Received: 2 May 2016

Revised: 17 August 2016

Accepted: 23 September 2016

DOI 10.1002/cpe.4024

SPECIAL ISSUE PAPER

WILEY

Schedule length minimization of parallel applications with
energy consumption constraints using heuristics on
heterogeneous distributed systems

Guoqi Xiel2 | Xiongren Xiaol? | Renfalil? | Keqin Lil?®

1College of Computer Science and Electronic
Engineering, Hunan University, Changsha,
China

2Key Laboratory for Embedded and Network
Computing of Hunan Province, Changsha,
China

3Department of Computer Science, State
University of New York, Albany, NY, USA

Correspondence

Guogi Xie, College of Computer Science and
Electronic Engineering, Hunan University,
Changsha, Hunan 410082, China.

Email: xggman@hnu.edu.cn

Funding Information

National Key Research and Development Plan
of China, Grant/Award Number:
2012AA01A301-01 and 2016YFB0200405;
National Natural Science Foundation of China,
Grant/Award Number: 61432005, 61173036,
61300037, 61370095, 61300039, 61502162,
61379115, 61502405, 61402170 and
61370097; China Postdoctoral Science
Foundation, Grant/Award Number:
2016M592422

1 | INTRODUCTION

1.1 | Background

Summary

Energy consumption is one of the primary design constraints in heterogeneous parallel and dis-
tributed systems ranging from small embedded devices to large-scale data centers. The problem
of minimizing the schedule length of an energy consumption-constrained parallel application has
been studied recently in homogeneous systems with a shared memory. To adopt the heterogeneity
and distribution of high-performance computing systems, this study solves the problem of mini-
mizing the schedule length of an energy consumption-constrained parallel application in hetero-
geneous distributed systems based on a dynamic voltage and frequency scaling energy-efficient
designtechnique. The aforementioned problemis divided into 2 subproblems in this study, namely,
satisfying energy consumption constraint and minimizing schedule length. The first subproblem
is solved by transferring the energy consumption constraint of the application to that of each
task, whereas the second subproblem is solved by heuristically scheduling each task with low time
complexity. Experiments using both fast Fourier transform and Gaussian elimination parallel appli-
cations show that the actual energy consumption values do not always exceed but are close to the
given energy consumption constraints. In addition, the minimum schedule lengths are generated

using the proposed algorithm.

KEYWORDS

energy consumption, heterogeneous systems, parallel applications, schedule length

running to explore the trade-off between energy consumption and
execution time.1-3

A parallel application with precedence-constrained tasks at a high
level of heterogeneous distributed systems is described by a directed

Recent trends in the microprocessor industry have important impli-
cations for the design of high-performance computing systems.
Performance is improved while keeping energy consumption to a mini-
mum by increasing the number of heterogeneous processors and cores.
This trend has reached the deployment stage in heterogeneous paral-
lel and distributed systems, which range from small embedded devices
to large-scale data centers. A number of heterogeneous processors
and cores in these systems are expected to increase dramatically in
the near future. For these systems, energy consumption is one of the
primary design constraints. The popular energy consumption optimiza-
tion technique, namely, dynamic voltage and frequency scaling (DVFS),
achieves energy-efficient optimization by simultaneously scaling

down the supply voltage and frequency of a processor while tasks are

acyclic graph (DAG),%-¢ where nodes represent tasks and edges repre-
sent communication messages between tasks. Reducing the scheduling
length (also called makespan) for fastest execution of a DAG-based
parallel application is the main concern in system performance.*”-?
The schedule length is represented as the time span that from the
start time instant of first task to the finish time instant of the last
task. Scheduling tasks on heterogeneous processors with the objective
of minimizing the schedule length of a DAG-based parallel applica-
tion is a well-known nondeterministic polynomial-hard optimization
problem, and numerous heuristic list scheduling algorithms have been
proposed to generate near-optimal solutions of the problem.4-¢ Sim-
ilarly, minimizing schedule length of a DAG-based parallel application

Concurrency Computat: Pract Exper 2016; 1-10

wileyonlinelibrary.com/journal/cpe

Copyright © 2016 John Wiley & Sons, Ltd. | 1

http://dx.doi.org/10.1002/cpe.4024

2L WiLEY

XIEETAL.

with energy consumption constraint on heterogeneous distributed sys-
temsis also anondeterministic polynomial-hard optimization problem;
however, to the best of our knowledge, this problem has not been
studied before.

1.2 | Related work

An energy-efficient design technique based on DVFS was first intro-
duced in the work of Weiser et al.1° This work inspired substan-
tial further investigations on energy consumption optimization for
scheduling independent or precedence-constrained tasks on a unipro-
cessor or multiprocessors.2311-15 | j16 stydied the energy-aware task
scheduling of independent sequential tasks in homogeneous multipro-
cessors as combinatorial optimization problems. Rusu et all” simulta-
neously addressed 3 constraints (ie, energy, deadline, and reward) in
both homogeneous and heterogeneous systems. Li et al8 studied the
problem of scheduling a collection of independent tasks with deadlines
and energy consumption constraints in heterogeneous systems.

The aforementioned studies are restricted to independent tasks.
However, parallel applications, such as fast Fourier transform (FFT)
and Gaussian elimination applications?# with precedence-constrained
tasks, are widely used in high-performance heterogeneous distributed
computing systems. Zong et all? considered energy-aware dupli-
cation scheduling algorithms for a parallel application in homoge-
neous systems. Lee and Zomaya?° presented the energy-conscious
scheduling (ECS) algorithm to implement joint minimization between
schedule length and energy consumption for a parallel application
in heterogeneous distributed systems. Khan and Zomaya? and Li3
addressed the problem of minimizing energy consumption with a
schedule length constraint for a parallel application in homogeneous
systems. The problem of minimizing the schedule length of an energy
consumption-constrained application with precedence-constrained
sequential® and parallel tasks (ie, a parallel application)?2! was solved.
These 2 studies were interested only in homogeneous systems with a
shared memory and could not be applied to heterogeneous distributed
systems with communication time between any 2 tasks. The current
study aims to achieve the objective of minimizing the schedule length
of an energy consumption-constrained parallel applicationin heteroge-
neous distributed systems.

Other related studies also involve the schedule length or energy con-
sumption. Arabnejad and Barbosa?2 presented a budget constrained
scheduling algorithm for parallel applications on heterogeneous sys-
tems. Zhang et al23 studied the problem of maximizing the reliability
of energy consumption-constrained parallel applications on heteroge-
neous systems. Huang et al?* and Tang et al?> studied the problem
of minimizing energy consumption of a schedule length constrained
parallel application on heterogeneous systems. Zhang et al?¢ stud-
ied the deadline-driven flow scheduling scheme in multi-resource
environments.

1.3 | Our contributions

The problem of minimizing the schedule length of an energy
consumption-constrained parallel application in heterogeneous
distributed systems is divided into 2 subproblems, namely, satisfying
energy consumption constraint and minimizing schedule length. The

contributions of this study are summarized as follows.

FIGURE1 A motivating example of a directed acyclic graph-based
parallel application with 10 tasks*-¢

1. Wesolve thefirst subproblem. That s, the energy consumption con-
straint of the application can always be satisfied at each task assign-
ment phase by presupposing that the unassigned tasks are assigned
to the processor with the minimum energy consumption. Conse-
quently, the energy consumption constraint of the application is
transferred to that of each task.

2. We solve the second subproblem. That is, the schedule length of
the application can be minimized by heuristically scheduling each
task with low time complexity. Hence, the earliest finish time (EFT)
is assigned to the processor.

3. We perform extensive experiments with FFT and Gaussian elim-
ination parallel applications. We determine that actual energy
consumption values do not always exceed but are close to the
given energy consumption constraints. Moreover, shorter schedule

lengths are generated using the proposed algorithm.

Therest of this paper is organized as follows. Section 2 builds related
models. Section 3 presents related preliminaries. Section 4 solves the
presented problem. Section 5 verifies the performance of the proposed

algorithm. Section 6 concludes this study.

2 | MODELS

2.1 | Application model

This study considers a system platform with fully connected hetero-
geneous multiprocessors. Let U = {uq, uy, ..., uyy} represents a set of
heterogeneous processors, where |U| denotes the size of set U. For any
set X, this study uses | X| to denote its size. A parallel application running
on processors is represented using a DAG G = (N, M, C, W).#-720 N rep-
resents a set of nodes in G, and each node n; € N indicates a task with
various execution time on different processors. M is a set of communi-
cation edges, and each edge m; ; € M refers to the communication mes-
sage from n; to n;. Accordingly, ¢;; € C represents the communication

time of m; ; if n; and n; are not assigned to the same processor. pred(n;)

XIEETAL.

WILEY——2

TABLE1 Execution time of tasks on different processors with the
maximum frequency of the parallel application in Figure 14-¢

Task ug uy us rank,

ny 14 16 9 108.000
n, 13 19 18 77.000
ns 11 13 19 80.000
Ny 13 8 17 80.000
ns 12 13 10 69.000
ng 13 16 9 63.333
ny 7 15 11 42.667
ng 5 11 14 35.667
no 18 12 20 44333
N1 21 7 16 14.667

represents the set of immediate predecessor tasks of n;. succ(n;) rep-
resents the set of immediate successor tasks of n;. The task without
a predecessor is denoted as nenyry, Whereas the task without a succes-
sor is denoted as ne. W is a [N| x |U| matrix, where w; , indicates the
execution time of n; running on u, with the maximum frequency.”

Figure 1 shows a standard motivating example of a DAG-based par-
allel application. This example has been used in numerous studies.*-¢
Table 1 is a matrix of execution time with the maximum frequency in
Figure 1. The example shows 10 tasks executed on 3 processors {uy,
Uy, Uz} Weight 14 of n, and u, in Table 1 represents the execution
time denoted by wy; = 14. Notably, the same task has varying exe-
cution time on different processors because of the heterogeneity of
the processors.* Weight 18 of edge (Figure 1) between n; and n, rep-
resents the communication time denoted as c,, if ny and n, are not
assigned to the same processor.®

2.2 | Power and energy model

Given the nearly linear relationship between voltage and frequency,
DVFS scales down voltage alongside frequency to save energy. Sim-
ilar to the works of Zhu and Aydin?’ and Zhao et al,28 we use the
term frequency change to refer to simultaneously changing voltage
and frequency. Considering a DVFS-capable system, we also adopt the
system-level power model that is widely used in 2 studies,2”-28 where
power consumption at frequency f is given by

P(f) = Ps + h(Ping + Pq) = Ps + h(Ping + Ceef™).

P, represents the static power and can only be removed by powering
off the whole system. P, refers to frequency-independent dynamic
power, which can be removed by putting the system in sleep mode.
P4 denotes frequency-dependent dynamic power that depends on fre-
quencies. h represents system state; it indicates whether dynamic
power is currently consumed in the system. When the system is active,
h = 1; otherwise, h = 0. C represents effective switching capacitance,
and mdenotes the dynamic power exponent that is greater than 2. Both
Cer and m are processor-dependent constants.

Notably, an excessive overhead that is associated with turning a sys-
tem on/off exists. P, is always consumed and unmanageable.27-28 Similar
to the aforementioned studies, the current study focuses on managing
dynamic power (ie, P;,q and Pg). Given that P4, less P4 does not

result in less energy consumption. That is, a minimum energy-efficient
frequency f.. exists27-28 and is denoted as

fee =V [m]L (1)

(m—1)Ce’
Assuming that the frequency of a processor varies from a minimum
available frequency fni, to the maximum frequency f.., the lowest
frequency that should execute a task should be fio, = Max(fmin, fee)-
Hence, any actual effective frequency f}, should belong to the scope of
flow < fh < Fmax-

Given that the number of processors in the system is |U|, and
these processors are completely heterogeneous, each processor
should have individual power parameters. In this study, we define a
frequency-independent dynamic power set as

{P1nd> P2,ind, .. Pujind }»

afrequency-dependent dynamic power set as

{P1d.P2d: --- »Puja}s

an effective switching capacitance set as

{Ciet Coets -+ > Clujef)
a dynamic power exponent set as
{my,my, ... ,my},

a minimum energy-efficient frequency set as
{fl.ees fz,ee’ LR f\U\,ee },

and an actual effective frequency set as

{fl,low, fl,m fl,ﬂs 7f1,max},
{fZ,Iow: fZ.m fz,ﬁ’ 7f2,max},
{fiurtows flures flurgs «++ > flupmax}

Then, let E(n;, uy, fy) represents the processor energy consumption of
task n; on processor uy with frequency f, ,,, which is calculated as

f max
ENy, Uk, Ficn) = Pip X Wiy X X, (2)
fih
where
P = (Peing + Cier X (fin)™) (3)

represents the dynamic power of processor uy with frequency fy p.

3 | PRELIMINARIES

3.1 | Energy consumption constraint

The execution time of each task on each processor is known; hence,
we can determine the minimum and maximum energy consumption
denoted by Ei,(n;) and E..«(n)), respectively, by traversing all the pro-
cessors. Enin(n;) and E.«(n;) are obtained by executing the tasks with
the maximum and minimum frequencies, respectively. These variables
are calculated using

Ermin(n;) = min E(n;, Uy, ficmax)- (4)
uel ’

and

* L WiLEY

XIEETAL.

Emax(ni) = max E(nia Uy, fk,ee), (5)
u ey

respectively.

The energy consumption of application G is the sum of the energy
consumption of each task; thus, we can obtain the minimum and maxi-
mum energy consumption of G as

INI
Emin(G) = Z Emin(ni)a (6)
i=1
and
IN|
Enax(G) = Z Ermax(ny), (7)

i=1
respectively.

Assume that the given energy consumption constraint of G is
Egiven(G). Then, this constraint should be larger than or equal to E,;,(G);
otherwise, Egyen(G) is always satisfied. Meanwhile, Egen(G) should be
less than or equal to .« (G); otherwise, Egjeq(G) is not always satisfied.
Therefore, this study assumes that Eg.e,(G) belongs to scopes Ep;in(G)
and E,.«(G), namely,

Emin(G) < Egiven(G) < Emax(G)- (8)

3.2 | Problem description

The problem that should be addressed in this study is to assign an
available processor with an appropriate frequency for each task while
minimizing the schedule length of the application and ensuring that the
consumed energy of the application does not exceed the energy con-
sumption constraint. The formal description of this problem is finding
the processor and frequency assignments of all the tasks to minimize

the schedule length of the application as follows:
SL(G) = AFT(nexit)y

where AFT(n.) represents the actual finish time (AFT) of the exit task
Neit SUbject to its energy consumption constraint as follows:

INI
E(G) = z E(ni’ upr(i)’ fpr(i),hz(i)) < Egiven(G)a (9)

i=1
where u,,;) and fyq n.() represent the assigned processor and frequency
of nj, respectively, and furyjow < forthzi) < Fprtmaxs FOr Vir1 < i < INLUpr
el

3.3 | Task prioritization

The task assignment order should be determined first before assign-
ing tasks to processors. Similar to the works of Topcuoglu et al* and
Lee and Zomaya,2% the upward rank value (rank,) of a task given by
Equation (10) is used as the common task priority standard. All the tasks
are arranged according to the decreasing order of rank,.

rank,(n;) =W; + max {c;; + rank,(n)}, (10)
njesucc(n;)

where w; represents the average execution time of task n;, which is cal-
U]

culated asw; = | X wiy] /|U|. Table 1 also shows the upward rank
k=1

values of all the tasks (Figure 1). Notably, n; is prepared to be assigned

only if all the predecessors of n; have been assigned to the processors.

Assume that 2 tasks n; and n; satisfy rank,(n;) > rank,(n;). If no prece-
dence constraint exists between n; and n;, then n; does not necessarily
take precedence n; to be assigned. We can draw the conclusion that the
task assignment order in G is {ny, n3, n4, ny, ns, ng, Ny, N7, Ng, N1o}.

4 | SCHEDULING POLICY

The problem of minimizing the schedule length of an energy
consumption-constrained parallel application in heterogeneous dis-
tributed systems is divided into 2 subproblems, namely, satisfying
energy consumption constraint and minimizing schedule length. We
first solve these 2 subproblems individually and then present the

algorithm by integrating the 2 subproblems.

4.1

Satisfying the energy consumption constraint

Assume that the task to be assigned is n,(), where seq(j) represents the
j-th assigned task (sequence number). Then, {Ngeq(1), Nseq2)y --- Nseqii— 1)}
represents the task set where the tasks have been assigned, whereas
{Nseqii+ 1) Nseq(j+2)r -+ » Nsequp} represents the task set where the tasks
have not been assigned. To ensure that the energy consumption con-
straint of the application is satisfied at each task assignment, we
presuppose that each task in {Neeq(i+ 1) Nseqij+2)s --- Nseqnp} 1S assigned
to the processor and frequency with the minimum energy consump-
tion. Hence, when assigning ng, the energy consumption of G is

calculated as

j-1
Eseq(j)(G) = Z E (nseq(x)’ upr(seq(x))’ fpr(seq(x)),hz(seq(x)))
x=1
IN|
+ E(”seq(jy Uy, fkjh) + z Emin(nseq(y))~
y=i+1

For any task ny,;, the actual energy consumption E(G) =
INI
> E(n, Upriiys Foriyhzy) Should be less than or equal to Egyen(G) only

i=1
if Eseq()(G) < Egiven(G). We prove the validity of this strategy in the
following paragraphs.

Theorem 1. Each task ngq in parallel application G can always find an

assigned processor and a corresponding frequency to satisfy

j-1
Eseq(j)(G) = Z E(nseq(x)7 upr(seq(x)), fpr(seq(x)),hz(seq(x)))
x=1
INI (11)
+ E(”seq(}p Uy, fk,h) + z Emin(nseq(y)) < Egiven(G)-
y=j+1

Proof We apply mathematical induction for the proof and first con-
sider the entry task ny = neq(q). In this case, all the tasks are not assigned
to processors, and application G should satisfy its energy consumption

constraint:
IN|
Eseq(i)(G) = E(nseq(i), Uy, fk,h) + Z Emin(nseq(y)) < Egiven(G)v (12)
y=2
that is, neqq) is required to satisfy
IN|
E(nseq(l)» Uy, fk,h) < Egiven(G) - 2 Emin(nseq(y))~ (13)

y=2

XIEETAL.

WILEY——2

Given that
IN|
Emin(G) = Emin(nseq(i)) + 2 Emin(nseq(y)) < Egiven(G),
y=2
then according to Equations (6) and (8), we obtain
IN|
Emin(nseq(l)) < Egiven(G) - Z Emin(nseq(y))-
y=2
The minimum value of E(Neq(1), Uk, fi n) 1S Emin(Nseq1y); thus, Ngeq(1) can find
an assigned processor to satisfy Equation (13); that is, Equation (12) is
satisfied
IN|
Eseq(l)(G) = E(nseq(l)s Uy, fk,h) + Z Emin(nseq(y)) < Egiven(G)-
y=2

Assume that j-th task ngq can find an assigned processor Up(seq() and
frequency fprseqq) hatseq(y t0 Satisfy Egien(G), then we have

j-1

Eseq(i)(G) = Z E(nseq(x)s upr(seq(x))y fpr(seq(x))jhz(seq(x)))
x=1
+ E(Mseqq Uprseaqy Foriseat hatseaty)

IN| ’
+ Z Emin(nseq(y)) < Egiven(G)

y=j+1

(14)

thatis,

J
Eseq(j)(G) = Z E(nseq(x), upr(seq(x))’ fpr(seq(x)),hz(seq(x)))
x=1

INI
+ Z Emin(nseq(y)) < Egiven(G)

y=j+1

Hence, we have

j
Z E(Nseqx)» Uprisequ)» Fortseqtoy hztsearx)
x=1
15
" (15)
< Egiven(G) - Z Emin(nseq(y))

y=j+1

For (j + 1)-th task nge(+ 1), the energy consumption of the application is

j
Evea+/(G) =), Escqns Uprisear» Fortseatonhetseatny)

x=1
INI
+ E(nseq(j+1)» Uy, fk,h) + z Emin(nseq(y))
y=j+2

j
leen that Z E(”seq(xp upr(seq(x))y fpr(seq(x)),hz(seq(x))) S

Egiven(G) -
x=1
IN|
Y Emin(Nseqyy) (Equation (15)), then we have
y=j+1
IN|
Eseq(j+1)(G) < Egiven(G) - Z Emin(nseq(y))
y=j+1
IN|
+ E(nseq0+1)v Uy, fk.h) + Z Emin(nseq(y)) . (16)
y=j+2

= Egiven(G) - Emin(nseq(i+1)) + E(nseq(j+1)a Uy, fk,h)

The minimum value of E(Ngqi+1), Uk fin) 1S ECmin(Nseqirry) When

E(Ngeqir1)s Uk Fich) = Emin(Nseqqr1)); heNce, we have

E5€q0+1)(G) < Egiven(G)v

based on Equation (16). That is, Ny 1) can also find an assigned pro-
cessor to satisfy Egen(G). Given that all the tasks can find individual
assigned processors to satisfy Egjen(G), then Theorem 1 is satisfied. [

4.2 | Minimizing schedule length

Heterogeneous EFT (HEFT) is a well-known precedence-constrained
task-scheduling algorithm based on the DAG model. It is used to reduce
schedule length to a minimum value, which is then combined with low
complexity and high performance in heterogeneous systems.*? In addi-
tion to task prioritization based on the upward rank value, task assign-
ment based on EFT is also presented because it can satisfy the local
optimal of each precedence-constrained task using the greedy policy.
The original EFT does not consider frequency adjustment, and thus, a
new EFT should be presented.

Let EST(n;, uy, fi n) and EFT(n;, uy, f n) represent the earliest start time
and EFT, respectively, of task n; on processor uy with frequency fy . The

aforementioned attributes are calculated as

EST(nentrw Uy, fk,h) =0
EST(n;, ug, i) = max(availlkl, max){AFT(nX)+c;,,} (17)

ny€pred(n;

and
fk.max

fi

availlk] is the earliest available time when processor uy is ready for task

. (18)

EFT(n;, ug, ficn) = EST(N;, Uy, ficn) + Wi X

execution, and AFT(n,) is the AFT of n, as mentioned earlier. c’xj repre-
sents the actual communication time between n, and n;. If n, and n; are
assigned to the same processor, then C;,; = 0; otherwise, C;(,,' = Cyj. N IS
assigned to the processor with minimum EFT using the inseftion—based
scheduling strategy, where n; can be inserted into the slack with the

minimum EFT.

4.3 | Scheduling algorithm

Wefirst provide the energy consumption constraint of each task before
we propose the algorithm. From Equation (11), we have

E(nseq(j)s Uy, fk,h) < Egiven(G)

j-1
— 2 ENeqny: Uprseacon: Forseaoon aseacnn)
x=1
19
" (19)
- Z Emin(nseq(y))
y=j+1
Hence, we let the energy consumption constraint of task neq,) be
Egiven(nseq(i)) = Egiven(G)
-1
- Z E(nseq(x)7 upr(seq(x)% fpy(seq(x)),hz(seq(x)))
x=1
, 20
i (20)
- Z Emin(nseq(y)),
y=j+1

then we can transfer the energy consumption constraint of the appli-
cation to that of each task. That is, we simply let nyq satisfies the

following constraint:

s L WiLEY

E(nseq(j)a Uy, fk‘h) < Egiven(nseq(j))- (21)

Hence, when assigning task n,;, we can directly consider the energy
consumption constraint Egiyen(Nseqq)) OF Nseq(y @and disregard the energy
consumption constraint of application G. In this manner, alow time com-
plexity heuristic algorithm can be established. Given that the maximum
energy consumption constraint of Ny is Emax (), Egiven (Nseq() sShould be

required to satisfy the following constraint:
E(nseq(j)’ U, fk,h) < min{Egiven(ni)s Emax(ni)}- (22)

Inspired by the preceding analysis, we propose the algorithm called
minimum schedule length with energy consumption constraint
(MSLECC) to minimize schedule length while satisfying the energy
consumption constraint of the application. The steps of MSLECC are

described in Algorithm 1.

Algorithm 1 The MSLECC Algorithm

1: Sort the tasks in a list downward_task_list by descending order of
rank, values.

2: while (there are tasks in downward_task_list) do

3: n; = downward_task_list.out();

4: Calculate E;,(n;) and E,,,(n;) using Equations 4 and 5, respec-
tively;

5: Calculate Egyen(n;) using Equation 19;

NULL, foripbeiy =
E(n;, Upriy» fpr(i),hz(i)) =0

7. for (each processor u, € U) do

6: var pr(i)y = NULL, AFT(n;)) = oo,

8: for (each frequency fy , in the scope of [fy jow.fk max]) do
9: Calculate E(n;, uy, fi) using Equation 2;
10: if (E(n;, ug, ficp) > min{ Egiyen (), Epnax (n)}) then
11: continue; // skip the processor and frequency that do not

satisfy the energy consumption constraint of n;
12: end if

13: Calculate EFT(n;, uy, fx») using Equation 18;

14: if (EFT(n;, uy, fn) < AFT(n)) then

15: pr(i) = k;

16: foriiynziy = fions

17: E(n;, Uprys Foriy hziy) = E(Ni, Uk, Fien);

18: AFT(n;) = EFT(n;, uy, fn); // select the processor and fre-
quency with the minimum EFT

19: end if

20: end for

21: endfor

22: end while

23: Calculate the actual energy consumption E(G) using Equation 9;
24: Calculate SL(G) = AFT(Neyit);

The mainidea of MSLECC is that the energy consumption constraint
of the application is transferred to that of each task. Each task simply
selects the processor and frequency with the minimum EFT to sat-
isfy its energy consumption constraint. The core details are explained
as follows.

1. Inline 6, we initialize AFT(n;) = co and E(n;, Uyry, forti pzt) = O-
In lines 7C21, we traverse all the processors and frequencies and
then select the processor with the minimum EFT for each task to
satisfy the condition of E(n;, u, fin) < Min{Egiven(N)), Emax(n))}-

XIEETAL.
TABLE2 Power parameters of processors (uj, Uy, and us)
Ug Piiind Chef my free(Ficiow) fiumax
uq 0.03 0.8 2.9 0.26 1.0
up 0.04 0.8 25 0.26 1.0
us 0.07 1.0 2.5 0.29 1.0

3. Inlines 23 and 24, we calculate the actual energy consumption E(G)
and the final schedule length SL(G), respectively.

4. Minimum schedule length with energy consumption constraint is
a heuristic algorithm, and thus, it has a low time complexity of
O(|N]? x |U| x |F|), where F represents the maximum number of dis-
crete frequencies from the lowest to the highest actual effective
frequencies. That is, MSLECC implements low time complexity and
high-performance scheduling for energy consumption-constrained
parallel applications.

4.4 | Example of the MSLECC algorithm

This section provides an example to illustrate the results using the
MSLECC algorithm. We assume that the power parameters of all the
processors are known and are shown in Table 2, where the maximum
frequency fymax for each processor is 1 and the frequency precision is
setto 0.01.

We can obtain the minimum energy-efficient frequency fy . (consid-
ered as fy o in this example) for each processor and the dynamic power
of py p using Equations (1) and (3), respectively.

We can calculate the minimum and maximum reliability values to
be E.in(G) = 20.31 and E,,(G) = 161.99 using Equations (6)
and (7), respectively. We set the energy consumption constraint of G to
Egiven(G) = 0.5 X Eqx(G) = 80.995. Table 3 provides the task assign-
ment of the parallel application in Figure 1 using MSLECC, where each
row represents a task assignment and all the tasks satisfy their indi-
vidual energy consumption constraints. Finally, the actual consumed
energy of the application is determined as E(G) = 80.9939, which is
less than and close to Egje,(G) = 80.995. The final schedule length is
SL(G) = 129.3660. This example also verifies that using MSLECC can
ensure that the actual consumed energy does not exceed the given
energy consumption constraint, namely, E(G) < Egiyen(G).

Figure 2 also shows the scheduling of parallel application G in
Figure 1 using MSLECC, where the schedule length is 121.84. The
arrows in Figure 2 represent the generated communication time
between tasks. uz has a considerable slack because if n; is assigned to

u3, then the energy consumption constraint of n; cannot be satisfied.

5 | EXPERIMENTS

5.1 | Experimental metrics

The performance metrics selected for comparison are the actual
energy consumption E(G) (Equation (9)) and the final schedule length
SL(G) of the application. The algorithms compared with our proposed
MSLECC are HEFT# and ECS?° because all 3 algorithms have the same

application model. The processor and application parameters are as

XIEETAL.

WILEY——7

TABLE3 Task assignment of the application in Figure 1 using minimum
schedule length with energy consumption constraint

N Egiven(m) Upy Forppaiy E0, PG forinzy) — AST(n;) AFT(n;)
n, 1344 u, 10 9.63 0 12

ng 20.33 us 1.0 20.33 9 28
n, 1819 u, 10 6.72 18 26
ny 19.26 uq 1.0 10.79 27 40
ng 10.92 us 1.0 10.7 28 38

ng 13.44 Uy 1.0 13.44 26 42

ng 5.4385 up 0.61 5.3606 56 75.67
n, 13188 u, 033 13177 51 722121
ng 0.8874 uq 0.26 0.8863 72.2121 91.4429
Nyo 1.8204 Up 0.26 1.8193 102.4429 129.3660

E(G) = 80.98 < Egiyen(G) = 80.9939, SL(G) = AFT(nyo) = 129.3660

ui

4w

SL(G)=129.366

uz 2

4 n
wf]

Cow

U | E

. ¥

0 10 20 30 40 50 60

»
>

|
1
|
|
1

70 80 90 100 110 120 30

FIGURE2 Scheduling of the application in Figure 1 using minimum schedule length with energy consumption constraint

follows: 10 ms < w; , < 100ms, 10 ms < ¢;; < 100 ms, 0.03 < Pyjng < 0.07,
0.8<Cyer<1.2,2.5<m < 3.0,and fy max = 1 GHz. All the frequencies are
discrete, and the precision is 0.01 GHz. All parallel applications will be
executed in a heterogeneous multiprocessor platform with 64 proces-
sors. Real parallel applications with precedence-constrained tasks are
widely used in high-performance computing, such as FFT and Gaussian
elimination.* To verify the effectiveness and feasibility of the proposed
approach, we use the aforementioned 2 types of real parallel applica-
tions to observe the results.

5.2 | FFT parallel applications

Anew parameter pis used as the size of the FFT parallel application, and
the total number of tasks is*|N| = 2x p— 1)+ p x Iogg, where p=2Y
for some integer y. Figure 3 shows an example of the FFT parallel appli-
cation with p = 8. Note that p exit tasks exist in the FFT application with
the size p. To adapt the application model of this study, we just add a vir-
tual exit task, and the last p tasks are set as the immediate predecessor
tasks of the virtual task.

Experiment 1. This experiment is conducted to compare the actual
energy consumption values and final schedule lengths of FFT parallel
applications with varying energy consumption constraints. We limit the
size of the application to p = 32 (ie, IN| = 233). Egjen(G) is transformed
from (Ein(G) + Enax(G))/10into (Erin(G) + Erax(G))/6.

As shown in Table 4, the actual energy consumption of the applica-
tions using both HEFT and ECS cannot satisfy the individual energy
consumption constraints in all the cases. Such results verify that ECS
is not designed to satisfy the energy consumption constraints of prac-
tical applications. By contrast, MSLECC can always satisfy the energy
consumption constraints and the actual energy consumption values are

increasingly close to the energy consumption constraints. For example,
when Egien(G) =4486.41KJ (1) =1W x 15),the energy consumption
values using HEFT and ECS are 8852.2 and 6049.71 KJ, respectively,
whereas that using MSLECC is 4486.41 KJ, which is considerably close
t0 4486.41 KJ. In addition, schedule lengths have been effectively con-
trolled within acceptable scopes using MSLECC to satisfy the energy
consumption constraints, although the schedule lengths obtained
using MSLECC are slightly longer than those using HEFT and ECS in
this experiment.

Experiment 2. To observe the performance at different application
scales, this experiment is conducted to compare the actual energy
consumption values and the final schedule lengths of FFT parallel
applications under varying numbers of tasks. We limit Egyen(G) to
Etextgiven(G) = (Emin(G) + Erax(G))/6. pis changed from 8 to 128; that is, the
number of tasks is changed from 33 (small scale) to 1151 (large scale).

As shown in Table 5, the energy consumption constraints and
actual energy consumption values are increased gradually with the
number of tasks. However, the actual energy consumption values of
applications using HEFT and ECS still cannot satisfy the energy con-
sumption constraints at different scales. The differences between
Egiven(G) and E(G) increase significantly with the number of tasks. By
contrast, MSLECC can always satisfy the energy consumption con-
straints, and the actual energy consumption values remain close to
the energy consumption constraints. For example, when |[N| = 1151,
the energy consumption constraint is Egen(G) = 22632.85 KJ, but
the actual energy consumption values using HEFT and ECS are
38 737.3 and 29 517.43 KJ, respectively, which clearly exceed
the given energy consumption constraint. Conversely, the actual
energy consumption using MSLECC is 22 598.84 KJ, which is close
to the given energy consumption constraint, with a difference of
only 34.01 KJ.

XIEETAL.

=
(;\
&)

®

—

&

@1

@) &) @ @)

FIGURE3 Example of the fast Fourier transform parallel application with p =8

TABLE4 Actual energy consumptions (unit: KJ) and final schedule length (unit: ms) of FFT parallel applications with

p =32 for varying energy consumption constraints

HEFT# ECS20 MSLECC
Ennin(G) Emax(G) EAve(G) E(G) SL(G) E(G) SL(G) E(G) SL(G)
654.63 26328.44 2698.30 8809.7 811 5913.40 1055.38 2698.30 1386.57
618.91 26304.68 2991.51 83925 893 5928.01 927.12 2991.50 1082.6
622.91 25829.49 3306.55 8057.6 797 5856.44 894.25 3306.53 1051.56
649.26 26372.31 3860.22 8949.7 916 6091.70 1092.67 3860.21 1311.72
629.15 26289.34 4486.41 8852.2 847 6049.71 867.21 4486.41 887.76

Abbreviations: ECS, energy-conscious scheduling; FFT, fast Fourier transform; HEFT, heterogeneous earliest finish time; MSLECC,
minimum schedule length with energy consumption constraint.

TABLE5 Actual energy consumptions (unit: KJ) and final schedule length (unit: ms) of FFT parallel applications for

varying number of tasks

HEFT# ECS20 MSLECC
p INI Eqin(G) Enax(G) Egiven(G) E(G) SL(G) E(G) SL(G) E(G) SL(G)
8 39 11262 4647.52 793.353 142552 4599 94311 537.79 79333 55384
16 95 26421 1132402 1931.37 359145 61147 241373 70871 193136 750.92
32 233 63003 2622691 447615 846399 8597 597567 92511 447614 979.77
64 511 144285 5992389 1022779 1868590 1450.6 1424124 1187.3 1021394 1162.65
128 1151 3091.14 13270598 2263285 3873737 19508 29517.43 15465 2259884 1329.0

Abbreviations: ECS, energy-conscious scheduling; FFT, fast Fourier transform; HEFT, heterogeneous earliest finish time; MSLECC,
minimum schedule length with energy consumption constraint.

In addition to satisfying the energy consumption constraints, an
interesting phenomenon is that MSLECC can also generate shorter
schedule lengths than HEFT and ECS in large-scale parallel applica-
tions (eg, IN| = 511 and |N| = 1151). For example, when |N| = 1151,
the schedule length using MSLECC is 1329 ms, which is consider-
ably less than 1950 and 1546.5 ms using HEFT and ECS, respectively.
Such results indicate that lower energy consumption does not cause
longer schedule length for large-scale parallel application if a good
algorithm can be presented. Then we can draw the following con-

clusions: (1) MSLECC is highly suitable for minimizing the schedule

length of energy consumption-constrained parallel applications and (2)
energy consumption optimization is extremely desirable and useful for

large-scale parallel applications.

5.3 | Gaussian elimination parallel applications

To further verify the performance of MSLECC, this section uses another
important real parallel application, namely, Gaussian elimination, as the

experimental object. A new parameter pis used as the matrix size of the

XIEETAL.

WILEY——2

FIGURE4 Example of the Gaussian elimination parallel application
withp=5

Gaussian elimination application, and the total number of tasks is*|N| =
”Z”T"'z. Figure 4 shows an example of the Gaussian elimination parallel
application with p=5.

Experiment 3. To observe the results in large-scale cases, similar
to that in experiment 2, this experiment is conducted to compare the
actual energy consumption values and the final schedule lengths of
Gaussian elimination parallel applications under varying numbers of
tasks. We limit Egiyen(G) t0 Egiven(G) = (Ernin(G) + Eqnax(G))/6. p is changed
from 10 to 50; that is, the number of tasks is changed from 54 (small
scale) to 1274 (large scale).

Compared with the results in Table 5 for experiment 2, the minimum
and maximum energy consumption values of Gaussian elimination par-
allel applications in Table 6 for experiment 3 are similar to those of
FFT parallel applications at the same scale levels. However, Gaussian

elimination applications have longer schedule lengths than FFT appli-

cations in all the cases. For example, when the task number exceeds
1000, the schedule lengths of the FFT and Gaussian elimination appli-
cations using MSLECC are 1329 and 6550.57 ms, respectively. The
former is merely one-fifth that of the latter. Such results indicate that
FFT applications exhibit better parallelism than Gaussian elimination
applicationsinthe structure and can generate shorter schedule lengths.
Similar to the results of the FFT applications in Table 5, the actual
energy consumption values of the applications obtained using HEFT
and ECS still cannot satisfy the energy consumption constraints in
Gaussian elimination at different scales in Table 6. However, the actual
energy consumption values obtained using MSLECC satisfy and are
close to the energy consumption constraints at different scales. Such
results indicate that regardless of the complexity of parallel appli-
cations, MSLECC can always satisfy the given energy consumption
constraints with the minimum schedule length. Moreover, MSLECC
can also generate shorter schedule lengths than HEFT and ECS for
large-scale FFT applications (eg, [N| = 464, |IN| =819, and |N| = 1274).
Such results further verify that lower energy consumption does not
cause longer schedule length for large-scale parallel applications
(whether low or high parallelism) if the MSLECC algorithm is used.
From the combined results of the FFT and Gaussian elimina-
tion applications, the proposed MSLECC is highly effective in sched-
ule length minimization to satisfy the given energy consumption
constraints. We believe that our proposed MSLECC algorithm can
effectively improve a section of energy-aware design for parallel
applications in heterogeneous distributed environments during the

design phase.

6 | CONCLUSIONS

We have developed an effective and low time complexity sched-
ule length minimization algorithm, namely, MSLECC, for energy
consumption-constrained parallel applications in heterogeneous dis-
tributed systems based on a DVFS energy-efficient design technique.
First, our algorithm can always satisfy the energy consumption con-
straint, and its correctness is verified through proofs and experiments.
Second, our MSLECC algorithm implements effective and low time
complexity task scheduling to minimize schedule length. Our MSLECC
algorithm is highly efficient in satisfying the energy consumption con-
straint and in minimizing schedule length for large-scale real parallel
applications compared with existing energy-efficient algorithms. We

believe that our MSLECC algorithm can effectively improve a section

TABLE6 Actual energy consumptions (unit: KJ) and final schedule length (unit: ms) of Gaussian elimination parallel

applications for varying number of tasks

HEFT4 ECS20 MSLECC
p INI Eqnin(G) Emax(G) Egiven(G) E(G) SL(G) E(G) SL(G) E(G) SL(G)
10 54 159.57 640348 109384 209594 885 142812 92891 109383 104173
20 209 56178 2434551 415121 880286 1923 581281 1947.68 3390.34 1967
30 464 909.66 5479822 935222 1918741 4252 1404092 3116 911686 3013.49
40 819 222393 9718526 16568.19 35433.90 6321 2491500 416331 1656819 3773.51
50 1274 374670 14849353 2537337 57099.17 7893 4004758 6550.57 2537335 6316.93

Abbreviations: ECS, energy-conscious scheduling; HEFT, heterogeneous earliest finish time; MSLECC, minimum schedule length

with energy consumption constraint.

v | WILEY

XIEETAL.

of energy-aware design for parallel applications in heterogeneous

distributed environments during the design phase.

ACKNOWLEDGMENTS

The authors would like to express their gratitude to the anonymous

reviewers for their constructive comments that have helped to improve

the quality of the manuscript.

REFERENCES

1

10.

11.

12.

13.

14.

Li K. Scheduling precedence constrained tasks with reduced pro-
cessor energy on multiprocessor computers. IEEE Trans Comput.
2012;61(12):1668-1681.

Khan SU, Zomaya AY. Handbook on Data Centers. New York: Springer;
2015.

Li K. Energy-efficient and high-performance processing of large-scale
parallel applications in data centers. Handbook on Data Centers. New
York: Springer; 2015:3-35.

Topcuoglu H, Hariri S, Wu MY. Performance-effective and
low-complexity task scheduling for heterogeneous computing. IEEE
Trans Parallel Distrib Syst. 2002;13(3):260-274.

Khan MA. Scheduling for heterogeneous systems using constrained
critical paths. Parallel Comput. 2012;38(4):175-193.

Xie G, Li R, Li K. Heterogeneity-driven end-to-end synchronized
scheduling for precedence constrained tasks and messages on net-
worked embedded systems. J Parallel Distrib Comput. 2015;83: 1-12.

Xie G, Liu L, Yang L, Li R. Scheduling trade-off of dynamic multiple
parallel workflows on heterogeneous distributed computing systems.
Concurr Comput Pract Experience. 2016:1-18.

Xie G, Zeng G, Liu L, Li R, Li K. High performance real-time schedul-
ing of multiple mixed-criticality functions in heterogeneous distributed
embedded systems. J Syst Archit. 2016:1-12.

Xie G, Zeng G, Liu L, Li R, Li K. Mixed real-time scheduling of multi-
ple dags-based applications on heterogeneous multi-core processors.
Microprocess Microsyst. 2016:1-11.

Weiser M, Welch B, Demers A, Shenker S. Scheduling for reduced cpu
energy. Mobile Computing. New York: Springer; 1996:449-471.

Mahapatra RN, Zhao W. An energy-efficient slack distribution tech-
nique for multimode distributed real-time embedded systems. IEEE
Trans Parallel Distrib Syst. 2005;16(7):650-662.

Zhong X, Xu C-Z. Energy-aware modeling and scheduling for dynamic
voltage scaling with statistical real-time guarantee. IEEE Trans Comput.
2007;56(3):358-372.

Quan G, Hu XS. Energy efficient dvs schedule for fixed-priority
real-time systems. ACM Trans Embedded Comput Syst.
2007;6(4):150-151.
Zhuo J, Chakrabarti C. Energy-efficient dynamic task schedul-
ing algorithms for dvs systems. ACM Trans Embedded Comput Syst.
2008;7(2):421-434.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

Han J-J, Wu X, Zhu D, Jin H, Yang LT, Gaudiot J-L.
Synchronization-aware energy management for VFI-based multicore
real-time systems. IEEE Trans Comput. 2012;61(12):1682-1696.

Li K. Performance analysis of power-aware task scheduling algorithms
on multiprocessor computers with dynamic voltage and speed. IEEE
Trans Parallel Distrib Syst. 2008;19(11):1484-1497.

Rusu C, Melhem R, Mossé D. Maximizing rewards for real-time applica-
tions with energy constraints. ACM Trans Embedded Comput Syst (TECS).
2003;2(4):537-559.

Li K, Tang X, Li K. Energy-efficient stochastic task scheduling on
heterogeneous computing systems. IEEE Trans Parallel Distrib Syst.
2014;25(11):2867-2876.

Zong Z,Manzanares A, Ruan X, Qin X. Ead and pebd: two energy-aware

duplication scheduling algorithms for parallel tasks on homogeneous
clusters. IEEE Trans Comput. 2011;60(3):360-374.

Lee YC, Zomaya AY. Energy conscious scheduling for distributed com-
puting systems under different operating conditions. IEEE Trans Parallel
Distrib Syst.2011;22(8):1374-1381.

Li K. Power and performance management for parallel computationsin
clouds and data centers. J Comput Syst Sci. 2016;82(2):174-190.

Arabnejad H, Barbosa JG. A budget constrained scheduling algorithm
for workflow applications. J Grid Comput. 2014;12(4):665-679.

Zhang L, Li K, Xu Y, Mei J, Zhang F, Li K. Maximizing reliability with
energy conservation for parallel task scheduling in a heterogeneous
cluster. Inf Sci. 2015;319: 113-131.

HuangQ,SuS, Li J,Xu P, Shuang K, Huang X. Enhanced energy-efficient
scheduling for parallel applications in cloud. Proceedings of the 2012
12th IEEE/ACM International Symposium on Cluster, Cloud and Grid
Computing (ccgrid 2012), IEEE Computer Society, Ottawa, Canada;
2012:781-786.

Tang Z, Qi L, Cheng Z, Li K, Khan SU, Li K. An energy-efficient task
scheduling algorithm in DVFS-enabled cloud environment. J Grid Com-
put. 2016;14(1):55-74.

Zhang J, Li K, Guo D, Qi H, Li W, Jin Y. MDFS: deadline-driven
flow scheduling scheme in multi-resource environments. IEEE Trans
Multi-Scale Comput Syst. 2015;1(4):207-219.

Zhu D, Aydin H. Reliability-aware energy management for periodic
real-time tasks. IEEE Trans Comput. 2009;58(10):1382-1397.

Zhao B, Aydin H, Zhu D. Shared recovery for energy efficiency and reli-
ability enhancements in real-time applications with precedence con-
straints. ACM Trans Des Autom Electron Syst. 2013;18(2):99-109.

How to cite this article: Xie, G, Xiao, X,, Li, R., and Li, K.
(2016), Schedule Length Minimization of Parallel Applications
with Energy Consumption Constraints using Heuristics on Het-
erogeneous Distributed Systems, Concurrency Computat.: Pract.

Exper, doi:10.1002/cpe.4024.

http://dx.doi.org/10.1002/cpe.4024

	Schedule length minimization of parallel applications with energy consumption constraints using heuristics on heterogeneous distributed systems
	Abstract
	INTRODUCTION
	Background
	Related work
	Our contributions

	MODELS
	Application model
	Power andenergy model

	PRELIMINARIES
	Energy consumption constraint
	Problem description
	Task prioritization

	SCHEDULING POLICY
	Satisfying theenergy consumption constraint
	Minimizing schedule length
	Scheduling algorithm
	Example ofthe MSLECC algorithm

	EXPERIMENTS
	Experimental metrics
	FFT parallel applications
	Gaussian elimination parallel applications

	CONCLUSIONS
	References

