculation. In fact, message-processing tasks in the
gateway are event-triggered sporadic tasks because they are
triggered by the messages from CAN buses.

C. Our Contributions

The main contributions are as follows.
1) We build a multicore automotive gateway model on

CAN clusters based on the discrete channel gateway
module, store-modify-forward switching, strict priority
routing, and nonpreemptive scheduling.

2) We present the WCRT analysis methods of message-
processing tasks based on partitioned and global
scheduling paradigms, respectively.

3) We evaluate the WCRT results of the two analysis meth-
ods with experiments. We explain that which scheduling
paradigm is remarkably suitable for the multicore auto-
motive gateway and summarize the multicore gateway
design guide based on experiment results.

II. RELATED WORK

The related works are organized as the following: 1) gate-
way processing delay analysis using experimental measure-
ments; 2) WCRT analysis for CAN messages with gateway
in the in-vehicle network; and 3) WCRT analysis for general
tasks in the multicore processor.

Several studies have investigated the gateway processing
of automotive systems. Sommer and Blind [11] proposed
a CAN/CAN gateway embedded system that investigated
the processing delay measurement and buffer capacity.
Schmidt et al. [19] studied the gateway processing delay
and its performance evaluation in the CAN/FlexRay gate-
way. In [13], the authors measured the gateway processing

delay in a Linux-based CAN/CAN gateway. Other related
works also investigated the automotive gateways, such as
the FlexRay/CAN gateway [20], the Ethernet/CAN gate-
way [21], [22], and the central gateway connecting more than
two subsystems [23], [24]. The main limitation of the afore-
mentioned studies is that the measured experimental results
may dynamically change with time and environment.

WCRT analysis for CAN messages with a gateway, and
end-to-end WCRT analysis for CAN messages with a gateway
have been researched. The classical WCRT analysis proposed
in [6] for a single CAN bus can be applied to gateway-
integrated networks, but it can only obtain quite pessimistic
results as it overlooks the influence of the gateway. Optimized
WCRT is obtained by using the multiple first input first output
queues in the gateway with experiments [25]. Azketa et al. [10]
presented an optimized WCRT analysis method for CAN
messages that considers the pipelining of the packets in the
gateway. In [5], we examined in detail the various actual arriv-
ing orders of gateway messages and proposed an explorative
WCRT computation method. Different from [5], this paper
aims to analyze the WCRT of message-processing tasks in
the gateway rather than the messages in CAN buses.

WCRT analysis for static priority tasks in the multicore
processor based on global scheduling has been studied
in [15]–[18], where WCRT upper bound is derived consider-
ing the carried-in and carried-out jobs with multiple execution
units. However, the aforementioned works calculate the WCRT
by treating the minimum interarrival time as the period. For
event-triggered sporadic tasks, such treatment is very pes-
simistic. Partitioned scheduling is analogous to the bin packing
problem and is known as NP-Hard; several heuristic algo-
rithms, such as the next fit, first fit (FF), FF decreasing (FFD),
best fit, and best FF [26].

In summary, existing studies either obtain the message-
processing time in the gateway by the experimental mea-
surements, or analyze the WCRTs of CAN messages in the
in-vehicle network, or analyze the WCRTs of periodic general
tasks in the multicore processor, but do not specifically ana-
lyze the WCRTs for the sporadic message-processing tasks in
the multicore gateway, which will be systematically studied in
the following.

III. GATEWAY MODELS

A. CAN Cluster Architecture

The CAN gateway architectures for automotive applica-
tions can be classified into three types, namely, the discrete
channel gateway, the complex channel gateway, and the mod-
ular gateway [27]. Considering that the architecture is a CAN
cluster, the discrete channel gateway is used in the present
study because of its flexibility with regard to the number
of CAN channels. The left side of Fig. 1 illustrates the
architecture of the discrete channel gateway, which com-
prises three components (i.e., the CPU, the CPU peripheral
bus, and several single-channel CAN modules). Message-
processing is described as follows: the CPU must read all
necessary control information and receive messages over
the peripheral bus from one CAN module and subsequently
writes the same data over the peripheral bus to some other
CAN module(s).
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Fig. 1. CAN cluster architecture with discrete channel CAN gateway and
subsystems.

We consider that the gateway-integrated CAN cluster com-
prises multiple CAN subsystems with the same or different
bandwidths and that each subsystem contains several elec-
tronic control units (ECUs), as shown in the right side of
Fig. 1. Note that two CAN buses (each bus is a two-wire
twisted pair) exist in each subsystem in our CAN cluster archi-
tecture: One bus is in charge of receiving messages from the
gateway (denoted with g2s), and another bus is responsible for
sending messages to the gateway and communicating between
ECUs in the same subsystem (denoted with s2g&s2s). This
architecture can be supported by several dual high-speed CAN
transceivers (e.g., TJA1048, NCV7441, and AMIS-42700). We
utilize this architecture because the messages sent from the
gateway do not interfere with the messages released in the sub-
system. Thus, each originally designed subsystem is still valid,
and such architecture can simplify the WCRT analysis and
then to guarantee real-time properties of message-processing
tasks. Each CAN channel in the gateway is configured with
two priority queues: one is an input queue (Rx-buffer) and
the other is an output queue (Tx-buffer). Each ECU contains
a message set that should be released and is also configured
with two priority queues (i.e., Rx-buffer and Tx-buffer). Our
objective is to obtain a possible maximum response time; thus,
we assume that all the buffer sizes of queues are unlimited.

B. Gateway Architecture

Fig. 2 shows the gateway architecture of this paper, which
contains eight main components.

1) Filters: The filters determine whether the incoming mes-
sages from the source subsystem should be forwarded to
the destination subsystems with the help of the look-up
table.

2) Receiving Queue (Rx-Buffer): Each CAN controller con-
tains one such priority queue. It receives the incoming
messages from source subsystems.

3) Receiver: The receiver is in charge of receiving the
highest priority messages from each receiving queue.

4) Router: Two basic switching policies exist in the
gateway, namely, cut-through switching and store-and-
forward switching [11]. We use the same policy as
in [11], which employs the store-modify-forward switch-
ing policy for automotive gateways. This policy works
as follows: when the receiver receives a message from
a source subsystem, the router modifies it and transmits
it to the destination subsystem(s) with the help of the
scheduler. Moreover, two routing policies exist in the

gateway, namely, the strict priority and the cyclic polling
routing policies (also known as round-Robin routing pol-
icy [28]). We use the strict priority policy, which means
that the message-processing tasks inherit the priori-
ties of corresponding incoming messages. Consequently,
the timing constraints of high-priority messages are
still valid in the gateway. The work in [11] uses the
round-Robin policy, but it destroys the importance of
high-priority messages.

5) Scheduler: The scheduler routes messages from receiv-
ing queues to the gateway for processing. Scheduling
policies can be either preemptive (e.g., OSEKTime) or
nonpreemptive (e.g., eCos) [4], and both of them can
be supported by AUTOSAR [29]. This paper uses the
nonpreemptive scheduling to keep consistent with the
message scheduling of the CAN buses.

6) Message-Processing Tasks: The message-processing
task is executed to copy the message from the sched-
uler to the dispatcher. All message-processing tasks have
equal execution time from execution to termination, as
shown in [24], because the execution is a message copy
process. Notably, other nonmessage-processing tasks
(e.g., I/O and redundancy checks) may run on the gate-
way [27]. In this paper, these tasks take lower priorities
than any message-processing task such that only block-
ing is their effect on message-processing tasks and
they show no interference on the static priority non-
preemptive scheduling. We assume that a homogeneous
multicore CPU is utilized in the gateway to achieve high
performance. Consequently, concurrent message transfer
requests from different CAN channels can be processed
simultaneously by multiple cores.

7) Dispatcher: The dispatcher routes the copied messages
to corresponding transmission queues.

8) Transmission Queue (Tx-Buffer): Each CAN controller
contains one such priority queue. It sends the messages
to the destination subsystems.

In summary, we have specified the message-processing
policy of the gateway as store-modify-forward switching,
strict priority routing, nonpreemptive scheduling, and priority
queues.

C. CAN Message Model

Given that a message-processing task is triggered by a
corresponding incoming message, the CAN message model
should be defined before determining the message-processing
task model. Let U = {u1, u2, . . . , u|U|} represent a multicore
gateway CPU with |U| cores. Remarkably, for any set
X, this paper uses |X| to denote its size. Let S =
{s1, s2, . . . , s|S|} represent a CAN cluster with |S| subsystems.
Let M = {m1, m2, . . . , m|M|} represent a message set. Let
mi=(Pmi , Tmi , Cmi , Dmi , ssrc,i, sdest,i) represent the ith message
of the M, i is the distinct identifier of a message, and Pmi

represents the priority of mi. When two messages mi and mj
satisfy i < j, then mi has a higher priority than mj. Tmi is con-
sidered as the period or minimum interarrival time of mi, and
Cmi and Dmi are the maximum transmission time and dead-
line, respectively, of mi. Finally, ssrc,i and sdest,i represent the
source- and destination-end subsystems, respectively, of mi.
No queuing jitter and offset exist for each message, which
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Fig. 2. Multicore automotive gateway architecture.

Fig. 3. Example of the CAN cluster with eight subsystems.

TABLE I
MOTIVATING EXAMPLE OF MESSAGE SET IN FIG. 3

means that all messages in the same ECU can be released
simultaneously [5]. Fig. 3 shows an example of the CAN clus-
ter with eight subsystems (|S| = 8). Each subsystem contains
two CAN buses. Table I lists the corresponding message set
(|M| = 32) of Fig. 3. This message set is considered as a
motivating example in this paper.

Let the message set that released in the subsystem sy be
M(sy), which contains two types of messages: 1) the messages
transmitted only via the subsystem sy are called nongate-
way messages, and their set is denoted by NGM(sy) and

2) the messages released on the subsystem sy forwarding
to other subsystems through the gateway are called gate-
way messages, and their set is denoted by GM(sy). These
two types of message sets are transmitted in bus s2g&s2s
according to the architecture of Fig. 1. For example, as
shown in Fig. 3, the messages released in the subsystem s1
are M(s1) = {m1, m2, m3, m4}, and NGM(s1) = {m4} and
GM(s1) = {m1, m2, m3} are obtained.

D. Message-Processing Task Model

The gateway activates message-processing tasks when it
receives gateway messages from subsystems [24]. The actual
finish instants (AFI) of messages are sporadic; thus, a
message-processing task model should be sporadic rather
than periodic. Let τi=(Pτi , Cτi , ssrc,τi , sdest,τi ) represent a
message-processing task according to priority, execution time,
source subsystem, and destination subsystem. Pτi , ssrc,τi , and
sdest,τi inherit those of the corresponding incoming message.
Although different messages exhibit different transmission
time values [24], any two message-processing tasks have equal
execution time values because the execution is a message copy
process. In other words, for any two message-processing tasks
τi and τj, we have Cτi = Cτj .

Considering that no offset exists for each message, all
the messages in M(sy) are released simultaneously. The bus
g2s is specifically responsible for receiving messages from
the gateway; therefore, these messages do not influence all
the messages in GM(sy) that are transmitted on the bus
s2g&s2s. Subsequently, we can obtain the actual start instants
(ASIs) and AFIs for each CAN message job in GM(sy) based
on static nonpreemptive scheduling of the CAN bus. Each
message-processing job is activated by the incoming mes-
sage job triggered from the subsystem. Consequently, the
released instant (RI) of the message-processing job τi,k should
be the AFI of mi,k. Considering that we aim to analyze
message-processing tasks, we assume that all subsystems are
designed well in advance and that all messages are schedula-
ble. Therefore, all these message jobs in GM(sy) would repeat
transmission in their hyper period H(sy), which is also called
the least common multiple. The number of message jobs for
mi is H(sy)/Tmi . Finally, we can use the schedulability veri-
fication (SV) algorithm (see supplement materials) to obtain
the RI of each message-processing job.



XIE et al.: WCRT ANALYSIS AND EVALUATION FOR SPORADIC MESSAGE-PROCESSING TASKS IN MULTICORE AUTOMOTIVE GATEWAYS 285

(a)

(b)

Fig. 4. ASIs and AFIs of message jobs released in s1, and RIs of message-
processing jobs triggered from s1 of Fig. 3.

(a)

(b)

Fig. 5. ASIs and AFIs of message jobs released in s2, and RIs of message-
processing jobs triggered from s2 of Fig. 3.

(a)

(b)

Fig. 6. ASIs and AFIs of message jobs released in s3, and RIs of message-
processing jobs triggered from s3 of Fig. 3.

(a)

(b)

Fig. 7. ASIs and AFIs of message jobs released in s4, and RIs of message-
processing jobs triggered from s4 of Fig. 3.

(a)

(b)

Fig. 8. ASIs and AFIs of message jobs released in s5, and RIs of message-
processing jobs triggered from s5 of Fig. 3.

The SV algorithm can be used to verify the schedulabil-
ity of the message set of each subsystem, and we discover
that all the message sets of the eight subsystems of Table I
are schedulable. Fig. 4(a) shows the ASIs and AFIs of mes-
sage jobs released in s1, and Fig. 4(b) shows the RIs of
message-processing jobs triggered from s1. The hyper period
of the message set M(s1) = {m1, m2, m3, m4} is H(s1) = 24.
Notably, m4 is not included in Fig. 4(b) because it is a non-
gateway message, which cannot activate a message-processing
job. Figs. 5–11 also show the ASIs and AFIs of message jobs

(a)

(b)

Fig. 9. ASIs and AFIs of message jobs released in s6, and RIs of message-
processing jobs triggered from s6 of Fig. 3.

(a)

(b)

Fig. 10. ASIs and AFIs of message jobs released in s7, and RIs of message-
processing jobs triggered from s7 of Fig. 3.

(a)

(b)

Fig. 11. ASIs and AFIs of message jobs released in s8, and RIs of message-
processing jobs triggered from s8 of Fig. 3.

and the RIs of message-processing jobs in (from) s2 and s3-
s8, respectively. Considering that gateway processing speed is
faster than the transmission speed of a CAN bus, we regard
the execution time of each message-processing task as 1 time
unit in this paper.

IV. WCRT ANALYSIS BASED ON GLOBAL SCHEDULING

This section presents the WCRT analysis based on global
scheduling.

A. Critical Instant Candidates

To analyze the WCRT of τi,k (τi,k is the message-processing
job under analysis), the RIs of all message-processing jobs,
which have higher priority than τi,k from all subsystems,
should be obtained. We use HP(τi,k, sy) to represent the set
of high-priority gateway messages for τi,k released in sy. For
example, to analyze the WCRT of τ31,1 triggered from s8 in
Fig. 11(b), the high-priority message-processing jobs from all
subsystems denoted as follows would cause interference to
τ31,1:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

HP
(
τ31,1, s1

) = {
τ1,1, τ2,1, τ3,1, τ2,2

}

HP
(
τ31,1, s2

) = {
τ5,1, τ6,1, τ7,1, τ5,2

}

HP
(
τ31,1, s3

) = {
τ9,1, τ10,1, τ11,1, τ10,2, τ11,2

}

HP
(
τ31,1, s4

) = {
τ13,1, τ14,1, τ13,2, τ15,1, τ13,3

}

HP
(
τ31,1, s5

) = {
τ17,1, τ18,1, τ17,2, τ19,1, τ17,3

}

HP
(
τ31,1, s6

) = {
τ21,1, τ22,1, τ23,1, τ21,2, τ23,2, τ21,3

}

HP
(
τ31,1, s7

) = {
τ25,1, τ26,1, τ27,1, τ25,2, τ25,3

}

HP
(
τ31,1, s8

) = {
τ29,1, τ30,1

}
.

The critical instant (CI) for the job under analysis is defined
as an instant at which a request for that job will have the
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WCRT, and it occurs whenever the job is requested simulta-
neously with requests for all high-priority message-processing
jobs [30]. The CI in global scheduling can be obtained because
any message-processing task has the same execution time (i.e.,
1 time unit). Hence, our objective is to determine the CI of
each subsystem for the message-processing job under anal-
ysis and subsequently calculate the WCRT according to the
obtained CIs. Each subsystem can be started at any instant
after the in-vehicle network is initialized. Consequently, each
released instant in a subsystem could be the CI. For example,
we continue to assume that the message-processing job under
analysis is τ31,1. Then one of the time instants in 4, 8, 11, or
20 of the subsystem S1 [Fig. 4(b)] may be the CI. We first
define the following terms before obtaining the CI.

Definition 1 [CI Candidates (CICs)] : The CICs for τi,k are
the instants at which τi,k is released simultaneously with any
of the high-priority message-processing jobs from the other
subsystems and that may cause the WCRT. These CICs are
grouped by subsystems, and the CICs from sy are denoted as
CICs(τi,k, sy).

Assuming that τi,k is triggered from the subsystem sa,
then CICs(τi,k, sa) = {RI(τi,k)}. For any other subsystem sy,
the CICs(τi,k, sy) are initialized as the released instants of
HP(τi,k, sy). For example, the CICs for τ31,1 are

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

CICs
(
τ31,1, s1

) = {4, 8, 11, 20}
CICs

(
τ31,1, s2

) = {4, 8, 11, 20}
CICs

(
τ31,1, s3

) = {4, 8, 11, 19, 22}
CICs

(
τ31,1, s4

) = {4, 8, 12, 15, 23}
CICs

(
τ31,1, s5

) = {5, 10, 15, 19, 29}
CICs

(
τ31,1, s6

) = {4, 7, 12, 16, 21, 25}
CICs

(
τ31,1, s7

) = {4, 9, 13, 17, 26}
CICs

(
τ31,1, s8

) = {12}.

(1)

B. Our Approach

Our approach aims to verify whether an expected delay
(EL) (i.e., expected interval) of each core can be interfered
by high-priority message-processing jobs from all subsystems.
Our main objective is to fill this EL with possible high-priority
message-processing jobs from all CAN subsystems. The EL of
each CPU core is explored from 1 to 2, 3, . . . in increments
of 1 time unit until it cannot be reachable by high-priority
message-processing jobs. The concrete steps are as follows.

1) Let CL(τi,k, ux) represent the current delay (CL) of the
job τi,k in the core ux. CL(τi,k, ux) is the reachable
delay that has been filled by the blocking of low-priority
nonmessage-processing tasks and interference of high-
priority message-processing jobs from all subsystems.
Considering that all nonmessage-processing tasks take
lower priorities and have larger execution time (denoted
by Bτi ) than (i.e., Bτi > Cτi ) in the gateway, the initial
CL for τi,k in each core is Bτi .

2) Select the core ux with the minimum CL in all cores,
and let EL(τi,k, ux) represent the EL that will be verified
in the core ux and is calculated by

EL
(
τi,k, ux

) = CL
(
τi,k, ux

)+ Cτi,k .

3) Iteratively verify the EL EL(τi,k, ux) from s1 to s|S|. If
EL(τi,k, ux) of the core ux can be filled from subsystem

sy, then CL(τi,k, ux) is updated to EL(τi,k, ux). The core
is selected according to step 2 to verify the new EL from
sy+1 to s|S| if y < |S|.

4) If y = |S|, then the new EL is verified from s1 to s|S|.
5) If the verified EL EL(τi,k, ux) cannot be filled by travers-

ing all subsystems (from s1 to s|S|), then the final
response time R(τi,k) is EL(τi,k, ux). R(τi,k) is either a
lower bound on response time (LBRT) R−(τi,k) or an
upper bound on response time (UBRT) R+(τi,k) depend-
ing on different search conditions. We will first introduce
how to obtain the LBRT and UBRT in the subsequent
sections.

The search process in step 3 is referred to as the “one round
search” because all subsystems are searched once. The whole
process (steps 1–5) is referred to as the “round search” because
it involves multiple rounds to search for CICs and increase
the ELs.

The final reachable latencies of all cores are filled by
the blocking of low-priority nonmessage-processing tasks and
high-priority message-processing jobs from multiple subsys-
tems; thus, each subsystem should contribute a certain amount
of latencies, and the following is obtained:

∑

ux∈U

CL
(
τi,k, ux

) =
∑

ux∈U

Bτi,k +
∑

sy∈S

(
CN

(
τi,k, sy

)× Cτi,k

)

where CN(τi,k, sy) is the contribution number (CN) of the
high-priority message-processing jobs triggered from the sub-
system sy. The initial CNs for all subsystems are 0. If
EL(τi,k, ux) is going to be verified in the subsystem sy, the
following relationship is obtained:

EL
(
τi,k, ux

) +
∑

ue∈U,e �=x

CL
(
τi,k, ue

)

=
∑

ue∈U

Bτi,k + EN
(
τi,k, sy

)× Cτi,k

+
∑

sf∈S,f �=y

(
CN

(
τi,k, sf

)× Cτi,k

)
.

where EN(τi,k, sy) represents the expected number (EN) of the
high-priority message-processing jobs filling the EL(τi,k, ux)

from the subsystem sy and is calculated as follows:

EN
(
τi,k, sy

) = CN
(
τi,k, sy

)+ 1.

C. Multicore Round Search for LBRT

We first let IS(τi,k, sy, EN(τi,k, sy), EL(τi,k, ux)) represent
whether at least EN(τi,k, sy) high-priority message-processing
jobs triggered from the subsystem sy are available in the
expected interval EL(τi,k, ux) on the core ux. After that, we
explain the whole process of calculating the LBRT for τ31,1
before presenting the algorithm. The results are shown in
Table II.

In initialization, the initial CICs for all subsystems are
the same as shown in (1). The initial CL for each core is
the blocking 2, and the CN for each subsystem is 0 (see
initialization of Table II).

In Round 1, the operations are as follows.
1) The first selected core is u1, and the verified EL is

EL(τ31,1, u1) = 3. EL(τ31,1, u1) = 3 is verified in the
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TABLE II
PROCESS AND RESULTS OF THE LBRT COMPUTATION FOR τ31,1 (THE VALID RESULTS ARE IN BOLD TEXT) USING MRSLR

subsystem s1; the result is true, and the obtained CICs
are CICs(τ31,1, s1) = {4, 8, 11, 20}, and CL(τ31,1, u1) is
updated to 3.

2) The selected core is changed to u2 because it exhibits
lower CL than u1 (2<3). In this case, EL(τ31,1, u2) =
3 is verified in the subsystem s2 because s1 has been
verified by the previous operation.

The result is true, the obtained CICs are CICs(τ31,1, s2) =
{4, 8, 11, 20}, and CL(τ31,1, u2) is updated to 3. The same
pattern is searched from s3 to s8. Finally, the above search
process is referred to as “Round 1” because all subsystems

are searched once. Notably, the result of IS(τ31,1, s8, 1, 6) is
false, and the obtained CICs are null.

The search for each subsystem in Round 1 is repeated in
Rounds 2–6. Remarkably, two important rules exist in the
analysis.

1) For any sx, “the newly obtained CICs(τi,k, sy) of the
current round are selected from those of the lat-
est previous round with nonempty CICs(τi,k, sy).” For
example, the newly obtained CICs by s1 in Round
2 are CICs(τ31,1, s1) = {4, 8}, which are selected
from the obtained CICs(τ31,1, s1) = {4, 8, 11, 20} in
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Algorithm 1 MRSLR Algorithm
Input: U = {u1, u2, ..., u|U|}, S = {s1, s2, ..., s|S|}, τi,k ;
Output: LBRT R−(τi,k) and its related values;
1: for (x← 1; x � |U|; x++) do
2: Initialize CL(τi,k, ux)← Bτi ;
3: end for
4: for (y← 1; y � |S|; y++) do
5: Initialize CICs(τi,k, sy) based on Definition 1;
6: Initialize CN(τi,k, sy)← Bτi ;
7: end for
8: round← 1;
9: while (true) do

10: Select the core ux with the minimum CL(τi,k, ux) among all cores;
11: for (y← 1; y � |S|; y++) do
12: EL(τi,k, ux) = CL(τi,k, ux)+ Cτi ;
13: EN(τi,k, sy) = CN(τi,k, sy)+ Cτi ;
14: result ← IS(τi,k, sy, EN(τi,k, sy), EL(τi,k, ux)); // using the inherited search

to search CICs;
15: if (result == true) then
16: Update CICs(τi,k, sy) as the newly found CICs;
17: CN(τi,k, sy)← CN(τi,k, sy)+ Cτi ;
18: CL(τi,k, ux)← EL(τi,k, ux);
19: if (y < |S|) then
20: Select the core ux with the minimum CL(τi,k, ux) among all cores;
21: end if
22: end if
23: end for
24: round++;
25: if (the search results are false for all subsystems) then
26: R−(τi,k)← EL(τi,k, ux);
27: return;
28: end if
29: end while

Round 1; the newly found CICs by s3 in Round 5 are
CICs(τ31,1, s3) = {9, 22}, which are selected from the
obtained CICs(τ31,1, s3) = {4, 19, 22} in Round 3. This
search process is referred to as the inherited search (IS)
because the current round inherits the obtained CICs of
the previous round.

2) When all subsystems cannot search for more high-
priority message-processing jobs to fill the EL in the
same round, then the final LBRT is the EL. For exam-
ple, in Round 6, all subsystems cannot search for
more high-priority message-processing jobs to fill the
EL(τ31,1, u1) = 16 using the IS. Hence, the delay 16 is
unreachable, and the LBRT is R−(τ31,1) = 15+1 = 16,
namely, the maximum reachable delay 15 pluses 1 time
unit execution time. The IS can guarantee that the final
obtained LBRT is a successive and real response time.
This premise is proven in Theorem 1.

Subsequently, we propose the multicore round search for
LBRT (MRSLR) algorithm described in Algorithm 1.

Theorem 1: The response time R−(τi,k) computed by the
MRSLR algorithm is an actual existing response time that is
less than or equal to the WCRT.

Proof: When the EL(τi,k, ux) on ux is explored from Bτi+Cτi

to Bτi + 2Cτi , Bτi + 3Cτi ,... with increasing Cτi until it can-
not be filled by high-priority message-processing jobs. If we
can prove that EL(τi,k, ux) (starts at Bτi + Cτi ) increases suc-
cessively, then the final nonincreased EL(τi,k, ux) should be
the successive response time for the following reasons. First,
MRSLR constantly selects the core ux with the minimum
CL(τi,k, ux) in all cores, and the difference of CLs among these
cores does not exceed Cτi ; therefore, EL(τi,k, ux) increases suc-
cessively for each core (line 20). Second, the condition of
the IS is that the newly obtained CICs(τi,k, sy) of the current
round are selected from those of the latest previous round
with nonempty CICs(τi,k, sy). Consequently, the EL(τi,k, ux)

Algorithm 2 MRSUR Algorithm
Input: U = {u1, u2, ..., u|U|}, S = {s1, s2, ..., s|S|}, τi,k , R−(τi,k) and its related values

using MRSLR;
Output: UBRT R+(τi,k) and its related values;
1: for (x← 1; x � |U|; x++) do
2: Initialize CL(τi,k, ux) as the final CL(τi,k, ux) using MRSLR;
3: end for
4: for (y← 1; y � |S|; y++) do
5: Initialize CICs(τi,k, sy) based on Definition 1;
6: CN(τi,k, sy) is the final CN(τi,k, sy) using MRSLR;
7: end for
8: var round← 1;
9: while (true) do

10: Select the core ux with the minimum CL(τi,k, ux) among all cores;
11: for (y← 1; y � |S|; y++) do
12: EL(τi,k, ux) = CL(τi,k, ux)+ Cτi ;
13: EN(τi,k, sy) = CN(τi,k, sy)+ Cτi ;
14: result ← SS(τi,k, sy, EN(τi,k, sy), EL(τi,k, ux)); // using the shared search to

search CICs;
15: if (result == true) then
16: Update CICs(τi,k, sy) as the newly found CICs;
17: CN(τi,k, sy)← CN(τi,k, sy)+ Cτi ;
18: CL(τi,k, ux)← EL(τi,k, ux);
19: if (y < |S|) then
20: Select the core ux with the minimum CL(τi,k, ux) among all cores;
21: end if
22: end if
23: end for
24: round++;
25: if (the search results are false for all subsystems) then
26: R+(τi,k)← EL(τi,k, ux);
27: return;
28: end if
29: end while

increases successively in the same subsystem on different
rounds (line 14). Third, one round comprises the |S| ISs such
that the EL(τi,k, ux) increases successively on the same round
(lines 11–23). Fourth, the round search comprises multiple
rounds such that the EL(τi,k, ux) increases successively in the
whole round search (lines 9–29). Hence, the response time
R−(τi,k) = EL(τi,k) is an actual existing response time that is
less than or equal to the WCRT.

D. Multicore Round Search for UBRT

The MRSLR algorithm can obtain the actual existing
LBRT because the IS uses a strict condition, that is, the
newly obtained CICs(τi,k, sy) of the current round are selected
from those of the latest previous round with nonempty
CICs(τi,k, sy). When the condition is loosened slightly, we
can still continuously perform the search based on the result
of the MRSLR algorithm. The relaxed condition is described
as follows: “the newly obtained CICs(τi,k, sy) of the cur-
rent round are always selected from those of the initial
CICs(τi,k, sy) in Definition 1.” The search with this condi-
tion is called the shared search (SS) because the current round
always uses the same shared results of the initial CICs(τi,k, sy).
When SS is used in the round search, the obtained response
time is an UBRT because it ignores the succession of
the interference. This proposition is proven in Theorem 2.
Correspondingly, we propose the global scheduled round
search (GSRS) for UBRT (MRSUR) algorithm explained in
Algorithm 2.

Theorem 2: The response time R+(τi,k) computed by the
MRSUR algorithm is a safe UBRT, which is larger than or
equal to the WCRT.

Proof: The above condition can be explained by the end-
ing condition of the MRSUR algorithm in which all the
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subsystems cannot search for a further EN of high-priority
message-processing jobs in an EL to fill it.

No more than CN(τi,k, s1) high-priority message-processing
jobs exist in R+(τi,k) triggered from s1.

No more than CN(τi,k, s2) high-priority message-processing
jobs exist in R+(τi,k) triggered from s2 . . .

No more than CN(τi,k, s|S|) high-priority
message-processing jobs exist in R+(τi,k) triggered from s|S|.

Moreover, we have
∑

ux∈U Bτi,k +
∑

sy∈S (CN(τi,k, sy)× Cτi,k) �
∑

ux∈U (R+(τi,k)) accord-
ing to the search process. Therefore, the R+(τi,k) cannot be
filled by the high-priority message-processing jobs from all
the subsystems even if the condition of successive interference
is not considered. Therefore, the obtained R+(τi,k) using
MRSUR is a safe UBRT that is larger than or equal to the
WCRT.

Table III shows the whole process of obtaining the UBRT
for τ31,1.

The initial CICs for all subsystems during initialization are
still shown in (1). The initial CL for each core and CN for each
subsystem are obtained from those of the MRSLR algorithms
(see initialization of Table III).

In Round 1, we first use the SS SS(τ31, 1, s1, 4, 16) to
search for the CICs. We obtain CICs(τ31, 1, s1) = {20}. These
CICs can be observed because they are constantly selected
from those of the initialization in the SS. This search improves
the possibility of finding the CICs in the current round at the
cost of ignoring the succession of the interfering delay. The
same search is used for s2–s8 of the current and the following
rounds.

Finally, all subsystems cannot search for further high-
priority message-processing jobs to fill EL(τ31,1, u2) = 18 in
Round 2. Hence, the UBRT is R+(τ31,1) = 18.

V. WCRT ANALYSIS BASED ON

PARTITIONED SCHEDULING

This section presents WCRT analysis based on partitioned
scheduling by using a bin packing algorithm.

A. Bin Packing Problem

We first group all the message-processing jobs from the
same subsystem and define them as follows.

Definition 2 (Message-Processing Job Sequence): The
message-processing job sequence of the subsystem sy contains
the message-processing jobs triggered in sy in a hyper period
H(sy) and are denoted as seq(sy).

The sequences of the motivating example can be easily
obtained as follows:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

seq(s1) =
{
τ1,1, τ2,1, τ3,1, τ2,2

}

seq(s2) =
{
τ5,1, τ6,1, τ7,1, τ5,2

}

seq(s3) =
{
τ9,1, τ10,1, τ11,1, τ10,2, τ11,2

}

seq(s4) =
{
τ13,1, τ14,1, τ13,2, τ15,1, τ13,3

}

seq(s5) =
{
τ17,1, τ18,1, τ17,2, τ19,1

}

seq(s6) =
{
τ21,1, τ22,1, τ23,1, τ21,2, τ23,2, τ21,3

}

seq(s7) =
{
τ25,1, τ26,1, τ27,1, τ25,2, τ25,3

}

seq(s8) =
{
τ29,1, τ30,1, τ31,1, τ31,2

}
.

Algorithm 3 SFFD Algorithm
Input: U = {u1, u2, . . . , u|U|}, S = {s1, s2, . . . , s|S|}, τi,k;
Output: Partitioned groups {g1, g2, . . .};
1: for (y← 1; y � |S|; y++) do
2: Obtain seq(sy) and H(sy);
3: end for
4: Calculate size(sy) = num

(
seq(sy)

)

H(sy)
using Eq.(2);

5: Calculate size(ux) =
∑

sy∈S

(
size(sy)

)

|U| using Eq.(3);
6: Order sequences according to a descending order of size(sy) in a

seq_des_list;
7: while (there are sequences to be assigned in seq_des_list) do
8: Select the sequence seq(sy) from seq_des_list;
9: for (x← 1; x � |U|; x++) do

10: Obtain the remaining size size(ux) of the core ux;
11: if (size(sy) can fit into size(ux)) then
12: Assign all the jobs of the seq(sy) into the ux;
13: Put sy into the group gx;
14: Update the size of core ux as size(ux)← (size(ux)− size(sy));
15: break;
16: end if
17: end for
18: if (size(sy) cannot fit to all the cores) then
19: Assign all the jobs of the seq(sy) into the core umax with maximum

remaining size size(umax) = max
ux∈U
{ size(ux)} ;

20: Put sy into the group gmax;
21: Update the size of core size(umax) as size(umax)← (size(umax)−

size(sy));
22: end if
23: end while

In general, tasks are statically assigned to cores in parti-
tioned scheduling. However, the message-processing task jobs
triggered from the same subsystem would form a message-
processing sequence. Hence, we consider that all the message-
processing jobs in the same sequence are assigned to the
same core. Unlike general real-time tasks, our bin packing
approach for message-processing jobs in the gateway is based
on message-processing job sequence rather than tasks.

According to the basic idea of bin packing approaches, the
“size” of all sequences and the specific size of each core should
be obtained. First, we assume that the size size(sy) of the
sequence seq(sy) is the trigged frequency in the hyper period
H(sy) and calculated as follows:

size(sy) = num
(
seq(sy)

)

H(sy)
(2)

where num(seq(sy)) represents the number of message-
processing jobs in the sequence seq(sy). The above size of
a sequence indicates the accumulated utilization on one core
triggered by a same subsystem because the execution time
of any message-processing job is 1 time unit. After that, we
assume that the size(ux) is the sum of size(sy) of all sequences
dividing the number of cores and is calculated as follows:

size(ux) =

∑

sy∈S

(
size(sy)

)

|U| . (3)

Therefore, each core has the same size of size(ux). Note that
the above size of each core is not the true capacity for task
running, but an expected average size to achieve balanced
workload on all cores.
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TABLE III
PROCESS AND RESULTS OF THE UBRT COMPUTATION FOR τ31,1 (THE VALID RESULTS ARE IN BOLD TEXT) USING MRSUR

TABLE IV
PROPERTY VALUES OF EACH SUBSYSTEM

B. Subsystem-Based FFD

After determining the required size(ux) of the bin pack-
ing approach, we present the sequence-based FFD (SFFD)
algorithm (Algorithm 3).

The main steps of the SFFD algorithm are as follows.
1) Obtain the sequence (lines 1–3) and size of each

subsystem (line 4) as well as the size of each core
(line 5).

2) Order sequences by decreasing order of size(sy) (line 6).
3) Iteratively assign sequences to the cores upon which they

fit according to the FF condition (lines 7–23).

C. Example of WCRT Analysis Based on Partitioned
Scheduling

In the following, we use the motivating example to explain
the method of obtaining the WCRT by using the partitioned
scheduling.

1) We obtain the size of each subsystem using (2), and the
size of each core is obtained using (3) (Table IV).

2) We obtain the partitioned groups g1 = {s3, s4, s6, s8}
and g2 = {s1, s2, s5, s7} using the SFFD algorithm. The
details are shown in Table V. For example, the size of
s3 is 0.21, and it is assigned to group g1 because 0.21
can fit into 0.71, which is the size of the core u1. The
same pattern is used for s4 and s6 until the size of s1

TABLE V
PARTITIONED GROUPS OF THE SUBSYSTEMS (THE

VALID RESULTS ARE IN BOLD TEXT)

cannot fit into the size of u1. Subsequently, s1, s2, s5,
and s7 are included in group g2 based on SFFD. Finally,
the size of s8 cannot fit into the sizes of u1 and u2, and
it is included in group g1, which has the maximum size.

3) We can reuse the MRSLR and MRSUR algorithms to
calculate the LBRT and UBRT of τi,k after the partition,
as long as we assume that only one core in the inputs
of algorithms (i.e., U = {u1}). For example, to further
calculate the R+(τ31,1) using the partitioned scheduling,
the group g1 = {s3, s4, s6, s8} will be scheduled in the
core u1, and the CICs for τ31,1 are

⎧
⎪⎪⎨

⎪⎪⎩

CICs
(
τ31,1, s3

) = {4, 8, 11, 19, 22}
CICs

(
τ31,1, s4

) = {4, 8, 12, 15, 23}
CICs

(
τ31,1, s6

) = {4, 7, 12, 16, 21, 25}
CICs

(
τ31,1, s8

) = {12}.

4) Finally, we obtain that R−(τ31,1) = 14 and R+(τ31,1) =
15 using the MRSLR and MRSUR algorithms, respec-
tively.



XIE et al.: WCRT ANALYSIS AND EVALUATION FOR SPORADIC MESSAGE-PROCESSING TASKS IN MULTICORE AUTOMOTIVE GATEWAYS 291

TABLE VI
MESSAGE SETS OF SUBSYSTEMS

VI. WCRT EVALUATION WITH EXPERIMENTS

A. Experimental Message Sets

To evaluate the applicability of the proposed methods, we
used four real CAN message sets provided by an automaker.
The message sets contain 65, 69, 85, and 89 messages and
are assigned into 14 ECUs of a CAN subsystem in 500 Kb/s.
The concrete values are shown in the supplementary material.
All messages are gateway messages, and they are sent strictly
periodically and share a common released time without queu-
ing jitters. We verified that four message sets are scheduled
by using the SV algorithm (see supplementary material); the
hyper period is 1 000 000 μs for each message set, and the
numbers of released instants of message-processing jobs in
this hyper period are 509, 468, 614, and 571. The system
should be extended to a large-scale CAN cluster with eight
subsystems; thus, we used the setting in Table VI for each
subsystem. We implemented a tool using Java on a standard
desktop computer (2.6 GHz Intel CPU and 4 GB memory) to
calculate the WCRT of each message-processing task. We also
implemented a CAN cluster gateway based on the presented
architecture with a Freescale MPC560xB microcontroller, and
measurement on the real gateway showed that the execution
time of each message-processing task is 40 μs (i.e., 1 time
unit). Therefore, the time values in the experiment appears
are based on 40 μs of the time unit. The blocking caused by
nonmessage-processing tasks is 120 μs in the platform.

Four methods, namely, GSRS, global scheduled exhaus-
tive exploration (GSEE), partitioned scheduled round search
(PSRS), and partitioned scheduled exhaustive exploration
(PSEE), are used for comparison.

1) GSRS is implemented by combining the MRSLR
(Algorithm 1) and MRSUR (Algorithm 2) algorithms
to determine LBRT and UBRT.

2) GSEE is the exhausting exploration based on global
scheduling.

3) PSRS is implemented by partition using the SFFD algo-
rithm (Algorithm 3); then the MRSLR (Algorithm 1)
and MRSUR algorithms (Algorithm 2) are combined to
determine LBRT and UBRT on each core.

4) PSEE is the exhausting exploration based on partitioned
scheduling.

Considering that the execution time of each message-
processing task is 1 time unit in the gateway, the results
obtained using GSEE and PSEE are the exact WCRTs.

B. Experimental Results

Experiment 1: This experiment aims to verify the cor-
rectness of the proposed methods. Thus, we conducted this

TABLE VII
RESPONSE TIME OF NINE LOW-PRIORITY MESSAGE-PROCESSING JOBS

IN THE MOTIVATING EXAMPLE OF TABLE I

experiment with the small-scale simulated message set of
Table I (the motivating example) on eight subsystems and
a dual-core CPU. Table VII shows the results of nine low-
priority message-processing jobs. The following observations
are drawn.

1) The computed WCRTs using GSEE are always between
LBRTs and UBRTs using GSRS, and the computed
WCRTs using PSEE are always between LBRTs and
UBRTs using PSRS. Although we only list nine jobs,
the other jobs demonstrate the same regular pattern as
these jobs. The results verify that both GSRS and PSRS
can obtain safe UBRT using individual scheduling types.

2) The LBRTs and UBRTs using the PSRS are less
than or equal to, respectively, those using GSRS.
Specifically, PSRS generates tighter LBRTs and UBRTs
than GSRS for four low-priority message-processing
jobs (τ31,1, τ31,2, τ30,2, and τ29,2), whereas other jobs
show the same results. The preliminary results show that
partitioned scheduling can obtain tighter WCRTs than
global scheduling for low-priority message-processing
jobs.

Experiment 2: This experiment compares GSRS with PSRS
on the large-scale CAN cluster with a dual-core CPU and eight
subsystems (Table VI). Eight subsystems exist in the CAN
cluster, and each subsystem contains 509, 509, 468, 468, 614,
614, 571, and 571 release instants. The total number of com-
binations for the lowest priority task m789 should be 5092 ×
4682 × 6142 × 5712 = 6 974 871 800 400 943 493 184 using
GSRS. Moreover, each combination should consume about
1.25 ms with eight subsystems. Therefore, the total compu-
tation time should reach 16 587 880 043 years, and the exact
WCRT cannot be obtained using GSEE. All subsystems are
divided into two groups, namely, g1 = {s1, s2, s3, s8} and
g2 = {s4, s5, s6, s7}, using the SFFD algorithm. The message-
processing tasks are assigned to u1 and u2, respectively. The
total number of combinations for m789 is 5092× 468× 571 =
69 233 697 468 and each combination should consume approx-
imately 0.53 ms with four subsystems. The total computation
time should be about 424 days using PSEE. Considering the
aforementioned situations, this experiment only shows the
results using GSRS and the PSRS, as shown in Table VIII.
The following observations are drawn.

1) The PSRS generates tighter WCRTs than GSRS for the
message-processing tasks triggered from s4, s5, s6, and
s8 (account for 67.7% in the total number of 616),
larger WCRTs for the message-processing tasks trig-
gered from s2 and s3 (account for 21.75%), and equal
WCRTs for the message-processing tasks triggered from
s1 and s7 (account for 10.55%). Specifically, PSRS can
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TABLE VIII
RESPONSE TIMES WITH A DUAL-CORE CPU

reduce the WCRT by 440 μs (the reduced percentage
reaches 40.74%) compared with GSRS for the message-
processing tasks triggered from s8. Hence, partitioned
scheduling is better than global scheduling in reducing
WCRTs in general.

2) The obtained LBRTs and UBRTs using PSRS are always
equal. Considering that the exact WCRT belongs to the
interval of LBRT and UBRT, the exact WCRTs can be
directly obtained and are equal to corresponding LBRTs
and UBRTs without exhaustive exploration when using
PSRS. For GSRS, the LBRTs and UBRTs are also equal
for the message-processing tasks triggered from s1–s7;
however, for the low-priority message-processing tasks
triggered from s8, the LBRTs and UBRTs are no longer
equal, and the differences are 200 μs. Considering that
an exact WCRT cannot be obtained in limited time
using GSEE, the exact WCRTs of low-priority messages
cannot be obtained when global scheduling is employed.
Furthermore, the approximate and pessimistic WCRT
cannot capture the complexity of practical automotive
systems, and it may lead to an unnecessarily conser-
vative design [3]. Therefore, the partitioned scheduling
is useful in reducing complexity and the unnecessarily
conservative design of automotive systems because it
can obtain a tighter WCRT.

3) The obtained WCRTs increase with the decreasing pri-
ority of messages using GSRS, whereas PSRS shows a
different pattern. The reason for the difference is that the
messages are partitioned to different cores using SFFD,
which cannot guarantee integrity of priorities because
partition is a bin packing problem (NP-hard). For exam-
ple, the message-processing tasks triggered from s4 are
processed in the u2, and tighter WCRTs are obtained
than the message-processing tasks triggered from s2 and
s3, which are processed in the u1. Therefore, the use
of PSRS includes both positive and negative effects.
The positive effect is that the WCRTs of several low-
priority message-processing tasks (triggered from s4 and
s5) are considerably small, and the negative effect is that
the WCRTs of several high-priority message-processing
tasks (triggered from s2 and s3) are large. The timing
constraints of these high-priority messages may be no
longer valid in the gateway.

4) Another situation is that although s1 and s2 are assigned
into the same group using SFFD, the WCRTs of
message-processing tasks triggered from s2 using GSRS
are less than those using PSRS. The results indicate
that GSRS is useful for several high-priority messages
because GSRS using multiple cores can reduce the

TABLE IX
RESPONSE TIMES WITH A FOUR-CORE CPU

WCRTs more efficiently than PSRS using a single-core
in approximately equal scales.

5) According to the experimental results, the difference
between LBRTs and UBRTs in global scheduling is
always larger than that in partitioned scheduling. The
potential reason may be that partitioned scheduling is
useful in capturing the complexity.

Experiment 3: Although PSRS can obtain exact WCRTs
using the dual-core gateway (Table VIII of Experiment 2),
the bottleneck in message-processing still exists in large-scale
CAN clusters (e.g., the WCRTs for low-priority message-
processing tasks triggered from s8 are 1080 and 640 μs
using GSRS and PSRS, respectively). To further eliminate
the bottleneck, we increase the number of cores and con-
sider the four-core gateway to observe the results. We still
use the same message set as Experiment 2 in this experi-
ment. All subsystems are divided into four groups, namely,
g1 = {s1, s7}, g2 = {s2, s8}, g3 = {s3, s5}, and g4 = {s4, s6},
using the SFFD algorithm, and the message-processing tasks
are assigned to u1, u2, u3, and u4, respectively. The results
are shown in Table IX, and the following observations on
the given real message sets and experimental results can be
obtained.

1) In a four-core gateway, the LBRTs and UBRTs are
always the same for all messages. The exact WCRT is
equal to the LBRT and UBRT for each message. The
four-core gateway can considerably reduce the WCRT.
For example, the WCRT of low-priority message-
processing tasks triggered from s8 is reduced to 280
and 240 μs using GSRS and PSRS, respectively.
Consequently, the reduced percentages on a four-core
gateway reach 74.1% and 62.5%, respectively, compared
with those on a dual-core gateway.

2) Considering that the minimum WCRT is 160 μs (Bτi,k+
Cτi,k = 120+40 = 160) for the message-processing jobs
triggered from s1, these jobs cannot be interfered.

3) Considering that the WCRTs of message-processing jobs
triggered from s3 and s4 using GSRS are 200 μs,
these jobs could be interfered by at most one high-
priority message-processing job before it is executed
using global scheduling.

4) In partitioned scheduling, all message-processing jobs
could be interfered by at most two high-priority
message-processing jobs, and the interference is reduced
to an acceptable range. Thus, the four-core gateway can
ultimately eliminate the bottleneck in message transmis-
sion on large-scale CAN clusters.

5) Considering that PSRS can generate tighter WCRTs than
GSRS for most message-processing tasks, partitioned
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scheduling is still better than global scheduling when
a four-core gateway is used.

C. Design Optimization Guide

Without loss of generality, many simulated message sets
with the approximate equal parameter values and scales to
the provided real message sets are tested and show the same
regular pattern as Experiments 2 and 3. Considering space lim-
itations, we do not provide detailed experimental results in this
paper. Finally, we summarize the following multicore gateway
design optimization guide on large-scale CAN clusters based
on the experimental results.

1) Partitioned scheduling is better than global schedul-
ing for dual- and four-core gateways in general. First,
partitioned scheduling complies with the AUTOSAR
specification. If all software developers and products
comply with the AUTOSAR specification, then the
gateway development efficiency can be improved by
the AUTOSAR runtime environment (RTE) because
AUTOSAR introduces the RTE to shield the details
that are related to hardware such that the code porta-
bility in different developers is easy. Second, partitioned
scheduling can significantly reduce more tightness in the
WCRT of low-priority messages than global schedul-
ing. Third, partitioned scheduling may obtain exact
WCRT in the provided real message sets, thereby pos-
sibly avoiding the combinatorial explosion problem.
Therefore, partitioned scheduling is useful in capturing
the complexity and reducing an unnecessarily conser-
vative design to reduce the design cost of practical
automotive systems. Although partitioned scheduling
may suffer from an unbalanced workload and unsta-
ble timing constraints of several high-priority messages,
this shortcoming is less important than the above three
advantages.

2) When a large-scale CAN cluster is configured with a
dual-core gateway, the WCRTs obtained using parti-
tioned scheduling is acceptable. The four-core gateway
is a reasonable option in eliminating the bottleneck
of the message-processing in the gateway. In this sit-
uation, all message-processing tasks are interfered by
at most two high-priority message-processing tasks
(240 μs−160 μs = 80 μs) using partitioned schedul-
ing. Consequently, the message can go through the
gateway immediately with a small message-processing
delay.

VII. CONCLUSION

In this paper, we proposed two WCRT analysis methods
for message-processing tasks based on global and partitioned
scheduling paradigms, respectively, in the multicore auto-
motive gateways and evaluate them by experiments. The
correctness of the proposed analysis methods are verified by
proofs. We conclude that partitioned scheduling is better than
global scheduling for multicore automotive gateways with
respect to the AUTOSAR specification, WCRT reduction, and
timing precision. We also observed that a four-core gateway
can eliminate the bottleneck of the message-processing with
a small message-processing delay. The future work will be
the WCRT analysis for general real-time tasks with multiple

execution units by extending the proposed methods in this
paper.
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