
39

Human-Interaction-aware Adaptive Functional Safety

Processing for Multi-Functional Automotive

Cyber-Physical Systems

GUOQI XIE, YANG BAI, and WEI WU, Hunan University

YANWEN LI, China Automotive Technology and Research Center

RENFA LI, Hunan University

KEQIN LI, State University of New York

The functional safety research for automotive cyber-physical systems (ACPS) has been studied in recent years;
however, these studies merely consider the change in the exposure of the functional safety classification and
assume that the driver’s controllability in the functional safety classification is always fixed and uncontrol-
lable. In fact, the driver’s controllability is variable during the runtime phase, such that the execution process
of safety-critical automotive functions is a human-interaction-aware process between the driver and ACPS.
To adapt to the changes in the driver’s controllability, this article studies the human-interaction-aware adap-
tive functional safety processing for multi-functional ACPS in two main phases. In the design phase, where
the driver’s controllability is fixed at the highest level (i.e., C3), we obtain the approximate optimal priority
sequence of safety-critical functions without exhausting all sequences by proposing the refined exploration
method. In the runtime phase, where the driver’s controllability level is variable (i.e., C0, C1, C2, or C3), we
propose the human-interaction-aware task remapping method to autonomously respond to the change of
the driver’s controllability. Examples and experiments confirm that the proposed adaptive functional safety
processing can reduce overall task redundancy of safety-critical automotive functions while meeting their
functional safety requirements, shorten the overall response time of safety-critical automotive functions, and
increase the slack time for non-safety-critical automotive functions.

CCS Concepts: • Computer systems organization → Embedded and cyber-physical systems;

Additional Key Words and Phrases: Automotive cyber-physical systems (ACPS), functional safety, human-
interaction-aware

This work was supported in part by the National Natural Science Foundation of China under Grant 61702172, Grant

61672217, the National Technical Committee of Auto Standardization Research Foundation of China under Grant BZ201908,

the Natural Science Foundation of Hunan Province under Grant 2018JJ3076, the Open Research Project of the State Key

Laboratory of Synthetical Automation for Process Industries (SAPI), Northeastern University, China under Grant PAL-

N201803, and the Fundamental Research Funds for the Central Universities, Hunan University, China.

Authors’ addresses: G. Xie, Y. Bai, W. Wu, and R. Li, Key Laboratory for Embedded and Cyber-Physical Systems of Hunan

Province, College of Computer Science and Electronic Engineering, Hunan University, China; emails: {xgqman, baiyang,

wu96, lirenfa}@hnu.edu.cn; Y. Li, Automotive Engineering Research Institute, China Automotive Technology and Research

Center, China; email: vliyanwen@catarc.ac.cn; K. Li, Department of Computer Science, State University of New York, New

Paltz, NY; email: blik@newpaltz.edu.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.

Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires

prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2019 Association for Computing Machinery.

2378-962X/2019/08-ART39 $15.00

https://doi.org/10.1145/3337931

ACM Transactions on Cyber-Physical Systems, Vol. 3, No. 4, Article 39. Publication date: August 2019.

mailto:permissions@acm.org
https://doi.org/10.1145/3337931

39:2 G. Xie et al.

ACM Reference format:

Guoqi Xie, Yang Bai, Wei Wu, Yanwen Li, Renfa Li, and Keqin Li. 2019. Human-Interaction-aware Adaptive
Functional Safety Processing for Multi-Functional Automotive Cyber-Physical Systems. ACM Trans. Cyber-

Phys. Syst. 3, 4, Article 39 (August 2019), 25 pages.
https://doi.org/10.1145/3337931

1 INTRODUCTION

1.1 Background

An electronic control unit (ECU) can support multiple automotive functions, and one automotive
function is distributed to multiple ECUs for execution in the integrated automotive electrical and
electronic (E/E) architecture [19, 21, 34]. In this architecture, collecting physical data from 360◦

sensors and performing control command to actuators is an end-to-end computation and commu-
nication process for some safety-critical automotive functions [19, 21, 34]. Examples of such safety-
critical automotive functions include active cruise control, lane departure warning, and collision
avoidance [19, 20, 34]. Considering the heterogeneity, interaction, and diverse nature of such an
architecture [11, 15], the joint and tight interaction between the cyber part and physical part are
required, such that multi-functional automotive cyber-physical-systems (ACPS) have been studied
[34].

Automotive functions are classified into three types in multi-functional ACPS: active safety,
passive safety, and non-safety automotive functions. The first edition of the automotive functional
safety standard ISO 26262 was released in November 2011 [2]. Currently, the second edition of ISO
26262 was released December 2018 [1]. As stated in ISO 26262, safety refers to the absence of
unreasonable risk, and risk refers to the combination of the probability of harm and the severity of
that harm [1, 2]. To visually reflect the risk degree of an automotive function, the automotive safety
integrity level (ASIL) proposed by the ISO 26262 has been adopted for a risk classification scheme.

ISO 26262 provides four ASILs (i.e., ASIL A, ASIL B, ASIL C, and ASIL D), where ASIL A and
ASIL D are the lowest and highest ASILs, respectively. In general, a high-ASIL automotive function
is more prone to be harmed and the severity of the harm is more threatening than a low-ASIL
automotive function. ISO 26262 defines three mutually orthotropic functional safety attributes
(i.e., severity, exposure, and controllability) to construct the four ASILs [2, 18]. Severity means
the extent of harm to an individual in a specific situation, exposure means the relative expected
frequency of the operational conditions, and controllability means the avoidance of the specified
harm or damage through the timely reactions of the driver involved. Different from severity and
exposure, which are related to the system (i.e., ACPS), controllability is related to the driver’s
driving state. Another interpretation is that controllability is a characteristic of the function, when
statistically considering a typical driver (i.e., controllability does not vary with the driver status).
However, the definitions in ISO 26262 are rather vague and there may be different interpretations
for them especially in the industry [12]. Overall, an ASIL is the combination of severity, exposure,
and controllability [2, 18] (refer to Section 4.1 for more details about ASIL determination based on
severity, exposure, and controllability).

1.2 Motivation

To ensure that the risk of a high-ASIL automotive function is within the acceptable range, a feasi-
ble approach is to reduce its ASIL by reducing its exposure, thereby enhancing its reliability. For
instance, some works have been studied for the functional safety enhancement [31] or functional
safety assurance [30] by changing the exposure of safety-critical automotive functions. However,
these works merely consider the change in exposure and assume that the driver’s controllability is
always fixed and uncontrollable. This is reasonable during the design phase, because the concrete

ACM Transactions on Cyber-Physical Systems, Vol. 3, No. 4, Article 39. Publication date: August 2019.

https://doi.org/10.1145/3337931

Human-Interaction-aware Adaptive Functional Safety Processing 39:3

controllability value is known only during the runtime phase. However, the driver’s controllability
is related to his/her current physical and mental state, such that it is variable during the runtime
phase. Hence, setting the controllability to be fixed and uncontrollable is quite conservative during
the runtime phase, and such conservativeness will result in a large waste of resources. For instance,
when the driver’s controllability is strong, the required system resources can be reduced accord-
ingly while the required ASIL can still be maintained. Therefore, for the cost-sensitive automotive
industry, the driver’s controllability needs to be given enough attention during the runtime phase.

Considering that the driver’s controllability has an impact on the system safety, this forms a
human-interaction process between the driver and ACPS. In addition, multi-functional ACPS also
contain some non-safety-critical automotive functions, which also require the corresponding sys-
tem resources to support their execution. To achieve human-interaction-aware functional safety
assurance, as well as optimizing the utilization of system resources during the runtime phase, it is
quite necessary for the human-interaction-aware adaptive functional safety processing for multi-
functional ACPS. Adaptive processing for ACPS should autonomously respond to environmental
or internal changes at runtime [11, 34].

1.3 Related Work

Human-interaction is one of the important aspects for CPS. In Reference [5], the authors described
the interactions between humans and CPS developed by the national institute of standards and
technology (NIST). In Reference [23], the authors elaborated potential solutions to human factors
challenges in driving automation of automobiles. Human factors in automotive engineering and
technology were widely discussed in Reference [26], which seeks to bridge the gap among au-
tomobiles, engineers, and human factors. In Reference [16], the authors provided a review and
outlook of human-interaction for automobiles. Reference [16] pointed out that it is a critical is-
sue to create safe automotive interaction that assists the driver to complete the driving task and
various non-driving tasks. In Reference [22], the authors reviewed current human vehicle interac-
tion design challenges and pointed out that the interaction has become a primary consideration in
meeting automotive user experience. In Reference [13], the authors proposed the driver, environ-
ment, software, hardware, and goal (DESH-G) model as a framework to calculate the task demand
from the situation-scenario matrix. In Reference [14], the authors showed a controllability classi-
fication evaluation method without deviation and presented examples of the evaluation of three
hazardous events in actual vehicle tests.

Although safety issues are mentioned in the above literatures, no in-depth research has been
conducted. The entire development lifecycle of ACPS includes analysis, design, implementation,
testing, runtime, and maintenance phases, and all of these phases involve functional safety man-
agement issues. The design and the runtime phases are the key phases of functional safety man-
agement research. The functional safety guarantee during the design phase generally includes
functional safety verification [35], functional safety enhancement [31], and functional safety as-
surance [30] by task scheduling. A union fast functional safety requirement verification (UFFSV)
method for a safety-critical automotive function was proposed in Reference [35] during the early
design phase. If UFFSV is passed, then the design burden can be reduced for designers based on the
verification results; otherwise, abandon the late design phase or adopt a functional safety enhance-
ment method to make the functional safety verification be passed as much as possible, as proposed
in Reference [31]. Related functional safety assurance methods were proposed in Reference [30]
based on geometric mean by assuring the reliability requirement.

Besides the functional safety management during the design phase, an adaptive dynamic sched-
uling method for mixed-criticality multi-functional ACPS during the runtime phase was proposed
in Reference [34], which refers to the relevant requirements of the newly released AUTOSAR

ACM Transactions on Cyber-Physical Systems, Vol. 3, No. 4, Article 39. Publication date: August 2019.

39:4 G. Xie et al.

adaptive platform standard [8, 9]. However, all the aforementioned works merely consider the
change in the exposure of the functional safety classification and assume that the driver’s con-
trollability of the functional safety classification is always fixed and uncontrollable. In fact, the
driver’s controllability is variable during the runtime phase, such that the execution process of
safety-critical automotive functions is a human-interaction-aware process between the driver and
ACPS as pointed earlier.

1.4 Contributions

To adapt to the change in the driver’s controllability, this article proposes a human-interaction-
aware adaptive functional safety processing methodology for multi-functional ACPS based on the
ISO 26262 standard, which is specifically developed for non-autonomous vehicles. Since the func-
tional safety standard for autonomous vehicles is still in the process of development, the research in
this article is only applicable to non-autonomous vehicles. The methodology includes the proposed
methods during the design and runtime phases. The contributions of this article are outlined below.

(1) In the design phase, where the driver’s controllability is fixed at the highest level (i.e., C3), we
obtain the approximate optimal priority sequence of safety-critical functions without exhausting
all sequences by proposing the refined exploration method. A heuristic method proposed in this
phase is a novel contribution, which determines the mapping order of functions.

(2) In the runtime phase, where the driver’s controllability level is variable (i.e., C0, C1, C2, or
C3), we propose the human-interaction-aware task remapping method to autonomously respond
to the change of the driver’s controllability.

2 MODELS

2.1 Multi-Functional ACPS

Current ACPS E/E architecture is an integrated architecture, where multiple subsystems (e.g., the
engine control subsystem, the powertrain subsystem, the body subsystem, and the entertainment
subsystem, etc.) are intergraded in the same system by a central gateway [34]. In the above subsys-
tems, the engine control subsystem and the powertrain subsystem are safety-critical subsystems,
whereas the body subsystem and the entertainment subsystem are non-safety-critical subsystems.
Considering that this article focuses on functional safety issue in ACPS, we only consider a safety-
critical subsystem (e.g., the engine control subsystem or the powertrain subsystem). In addition,
this article does not consider connected vehicles; therefore, ACPS can ignore cyber security prob-
lems caused by hackers’ attacks in this situation.

A safety-critical subsystem contains not only multiple safety-critical automotive functions but
also multiple non-safety-critical automotive functions. This article assumes that all safety-critical
automotive functions are only executed inside the subsystem in one CAN bus and do not cross
two or more subsystems, namely, all safety-critical automotive functions are not cross-domain
automotive functions, as shown in Figure 1.

An automotive function must perform its execution by interacting with the physical world
through sensors and actuators. Therefore, these sensors and actuators are connected to the corre-
sponding ECUs, as shown in Figure 1. Let U = {u1,u2, . . . ,uk , . . . ,u |U | } be the ECU set in ACPS
and these ECUs are heterogeneous (see Figure 1), where |U | is the size of U . Notice that the sen-
sors and actuators are redundant, because physical processes are compositions of many parallel
processes [34]. An automotive function typically involves end-to-end computing and communica-
tion; therefore, such function is also known as an end-to-end automotive function [34]. That is, an
end-to-end automotive function is released to collect the sensor data, then goes through the inter-
mediate computation and communication process, and, finally, is ended by sending the executive
command to the actuators.

ACM Transactions on Cyber-Physical Systems, Vol. 3, No. 4, Article 39. Publication date: August 2019.

Human-Interaction-aware Adaptive Functional Safety Processing 39:5

Fig. 1. ACPS E/E architecture in this article.

Fig. 2. Example of four automotive functions in ACPS.

Let S = {F1, F2, . . . , Fm , . . . , F |S | } be the safety-critical automotive function set in ACPS, where
Fm represents the mth automotive function. Figure 2 shows four safety-critical automotive func-
tions (i.e., F1, F2, F3, and F4) in ACPS. The functional safety attribute contains not only reliability
and real-time but also robustness and stability, and to on. In this article, we mainly focus on reliabil-
ity and real-time and assume that other functional safety attributes such as robustness and stability
are all meeting the corresponding requirements. Therefore, to meet functional safety requirements,
both reliability and real-time requirements must be simultaneously met from a perspective of func-
tional safety assurance in this article. We assume that these safety-critical automotive functions are
released simultaneously. In other words, this article considers multi-functional static scheduling
rather than multi-functional dynamic scheduling. Such cases can be found in ACPS. For instance,
integrated safety systems include the automotive functions of anti-lock braking system (ABS), ac-
celeration slip regulation (ASR), and electronic stability program (ESP). To avoid possible collisions
in an emergent state, these safety-critical automotive functions will be released simultaneously.

2.2 Automotive Function Model

A safety-critical automotive function Fm is represented by a DAG Fm = (N ,W , E,C). Fm .N repre-
sents the task set of Fm , Fm .W represents the worst-case execution time (WCET) matrix of tasks
in Fm , Fm .E represents the message set of Fm , and Fm .C represents the worst-case response time
(WCRT) set of messages in Fm .

(1) Let Fm .ni be a task (i.e., a node in DAG) in Fm .N . Considering that there are precedence
constrains among tasks, we let pred (Fm .ni) and succ (Fm .ni) be the immediate predecessor task
set and immediate successor task set, respectively, of Fm .ni . For example, we have pred (F1.n3) =
{F1.n1, F1.n2} and succ (F1.n3) = {F1.n5} in Figure 2, where F1.n1 is the entry task and is called

ACM Transactions on Cyber-Physical Systems, Vol. 3, No. 4, Article 39. Publication date: August 2019.

39:6 G. Xie et al.

Table 1. WCET Matrixes of Four Automotive

Functions in Figure 2

(a) WCET matrix of F1

Tasks F1.n1 F1.n2 F1.n3 F1.n4 F1.n5 F1.n6

u1 8 14 9 8 18 5
u2 11 13 12 15 16 10
u3 9 8 16 14 9 7

(b) WCET matrix of F2

Tasks F2.n1 F2.n2 F2.n3 F2.n4 F2.n5 F2.n6

u1 12 9 7 13 18 15
u2 8 15 12 15 10 10
u3 9 11 16 18 20 8

(c) WCET matrix of F3

Tasks F3.n1 F3.n2 F3.n3 F3.n4 F3.n5

u1 15 13 11 14 8
u2 9 16 10 6 10
u3 12 9 6 11 17

(d) WCET matrix of F4

Tasks F4.n1 F4.n2 F4.n3 F3.n4 F4.n5

u1 4 9 10 11 7
u2 10 10 7 15 10
u3 6 7 6 9 5

F1.nentry, whereas F1.n6 is the exit task and is called F1.nexit. Notice that a dummy entry or exit
task with zero-weight dependencies is added to the DAG, because there may be multiple entry or
exit tasks. For example, an automotive function (e.g., brake-by-wire) may be released in multiple
ECUs by receiving collected data from multiple sensors and is completed in multiple ECUs by
sending the performing action to multiple actuators.

(2) Let Fm .wi,k be the WCET of Fm .ni in uk . Notice that Fm .ni has different WCET values in
different ECUs, because the ECUs are heterogeneous. In this article, we assume that all the WCET
values have been obtained by the WCET analysis method [4]. Table 1 shows the WCET matrixes
of four automotive functions in Figure 2. For example, F1.w2,3 = 8 represents the WCET of F1.n2

in u3, as shown in Table 1(a).
(3) Let Fm .ei, j be a communication message (i.e., an edge in DAG) from Fm .ni to Fm .nj in Fm .E.

As shown in Figure 2, there are communication messages of F1.e1,2, F1.e1,3, F1.e1,4, F1.e2,3, F1.e2,5,
F1.e3,5, F1.e4,6, and F1.e5,6.

(4) Let Fm .ci, j ∈ C be the WCRT of Fm .ei, j . In this article, we assume that all the WCRT values
have been obtained by the WCRT analysis method [30]. As shown in Figure 2, the WCRT values
of messages F1.e1,2, F1.e1,3, F1.e1,4, F1.e2,3, F1.e2,5, F1.e3,5, F1.e4,6, and F1.e5,6 are 9, 12, 14, 9, 16,
11, 7, and 13, respectively. Notice that if Fm .ni and Fm .nj are allocated to the same ECU, then
the communication time from Fm .ni to Fm .nj is negligible, because the shared memory scheme is
employed.

(5) Both preemptive and non-preemptive scheduling are supported in ACPS [6, 7]. Considering
message scheduling in CAN bus is non-preemptive, we assume that the task scheduling in ECUs
is also non-preemptive [30, 34].

ACM Transactions on Cyber-Physical Systems, Vol. 3, No. 4, Article 39. Publication date: August 2019.

Human-Interaction-aware Adaptive Functional Safety Processing 39:7

Table 2. Classes of Probability of Exposure Regarding Duration/Probability of Exposure in ISO 26262 [2]

Exposure
Probability of

exposure
Reliability

requirement
Specified Reliability

requirement in this article

E1 Very low probability Not specified At least exceeds 0.99 0.9999

E2 Low probability <1% 0.99 0.99

E3 Medium probability [1%, 10%] >0.9 0.95

E4 High probability >10% <=0.9 0.9

2.3 Reliability Model

The reliability issue is actually the core foundation of the automotive functional safety. The
duration/probability of exposure was provided in Table B.2, Annex B of Part 3 of the first edition
of ISO 26262, as shown in Table 2 [1, 2]. Exposure is explained as the relative expected frequency
of the operational conditions, in which hazardous events may occur and cause hazards or even
injuries according to ISO 26262. Exposure is one of the functional safety attributes to construct
the ASIL. Exposure is related to random hardware failures and can be understood by the inverse
expression of reliability (i.e., exposure = 1 - reliability) [30, 31, 35]. There are two types of random
hardware faults, namely, transient faults and permanent faults. Transient faults, such as soft errors
(like bit flips), refer to failures that occur and subsequently disappear [17, 28, 36, 37]. Permanent
faults, such as a broken connection or a short connection, refer to faults that occur and remain
all the time. This article considers the transient faults of ECUs. Random hardware failures occur
unpredictably during the lifecycle of a hardware, but random hardware failure rates can be pred-
icated based on the probability distribution of random hardware faults as specified in ISO 26262
[2]. Besides, this article assumes that transient failures of ECUs follow the Poisson distribution,
which has been adopted by a lot of research works [30, 31, 35].

Let λk be the failure rate of ECU uk . The reliability value of task Fm .ni executed in uk is

R (Fm .ni ,uk) = e−λk×Fm .wi,k . (1)

Then, the exposure of ni is

exposure (Fm .ni ,uk) = 1 − R (Fm .ni ,uk) = 1 − e−λk×Fm .wi,k . (2)

We can obtain reliability requirements through the given probabilities of exposures. Table 2 lists
the reliability requirements under different exposures, where E2 has a fixed reliability requirement
value of 0.99, whereas the reliability requirements of other exposures (i.e., E1, E3, and E4) are only
given the reliability ranges, as shown in Table 2. In other words, the reliability requirements of
E1, E3, and E4 are flexible. The advantage of such flexibility is that the automakers can specify
specific reliability values according to their own needs, as long as the reliability values falls within
the scopes required in ISO 26262. Notice that the classes of the probability of exposure in ISO
26262 shown in Table 2 are informative, but not prescriptive, and leave a great deal of discretion
to designers [12]. In this article, we assume that the reliability requirement values are 0.9999, 0.95,
and 0.9 for exposures E1, E3, and E4, respectively.

Passive replication (i.e., backup/restart) and active replication are two primary-backup replica-
tion paradigms. The detailed explanations for these paradigms can be found in Reference [30, 32].
Considering that when the reliability requirement reaches as much as 0.9999, passive replication
is very difficult or almost impossible to meet such high reliability requirement. The second edition
of ISO 26262 formally introduces the concept of fault-tolerance, which means that the capability to
deliver a specified application for at least a limited time after a fault (i.e., the specified application

ACM Transactions on Cyber-Physical Systems, Vol. 3, No. 4, Article 39. Publication date: August 2019.

39:8 G. Xie et al.

Fig. 3. A bi-criteria between response time minimization and exposure minimization [35].

still works after one or more faults have occurred in the system) [1]. Thus, similarly to most works
[30, 32], this article adopts active replication to implement fault-tolerance.

Let numi (numi � |U |) be the number of replicas of Fm .ni , and the replica set of Fm .ni is
{Fm .n

1
i , Fm .n

2
i , . . . , Fm .n

numi

i }, where Fm .n
1
i is the primary and the others are the backups. By using

active replication, the reliability value of Fm .ni with numi replicas is

R (Fm .ni) = 1 −
numi∏
β=1

(
1 − R

(
Fm .n

β
i ,uecu (Fm .n

β
i)

))
, (3)

where u
ecu (Fm .n

β
i)

represents the allocated ECU of the βth replica Fm .n
β
i . The reliability value of

automotive function Fm is the product of those of all tasks [30, 32], namely,

R (Fm) =
∏

Fm .ni ∈Fm . |N |
R (Fm .ni). (4)

3 REFINED EXPLORATION DURING DESIGN PHASE

3.1 Reliability Requirement Assurance for a Function

Both reliability requirement and real-time requirement must be simultaneously assured toward
functional safety assurance for a safety-critical automotive function [35]. Figure 3 shows the bi-
criteria between response time minimization and exposure minimization (i.e., reliability maximiza-
tion) for an end-to-end automotive function [35]. In other words, gaining higher reliability means
longer response time in general.

Considering that scheduling tasks under quality of service (QoS) requirement for optimality in
multiprocessors (ECUs) is known to be NP-hard [27, 38], the shortest response time under relia-
bility requirement is hard to know in pseudo-polynomial time [30, 35]. Therefore, lower bound on
response time (i.e., approximate shortest response time) will be adopted in this article. Considering
there are four exposure levels in ISO 26262, the lower bound on response time of automotive func-
tion Fm also contains four results, namely, LB (Fm ,E1), LB (Fm ,E2), LB (Fm ,E3), and LB (Fm ,E4),
where LB (Fm ,E1) represents the lower bound on response time of automotive function Fm in ex-
posure E1. Considering that gaining higher reliability means longer response time according to
the trend in Figure 3, LB (Fm ,E1) is the longest lower bound on response time, because E1 has the
maximum reliability requirement of 0.9999, as shown in Table 2. For all safety-critical automotive
functions, we set their exposure to E1 (i.e., the reliability requirement is 0.9999) during the design
phase from a conservative and cautious perspective in this article.

ACM Transactions on Cyber-Physical Systems, Vol. 3, No. 4, Article 39. Publication date: August 2019.

Human-Interaction-aware Adaptive Functional Safety Processing 39:9

Notice that LB (Fm ,E1) must be shorter than or equal to the real-time requirement D (Fm) (i.e.,
deadline); otherwise, the automotive function cannot be completed correctly within the correct
time, resulting in a systemic failure of the automotive function. Therefore, the first step of this
article is to obtain LB (Fm ,E1), namely, the lower bound on response time of each automotive
function under the reliability requirement of 0.9999.

The verifying functional safety requirement (VFSR) method was proposed in Reference [32]
to obtain the lower bound on response time under a given reliability requirement. The idea of
VFSR is that it transfers the reliability requirement of the automotive function to the reliability
requirement of each task and then downward iteratively allocates tasks (i.e., from the entry task
to the exit task) to ECUs. In this article, we propose a new method to implement the aforementioned
objective by upward iteratively allocating tasks (i.e., from the exit task to the entry task) to ECUs.
The VFSR method is called downward fault-tolerance toward reliability assurance (DFRA), and
the proposed method in this section is called upward fault-tolerance toward reliability assurance
(UFRA). UFRA aims to optimize the response time of the automotive function while meeting the
reliability requirement. UFRA is suitable for functional safety assurance in multi-functional ACPS.
According to our practical experience, UFRA can provide enough slack time at the early time
interval compared to DFRA. Let us explain the UFRA method below.

(1) UFRA lets Fm .ns (y) be the yth downward task. ns (y) is considered the current task
to be allocated. Then, two groups are separated by Fm .ns (y) . The first group is {Fm .ns (1) ,
Fm .ns (2), . . . , Fm .ns (y−1) }, where the tasks have not been allocated to ECUs, whereas the second
group is {Fm .ns (y+1) , Fm .ns (y+2), . . . , Fm .ns (|N |) }, where the tasks have been allocated to ECUs.
Notice that all tasks of the automotive function are un-allocated in the initial state. In other words,
y is changed from Fm .|N | to 1 with 1 decrement until all tasks are allocated. Notice that we use
the words “Fm .ns (y)” and “Fm .ni ” interchangeably.

(2) The task priority (i.e., task allocation order) is based on the ascending order of the upward
rank value (i.e., upward iteration) [25, 39]. The upward rank value is calculated by

ranku (Fm .ni) = Fm .wi + max
Fm .nj ∈succ (Fm .ni)

{Fm .ci, j + ranku (Fm .nj)}. (5)

Fm .wi represents the average WCET of task Fm .ni and is calculated by

Fm .wi =
��
�
|U |∑
k=1

Fm .wi,k
��
� /|U |.

Notice that the ranku (Fm .ni) calculation is from the exit to entry tasks. ranku (Fm .ni) is a well-
studied task allocation order strategy and is widely employed in various reliability requirement
assurance approaches [30, 32, 35].

(3) Considering that the tasks in {Fm .ns (y+1) , Fm .ns (y+2), . . . , Fm .ns (|N |) } have been allocated
to specific ECUs, the actual reliability values of these tasks are known when allocating Fm .ns (y) .
However, the tasks in {Fm .ns (1) , Fm .ns (2), . . . , Fm .ns (y−1) } have not been allocated to specific ECUs.
For these un-allocated tasks, VFSR gives the upper bound on reliability [32]:

Rup (Fm .ns (x)) =
Fm . |N |
√
Rreq (Fm). (6)

Rup (Fm .ns (x)) is then pre-allocated to these un-allocated tasks. Notice that Fm .ns (x) ’s actual relia-
bility value R (Fm .ns (x)) should be close to (can be larger than, equal to, or less than) Rup (Fm .ni).

ACM Transactions on Cyber-Physical Systems, Vol. 3, No. 4, Article 39. Publication date: August 2019.

39:10 G. Xie et al.

(4) Considering that the reliability value of Rup (Fm .ns (x)) is pre-allocated to the un-allocated
tasks, the reliability of Fm is calculated by

R (Fm) =

y−1∏
x=1

Rup (Fm .ns (x)) × R (Fm .ns (y)) ×
|N |∏

z=y+1

RUFRA (Fm .ns (z)).

(5) To assure the reliability requirement Rreq (Fm), the final reliability R (Fm) must be larger than
or equal to Rreq (Fm). That is,

R (Fm) =

y−1∏
x=1

Rup (Fm .ns (x)) × R (Fm .ns (y)) ×
|N |∏

z=y+1

RUFRA (Fm .ns (z)) � Rreq (Fm). (7)

Based on Equation (7), the final reliability value of task ns (y) must meet

R (Fm .ns (y)) �
Rreq (Fm)

y−1∏
x=1

Rup (Fm .ns (x)) ×
|N |∏

z=y+1
RUFRA (Fm .ns (z))

. (8)

(6) UFRA lets the reliability requirement of task Fm .ns (y) be the right half of Equation (8), namely,

Rreq (Fm .ns (y)) =
Rreq (Fm)

y−1∏
x=1

Rup (Fm .ns (x)) ×
|N |∏

z=y+1
RUFRA (Fm .ns (z))

. (9)

Following the above steps, the reliability requirement of the automotive function is transformed
to that of each task. In other words, the Equation (4), namely,

R (Fm) =
∏

Fm .ni ∈Fm .N

(R (Fm .ni)) � Rreq (Fm)

is not the concern for reliability assurance and should be replaced by

R (Fm .ns (y)) � Rreq (Fm .ns (y)) (10)

to simplify the solution. Through mathematical induction, we can prove that the function’s reli-
ability is still assured when using approximated reliability values of the tasks that have not been
allocated. The similar proof to assure the function’s reliability through mathematical induction
has been provided in Reference [29]. Due to space limitation, this article no longer lists the proof
process, and the readers can refer to the Appendix of Reference [29].

Let LFT (Fm .n
β
i ,uk) and LST (Fm .n

β
i ,uk) be the latest finish time (LFT) and the latest start time

(LST), respectively, of the replica n
β
i in the ECU uk , namely,

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
LFT

(
Fm .n

β

exit,uk

)
=D (Fm)

LFT
(
Fm .n

β
i ,uk

)
=min

⎧⎪⎨⎪⎩
LAT [k], min

Fm .nj ∈succ (ni),γ ∈[1,numj)]

{
AST (Fm .n

γ
j) − Fm .c

′
i, j

} ⎫⎪⎬⎪⎭
(11)

and

LST
(
Fm .n

β
i ,uk

)
= LFT

(
Fm .n

β
i ,uk

)
− Fm .wi,k . (12)

LAT [k] is the latest available time (LAT) of uk in the current state and can be understood as the
end time of the last slack on uk . AST (Fm .n

γ
j) is the actual start time (AST) of the replica Fm .n

γ
j and

is calculated by

AST
(
Fm .n

γ
j

)
= LST

(
Fm .n

γ
j ,uecu (n

γ
j)

)
. (13)

ACM Transactions on Cyber-Physical Systems, Vol. 3, No. 4, Article 39. Publication date: August 2019.

Human-Interaction-aware Adaptive Functional Safety Processing 39:11

In other words, Fm .n
γ
j has different LSTs on each ECU. When Fm .n

γ
j has been assigned to the

ECU uecu (n
γ
j) , the AST of Fm .n

γ
j is equal to the LST of Fm .n

γ
j on uecu (n

γ

h
) . Fm .c

′
i, j represents the

communication from Fm .n
γ
i to Fm .n

β
j . Notice that Fm .c

′
i, j is the WCRT Fm .ci, j from Fm .n

γ
i to Fm .n

β
j

if Fm .n
γ
i and Fm .n

β
j are not allocated to the same ECU; otherwise, Fm .c

′
i, j is 0, because the shared

memory scheme is employed as explained in Section 2.2.
The final response time of Fm (e.g., RT (Fm)) is the deadline of the automotive function (e.g.,

D (Fm)) subtracting AST of the entry task Fm .nentry (i.e., AST (Fm .nentry)), and AST (Fm .nexit) is the
minimum AST among all the replicas of Fm .nentry. Therefore, we have

RT (Fm) = D (Fm) −AST (Fm .nentry) = D (Fm) − min
β ∈[1,numentry]

{AST (Fm .n
β
entry)}. (14)

The strategy of UFRA is as follows: UFRA iteratively allocates the replica of current task ni to
an available ECU with the maximum LST (Equation (12)) until the reliability requirement of ni

(Equation (9)) is met. The allocated ECU umax and corresponding LST (Fm .ni ,umax) value for Fm .ni

are determined by the following:

LST (Fm .ni ,umax) = max
uk ∈U ,uk is available

{LST (Fm .ni ,uk)} . (15)

“uk is available” means that no other replicas of Fm .ni have been allocated touk . The reason is that
allocating multiple replicas of the same task to the same ECU is not allowed in active replication.
The final number of replicas of the function is the sum of those of tasks, namely,

NR (Fm) =
Fm . |N |∑

i=1

NR (Fm .ni). (16)

NR (Fm .ni) can be obtained by the while loop in the UFRA algorithm. The detailed description of
the UFRA algorithm is shown in Algorithm 1.

ALGORITHM 1: The UFRA Algorithm

Input: Fm = (N ,W ,E,C), U , Rreq (Fm)
Output: RT (G), R (G) and related values

1: The task priority is ordered based on the increasing order of the upward rank value using Equation (5);
2: for (y ← 1;y � Fm .|N |;y++) do

3: i ← s (y);
4: Calculate Rup (Fm .ni) using Equation (6);
5: Calculate Rreq (Fm .ni) using Equation (9);
6: for (k ← 1;k � |U |;k++) do

7: Calculate R (Fm .ni ,uk) for the task Fm .ni using Equation (1);
8: Calculate LST (Fm .ni ,uk) for the task Fm .ni using Equation (15);
9: end for

10: while (R (Fm .ni) < Rreq (Fm .ni)) do

11: Select available replica nε
i and ECU uecu (Fm .nε

i) with the maximum LST;

12: Calculate R (Fm .ni) using Equation (3);
13: end while

14: end for

15: Calculate RT (Fm) using Equation (14);
16: Calculate NR (Fm) using Equation (16);
17: Calculate R (Fm) using Equation (4);

ACM Transactions on Cyber-Physical Systems, Vol. 3, No. 4, Article 39. Publication date: August 2019.

39:12 G. Xie et al.

Table 3. Task Allocations of F1 Using UFRA

ni Rreq (F1.ni) LST (F1.ni ,u1) LST (F1.ni ,u2) LST (F1.ni ,u3) numi R (F1.ni)

n6 0.99998333 245 240 243 2 0.99999686

n4 0.99996980 228 221 222 2 0.99998999

n5 0.99996315 210 214 213 3 0.99999986

n3 0.99994662 190 187 183 2 0.99999355

n2 0.99993641 157 158 162 2 0.99994426

n1 0.99997548 141 138 140 2 0.99999355
RT (F1) = 110, NR (F1) = 13, R (F1) = 0.99991807

Table 4. Properties of Four

Automotive Functions in Figure 2

Function F1 F2 F3 F4

D (Fm) 250 250 250 250
LB (Fm) 110 92 86 41
L(Fm) 140 158 164 209

Table 3 shows the task allocations of F1 using UFRA. We assume that the failure rates for three
ECUs are as follows: λ1 = 0.0001, λ2 = 0.0006, and λ3 = 0.0009. The reliability requirement of F1

is Rreq (F1) = 0.9999, which is the reliability requirement for E1 as listed in Table 2. The deadline
of F1 is D (Fm) = 250. The task priority order is F1.n6, F1.n4, F1.n5, F1.n3, F1.n2, and F1.n1.

Each row shows the reliability requirement Rreq (F1.ni), allocated ECUs with LSTs (in boxed),
number of replicas numi , and final reliability value R (F1.ni) of each task.

(1) The reliability requirement of F1.n6 is Rreq (F1.n6) = 0.99998333 calculated by Equation (9).
UFRA iteratively allocates the replica of current task F1.n6 tou1 andu3 with the maximum
LSTs of 245 and 243 until the reliability requirement of F1.n6 is met. The final reliability
value of F1.n6 is 0.99999686.

(2) The reliability requirement of F1.n4 is Rreq (F1.n4) = 0.99996980 calculated by Equation (9).
UFRA iteratively allocates the replica of current task F1.n4 tou1 andu3 with the maximum
LSTs of 228 and 222 until the reliability requirement of F1.n4 is met. The final reliability
value of F1.n4 is 0.99998999.

(3) After that F1.n5, F1.n3, F1.n2, and F1.n1 adopt the same strategy as F1.n6 and F1.n4, the
final response time of the automotive function F1 is RT (F1) = 110 calculated by Equation
(14). The final number of replicas and reliability value of the automotive function F1 are
NR (F1) = 13 and R (F1) = 0.99991807, calculated by Equations (16) and (4), respectively.

Table 4 lists the lower bounds of four automotive functions in Figure 2, where we have LB (F1) =
110, LB (F2) = 92, LB (F3) = 86, and LB (F4) = 41. In this example, the deadlines of all automotive
functions are 250, namely, D (F1) = D (F2) = D (F3) = D (F4) = 250.

3.2 Refined Exploration for Priority Sequence

Considering that ACPS contains multiple safety-critical automotive functions, we should make
as many as automotive functions be finished under their functional safety requirement in the
shared ACPS platform. Using a suitable strategy to determine the priority sequence of safety-
critical functions will directly affect the above objectives. Priority sequence of functions means to

ACM Transactions on Cyber-Physical Systems, Vol. 3, No. 4, Article 39. Publication date: August 2019.

Human-Interaction-aware Adaptive Functional Safety Processing 39:13

allocate a priority, which is a positive integer, to each automotive function, and then sort these
automotive functions according to their priority values. The higher the priority of an automotive
function, the more forward its position in the sequence. Two objectives need to be considered in
multi-functional static scheduling: (1) make as many as automotive functions be finished under
their functional safety requirements, and (2) shorten the overall response time of ACPS.

Currently, there are two priority sequence strategies widely used, namely, earliest deadline first
(EDF), which means that shorter deadline has higher priority [3], and least laxity first (LLT), which
means that less laxity has higher priority [24]. The laxity means the span value that the deadline
subtract the lower bound of the automotive function, namely,

L(Fm) = D (Fm) − LB (Fm). (17)

Table 4 shows the laxity of each automotive function, namely, L(F1) = 140, L(F2) = 158, L(F3) =
164, and L(F4) = 209. According to the summary in Reference [33], the priorities of automotive
functions are based on LLT, namely, the less the laxity value, the higher the priority. When two
automotive functions have the same LLT, then the priorities of automotive function are based
on EDF, namely, the shorter the deadline value, the higher the priority. We name such priority
sequence strategy as LLT. Therefore, the priority sequence using LLT in Figure 2 is (F1, F2, F3, F4).

The overall response time of four automotive functions using LLT is 214. However, LLT is not
the best choice in general. For example, there are a total of 4! = 24 priority sequences for four au-
tomotive functions. Table 5 shows the overall response time values of four automotive functions
for different priority sequences. By exhausting all sequences to obtain the overall response time
values in these 24 cases, we can find that (F1, F3, F2, F4) is the optimal priority sequence, which has
the minimum overall response time of 210. For ACPS with only a few automotive functions, ex-
hausting all priority sequences (i.e., the exhaustive exploration method) may be feasible. However,
ACPS usually contains dozens of automotive functions in a subsystem, and it is very unrealistic
to still use the exhaustive exploration method. For example, for a subsystem containing 10 safety-
critical automotive functions, there are a total of 10! = 3,628,800 priority sequences; however, our
experiments report that exhausting these sequences must need 1,260 days.

In summary, we have the following basic conclusions: (1) The LLT method is a simple and fast
method, but the performance is not very satisfactory; (2) The exhaustive exploration method can
find the optimal solution, but can not be applied to large-scale ACPS. To cope with the problems
when using the above methods, this article proposes a non-exhaustive exploration method to find
the approximate optimal priority sequence. “Non-exhaustive exploration” means that we skip most
of the priority sequences and only choose the approximate optimal sequence from a small number
of priority sequences. The sequence is approximately optimal, because the real optimal sequence
may be skipped.

Rule 1. Index forward from the individual last positions of the two sequences until different appli-

cation identifiers are indexed at the same index location by comparing two sequences. The sequence

with longer response time will be discarded, and the subsequence starting from the first different in-

dexed identifier in the discarded sequence will be added to the skipped subsequence set. The following

sequences ending with any such subsequence will be skipped.

In the following, we propose how to skip most of the priority sequences and explain this method
with the motivational functions in Figure 2 by Table 5.

(1) We consider the first sequence (F1, F2, F3, F4), which has the overall response time of 214.
(2) We consider the second sequence (F1, F2, F4, F3), which has the overall response time of 244.

In this case, we conduct Rule 1 that the following sequences ending with the subsequence
(F3) will be skipped.

ACM Transactions on Cyber-Physical Systems, Vol. 3, No. 4, Article 39. Publication date: August 2019.

39:14 G. Xie et al.

Table 5. Discarding and Skipping Priority Sequences for the Motivational Functions in Figure 2

function
priority

sequence

Overall
response

time

The sequences ending with the following
subsequences will be skipped

skipping
sequence?

1 (F1, F2, F3, F4) 214 no

2 (F1, F2, F4, F3) 244 (F3) no

3 (F1, F3, F2, F4) 210 (F3), (F3, F4) no

4 (F1, F3, F4, F2) 228 (F3), (F3, F4), (F2) no

5 (F1, F4, F3, F2) 247 (F3), (F3, F4), (F2) yes

6 (F1, F4, F2, F3) 247 (F3), (F3, F4), (F2) yes

7 (F2, F1, F3, F4) 217 (F3), (F3, F4), (F2) yes

8 (F2, F1, F4, F3) 235 (F3), (F3, F4), (F2) yes

9 (F2, F3, F1, F4) 232 (F3), (F3, F4), (F2), (F1, F4) no

10 (F2, F3, F4, F1) - (F3), (F3, F4), (F2), (F1, F4), (F1) no

11 (F2, F4, F3, F1) - (F3), (F3, F4), (F2), (F1, F4), (F1) yes

12 (F2, F4, F1, F3) 231 (F3), (F3, F4), (F2), (F1, F4), (F1) yes

13 (F3, F2, F1, F4) 221 (F3), (F3, F4), (F2), (F1, F4), (F1) yes

14 (F3, F2, F4, F4) 247 (F3), (F3, F4), (F2), (F2, F4), (F1) yes

15 (F3, F1, F2, F4) 221 (F3), (F3, F4), (F2), (F2, F4), (F1), (F1, F2, F4) no

16 (F3, F1, F4, F2) - (F3), (F3, F4), (F2), (F2, F4), (F1), (F1, F2, F4) yes

17 (F3, F4, F1, F2) 242 (F3), (F3, F4), (F2), (F2, F4), (F1), (F1, F2, F4) yes

18 (F3, F4, F3, F1) 244 (F3), (F3, F4), (F2), (F2, F4), (F1), (F1, F2, F4) yes

19 (F4, F2, F3, F1) - (F3), (F3, F4), (F2), (F2, F4), (F1), (F1, F2, F4) yes

20 (F4, F2, F1, F3) 224 (F3), (F3, F4), (F2), (F2, F4), (F1), (F1, F2, F4) yes

21 (F4, F3, F2, F1) - (F3), (F3, F4), (F2), (F2, F4), (F1), (F1, F2, F4) yes

22 (F4, F3, F1, F2) - (F3), (F3, F4), (F2), (F2, F4), (F1), (F1, F2, F4) yes

23 (F4, F1, F3, F4) 238 (F3), (F3, F4), (F2), (F2, F4), (F1), (F1, F2, F4) yes

24 (F4, F1, F2, F3) 245 (F3), (F3, F4), (F2), (F2, F4), (F1), (F1, F2, F4) yes

For instance, the indexed location for two sequences (F1, F2, F3, F4) and (F1, F2, F4, F3)
is the last position and the different application identifiers are F4 and F3. As the overall
response time value of sequences (F1, F2, F3, F4) and (F1, F2, F4, F3) are 214 and 244, re-
spectively, sequence (F1, F2, F4, F3) must be discarded, because it has longer response time
than sequence (F1, F2, F3, F4). Therefore, F3 will be added to the skipped subsequence set,
namely, skipped_subsequence_set = {(F3)}. The following sequences ending with (F3) will
be skipped.

(3) We consider the third sequence (F1, F3, F2, F4), which has the overall response time of 210.
As 210 is shorter than 214 of sequence (F1, F2, F3, F4), sequence (F1, F2, F3, F4) muse be
discarded. According to Rule 1, the subsequence (F3, F4) will be added to the skipped sub-
sequence set, namely, skipped_subsequence_set = {(F3), (F3, F4)}. In this case, the following
sequences ending with subsequences (F3) and (F3, F4) will be skipped.

(4) We consider the fourth sequence (F1, F3, F4, F2), which has the overall response time of
228. As 228 is longer than 210 of (F1, F3, F2, F4), sequence (F1, F3, F4, F2) must be discarded.
According to Rule 1, the subsequence (F2) will be added to the skipped subsequence set,
namely, skipped_subsequence_set = {(F3), (F3, F4), (F2)}.

(5) Considering that the fifth sequence (F1, F4, F3, F2) ends with subsequence (F2), this se-
quence is skipped. Similarity, sixth sequence (F1, F4, F2, F3) ending with subsequence (F3),

ACM Transactions on Cyber-Physical Systems, Vol. 3, No. 4, Article 39. Publication date: August 2019.

Human-Interaction-aware Adaptive Functional Safety Processing 39:15

Fig. 4. Task mapping of four functions in three ECUs during the design phase.

and the seventh sequence (F2, F1, F3, F4) ending with subsequence (F3, F4), and the eighth
(F2, F1, F4, F3) ending with subsequence (F3) will be skipped.

(6) We consider the ninth sequence (F2, F3, F1, F4), which has the overall response time of
232. As 232 is longer than 210 of sequence (F1, F3, F2, F4), sequence (F2, F3, F1, F4) must
be discarded. According to Rule 1, the subsequence (F1, F4) will be added to the skipped
subsequence set, namely, skipped_subsequence_set = {(F3), (F3, F4), (F2), (F1, F4)}.

(7) We consider the 10th sequence (F2, F3, F4, F1), the overall response time of which ex-
ceeds the deadline of 250. Therefore, sequence (F2, F3, F4, F1) must be discarded. Accord-
ing to Rule 1, the subsequence (F1) will be added to the skipped subsequence set, namely,
skipped_subsequence_set = {(F3), (F3, F4), (F2), (F1, F4), (F1)}.

(8) Similarity, the following four sequences are skipped until (F3, F1, F2, F4), which has the
overall response time of 221. As 221 is longer than 210 of (F1, F3, F2, F4), sequence (F3, F1,
F2, F4) must be discarded. According to Rule 1, the subsequence (F1, F2, F4) will be added
to the skipped subsequence set, namely, skipped_subsequence_set = {(F3), (F3, F4), (F2), (F1,
F4), (F1), (F1, F2, F4)}.

(9) All the remaining sequences are discarded, because these sequences end with one of the
subsequences of skipped_subsequence_set = {(F3), (F3, F4), (F2), (F1, F4), (F1), (F1, F2, F4)}.

Through the above process, only seven sequences are reserved (denoted with red color),
and the remaining 17 sequences are discarded. The discarded rate is 70.83%. (F1, F3, F2, F4)
is chosen as the final priority sequence, because it has the least overall response time
among the seven reserved sequences. Therefore, the above heuristic method proposed in
this phase to determine the mapping order of functions is a novel contribution.

We propose the refined exploration method shown in Algorithm 2 (i.e., the RE algorithm) to
discard most of the sequences and only selected the approximate optimal priority sequence from
the reserved small number of sequences.

Figure 4 shows the task mapping of four functions in three ECUs during the design phase using
RE when the exposure is E1 (i.e., the reliability requirement is 0.9999). As can be seen from Figure 4,
the overall response time of four functions is RT (S) = 210.

4 HUMAN-INTERACTION DURING RUNTIME PHASE

4.1 Human-Interaction Process between Driver and ACPS

Table 6 shows the severity, exposure, and controllability classifications provided by ISO 26262.
There are four controllability levels of C0 (controllable in general), C1 (simply controllable), C2
(normally controllable), and C3 (difficult to control or uncontrollable). Severity is an inherent safety
attribute of an automotive function that has been identified during the hazard analysis and risk
assessment phase, such that it will not be changed throughout the development lifecycle. Exposure
can be changed for an automotive function. In general, exposure can be reduced by increasing
redundancy to increase reliability. For example, when the reliability value is increased from 0.9 to

ACM Transactions on Cyber-Physical Systems, Vol. 3, No. 4, Article 39. Publication date: August 2019.

39:16 G. Xie et al.

Table 6. Severity, Exposure, and Controllability Classifications Provided by ISO 26262 [2]

Severity Exposure Controllability

S0 No injuries E0 Incredibly unlikely C0 Controllable in general

S1 Light to moderate injuries E1 Very low probability C1 Simply controllable

S2
Severe to life-threatening

injuries
E2 Low probability C2 Normally controllable

S3
Life-threatening to fatal

injuries
E3 Medium probability C3

Difficult to control or
uncontrollable

E4 High probability

ALGORITHM 2: The RE Algorithm

Input: U = {u1,u2, . . . ,u |U | }, S = {F1, F2, . . . , F |S | }
Output: Approximate optimal priority sequence approximate_optimal_sequence and related values

1: reserved_sequence_set ← NULL;
2: skipped_subsequence_set ← NULL;
3: approximate_optimal_sequence ← (F1, F2, . . . , F |S |−1, F |S |);
4: reserved_sequence_set . add(approximate_optimal_sequence);
5: while (there is sequence has not been considered in all sequences) do

6: Obtain a currently un-considered sequence current_sequence;
7: if (current_sequence ends with the any subsequence in skipped_subsequence_set) then

8: continue; //skip current_sequence
9: end if

10: if (RTcurrent_sequence (S) < RTapproximate_optimal_sequence (S)) then

11: reserved_sequence_set . add(current_sequence);
12: Obtain the subsequence of approximate_optimal_sequence based on Rule 1;
13: skipped_subsequence_set . add(subsequence);
14: approximate_optimal_sequence ← current_sequence;
15: RTapproximate_optimal_sequence (S) ← RTcurrent_sequence (S);
16: else

17: Obtain the subsequence of current_sequence based on Rule 1;
18: skipped_subsequence_set . add(subsequence);
19: end if

20: end while

0.9999, and the exposure can be reduced from E4 (high probability) to E1 (very low probability)
according to Table 2.

Table 7 lists the ASIL determination based on severity, exposure, and controllability provided
by ISO 26262 [2]. Besides ASIL A, ASIL B, ASIL C, and ASIL D, there is another level of quality
management (QM), which does not involve safety requirement design as explained in ISO 26262.
In other words, only QM is enough to develop a function. As can be seen from Table 7, once the
driver’s controllability changes, the ASIL of the application will change accordingly. Therefore,
there is a human-interaction process between the driver and the system as pointed out in Sec-
tion 1. However, this change brings instability and variables to the safe operation of safety-critical
applications.

For example, assume that an automotive function has severity S3 and require the level of ASIL A.
when the driver’s controllability is C3, its exposure must reach E1 according to Table 7; otherwise,
the ASIL of automotive function will be promoted to ASIL B, ASIL C, or ASIL D, where the risk of
harm to the automotive function will increase significantly.

ACM Transactions on Cyber-Physical Systems, Vol. 3, No. 4, Article 39. Publication date: August 2019.

Human-Interaction-aware Adaptive Functional Safety Processing 39:17

Table 7. ASIL Determination Based on Severity, Exposure,

and Controllability Provided by ISO 26262 [2]

Severity Exposure
Controllability

C1 C2 C3

S1

E1 QM QM QM
E2 QM QM QM
E3 QM QM ASIL A
E4 QM ASIL A ASIL B

S2

E1 QM QM QM
E2 QM QM ASIL A
E3 QM ASIL A ASIL B
E4 ASIL A ASIL B ASIL C

S3

E1 QM QM ASIL A
E2 QM ASIL A ASIL B
E3 ASIL A ASIL B ASIL C
E4 ASIL B ASIL C ASIL D

4.2 Human-Interaction-Aware Task Remapping

To maintain the safe operations of safety-critical functions and implement system optimization
during the runtime phase, a human-interaction-aware adaptive functional safety processing is
required. This subsection achieves the above objective by proposing the human-interaction-aware
task remapping method.

Figure 4 has shown the task mapping of four automotive functions during the design phase. We
still assume that the severity is S3 for four safety-critical functions. Since the driver’s state during
the design phase is pessimistically set to C3 (difficult to control or uncontrollable), the reliability
requirements of automotive functions must reach 0.9999 (E1) to meet the required level of ASIL
A according to the ASIL determination in Table 7. A possible scenario is that the driver’s state
is changed to C1 (simply controllable) at time instant of 100 during the runtime phase. At this
time instant, it is also feasible that the reliability requirements of four automotive functions can
be changed to 0.95 (E3) while still meeting the required level of ASIL A.

In response to the above scenario, the task remapping is conducted at the time instant of 100. It
should be noted that the tasks can be divided into three categories.

(1) Tasks that have been finished (e.g., F3.n
1
1, F3.n

2
1, and preceding replicas in Figure 4).

(2) Tasks that are being executed (e.g., F2.n
3
6 in Figure 4).

(3) Tasks that have not been started (e.g., F1.n
1
1, F4.n

2
3, F1.n

2
1 , and subsequent replicas in

Figure 4).

The tasks that have been finished certainly cannot be remapped. Tasks that have not been started
can definitely be remapped. For tasks that are being executed (e.g., F2.n

3
6 in Figure 4), there are two

possible strategies. The first strategy is to continue to perform these tasks according to the previ-
ous mapping. The second strategy is that only the un-finished task segments can be re-allocated,
whereas the already finished task segments cannot be re-allocated. Considering that the time is re-
quired for ECU flashing, re-mapping when the tasks are getting executed is unrealistic. Therefore,
to reduce the complexity of the analysis and design, this article adopts the first strategy.

Figure 5 shows the human-interaction-aware task remapping of four functions in three ECUs
during the runtime phase. From Figure 5, the task remapping begins at time instant of 100. On the

ACM Transactions on Cyber-Physical Systems, Vol. 3, No. 4, Article 39. Publication date: August 2019.

39:18 G. Xie et al.

Fig. 5. Human-interaction-aware Task remapping of four functions in three ECUs during the runtime phase.

one hand, since the reliability requirements of four automotive functions have been reduced to
0.95, the reliability requirements of the tasks that require remapping could also be correspondingly
reduced. The upper bound on reliability of these tasks is calculated by

Rup (Fm .ns (z)) =
Fm . |N |−Fm . |N (f) |

√
Rreq (Fm), (18)

where Fm .|N (f) | represents the finished task number in Fm , such that Fm .|N | − Fm .|N (f) | repre-
sents the number of tasks that require remapping in Fm .

On the other hand, since some tasks have been finished, these tasks are no longer considered.
Therefore, only the tasks that have not been started at current time need to be considered in reli-
ability requirement calculation during the runtime phase. The reliability requirement of Fm .ns (y)

is calculated by

Rreq (Fm .ns (y)) =
Rreq (Fm)

y−1∏
x=(Fm . |N (f) |+1)

RHR (Fm .ns (x)) ×
|N |∏

z=y+1
Rup (Fm .ns (z))

. (19)

Notice that the task priority is based on the ascending order of the AST values before remapping.
For example, the task priority for the tasks that require remapping in F3 is F3.n3, F3.n2, F3.n4, and
F3.n5.

To reduce the remapping overhead during the runtime phase, the priority sequence of functions
still adopts what has been obtained during the design phase. For the motivational functions in
Figure 2, the priority sequence of functions is still (F1, F3, F2, F4).

We have the following observations based on the human-interaction-aware task remapping in
Figure 5.

(1) The number of redundancy for function F1 is reduced from 13 to 6, for function F2 is
reduced from 14 to 12, for function F4 is reduced from 12 to 8.

(2) The overall response time of four functions was shortened from 210 to 189.
(3) The total slack time of three ECUs has increased dramatically from 230 to 420.

Through human-interaction-aware task remapping, we implemented a human-interaction-
aware adaptive functional safety processing to reach the following system optimization: (1) re-
duce overall task redundancy, (2) shorten the overall response time of safety-critical automotive
functions, and (3) increase the slack time for non-safety-critical automotive functions. Although
the proposed methodology only demonstrates the increase in exposure (i.e., decrease in reliability)
because the driver’s controllability is changed from C3 to C1 by an example, this methodology is
also adapted to the scenario where the driver’s controllability is changed from C1 to C3 and the
exposure will be reduced. Due to space limitation, no longer description is provided here.

Finally, we propose the human-interaction-aware task remapping method shown in Algorithm 3
(i.e., the HR algorithm) to achieve human-interaction-aware adaptive functional safety processing.

ACM Transactions on Cyber-Physical Systems, Vol. 3, No. 4, Article 39. Publication date: August 2019.

Human-Interaction-aware Adaptive Functional Safety Processing 39:19

ALGORITHM 3: The HR algorithm

Input: Task mapping generated by RE method,
Output: Task remapping

1: current_time ← 0;
2: deadline ← max{D (F1),D (F1), . . . ,D (F |S |)};
3: while (current_time < deadline) do

4: if (driver’s current state is changed in current_time) then

5: Obtain the driver’s controllability level belonging C1, C2, or C3;
6: if (the driver’s controllability level is C1) then

7: Set the exposure level of all safety-critical functions to E3 according to Table 7;
8: Set the reliability requirement of all safety-critical functions to 0.95 according to Table 2;
9: end if

10: if (the driver’s controllability level is C2) then

11: Set the exposure level of all safety-critical functions to E2 according to Table 7.
12: Set the reliability requirement of all safety-critical functions to 0.99 according to Table 2;
13: end if

14: if (the driver’s controllability level is C3) then

15: Set the exposure level of all safety-critical functions to E1 according to Table 7;
16: Set the reliability requirement of all safety-critical functions to 0.9999 according to Table 2;
17: end if

18: Calculate the new upper bound on reliability Rup (Fm .ns (z)) by Equation (18) of the tasks that have
not been started;

19: Calculate new reliability requirement Rup (Fm .ns (z)) by Equation (19) of the tasks that have not
been started;

20: Perform task remapping for the tasks that have not been started.
21: end if

22: end while

Notice that the required ASILs for all safety-critical functions are ASIL A, and the severity levels
for all safety-critical functions are S3 in this article.

5 EXPERIENTIAL EVALUATION

5.1 Methods and Metrics for Comparison

Four methods are adopted for comparison in this article.

(1) The first method is adopting the LLT strategy proposed in Reference [33] to obtain the
priority sequence of safety-critical functions and perform the task mapping during the
design phase; we name this method as LLT in this experiment.

(2) The second method is the exhaustive exploration method during the design phase, and
we name it as EE in this experiment.

(3) The third method is the refined exploration method proposed in this article to obtain the
approximate optimal priority sequence of safety-critical functions and perform the task
mapping during the design phase; we name this method as RE in this experiment.

(4) The fourth method is the human-interaction-aware task remapping method proposed in
this article to perform the task remapping during the runtime phase; we name this method
as HR in this experiment.

The performance metrics are overall task redundancy of safety-critical automotive functions
while meeting their functional safety requirements (expressed by NR (S)), overall response time
of safety-critical automotive functions (expressed by RT (S)), and slack time for non-safety-critical

ACM Transactions on Cyber-Physical Systems, Vol. 3, No. 4, Article 39. Publication date: August 2019.

39:20 G. Xie et al.

Table 8. Result of LLT, Exhaustive Exploration, and RE during the Design Phase

When the Total Number of Safety-critical Functions Is 6

Method LLT EE RE
Metric RT (S) RT (S) iteration count RT (S) iteration count
Test 1 12,489ms 11,729ms 720 11,729ms 16
Test 2 8,374ms 7,808ms 720 7,808ms 16
Test 3 11,924ms 11,039ms 720 11,326ms 17
Test 4 6,300ms 5,855ms 720 5,855ms 18
Test 5 9,894ms 9,283ms 720 9,283ms 16
Test 6 9,708ms 9,130ms 720 9,130ms 17
Test 7 11,245ms 10,213ms 720 10,213ms 16
Test 8 11,459ms 10,322ms 720 10,322ms 16
Test 9 10,090ms 9,453ms 720 9,453ms 16
Test 10 9,497ms 8,783ms 720 8,783ms 17

automotive functions (expressed by Slack (S)). The task and message parameters refer to the re-
alistic values in Reference [34] and are generated by uniform distribution: 100μs � wi,k � 400μs,
100μs � ci, j � 400μs. The number of tasks for a function is from 8 to 29 generated by uniform
distribution. The ECU number of the subsystem is 12. All the functions are synthetic and are gen-
erated by using the task graph generator from Reference [10].

5.2 Experiential Results and Analysis

Experiment 1. In this experiment, we consider 6 safety-critical functions in a subsystem of ACPS.
Therefore, the total sequence number of safety-critical functions is 6! = 720. The severity of all
these safety-critical functions is S3. The driver’s controllability level is fixed at C3 during the design
phase and is changed to C1 at time instant of 2,000ms during the runtime phase. Ten tests are
conducted based on the randomly generated parameters.

Table 8 shows the results of LLT, EE, and RE during the design phase when the total number of
safety-critical functions is 6. As the total sequence number is 720, the three methods can return
the results within 5s.

(1) LLT always generates longer overall response time than ER and RE in 10 tests. The min-
imum and maximum differences are 445ms (Test 4) and 1,137ms (Test 8). These results
confirm that LLT is not a good choice to be a priority sequences method, especially for
ACPS with extremely high time accuracy.

(2) Except for Test 3, EE and RE get equal overall response time values in the other 9 tests. Due
to the unequalness in Test 3, RE is not an optimal solution in finding the optimal sequence
toward overall response time minimization. In other words, real optimal sequence may be
skipped when using RE. Considering that RE obtains the optimal overall response time
values in 9 of 10 tests, it is shown that using RE is an approximate optimal solution.

(3) The iteration count is from 16 to 18 in total count of 720. That is, the refinement ratio is
from 97.5% to 97.8%.

In summary, the proposed RE generates approximate optimal response time with small
iteration count, whereas LLT-generated response time is not approximate optimal and
EE-generated iteration count is exhaustive.

ACM Transactions on Cyber-Physical Systems, Vol. 3, No. 4, Article 39. Publication date: August 2019.

Human-Interaction-aware Adaptive Functional Safety Processing 39:21

Table 9. Result of RE during the Design Phase and HR during the Runtime Phase

When the Total Number of Safety-critical Functions Is 6

Method
RE

start at 0ms
HR

controllability changes at 2,000ms
Metric NR (S) RT (S) Slack (S) NR (S) RT (S) Slack (S)
Test 1 236 11,729ms 132,375ms 119 9,003ms 145,037ms
Test 2 158 7,808ms 144,749ms 80 5,306ms 152,721ms
Test 3 274 11,326ms 126,896ms 139 8,016ms 141,489ms
Test 4 150 5,855ms 146,410ms 76 4,052ms 154,070ms
Test 5 210 9,283ms 138,761ms 107 6,870ms 147,900ms
Test 6 218 9,130ms 138,190ms 111 6,523ms 147,465ms
Test 7 250 10,213ms 133,889ms 126 7,621ms 144,629ms
Test 8 238 10,322ms 134,281ms 120 7,428ms 144,380ms
Test 9 242 9,453ms 134379.0ms 122 6990.0ms 145947.0ms
Test 10 192 8,783ms 140,897ms 97 6,922ms 149,138ms

Table 9 shows the result of RE during the design phase and HR during the runtime phase when
the total number sequences safety-critical functions is 6. The driver’s controllability changes from
C3 to C1 at 2000ms.

(1) HR generates less overall task redundancy than RE in all the tests, where the overall task
redundancy generated by HR is almost only half of that by RE. The reason is that when
the driver’s controllability changes from C3 to C1, its reliability requirement is changed
from 0,9999 to 0.95. Lower reliability requirements are naturally assured with less overall
task redundancy.

(2) Similarly to the reduction in overall task redundancy, HR generates shorter overall re-
sponse time than RE in all the tests. The reduction in overall response time is also signif-
icant for HR. These results confirm the bi-criteria between response time minimization
and reliability maximization, as stated in Figure 3.

(3) The slack time values increase after HR is used because of the overall task redundancy re-
duction. This is useful, because non-safety-critical automotive functions have more slack
time to execute.

Experiment 2. In this experiment, we consider 10 safety-critical functions in a subsystem of
ACPS. Therefore, the total sequence number of safety-critical functions is 10! = 3,628,800. Accord-
ing to the iteration count and iteration time generated by RE of this experiment, one iteration takes
about 0.5s, and exhausting 3,628,800 sequences takes about 1,814,400s (i.e., 1,260 days). Therefore,
the results of exhaustive exploration method are no longer listed. Similarly to Experiment 1, the
severity of all these safety-critical functions is still S3. The driver’s controllability level is still fixed
at C3 during the design phase and is changed to C1 at time instant of 2,000ms during the runtime
phase. Ten tests are conducted based on the randomly generated parameters.

Table 10 shows the result of LLT and RE during the design phase when the total number of
safety-critical functions is 10. Although the results of 10 tests are not the same, they generally
show some stability.

(1) The overall task redundancy of safety-critical automotive functions generated by LLT and
RE are basically the same in most tests except for the Test 9 that LLT has one replica less
than RE.

ACM Transactions on Cyber-Physical Systems, Vol. 3, No. 4, Article 39. Publication date: August 2019.

39:22 G. Xie et al.

Table 10. Result of LLT and RE during the Design Phase When the Total Number

of Safety-critical Functions is 10

Method LLT RE

Metric NR (S) RT (S) Slack (S) NR (S) RT (S) Slack (S)
Iteration

count
Iteration

time

Test 1 360 12,836ms 114,646ms 360 11,267ms 115,693ms 48 23s

Test 2 432 13,493ms 104,355ms 432 12,549ms 103,950ms 56 34s

Test 3 396 12,719ms 109,278ms 396 12,596ms 108,773ms 55 24s

Test 4 340 11,424ms 118,915ms 340 9,718ms 119,723ms 51 21s

Test 5 324 12,354ms 121,234ms 324 11,554ms 119,723ms 47 20s

Test 6 362 12,719ms 115,412ms 362 12,671ms 114,283ms 64 22s

Test 7 370 12,087ms 113,853ms 370 11,221ms 113,405ms 46 21s

Test 8 420 13,149ms 108,559ms 420 12,475ms 106,658ms 63 25s

Test 9 316 10,864ms 122,631ms 317 10,359ms 122,418ms 48 18s

Test 10 356 10,475ms 117,134ms 356 9,896ms 116,857ms 47 20s

(2) Different from overall task redundancy, the overall response time of safety-critical auto-
motive functions generated by LLT and RE are not the same at all. RE always has shorter
overall response time than LLT in 10 tests. When using LLT, the overall response time
ranges from 10,475ms to 13,493ms; while using RT, it ranges from 9,718ms to 12,671ms.
The maximum difference occurs in Test 4, where RE has shorter 1,706ms than LLT. These
results indicate that such a simple strategy (i.e., LLT) of priority sequence of functions
is not sufficient to find suitable priority sequence during the design phase, but a non-
exhaustive exploration method (e.g., RE) can find the approximate optimal priority se-
quence. The RE method proposed in this article achieves the above purpose by refining
the number of iterations.

(3) In overall, LLT has more available slack time than RE is most cases. For example, LLT has
more slack time than RE in most tests (i.e., Tests 2, 3, 5, 6, 7, 8, 9, and 10), whereas RE has
more slack time than LLT in two tests (i.e., Tests 1 and 4). The results of the above three
experiments reflect that the optimization objective for RE is overall response time rather
than the overall task redundancy and the slack time.

(4) The iteration count for RE is merely from 47 to 56 in total counts of 3,628,800. Therefore,
about 99.9985%–99.9987% sequences are skipped (i.e., refinement ratio) using RE. The RE
method proposed in this article reflects the powerful non-exhaustive exploration ability.
In addition, the iteration time is only within 24s.

Table 11 shows the result of RE during the design phase and HR during the runtime phase when
the total number sequences safety-critical functions is 10. The driver’s controllability changes from
C3 to C1 at 2,000ms.

(1) Similarly to the result of overall task redundancy in Table 9, HR also generates less overall
task redundancy than RE in all the tests. Especially under some tests (i.e., Test 1, Test 4,
Test 9, and Test 10), the overall task redundancy generated by HR is almost only half of
that by RE.

(2) Similarly to the result of overall response time Table 9, HR also generates shorter over-
all response time than RE in all the tests. The maximum and minimum reduction in
overall response time occur at Test 3 (reducing 4,397ms) and Test 4 (reducing 2,402ms),

ACM Transactions on Cyber-Physical Systems, Vol. 3, No. 4, Article 39. Publication date: August 2019.

Human-Interaction-aware Adaptive Functional Safety Processing 39:23

Table 11. Result of RE during the Design Phase and HR During the Runtime Phase

When the Total Number of Safety-critical Functions Is 10

Method
RE

start at 0ms
HR

controllability changes at 2,000ms

Metric NR (S) RT (S) Slack (S) NR (S) RT (S) Slack (S)

Test 1 360 11,267ms 115,693ms 183 8,316ms 135,005ms

Test 2 432 12,549ms 103,950ms 224 8,066ms 127,387ms

Test 3 396 12,596ms 108,773ms 202 8,199ms 131,025ms

Test 4 340 9,718ms 119,723ms 171 7,353ms 136,428ms

Test 5 324 11,554ms 119,723ms 168 7,491ms 137,214ms

Test 6 362 12,671ms 114,283ms 192 8,720ms 134,187ms

Test 7 370 11,221ms 113,405ms 195 6,983ms 134,927ms

Test 8 420 12,475ms 106,658ms 227 8,315ms 128,633ms

Test 9 317 10,359ms 122,418ms 160 6,881ms 139,605ms

Test 10 356 9,896ms 116,857ms 179 7,494ms 135,794ms

respectively. As long as the overall response time is shortened, this reduction can provide
better condition for the real-time assurance of ACPS.

(3) As expected, HR obtains more slack time than RE in all the tests. The average slack time
for RE, is about 115,000ms, whereas that for HR is increased to 135,000ms. That is, about
20,000ms slack time are increased during the runtime phase.

In overall, this experiment confirms that the proposed human-interaction-aware adaptive func-
tional safety processing is quite useful during the runtime phase. HR can reduce overall task redun-
dancy of safety-critical automotive functions while meeting their functional safety requirements,
shorten the overall response time of safety-critical automotive functions, and increase the slack
time for non-safety-critical automotive functions.

6 CONCLUSION

As the functional safety assurance involves human-interaction between the driver and ACPS at
runtime, an adaptive functional safety processing, including refined exploration during the design
phase and human-interaction-aware task remapping during the runtime phase, was proposed in
this article. The proposed refined exploration method shows good overall response time reduc-
tion of safety-critical functions. The human-interaction-aware task remapping shows significant
overall response time reduction, overall task redundancy reduction, and slack time increase. By
combing these two phases, the proposed adaptive functional safety processing can autonomously
respond to the change of the driver’s controllability in a fast manner at runtime. Our future work
will study the human-interaction-aware driving automation for autonomous vehicles by consid-
ering the combination of functional safety and cyber security.

REFERENCES

[1] ISO 26262: Road vehicles-functional safety (Dec. 2018). Retrieved from https://www.iso.org/standard/68383.html.

[2] ISO 26262: Road vehicles-functional safety (Nov. 2011). Retrieved from https://www.iso.org/standard/43464.html.

[3] Theodore P. Baker. 2005. An analysis of EDF schedulability on a multiprocessor. IEEE Trans. Parallel Distrib. Syst. 16,

8 (2005), 760–768.

[4] Guillem Bernat, Antoine Colin, and Stefan M. Petters. 2002. WCET analysis of probabilistic hard real-time systems.

In Proceedings of the 23rd IEEE Real-Time Systems Symposium. IEEE, 279–288.

ACM Transactions on Cyber-Physical Systems, Vol. 3, No. 4, Article 39. Publication date: August 2019.

https://www.iso.org/standard/68383.html
https://www.iso.org/standard/43464.html

39:24 G. Xie et al.

[5] Martin Burns, Joe Manganelli, David Wollman, Ronald Laurids Boring, Stephen Gilbert, Edward Griffor, Yi-Ching

Lee, Dan Nathan-Roberts, and Tonya Smith-Jackson. 2018. Elaborating the human aspect of the NIST framework for

cyber-physical systems. In Proceedings of the Human Factors and Ergonomics Society Annual Meeting, Vol. 62. SAGE

Publications, Los Angeles, CA, 450–454.

[6] Wanli Chang, Samarjit Chakraborty, et al. 2016. Resource-aware automotive control systems design: A cyber-physical

systems approach. Found. Trends Electr. Des. Automat. 10, 4 (Dec. 2016), 249–369.

[7] Wanli Chang, Dip Goswami, Samarjit Chakraborty, and Arne Hamann. Jul. 2018. OS-aware automotive controller

design using non-uniform sampling. ACM Trans. Cyber-Phys. Syst. 2, 4 (Jul. 2018), 26.

[8] Simon Fürst and AUTOSAR Spokesperson. 2015. Autosar the next generation–the adaptive platform. In CARS@

EDCC2015 (2015).

[9] Simon Fürst and AUTOSAR Spokesperson. 2016. AUTOSAR adaptive platform for connected and autonomous vehi-

cles. In Proceedings of the 8th Vector Congress Conference.

[10] ggtce. 2015. Task graph generator. Retrieved from https://sourceforge.net/projects/taskgraphgen/.

[11] Debkalpa Goswami, Reinhard Schneider, Alejandro Masrur, Martin Lukasiewycz, Shiladri Chakraborty, Harald Voit,

and Anuradha Annaswamy. 2012. Challenges in automotive cyber-physical systems design. In Proceedings of the 2012

International Conference on Embedded Computer Systems (SAMOS’12). IEEE, 346–354.

[12] Chris Hobbs and Patrick Lee. Jul. 2013. Understanding ISO 26262 ASILs. Retrieved from https://www.electronicdesign.

com/embedded/understanding-iso-26262-asils.

[13] Masao Ito. 2015. Controllability in ISO 26262 and driver model. In Proceedings of the European Conference on Software

Process Improvement. Springer, 313–321.

[14] Maki Kawakoshi, Takashi Kobayashi, and Makoto Hasegawa. 2015. ISO 26262: Controllability Evaluation Technique

by Expert Riders. Technical Report. SAE Technical Paper.

[15] Pratyush Kumar, Dip Goswami, Samarjit Chakraborty, Anuradha Annaswamy, Kai Lampka, and Lothar Thiele. 2012.

A hybrid approach to cyber-physical systems verification. In Proceedings of the 2012 49th ACM/EDAC/IEEE Design

Automation Conference (DAC’12). 688–696.

[16] Andrew L. Kun et al. 2018. Human-machine interaction for vehicles: Review and outlook. Found. Trends Hum.–

Comput. Interact. 11, 4 (2018), 201–293.

[17] Yue Ma, Junlong Zhou, Thidapat Chantem, Robert P. Dick, Shige Wang, and X. Sharon Hu. 2018. On-line resource

management for improving reliability of real-time systems on big–little type MPSoCs. IEEE Trans. Comput.-Aid. Des.

Integr. Circ. Syst. (2018). DOI:https://doi.org/10.1109/TCAD.2018.2883990

[18] Arslan Munir. Apr. 2017. Safety assessment and design of dependable cybercars: For today and the future.IEEE Con-

sum. Electr. Mag. 6, 2 (Apr. 2017), 69–77.

[19] M. Di Natale and A. L. Sangiovanni-Vincentelli. Mar. 2010. Moving from federated to integrated architectures in

automotive: The role of standards, methods and tools. Proc. IEEE 98, 4 (Mar. 2010), 603–620.

[20] Jonas Nilsson, Anders C. E. Ödblom, and Jonas Fredriksson. 2016. Worst-case analysis of automotive collision avoid-

ance systems. IEEE Trans. Vehic. Technol. 65, 4 (2016), 1899–1911.

[21] Roman Obermaisser, Christian El Salloum, Bernhard Huber, and Hermann Kopetz. Jul. 2009. From a federated to an

integrated automotive architecture. IEEE Trans. Comput.-Aid. Des. Integr. Circ. Syst. 28, 7 (Jul. 2009), 956–965.

[22] Ingrid Pettersson and Wendy Ju. 2017. Design techniques for exploring automotive interaction in the drive towards

automation. In Proceedings of the 2017 Conference on Designing Interactive Systems. ACM, 147–160.

[23] Bobbie D. Seppelt and Trent W. Victor. 2016. Potential solutions to human factors challenges in road vehicle automa-

tion. In Road Vehicle Automation 3. Springer, 131–148.

[24] Georgios L. Stavrinides and Helen D. Karatza. 2012. Scheduling real-time DAGs in heterogeneous clusters by com-

bining imprecise computations and bin packing techniques for the exploitation of schedule holes. Fut. Gener. Comput.

Syste. 28, 7 (2012), 977–988.

[25] Haluk Topcuoglu, Salim Hariri, and Min-you Wu. Mar. 2002. Performance-effective and low-complexity task sched-

uling for heterogeneous computing. IEEE Trans. Parallel Distrib. Syst. 13, 3 (Mar. 2002), 260–274.

[26] Guy H. Walker and Neville A. Stanton. 2017. Human Factors in Automotive Engineering and Technology. CRC Press,

Boca Raton, FL.

[27] Tongquan Wei, Junlong Zhou, Kun Cao, Peijin Cong, Mingsong Chen, Gongxuan Zhang, Xiaobo Sharon Hu, and

Jianming Yan. 2018. Cost-constrained QoS optimization for approximate computation real-time tasks in heteroge-

neous MPSoCs. IEEE Trans. Comput.-Aid. Des. Integr. Circ. Syst. 37, 9 (2018), 1733–1746.

[28] Tingming Wu, Haifeng Gu, Junlong Zhou, Tongquan Wei, Xiao Liu, and Mingsong Chen. 2018. Soft error-aware

energy-efficient task scheduling for workflow applications in DVFS-enabled cloud. J. Syst. Arch. 84 (2018), 12–27.

[29] Guoqi Xie, Yuekun Chen, Yan Liu, Yehua Wei, Renfa Li, and Keqin Li. 2017. Resource consumption cost minimization

of reliable parallel applications on heterogeneous embedded systems. IEEE Trans. Industr. Inf. 13, 4 (Aug. 2017), 1629–

1640.

ACM Transactions on Cyber-Physical Systems, Vol. 3, No. 4, Article 39. Publication date: August 2019.

https://sourceforge.net/projects/taskgraphgen/
https://www.electronicdesign.com/embedded/understanding-iso-26262-asils
https://www.electronicdesign.com/embedded/understanding-iso-26262-asils
https://doi.org/10.1109/TCAD.2018.2883990

Human-Interaction-aware Adaptive Functional Safety Processing 39:25

[30] Guoqi Xie, Zhetao Li, Na Yuan, Renfa Li, and Keqin Li. 2018. Toward effective reliability requirement assurance for

automotive functional safety. ACM Trans. Des. Autom. Electr. Syst. 23, 5 (Aug. 2018), 65. DOI:https://doi.org/10.1145/

3230620

[31] Guoqi Xie, Hao Peng, Zhetao Li, Jinlin Song, Yong Xie, Renfa Li, and Keqin Li. 2018. Reliability enhancement towards

functional safety goal assurance in energy-aware automotive cyber-physical systems. IEEE Trans. Industr. Inf. 14, 12

(Dec. 2018), 5447–5462. DOI:https://doi.org/10.1109/TII.2018.2854762

[32] Guoqi Xie, Gang Zeng, Jiyao An, Renfa Li, and Keqin Li. 2018. Resource cost-aware fault-tolerant design methodology

for end-to-end functional safety computation on automotive cyber-physical systems. ACM Trans. Cyber-Phys. Syst.

3, 1 (Aug. 2018), 4. DOI:https://doi.org/10.1145/3162052

[33] Guoqi Xie, Gang Zeng, Junqiang Jiang, Chunnian Fan, Renfa Li, and Keqin Li. 2017. Energy management for multiple

real-time workflows on cyber–physical cloud systems. Fut. Gener. Comput. Syst. (May 2017). DOI:https://doi.org/10.

1016/j.future.2017.05.033

[34] Guoqi Xie, Gang Zeng, Zhetao Li, Renfa Li, and Keqin Li. 2017. Adaptive dynamic scheduling on multi-functional

mixed-criticality automotive cyber-physical systems. IEEE Trans. Vehic. Technol. 66, 8 (Aug. 2017), 6676–6692.

[35] Guoqi Xie, Gang Zeng, Yan Liu, Jia Zhou, Renfa Li, and Keqin Li. 2018. Fast functional safety verification for distributed

automotive applications during early design phase. IEEE Trans. Industr. Electron. 65, 5 (May 2018), 4378–4391.

[36] Junlong Zhou, Jin Sun, Xiumin Zhou, Tongquan Wei, Mingsong Chen, Shiyan Hu, and Xiaobo Sharon Hu. 2018.

Resource management for improving soft-error and lifetime reliability of real-time MPSoCs. IEEE Trans. Comput.-

Aid. Des. Integr. Circ. Syst. (2018). DOI:https://doi.org/10.1109/TCAD.2018.2883993

[37] Junlong Zhou and Tongquan Wei. 2015. Stochastic thermal-aware real-time task scheduling with considerations of

soft errors. J. Syst. Softw. 102 (2015), 123–133.

[38] Junlong Zhou, Jianming Yan, Tongquan Wei, Mingsong Chen, and Xiaobo Sharon Hu. 2017. Energy-adaptive schedul-

ing of imprecise computation tasks for QoS optimization in real-time MPSoC systems. In Proceedings of the Conference

on Design, Automation and Test in Europe. European Design and Automation Association, 1406–1411.

[39] Xiumin Zhou, Gongxuan Zhang, Jin Sun, Junlong Zhou, Tongquan Wei, and Shiyan Hu. 2019. Minimizing cost and

makespan for workflow scheduling in cloud using fuzzy dominance sort based HEFT. Fut. Gener. Comput. Syst. 93

(2019), 278–289.

Received December 2018; revised May 2019; accepted May 2019

ACM Transactions on Cyber-Physical Systems, Vol. 3, No. 4, Article 39. Publication date: August 2019.

https://doi.org/10.1145/3230620
https://doi.org/10.1145/3230620
https://doi.org/10.1109/TII.2018.2854762
https://doi.org/10.1145/3162052
https://doi.org/10.1016/j.future.2017.05.033
https://doi.org/10.1016/j.future.2017.05.033
https://doi.org/10.1109/TCAD.2018.2883993

