
Received: 2 May 2016 Revised: 17 August 2016 Accepted: 23 September 2016

DOI 10.1002/cpe.4024

S P E C I A L I S S U E P A P E R

Schedule length minimization of parallel applications with
energy consumption constraints using heuristics on
heterogeneous distributed systems

Guoqi Xie1,2 Xiongren Xiao1,2 Renfa Li1,2 Keqin Li1,3

1College of Computer Science and Electronic

Engineering, Hunan University, Changsha,

China
2Key Laboratory for Embedded and Network

Computing of Hunan Province, Changsha,

China
3Department of Computer Science, State

University of New York, Albany, NY, USA

Correspondence

Guoqi Xie, College of Computer Science and

Electronic Engineering, Hunan University,

Changsha, Hunan 410082, China.

Email: xgqman@hnu.edu.cn

Funding Information

National Key Research and Development Plan

of China, Grant/Award Number:

2012AA01A301-01 and 2016YFB0200405;

National Natural Science Foundation of China,

Grant/Award Number: 61432005, 61173036,

61300037, 61370095, 61300039, 61502162,

61379115, 61502405, 61402170 and

61370097; China Postdoctoral Science

Foundation, Grant/Award Number:

2016M592422

Summary

Energy consumption is one of the primary design constraints in heterogeneous parallel and dis-

tributed systems ranging from small embedded devices to large-scale data centers. The problem

of minimizing the schedule length of an energy consumption-constrained parallel application has

been studied recently in homogeneous systems with a shared memory. To adopt the heterogeneity

and distribution of high-performance computing systems, this study solves the problem of mini-

mizing the schedule length of an energy consumption-constrained parallel application in hetero-

geneous distributed systems based on a dynamic voltage and frequency scaling energy-efficient

design technique. The aforementioned problem is divided into 2 subproblems in this study, namely,

satisfying energy consumption constraint and minimizing schedule length. The first subproblem

is solved by transferring the energy consumption constraint of the application to that of each

task, whereas the second subproblem is solved by heuristically scheduling each task with low time

complexity. Experiments using both fast Fourier transform and Gaussian elimination parallel appli-

cations show that the actual energy consumption values do not always exceed but are close to the

given energy consumption constraints. In addition, the minimum schedule lengths are generated

using the proposed algorithm.

KEYWORDS

energy consumption, heterogeneous systems, parallel applications, schedule length

1 INTRODUCTION

1.1 Background

Recent trends in the microprocessor industry have important impli-

cations for the design of high-performance computing systems.

Performance is improved while keeping energy consumption to a mini-

mum by increasing the number of heterogeneous processors and cores.

This trend has reached the deployment stage in heterogeneous paral-

lel and distributed systems, which range from small embedded devices

to large-scale data centers. A number of heterogeneous processors

and cores in these systems are expected to increase dramatically in

the near future. For these systems, energy consumption is one of the

primary design constraints. The popular energy consumption optimiza-

tion technique, namely, dynamic voltage and frequency scaling (DVFS),

achieves energy-efficient optimization by simultaneously scaling

down the supply voltage and frequency of a processor while tasks are

running to explore the trade-off between energy consumption and

execution time.1–3

A parallel application with precedence-constrained tasks at a high

level of heterogeneous distributed systems is described by a directed

acyclic graph (DAG),4–6 where nodes represent tasks and edges repre-

sent communication messages between tasks. Reducing the scheduling

length (also called makespan) for fastest execution of a DAG-based

parallel application is the main concern in system performance.4,7–9

The schedule length is represented as the time span that from the

start time instant of first task to the finish time instant of the last

task. Scheduling tasks on heterogeneous processors with the objective

of minimizing the schedule length of a DAG-based parallel applica-

tion is a well-known nondeterministic polynomial–hard optimization

problem, and numerous heuristic list scheduling algorithms have been

proposed to generate near-optimal solutions of the problem.4–6 Sim-

ilarly, minimizing schedule length of a DAG-based parallel application

Concurrency Computat: Pract Exper 2016; 1–10 wileyonlinelibrary.com/journal/cpe Copyright © 2016 John Wiley & Sons, Ltd. 1

http://dx.doi.org/10.1002/cpe.4024

2 XIE ET AL.

with energy consumption constraint on heterogeneous distributed sys-

tems is also a nondeterministic polynomial–hard optimization problem;

however, to the best of our knowledge, this problem has not been

studied before.

1.2 Related work

An energy-efficient design technique based on DVFS was first intro-

duced in the work of Weiser et al.10 This work inspired substan-

tial further investigations on energy consumption optimization for

scheduling independent or precedence-constrained tasks on a unipro-

cessor or multiprocessors.2,3,11–15 Li16 studied the energy-aware task

scheduling of independent sequential tasks in homogeneous multipro-

cessors as combinatorial optimization problems. Rusu et al17 simulta-

neously addressed 3 constraints (ie, energy, deadline, and reward) in

both homogeneous and heterogeneous systems. Li et al18 studied the

problem of scheduling a collection of independent tasks with deadlines

and energy consumption constraints in heterogeneous systems.

The aforementioned studies are restricted to independent tasks.

However, parallel applications, such as fast Fourier transform (FFT)

and Gaussian elimination applications2,4 with precedence-constrained

tasks, are widely used in high-performance heterogeneous distributed

computing systems. Zong et al19 considered energy-aware dupli-

cation scheduling algorithms for a parallel application in homoge-

neous systems. Lee and Zomaya20 presented the energy-conscious

scheduling (ECS) algorithm to implement joint minimization between

schedule length and energy consumption for a parallel application

in heterogeneous distributed systems. Khan and Zomaya2 and Li3

addressed the problem of minimizing energy consumption with a

schedule length constraint for a parallel application in homogeneous

systems. The problem of minimizing the schedule length of an energy

consumption-constrained application with precedence-constrained

sequential1 and parallel tasks (ie, a parallel application)2,21 was solved.

These 2 studies were interested only in homogeneous systems with a

shared memory and could not be applied to heterogeneous distributed

systems with communication time between any 2 tasks. The current

study aims to achieve the objective of minimizing the schedule length

of an energy consumption-constrained parallel application in heteroge-

neous distributed systems.

Other related studies also involve the schedule length or energy con-

sumption. Arabnejad and Barbosa22 presented a budget constrained

scheduling algorithm for parallel applications on heterogeneous sys-

tems. Zhang et al23 studied the problem of maximizing the reliability

of energy consumption-constrained parallel applications on heteroge-

neous systems. Huang et al24 and Tang et al25 studied the problem

of minimizing energy consumption of a schedule length constrained

parallel application on heterogeneous systems. Zhang et al26 stud-

ied the deadline-driven flow scheduling scheme in multi-resource

environments.

1.3 Our contributions

The problem of minimizing the schedule length of an energy

consumption-constrained parallel application in heterogeneous

distributed systems is divided into 2 subproblems, namely, satisfying

energy consumption constraint and minimizing schedule length. The

contributions of this study are summarized as follows.

FIGURE 1 A motivating example of a directed acyclic graph–based
parallel application with 10 tasks4–6

1. We solve the first subproblem. That is, the energy consumption con-

straint of the application can always be satisfied at each task assign-

ment phase by presupposing that the unassigned tasks are assigned

to the processor with the minimum energy consumption. Conse-

quently, the energy consumption constraint of the application is

transferred to that of each task.

2. We solve the second subproblem. That is, the schedule length of

the application can be minimized by heuristically scheduling each

task with low time complexity. Hence, the earliest finish time (EFT)

is assigned to the processor.

3. We perform extensive experiments with FFT and Gaussian elim-

ination parallel applications. We determine that actual energy

consumption values do not always exceed but are close to the

given energy consumption constraints. Moreover, shorter schedule

lengths are generated using the proposed algorithm.

The rest of this paper is organized as follows. Section 2 builds related

models. Section 3 presents related preliminaries. Section 4 solves the

presented problem. Section 5 verifies the performance of the proposed

algorithm. Section 6 concludes this study.

2 MODELS

2.1 Application model

This study considers a system platform with fully connected hetero-

geneous multiprocessors. Let U = {u1, u2,… , u|U|} represents a set of

heterogeneous processors, where |U| denotes the size of set U. For any

set X, this study uses |X| to denote its size. A parallel application running

on processors is represented using a DAG G = (N, M, C, W).4–7,20 N rep-

resents a set of nodes in G, and each node ni ∈ N indicates a task with

various execution time on different processors. M is a set of communi-

cation edges, and each edge mi, j ∈ M refers to the communication mes-

sage from ni to nj. Accordingly, ci, j ∈ C represents the communication

time of mi, j if ni and nj are not assigned to the same processor. pred(ni)

XIE ET AL. 3

TABLE 1 Execution time of tasks on different processors with the
maximum frequency of the parallel application in Figure 14–6

Task u1 u2 u3 ranku

n1 14 16 9 108.000

n2 13 19 18 77.000

n3 11 13 19 80.000

n4 13 8 17 80.000

n5 12 13 10 69.000

n6 13 16 9 63.333

n7 7 15 11 42.667

n8 5 11 14 35.667

n9 18 12 20 44.333

n10 21 7 16 14.667

represents the set of immediate predecessor tasks of ni. succ(ni) rep-

resents the set of immediate successor tasks of ni. The task without

a predecessor is denoted as nentry, whereas the task without a succes-

sor is denoted as nexit. W is a |N| × |U| matrix, where wi, k indicates the

execution time of ni running on uk with the maximum frequency.7

Figure 1 shows a standard motivating example of a DAG-based par-

allel application. This example has been used in numerous studies.4–6

Table 1 is a matrix of execution time with the maximum frequency in

Figure 1. The example shows 10 tasks executed on 3 processors {u1,

u2, u3}. Weight 14 of n1 and u1 in Table 1 represents the execution

time denoted by w1,1 = 14. Notably, the same task has varying exe-

cution time on different processors because of the heterogeneity of

the processors.4 Weight 18 of edge (Figure 1) between n1 and n2 rep-

resents the communication time denoted as c1,2 if n1 and n2 are not

assigned to the same processor.6

2.2 Power and energy model

Given the nearly linear relationship between voltage and frequency,

DVFS scales down voltage alongside frequency to save energy. Sim-

ilar to the works of Zhu and Aydin27 and Zhao et al,28 we use the

term frequency change to refer to simultaneously changing voltage

and frequency. Considering a DVFS-capable system, we also adopt the

system-level power model that is widely used in 2 studies,27,28 where

power consumption at frequency f is given by

P(f) = Ps + h(Pind + Pd) = Ps + h(Pind + Ceffm).

Ps represents the static power and can only be removed by powering

off the whole system. Pind refers to frequency-independent dynamic

power, which can be removed by putting the system in sleep mode.

Pd denotes frequency-dependent dynamic power that depends on fre-

quencies. h represents system state; it indicates whether dynamic

power is currently consumed in the system. When the system is active,

h = 1; otherwise, h = 0. Cef represents effective switching capacitance,

and m denotes the dynamic power exponent that is greater than 2. Both

Cef and m are processor-dependent constants.

Notably, an excessive overhead that is associated with turning a sys-

tem on/off exists. Ps is always consumed and unmanageable.27,28 Similar

to the aforementioned studies, the current study focuses on managing

dynamic power (ie, Pind and Pd). Given that Pind, less Pd does not

result in less energy consumption. That is, a minimum energy-efficient

frequency fee exists27,28 and is denoted as

fee =
√
[m]

Pind

(m − 1)Cef
. (1)

Assuming that the frequency of a processor varies from a minimum

available frequency fmin to the maximum frequency fmax, the lowest

frequency that should execute a task should be flow = max(fmin, fee).
Hence, any actual effective frequency fh should belong to the scope of

f low ⩽ fh ⩽ fmax.

Given that the number of processors in the system is |U|, and

these processors are completely heterogeneous, each processor

should have individual power parameters. In this study, we define a

frequency-independent dynamic power set as

{P1,ind,P2,ind,… ,P|U|,ind},

a frequency-dependent dynamic power set as

{P1,d,P2,d, … ,P|U|,d},
an effective switching capacitance set as

{C1,ef,C2,ef, … ,C|U|,ef},

a dynamic power exponent set as

{m1,m2, … ,m|U|},
a minimum energy-efficient frequency set as

{f1,ee, f2,ee, … , f|U|,ee},

and an actual effective frequency set as

⎧⎪⎪⎨⎪⎪⎩
{f1,low, f1,𝛼 , f1,𝛽 , … , f1,max},
{f2,low, f2,𝛼 , f2,𝛽 , … , f2,max},
… ,

{f|U|,low, f|U|,𝛼 , f|U|,𝛽 , … , f|U|,max}

⎫⎪⎪⎬⎪⎪⎭
.

Then, let E(ni, uk , fk, h) represents the processor energy consumption of

task ni on processor uk with frequency fk, h, which is calculated as

E(ni, uk, fk,h) = Pk,h × wi,k ×
fk,max

fk,h
, (2)

where

Pk,h =
(

Pk,ind + Ck,ef × (fk,h)mk
)

(3)

represents the dynamic power of processor uk with frequency fk, h.

3 PRELIMINARIES

3.1 Energy consumption constraint

The execution time of each task on each processor is known; hence,

we can determine the minimum and maximum energy consumption

denoted by Emin(ni) and Emax(ni), respectively, by traversing all the pro-

cessors. Emin(ni) and Emax(ni) are obtained by executing the tasks with

the maximum and minimum frequencies, respectively. These variables

are calculated using

Emin(ni) = min
uk∈U

E(ni, uk, fk,max), (4)

and

4 XIE ET AL.

Emax(ni) = max
uk∈U

E(ni, uk, fk,ee), (5)

respectively.

The energy consumption of application G is the sum of the energy

consumption of each task; thus, we can obtain the minimum and maxi-

mum energy consumption of G as

Emin(G) =
|N|∑
i=1

Emin(ni), (6)

and

Emax(G) =
|N|∑
i=1

Emax(ni), (7)

respectively.

Assume that the given energy consumption constraint of G is

Egiven(G). Then, this constraint should be larger than or equal to Emin(G);
otherwise, Egiven(G) is always satisfied. Meanwhile, Egiven(G) should be

less than or equal to Emax(G); otherwise, Egiven(G) is not always satisfied.

Therefore, this study assumes that Egiven(G) belongs to scopes Emin(G)
and Emax(G), namely,

Emin(G) ⩽ Egiven(G) ⩽ Emax(G). (8)

3.2 Problem description

The problem that should be addressed in this study is to assign an

available processor with an appropriate frequency for each task while

minimizing the schedule length of the application and ensuring that the

consumed energy of the application does not exceed the energy con-

sumption constraint. The formal description of this problem is finding

the processor and frequency assignments of all the tasks to minimize

the schedule length of the application as follows:

SL(G) = AFT(nexit),

where AFT(nexit) represents the actual finish time (AFT) of the exit task

nexit subject to its energy consumption constraint as follows:

E(G) =
|N|∑
i=1

E(ni, upr(i), fpr(i),hz(i)) ⩽ Egiven(G), (9)

where upr(i) and fpr(i),hz(i) represent the assigned processor and frequency

of ni, respectively, and fpr(i),low ⩽ fpr(i),hz(i) ⩽ fpr(i),max, for ∀i:1 ⩽ i ⩽ |N|,upr(i)

∈ U.

3.3 Task prioritization

The task assignment order should be determined first before assign-

ing tasks to processors. Similar to the works of Topcuoglu et al4 and

Lee and Zomaya,20 the upward rank value (ranku) of a task given by

Equation (10) is used as the common task priority standard. All the tasks

are arranged according to the decreasing order of ranku.

ranku(ni) = wi + max
nj∈succ(ni)

{ci,j + ranku(nj)}, (10)

where wi represents the average execution time of task ni, which is cal-

culated as wi =

(|U|∑
k=1

wi,k

)
∕|U|. Table 1 also shows the upward rank

values of all the tasks (Figure 1). Notably, ni is prepared to be assigned

only if all the predecessors of ni have been assigned to the processors.

Assume that 2 tasks ni and nj satisfy ranku(ni) > ranku(nj). If no prece-

dence constraint exists between ni and nj, then ni does not necessarily

take precedence nj to be assigned. We can draw the conclusion that the

task assignment order in G is {n1, n3, n4, n2, n5, n6, n9, n7, n8, n10}.

4 SCHEDULING POLICY

The problem of minimizing the schedule length of an energy

consumption-constrained parallel application in heterogeneous dis-

tributed systems is divided into 2 subproblems, namely, satisfying

energy consumption constraint and minimizing schedule length. We

first solve these 2 subproblems individually and then present the

algorithm by integrating the 2 subproblems.

4.1 Satisfying the energy consumption constraint

Assume that the task to be assigned is nseq(j), where seq(j) represents the

j-th assigned task (sequence number). Then, {nseq(1), nseq(2),… ,nseq(j − 1)}

represents the task set where the tasks have been assigned, whereas

{nseq(j + 1), nseq(j + 2),… , nseq(|N|)} represents the task set where the tasks

have not been assigned. To ensure that the energy consumption con-

straint of the application is satisfied at each task assignment, we

presuppose that each task in {nseq(j + 1), nseq(j + 2),… ,nseq(|N|)} is assigned

to the processor and frequency with the minimum energy consump-

tion. Hence, when assigning nseq(j), the energy consumption of G is

calculated as

Eseq(j)(G) =
j−1∑
x=1

E(nseq(x), upr(seq(x)), fpr(seq(x)),hz(seq(x)))

+ E(nseq(j), uk, fk,h) +
|N|∑

y=j+1

Emin(nseq(y)).

For any task nseq(j), the actual energy consumption E(G) =|N|∑
i=1

E(ni, upr(i), fpr(i),hz(i)) should be less than or equal to Egiven(G) only

if Eseq(j)(G) ⩽ Egiven(G). We prove the validity of this strategy in the

following paragraphs.

Theorem 1. Each task nseq(j) in parallel application G can always find an

assigned processor and a corresponding frequency to satisfy

Eseq(j)(G) =
j−1∑
x=1

E(nseq(x), upr(seq(x)), fpr(seq(x)),hz(seq(x)))

+ E(nseq(j), uk, fk,h) +
|N|∑

y=j+1

Emin(nseq(y)) ⩽ Egiven(G).
(11)

Proof. We apply mathematical induction for the proof and first con-

sider the entry task n1 =nseq(1). In this case, all the tasks are not assigned

to processors, and application G should satisfy its energy consumption

constraint:

Eseq(1)(G) = E(nseq(1), uk, fk,h) +
|N|∑

y=2

Emin(nseq(y)) ⩽ Egiven(G), (12)

that is, nseq(1) is required to satisfy

E(nseq(1), uk, fk,h) ⩽ Egiven(G) −
|N|∑

y=2

Emin(nseq(y)). (13)

XIE ET AL. 5

Given that

Emin(G) = Emin(nseq(1)) +
|N|∑

y=2

Emin(nseq(y)) ⩽ Egiven(G),

then according to Equations (6) and (8), we obtain

Emin(nseq(1)) ⩽ Egiven(G) −
|N|∑

y=2

Emin(nseq(y)).

The minimum value of E(nseq(1), uk , fk, h) is Emin(nseq(1)); thus, nseq(1) can find

an assigned processor to satisfy Equation (13); that is, Equation (12) is

satisfied

Eseq(1)(G) = E(nseq(1), uk, fk,h) +
|N|∑

y=2

Emin(nseq(y)) ⩽ Egiven(G).

Assume that j-th task nseq(j) can find an assigned processor upr(seq(j)) and

frequency fpr(seq(j)),hz(seq(j)) to satisfy Egiven(G), then we have

Eseq(j)(G) =
j−1∑
x=1

E(nseq(x), upr(seq(x)), fpr(seq(x)),hz(seq(x)))

+ E(nseq(j), upr(seq(j)), fpr(seq(j)),hz(seq(j)))

+
|N|∑

y=j+1

Emin(nseq(y)) ⩽ Egiven(G)

, (14)

that is,

Eseq(j)(G) =
j∑

x=1

E(nseq(x), upr(seq(x)), fpr(seq(x)),hz(seq(x)))

+
|N|∑

y=j+1

Emin(nseq(y)) ⩽ Egiven(G)
.

Hence, we have

j∑
x=1

E(nseq(x), upr(seq(x)), fpr(seq(x)),hz(seq(x)))

⩽ Egiven(G) −
|N|∑

y=j+1

Emin(nseq(y))

. (15)

For (j + 1)-th task nseq(j + 1), the energy consumption of the application is

Eseq(j+1)(G) =
j∑

x=1

E(nseq(x), upr(seq(x)), fpr(seq(x)),hz(seq(x)))

+ E(nseq(j+1), uk, fk,h) +
|N|∑

y=j+2

Emin(nseq(y))
.

Given that
j∑

x=1
E(nseq(x), upr(seq(x)), fpr(seq(x)),hz(seq(x))) ⩽ Egiven(G) −

|N|∑
y=j+1

Emin(nseq(y)) (Equation (15)), then we have

Eseq(j+1)(G) ⩽ Egiven(G) −
|N|∑

y=j+1

Emin(nseq(y))

+ E(nseq(j+1), uk, fk,h) +
|N|∑

y=j+2

Emin(nseq(y))

= Egiven(G) − Emin(nseq(j+1)) + E(nseq(j+1), uk, fk,h)

. (16)

The minimum value of E(nseq(j + 1), uk , fk, h) is ECmin(nseq(j+1)) when

E(nseq(j+1), uk, fk,h) = Emin(nseq(j+1)); hence, we have

Eseq(j+1)(G) ⩽ Egiven(G),

based on Equation (16). That is, nseq(j + 1) can also find an assigned pro-

cessor to satisfy Egiven(G). Given that all the tasks can find individual

assigned processors to satisfy Egiven(G), then Theorem 1 is satisfied.

4.2 Minimizing schedule length

Heterogeneous EFT (HEFT) is a well-known precedence-constrained

task-scheduling algorithm based on the DAG model. It is used to reduce

schedule length to a minimum value, which is then combined with low

complexity and high performance in heterogeneous systems.4,7 In addi-

tion to task prioritization based on the upward rank value, task assign-

ment based on EFT is also presented because it can satisfy the local

optimal of each precedence-constrained task using the greedy policy.

The original EFT does not consider frequency adjustment, and thus, a

new EFT should be presented.

Let EST(ni, uk , fk, h) and EFT(ni, uk , fk, h) represent the earliest start time

and EFT, respectively, of task ni on processor uk with frequency fk, h. The

aforementioned attributes are calculated as{
EST(nentry, uk, fk,h) = 0
EST(ni, uk, fk,h) = max(avail[k], max

nx∈pred(ni)
{AFT(nx) + c

′

x,i
} (17)

and

EFT(ni, uk, fk,h) = EST(ni, uk, fk,h) + wi,k ×
fk,max

fk,h
. (18)

avail[k] is the earliest available time when processor uk is ready for task

execution, and AFT(nx) is the AFT of nx as mentioned earlier. c
′

x,i
repre-

sents the actual communication time between nx and ni. If nx and ni are

assigned to the same processor, then c
′

x,i
= 0; otherwise, c

′

x,i
= cx,i. ni is

assigned to the processor with minimum EFT using the insertion-based

scheduling strategy, where ni can be inserted into the slack with the

minimum EFT.

4.3 Scheduling algorithm

We first provide the energy consumption constraint of each task before

we propose the algorithm. From Equation (11), we have

E(nseq(j), uk, fk,h) ⩽ Egiven(G)

−
j−1∑
x=1

E(nseq(x), upr(seq(x)), fpr(seq(x)),hz(seq(x)))

−
|N|∑

y=j+1

Emin(nseq(y))

. (19)

Hence, we let the energy consumption constraint of task nseq(y) be

Egiven(nseq(j)) = Egiven(G)

−
j−1∑
x=1

E(nseq(x), upr(seq(x)), fpr(seq(x)),hz(seq(x)))

−
|N|∑

y=j+1

Emin(nseq(y)),

, (20)

then we can transfer the energy consumption constraint of the appli-

cation to that of each task. That is, we simply let nseq(j) satisfies the

following constraint:

6 XIE ET AL.

E(nseq(j), uk, fk,h) ⩽ Egiven(nseq(j)). (21)

Hence, when assigning task nseq(j), we can directly consider the energy

consumption constraint Egiven(nseq(j)) of nseq(j) and disregard the energy

consumption constraint of application G. In this manner, a low time com-

plexity heuristic algorithm can be established. Given that the maximum

energy consumption constraint of nseq(j) is Emax(ni), Egiven(nseq(j)) should be

required to satisfy the following constraint:

E(nseq(j), uk, fk,h) ⩽ min{Egiven(ni), Emax(ni)}. (22)

Inspired by the preceding analysis, we propose the algorithm called

minimum schedule length with energy consumption constraint

(MSLECC) to minimize schedule length while satisfying the energy

consumption constraint of the application. The steps of MSLECC are

described in Algorithm 1.

The main idea of MSLECC is that the energy consumption constraint

of the application is transferred to that of each task. Each task simply

selects the processor and frequency with the minimum EFT to sat-

isfy its energy consumption constraint. The core details are explained

as follows.

1. In line 6, we initialize AFT(ni) =∞ and E(ni, upr(i), fpr(i),hz(i)) = 0.

2. In lines 7Ċ21, we traverse all the processors and frequencies and

then select the processor with the minimum EFT for each task to

satisfy the condition of E(ni, uk, fk,h) ⩽ min{Egiven(ni), Emax(ni)}.

TABLE 2 Power parameters of processors (u1, u2, and u3)

uk Pk,ind Ck,ef mk fk,ee(fk,low) fk,max

u1 0.03 0.8 2.9 0.26 1.0

u2 0.04 0.8 2.5 0.26 1.0

u3 0.07 1.0 2.5 0.29 1.0

3. In lines 23 and 24, we calculate the actual energy consumption E(G)

and the final schedule length SL(G), respectively.

4. Minimum schedule length with energy consumption constraint is

a heuristic algorithm, and thus, it has a low time complexity of

O(|N|2 × |U| × |F|), where F represents the maximum number of dis-

crete frequencies from the lowest to the highest actual effective

frequencies. That is, MSLECC implements low time complexity and

high-performance scheduling for energy consumption-constrained

parallel applications.

4.4 Example of the MSLECC algorithm

This section provides an example to illustrate the results using the

MSLECC algorithm. We assume that the power parameters of all the

processors are known and are shown in Table 2, where the maximum

frequency fk,max for each processor is 1 and the frequency precision is

set to 0.01.

We can obtain the minimum energy-efficient frequency fk,ee (consid-

ered as fk,low in this example) for each processor and the dynamic power

of pk, h using Equations (1) and (3), respectively.

We can calculate the minimum and maximum reliability values to

be Emin(G) = 20.31 and Emax(G) = 161.99 using Equations (6)

and (7), respectively. We set the energy consumption constraint of G to

Egiven(G) = 0.5 × Emax(G) = 80.995. Table 3 provides the task assign-

ment of the parallel application in Figure 1 using MSLECC, where each

row represents a task assignment and all the tasks satisfy their indi-

vidual energy consumption constraints. Finally, the actual consumed

energy of the application is determined as E(G) = 80.9939, which is

less than and close to Egiven(G) = 80.995. The final schedule length is

SL(G) = 129.3660. This example also verifies that using MSLECC can

ensure that the actual consumed energy does not exceed the given

energy consumption constraint, namely, E(G) ⩽ Egiven(G).

Figure 2 also shows the scheduling of parallel application G in

Figure 1 using MSLECC, where the schedule length is 121.84. The

arrows in Figure 2 represent the generated communication time

between tasks. u3 has a considerable slack because if n7 is assigned to

u3, then the energy consumption constraint of n7 cannot be satisfied.

5 EXPERIMENTS

5.1 Experimental metrics

The performance metrics selected for comparison are the actual

energy consumption E(G) (Equation (9)) and the final schedule length

SL(G) of the application. The algorithms compared with our proposed

MSLECC are HEFT4 and ECS20 because all 3 algorithms have the same

application model. The processor and application parameters are as

XIE ET AL. 7

TABLE 3 Task assignment of the application in Figure 1 using minimum
schedule length with energy consumption constraint

ni Egiven(ni) upr(i) fpr(i),hz(i) E(ni, pr(i),fpr(i),hz(i)) AST(ni) AFT(ni)

n1 13.44 u3 1.0 9.63 0 12

n3 20.33 u3 1.0 20.33 9 28

n4 18.19 u2 1.0 6.72 18 26

n2 19.26 u1 1.0 10.79 27 40

n5 10.92 u3 1.0 10.7 28 38

n6 13.44 u2 1.0 13.44 26 42

n9 5.4385 u2 0.61 5.3606 56 75.67

n7 1.3188 u1 0.33 1.3177 51 72.2121

n8 0.8874 u1 0.26 0.8863 72.2121 91.4429

n10 1.8204 u2 0.26 1.8193 102.4429 129.3660

E(G) = 80.98 ⩽ Egiven(G) = 80.9939, SL(G) = AFT(n10) = 129.3660

FIGURE 2 Scheduling of the application in Figure 1 using minimum schedule length with energy consumption constraint

follows: 10 ms⩽wi, k ⩽100 ms, 10 ms⩽ ci, j ⩽100 ms, 0.03⩽Pk,ind ⩽0.07,

0.8⩽Ck,ef ⩽1.2, 2.5⩽mk ⩽3.0, and fk,max =1 GHz. All the frequencies are

discrete, and the precision is 0.01 GHz. All parallel applications will be

executed in a heterogeneous multiprocessor platform with 64 proces-

sors. Real parallel applications with precedence-constrained tasks are

widely used in high-performance computing, such as FFT and Gaussian

elimination.4 To verify the effectiveness and feasibility of the proposed

approach, we use the aforementioned 2 types of real parallel applica-

tions to observe the results.

5.2 FFT parallel applications

A new parameter𝜌 is used as the size of the FFT parallel application, and

the total number of tasks is4|N| = (2 × 𝜌 − 1) + 𝜌 × log𝜌

2
, where 𝜌 = 2y

for some integer y. Figure 3 shows an example of the FFT parallel appli-

cation with 𝜌=8. Note that 𝜌 exit tasks exist in the FFT application with

the size 𝜌. To adapt the application model of this study, we just add a vir-

tual exit task, and the last 𝜌 tasks are set as the immediate predecessor

tasks of the virtual task.

Experiment 1. This experiment is conducted to compare the actual

energy consumption values and final schedule lengths of FFT parallel

applications with varying energy consumption constraints. We limit the

size of the application to 𝜌 = 32 (ie, |N| = 233). Egiven(G) is transformed

from (Emin(G) + Emax(G))∕10 into (Emin(G) + Emax(G))∕6.

As shown in Table 4, the actual energy consumption of the applica-

tions using both HEFT and ECS cannot satisfy the individual energy

consumption constraints in all the cases. Such results verify that ECS

is not designed to satisfy the energy consumption constraints of prac-

tical applications. By contrast, MSLECC can always satisfy the energy

consumption constraints and the actual energy consumption values are

increasingly close to the energy consumption constraints. For example,

when Egiven(G)=4486.41 KJ (1 J =1 W × 1 s), the energy consumption

values using HEFT and ECS are 8852.2 and 6049.71 KJ, respectively,

whereas that using MSLECC is 4486.41 KJ, which is considerably close

to 4486.41 KJ. In addition, schedule lengths have been effectively con-

trolled within acceptable scopes using MSLECC to satisfy the energy

consumption constraints, although the schedule lengths obtained

using MSLECC are slightly longer than those using HEFT and ECS in

this experiment.

Experiment 2. To observe the performance at different application

scales, this experiment is conducted to compare the actual energy

consumption values and the final schedule lengths of FFT parallel

applications under varying numbers of tasks. We limit Egiven(G) to

Etextgiven(G)= (Emin(G) + Emax(G))/6. 𝜌 is changed from 8 to 128; that is, the

number of tasks is changed from 33 (small scale) to 1151 (large scale).

As shown in Table 5, the energy consumption constraints and

actual energy consumption values are increased gradually with the

number of tasks. However, the actual energy consumption values of

applications using HEFT and ECS still cannot satisfy the energy con-

sumption constraints at different scales. The differences between

Egiven(G) and E(G) increase significantly with the number of tasks. By

contrast, MSLECC can always satisfy the energy consumption con-

straints, and the actual energy consumption values remain close to

the energy consumption constraints. For example, when |N| = 1151,

the energy consumption constraint is Egiven(G) = 22632.85 KJ, but

the actual energy consumption values using HEFT and ECS are

38 737.3 and 29 517.43 KJ, respectively, which clearly exceed

the given energy consumption constraint. Conversely, the actual

energy consumption using MSLECC is 22 598.84 KJ, which is close

to the given energy consumption constraint, with a difference of

only 34.01 KJ.

8 XIE ET AL.

FIGURE 3 Example of the fast Fourier transform parallel application with 𝜌= 8

TABLE 4 Actual energy consumptions (unit: KJ) and final schedule length (unit: ms) of FFT parallel applications with
𝜌= 32 for varying energy consumption constraints

HEFT4 ECS20 MSLECC

Emin(G) Emax(G) Egiven(G) E(G) SL(G) E(G) SL(G) E(G) SL(G)

654.63 26328.44 2698.30 8809.7 811 5913.40 1055.38 2698.30 1386.57

618.91 26304.68 2991.51 8392.5 893 5928.01 927.12 2991.50 1082.6

622.91 25829.49 3306.55 8057.6 797 5856.44 894.25 3306.53 1051.56

649.26 26372.31 3860.22 8949.7 916 6091.70 1092.67 3860.21 1311.72

629.15 26289.34 4486.41 8852.2 847 6049.71 867.21 4486.41 887.76

Abbreviations: ECS, energy-conscious scheduling; FFT, fast Fourier transform; HEFT, heterogeneous earliest finish time; MSLECC,
minimum schedule length with energy consumption constraint.

TABLE 5 Actual energy consumptions (unit: KJ) and final schedule length (unit: ms) of FFT parallel applications for
varying number of tasks

HEFT4 ECS20 MSLECC

𝜌 |N| Emin(G) Emax(G) Egiven(G) E(G) SL(G) E(G) SL(G) E(G) SL(G)

8 39 112.62 4647.52 793.353 1425.52 459.9 943.11 537.79 793.33 553.84

16 95 264.21 11 324.02 1931.37 3591.45 611.47 2413.73 708.71 1931.36 750.92

32 233 630.03 26 226.91 4476.15 8463.99 859.7 5975.67 925.11 4476.14 979.77

64 511 1442.85 59 923.89 10 227.79 18 685.90 1450.6 14 241.24 1187.3 10 213.94 1162.65

128 1151 3091.14 132 705.98 22 632.85 38 737.37 1950.8 29 517.43 1546.5 22 598.84 1329.0

Abbreviations: ECS, energy-conscious scheduling; FFT, fast Fourier transform; HEFT, heterogeneous earliest finish time; MSLECC,
minimum schedule length with energy consumption constraint.

In addition to satisfying the energy consumption constraints, an

interesting phenomenon is that MSLECC can also generate shorter

schedule lengths than HEFT and ECS in large-scale parallel applica-

tions (eg, |N| = 511 and |N| = 1151). For example, when |N| = 1151,

the schedule length using MSLECC is 1329 ms, which is consider-

ably less than 1950 and 1546.5 ms using HEFT and ECS, respectively.

Such results indicate that lower energy consumption does not cause

longer schedule length for large-scale parallel application if a good

algorithm can be presented. Then we can draw the following con-

clusions: (1) MSLECC is highly suitable for minimizing the schedule

length of energy consumption-constrained parallel applications and (2)

energy consumption optimization is extremely desirable and useful for

large-scale parallel applications.

5.3 Gaussian elimination parallel applications

To further verify the performance of MSLECC, this section uses another

important real parallel application, namely, Gaussian elimination, as the

experimental object. A new parameter 𝜌 is used as the matrix size of the

XIE ET AL. 9

FIGURE 4 Example of the Gaussian elimination parallel application
with 𝜌= 5

Gaussian elimination application, and the total number of tasks is4|N| =
𝜌2+𝜌−2

2
. Figure 4 shows an example of the Gaussian elimination parallel

application with 𝜌= 5.

Experiment 3. To observe the results in large-scale cases, similar

to that in experiment 2, this experiment is conducted to compare the

actual energy consumption values and the final schedule lengths of

Gaussian elimination parallel applications under varying numbers of

tasks. We limit Egiven(G) to Egiven(G) = (Emin(G) + Emax(G))/6. 𝜌 is changed

from 10 to 50; that is, the number of tasks is changed from 54 (small

scale) to 1274 (large scale).

Compared with the results in Table 5 for experiment 2, the minimum

and maximum energy consumption values of Gaussian elimination par-

allel applications in Table 6 for experiment 3 are similar to those of

FFT parallel applications at the same scale levels. However, Gaussian

elimination applications have longer schedule lengths than FFT appli-

cations in all the cases. For example, when the task number exceeds

1000, the schedule lengths of the FFT and Gaussian elimination appli-

cations using MSLECC are 1329 and 6550.57 ms, respectively. The

former is merely one-fifth that of the latter. Such results indicate that

FFT applications exhibit better parallelism than Gaussian elimination

applications in the structure and can generate shorter schedule lengths.

Similar to the results of the FFT applications in Table 5, the actual

energy consumption values of the applications obtained using HEFT

and ECS still cannot satisfy the energy consumption constraints in

Gaussian elimination at different scales in Table 6. However, the actual

energy consumption values obtained using MSLECC satisfy and are

close to the energy consumption constraints at different scales. Such

results indicate that regardless of the complexity of parallel appli-

cations, MSLECC can always satisfy the given energy consumption

constraints with the minimum schedule length. Moreover, MSLECC

can also generate shorter schedule lengths than HEFT and ECS for

large-scale FFT applications (eg, |N| = 464, |N| = 819, and |N| = 1274).

Such results further verify that lower energy consumption does not

cause longer schedule length for large-scale parallel applications

(whether low or high parallelism) if the MSLECC algorithm is used.

From the combined results of the FFT and Gaussian elimina-

tion applications, the proposed MSLECC is highly effective in sched-

ule length minimization to satisfy the given energy consumption

constraints. We believe that our proposed MSLECC algorithm can

effectively improve a section of energy-aware design for parallel

applications in heterogeneous distributed environments during the

design phase.

6 CONCLUSIONS

We have developed an effective and low time complexity sched-

ule length minimization algorithm, namely, MSLECC, for energy

consumption-constrained parallel applications in heterogeneous dis-

tributed systems based on a DVFS energy-efficient design technique.

First, our algorithm can always satisfy the energy consumption con-

straint, and its correctness is verified through proofs and experiments.

Second, our MSLECC algorithm implements effective and low time

complexity task scheduling to minimize schedule length. Our MSLECC

algorithm is highly efficient in satisfying the energy consumption con-

straint and in minimizing schedule length for large-scale real parallel

applications compared with existing energy-efficient algorithms. We

believe that our MSLECC algorithm can effectively improve a section

TABLE 6 Actual energy consumptions (unit: KJ) and final schedule length (unit: ms) of Gaussian elimination parallel
applications for varying number of tasks

HEFT4 ECS20 MSLECC

𝜌 |N| Emin(G) Emax(G) Egiven(G) E(G) SL(G) E(G) SL(G) E(G) SL(G)

10 54 159.57 6403.48 1093.84 2095.94 885 1428.12 928.91 1093.83 1041.73

20 209 561.78 24 345.51 4151.21 8802.86 1923 5812.81 1947.68 3390.34 1967

30 464 909.66 54 798.22 9352.22 19 187.41 4252 14 040.92 3116 9116.86 3013.49

40 819 2223.93 97 185.26 16 568.19 35 433.90 6321 24 915.00 4163.31 16 568.19 3773.51

50 1274 3746.70 148 493.53 25 373.37 57 099.17 7893 40 047.58 6550.57 25 373.35 6316.93

Abbreviations: ECS, energy-conscious scheduling; HEFT, heterogeneous earliest finish time; MSLECC, minimum schedule length
with energy consumption constraint.

10 XIE ET AL.

of energy-aware design for parallel applications in heterogeneous

distributed environments during the design phase.

ACKNOWLEDGMENTS

The authors would like to express their gratitude to the anonymous

reviewers for their constructive comments that have helped to improve

the quality of the manuscript.

REFERENCES

1. Li K. Scheduling precedence constrained tasks with reduced pro-
cessor energy on multiprocessor computers. IEEE Trans Comput.
2012;61(12):1668–1681.

2. Khan SU, Zomaya AY. Handbook on Data Centers. New York: Springer;
2015.

3. Li K. Energy-efficient and high-performance processing of large-scale
parallel applications in data centers. Handbook on Data Centers. New
York: Springer; 2015:3–35.

4. Topcuoglu H, Hariri S, Wu M-Y. Performance-effective and
low-complexity task scheduling for heterogeneous computing. IEEE
Trans Parallel Distrib Syst. 2002;13(3):260–274.

5. Khan MA. Scheduling for heterogeneous systems using constrained
critical paths. Parallel Comput. 2012;38(4):175–193.

6. Xie G, Li R, Li K. Heterogeneity-driven end-to-end synchronized
scheduling for precedence constrained tasks and messages on net-
worked embedded systems. J Parallel Distrib Comput. 2015;83: 1–12.

7. Xie G, Liu L, Yang L, Li R. Scheduling trade-off of dynamic multiple
parallel workflows on heterogeneous distributed computing systems.
Concurr Comput Pract Experience. 2016:1–18.

8. Xie G, Zeng G, Liu L, Li R, Li K. High performance real-time schedul-
ing of multiple mixed-criticality functions in heterogeneous distributed
embedded systems. J Syst Archit. 2016:1–12.

9. Xie G, Zeng G, Liu L, Li R, Li K. Mixed real-time scheduling of multi-
ple dags-based applications on heterogeneous multi-core processors.
Microprocess Microsyst. 2016:1–11.

10. Weiser M, Welch B, Demers A, Shenker S. Scheduling for reduced cpu
energy. Mobile Computing. New York: Springer; 1996:449–471.

11. Mahapatra RN, Zhao W. An energy-efficient slack distribution tech-
nique for multimode distributed real-time embedded systems. IEEE
Trans Parallel Distrib Syst. 2005;16(7):650–662.

12. Zhong X, Xu C-Z. Energy-aware modeling and scheduling for dynamic
voltage scaling with statistical real-time guarantee. IEEE Trans Comput.
2007;56(3):358–372.

13. Quan G, Hu XS. Energy efficient dvs schedule for fixed-priority
real-time systems. ACM Trans Embedded Comput Syst.
2007;6(4):150–151.

14. Zhuo J, Chakrabarti C. Energy-efficient dynamic task schedul-
ing algorithms for dvs systems. ACM Trans Embedded Comput Syst.
2008;7(2):421–434.

15. Han J-J, Wu X, Zhu D, Jin H, Yang LT, Gaudiot J-L.
Synchronization-aware energy management for VFI-based multicore
real-time systems. IEEE Trans Comput. 2012;61(12):1682–1696.

16. Li K. Performance analysis of power-aware task scheduling algorithms
on multiprocessor computers with dynamic voltage and speed. IEEE
Trans Parallel Distrib Syst. 2008;19(11):1484–1497.

17. Rusu C, Melhem R, Mossé D. Maximizing rewards for real-time applica-
tions with energy constraints. ACM Trans Embedded Comput Syst (TECS).
2003;2(4):537–559.

18. Li K, Tang X, Li K. Energy-efficient stochastic task scheduling on
heterogeneous computing systems. IEEE Trans Parallel Distrib Syst.
2014;25(11):2867–2876.

19. Zong Z, Manzanares A, Ruan X, Qin X. Ead and pebd: two energy-aware
duplication scheduling algorithms for parallel tasks on homogeneous
clusters. IEEE Trans Comput. 2011;60(3):360–374.

20. Lee YC, Zomaya AY. Energy conscious scheduling for distributed com-
puting systems under different operating conditions. IEEE Trans Parallel
Distrib Syst. 2011;22(8):1374–1381.

21. Li K. Power and performance management for parallel computations in
clouds and data centers. J Comput Syst Sci. 2016;82(2):174–190.

22. Arabnejad H, Barbosa JG. A budget constrained scheduling algorithm
for workflow applications. J Grid Comput. 2014;12(4):665–679.

23. Zhang L, Li K, Xu Y, Mei J, Zhang F, Li K. Maximizing reliability with
energy conservation for parallel task scheduling in a heterogeneous
cluster. Inf Sci. 2015;319: 113–131.

24. Huang Q, Su S, Li J, Xu P, Shuang K, Huang X. Enhanced energy-efficient
scheduling for parallel applications in cloud. Proceedings of the 2012
12th IEEE/ACM International Symposium on Cluster, Cloud and Grid
Computing (ccgrid 2012), IEEE Computer Society, Ottawa, Canada;
2012:781–786.

25. Tang Z, Qi L, Cheng Z, Li K, Khan SU, Li K. An energy-efficient task
scheduling algorithm in DVFS-enabled cloud environment. J Grid Com-
put. 2016;14(1):55–74.

26. Zhang J, Li K, Guo D, Qi H, Li W, Jin Y. MDFS: deadline-driven
flow scheduling scheme in multi-resource environments. IEEE Trans
Multi-Scale Comput Syst. 2015;1(4):207–219.

27. Zhu D, Aydin H. Reliability-aware energy management for periodic
real-time tasks. IEEE Trans Comput. 2009;58(10):1382–1397.

28. Zhao B, Aydin H, Zhu D. Shared recovery for energy efficiency and reli-
ability enhancements in real-time applications with precedence con-
straints. ACM Trans Des Autom Electron Syst. 2013;18(2):99–109.

How to cite this article: Xie, G., Xiao, X., Li, R., and Li, K.

(2016), Schedule Length Minimization of Parallel Applications

with Energy Consumption Constraints using Heuristics on Het-

erogeneous Distributed Systems, Concurrency Computat.: Pract.

Exper., doi:10.1002/cpe.4024.

http://dx.doi.org/10.1002/cpe.4024

	Schedule length minimization of parallel applications with energy consumption constraints using heuristics on heterogeneous distributed systems
	Abstract
	INTRODUCTION
	Background
	Related work
	Our contributions

	MODELS
	Application model
	Power andenergy model

	PRELIMINARIES
	Energy consumption constraint
	Problem description
	Task prioritization

	SCHEDULING POLICY
	Satisfying theenergy consumption constraint
	Minimizing schedule length
	Scheduling algorithm
	Example ofthe MSLECC algorithm

	EXPERIMENTS
	Experimental metrics
	FFT parallel applications
	Gaussian elimination parallel applications

	CONCLUSIONS
	References

