
IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 18, NO. 3, MAY/JUNE 2025 1769

SECTest: An Integrated Testing Platform for QoS in
Satellite Edge Clouds

Guogen Zeng , Juan Luo , Member, IEEE, Yufeng Zhang , Ying Qiao , Shuyang Teng ,
and Keqin Li , Fellow, IEEE

Abstract—With the advancement of satellite computing capabili-
ties, the diversity of satellite communication services imposes varied
quality of service (QoS) requirements. Limited satellite resources
necessitate remote deployment and updates of running services for
QoS testing, increasing testing difficulty. Existing testing tools are
limited in functionality or reliant on specific infrastructures, failing
to meet the QoS testing needs of edge cloud services in mobile
satellite scenarios. In this paper, we present SECTest, an integrated
testing platform for QoS in satellite edge clouds. More precisely,
SECTest can integrate changes in satellite network topology, cre-
ate and manage satellite edge cloud cluster testing environments
on heterogeneous edge devices, customize experiments for users,
support deployment and scaling of various integrated testing tools,
provide test data persistence function to manage data life cycle and
store data hierarchically, and publish and visualize test results. We
have built a real satellite edge cloud cluster based on Kubernetes,
integrating both physical and virtual machines, and deploying a
variety of integrated testing tools using containerization technol-
ogy. Currently, we have evaluated the quality of service in terms
of processing latency, packet drop rate, throughput, and average
response time for object detection microservice applications, web
microservice applications, and data transfer tasks. To demonstrate
SECTest’s scalability in testing network communication protocols,
we evaluated the performance of HTTP and gRPC in microservice
communication within the cluster. Our experimental results vali-
date SECTest’s ability to test key service quality metrics in a real
satellite edge cloud cluster.

Index Terms—Satellite edge clouds, integration testing, quality
of service, microservices, testing platform.

I. INTRODUCTION

A S THE demand for satellite computing services continues
to grow, satellites are poised to offer a wider range of

Received 19 July 2024; revised 5 March 2025; accepted 13 April 2025. Date
of publication 9 May 2025; date of current version 12 June 2025. This work was
supported in part by the National Natural Science Foundation of China under
Grant 62372163, and in part by the Science and Technology Innovation Program
of Hunan Province under Grant 2024RC1033. An earlier version of this paper
was presented in part at the 21st IEEE International Conference on Web Ser-
vices (ICWS 2024) [DOI: 10.1109/ICWS62655.2024.00132]. (Corresponding
author: Juan Luo.)

Guogen Zeng, Juan Luo, Yufeng Zhang, Ying Qiao, and Shuyang
Teng are with the College of Computer Science and Electronic En-
gineering, Hunan University, Changsha, Hunan 410012, China (e-mail:
zengguogen@hnu.edu.cn; juanluo@hnu.edu.cn; yufengzhang@hnu.edu.cn;
qy2020@hnu.edu.cn; S2110Z0004@hnu.edu.cn).

Keqin Li is with the College of Computer Science and Electronic Engineering,
Hunan University, Hunan 410082, China, also with the National Supercomput-
ing Center in Changsha, Hunan 410082, China, and also with the Department of
Computer Science, State University of New York, New Paltz, NY 12561 USA
(e-mail: lik@newpaltz.edu).

Digital Object Identifier 10.1109/TSC.2025.3565368

service types than ever before. Multiple satellites are intercon-
nected through various communication devices to form satellite
clusters, enabling the provision of diverse services [2]. Different
services will have varying quality of service (QoS) requirements.
With advancements in satellite hardware performance, cloud
computing, and virtualization technologies have been widely
adopted in satellite systems. The edge cloud systems designed
using cloud-native technologies are widely deployed on satel-
lites to manage various microservice applications [3]. However,
a prevailing issue is that a large number of users making repeated
service requests can often lead to network congestion and perfor-
mance degradation [4]. Additionally, devices providing software
services within satellite clusters may face resource constraints or
be affected by high-speed mobility, potentially resulting in QoS
degradation or unresponsive services [5]. Therefore, effective
QoS testing is critical for request-response services within a
satellite edge cloud that require fast processing and have specific
latency requirements. Additionally, bidirectional data streaming
services, which are often constrained by packet loss and limited
bandwidth, also benefit from such testing. Ensuring easy and ef-
fective QoS tests before or during service deployment is essential
for optimal performance. These tests ensure the reliability and
performance of the service under varying conditions, thereby
improving the service’s resilience and stability in the satellite
edge cloud environment.

Cloud-native satellites can already provide various types of
services to ground users, such as satellite-based smart city
applications, emergency communications, and disaster detec-
tion [6]. When satellite edge cloud clusters offer computing
services to the ground, unlike coordinated computing with
ground networks, satellite networks are significantly affected
by external environmental factors [7]. This is intolerable for
computing services with high QoS stability requirements. Op-
timizing only satellite networks to ensure QoS requirements
cannot satisfy the need for rapid detection and verification of
actual QoS conditions [8]. Therefore, a targeted QoS testing
platform is still necessary in the context of satellite edge cloud
clusters.

Testing the interactions between modules in microservice
applications in a satellite edge cloud cannot be accomplished by
isolating the service to specific modules in the cluster alone [9].
Therefore, testing the interactions of microservice applications
between nodes can only be accomplished by running end-to-end
tests or extensive integration tests, which require deploying
microservice applications across the cluster [10]. Performing

1939-1374 © 2025 IEEE. All rights reserved, including rights for text and data mining, and training of artificial intelligence and similar technologies.
Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: HUNAN UNIVERSITY. Downloaded on August 20,2025 at 02:07:46 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0009-0002-5869-3543
https://orcid.org/0000-0002-0858-427X
https://orcid.org/0000-0001-6082-4501
https://orcid.org/0000-0001-5142-9577
https://orcid.org/0000-0003-1665-3797
https://orcid.org/0000-0001-5224-4048
mailto:zengguogen@hnu.edu.cn
mailto:juanluo@hnu.edu.cn
mailto:yufengzhang@hnu.edu.cn
mailto:qy2020@hnu.edu.cn
mailto:S2110Z0004@hnu.edu.cn
mailto:lik@newpaltz.edu

1770 IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 18, NO. 3, MAY/JUNE 2025

end-to-end testing on satellites is exceedingly complex, time-
consuming and costly. There are two ways to perform extensive
integration testing of microservice applications in a satellite edge
cloud: inside or outside the satellite cluster. However, extensive
integration testing of microservice applications from outside
the satellite cluster has unavoidable drawbacks that make it as
inefficient as end-to-end testing [11], [12]. For example, most
satellite services lack public interfaces that allow access from
outside the cluster. Therefore, the standard approach to extensive
integration testing of microservices on satellites is to test them
from within the cluster. For integration testing of microservices
from within the satellite edge cloud cluster, certain limitations
exist with some testing tools. Some testing tools lack key func-
tionalities for testing service quality, or they are challenging
to deploy in the cluster and unable to accurately assess the test
content. For instance, Iperf3 primarily focuses on network-layer
performance testing, while microservices often involve business
logic and data processing, thus Iperf3 may not directly test
the business logic performance or data processing capabilities
of microservices [13]. Furthermore, Jmeter and LoadRunner
have difficulty in effectively scheduling and allocating cluster
resources on edge cloud clusters, which may lead to imbalance
resource allocation or waste during testing, thereby affecting
the accuracy and effectiveness of test results [14]. Complex and
difficult deployment of Jmeter and LoadRunner on edge cloud
clusters is also one of the problems [15]. To this end, in view
of satellite edge cloud service quality testing and the limitations
of existing testing tools, we present a new service quality in-
tegrated testing platform suitable for edge cloud microservice
applications in satellite scenarios.

This paper is an extended version of a conference paper [1].
We have evolved the testing framework into a comprehensive
testing platform. This platform retains the core functionalities
of the initial framework while introducing enhancements to
improve scalability, usability, and performance. In this paper,
our main contributions are as follows:
� We have implemented the SECTest,a testing platform for

service quality integration testing on satellite edge clouds.
� SECTest possesses the capability to integrate inter-satellite

network topology changes, it also can create and manage
satellite edge cloud cluster testing environments on hetero-
geneous edge devices.

� SECTest can integrate and expand multiple testing tools
into a unified platform, supporting customizable input pa-
rameters for testing and publishing test results.

� Tested within a real satellite edge cloud system, SECTest
evaluates critical service quality metrics in terms of pro-
cessing delay, packet drop rate, throughput, and average
response time, demonstrating the feasibility and effective-
ness of the SECTest.

� Finally, we conducted a functional comparison between
SECTest and the latest related research efforts, highlighting
SECTest’s advantages over existing satellite edge cloud
testing platforms.

The rest of this paper is organized as follows. Section II pro-
vides a detailed overview of the SECTest platform design, testing
process, and how testing tools are integrated and deployed within

Fig. 1. The overview and workflow of SECTest.

SECTest. Section III describes the selected microservice appli-
cations for testing, the testing methods employed, and the QoS
evaluation metrics. Section IV elaborates on the experimental
setup, results, and analysis. Section V reviews related work in
the field, comparing SECTest with the latest research efforts and
highlighting its advantages. Section VI addresses the limitations
of SECTest and explores future research directions. Finally,
Section VI concludes the paper.

II. SECTEST

A. The Platform SECTEST

Fig. 1 provides a detailed illustration of the platform and
interaction process within SECTest. SECTest is divided into
six main modules: test input module, satellite network topology
module, control deployment module, execution module, data
persistence module and visualization module.

Test Input Module: This module is equipped with function-
alities for user interaction, responsible for customizing test
parameters and test case inputs, as well as uploading YAML
configuration files for deploying testing tools. The types of test
parameters supported by this module are determined by the
testing content and the testing tools integrated within SECTest.
Currently, the test input module of SECTest supports various pa-
rameter types, including text parameters, numerical parameters,
and file parameters, as well as custom parameter. This design
emphasizes enabling efficient configuration and execution of
tests while maintaining compatibility with testing tools and
methodologies.

Satellite Network Topology Module: Within a specific time-
frame set in Satellite Tool Kit (STK), the STK are utilized
to simulate changes in the Low-Earth-Orbit (LEO) satellite
network topology and the trajectories of satellite operations,

Authorized licensed use limited to: HUNAN UNIVERSITY. Downloaded on August 20,2025 at 02:07:46 UTC from IEEE Xplore. Restrictions apply.

ZENG et al.: SECTEST: AN INTEGRATED TESTING PLATFORM FOR QOS IN SATELLITE EDGE CLOUDS 1771

thereby obtaining data on inter-satellite distances and commu-
nication ranges. Subsequently, we have developed a program to
retrieve and process the simulated data from STK, calculating the
network topology of the satellites within the defined timeframe.
This data is then passed to the control deployment module for
managing the number of edge cloud clusters.

Control Deployment Module: The test cluster generated by
SECTest follows a Master -Worker architecture. And the control
deployment module is positioned on the master node, which
primarily serves the following functions: 1) It is responsible
for the integrated deployment and configuration of test tools,
parsing them into specific deployment tasks, and distributing
them to each worker node in the execution module. 2) It is
capable of parsing test parameters and test cases, generating test
tasks, and uploading them to the test tool container of the worker
node for execution. 3) The control deployment module parses
the acquired satellite network topology and generates a satellite
edge cloud test cluster. Additionally, it manages the scope of the
satellite edge cloud cluster and performs tasks such as adding
or removing nodes in the cluster. It’s important to note that the
generated test cluster nodes encompass both physical servers
and virtual servers. A more detailed description of the test tool
integration deployment process is provided in Section II-C.

Execution Module: Worker nodes receive tasks to create
cluster test environments. The test cluster comprises virtual and
physical computing nodes, with each node capable of contain-
ing multiple built test tools and microservice applications. At
the execution module, edge devices are designated as worker
nodes to execute test tasks. Due to Kubernetes’ potential to
better integrate distributed edge devices with the cloud, we have
chosen to use it to manage and execute the deployment tasks
of microservice applications on the edge nodes [16]. SECTest
does not concern itself with the basic settings and deployment
of microservice applications within the satellite edge cloud.
Moreover, the execution module is responsible for the construc-
tion and deployment of the test tool container. Finally, upon
completion of the testing task, the test results are returned to the
visualization module.

Data Persistence Module: Its primary functions include test
data collection, lifecycle management, and tiered storage. A
NoSQL database is deployed on the master node to support data
persistence. Each worker node executing test tasks generates test
data, which is then collected by the master node and stored in the
database. However, due to limited storage resources on satellites,
the data persistence module provides support for managing the
lifecycle of test data and implements tiered storage based on
data access frequency. This tiered storage mechanism effectively
optimizes the use of storage resources, ensuring that frequently
accessed data can be retrieved quickly, while infrequently ac-
cessed data is stored in lower-priority tiers, thereby improving
the overall efficiency of accessing test data.

Visualization Module: Responsible for retrieving and pro-
cessing test data from each running test container, this module
can publish test results on the SECTest frontend page, present-
ing processed results intuitively to the user. To broaden the
capabilities of the visualization module, we have reserved a
common interface in the visualization module of SECTest to

Fig. 2. Test process of SECTest.

support users’ custom development. This interface is designed
for acquiring and processing diverse types of test data, en-
abling tailored display of test results according to individual
requirements.

B. Testing Process of SECTest

The key process of our integrated testing on the satellite edge
cloud cluster is illustrated in Fig. 2. In the initial stage, for
a completely new test, users simulate the operation trajecto-
ries of satellite clusters over a certain period using STK. The
satellite network topology module then computes the network
topology of the satellite constellation based on this simulation.
Subsequently, the computed results are transmitted to the control
deployment module. Upon receiving and parsing the data, the
control deployment module distributes tasks to build the test
cluster to the execution module. At the execution module, the
Worker nodes execute the construction tasks and generate an
edge cloud test cluster. If there is a change in the network
topology of the satellite cluster, the control deployment module
dynamically adjusts the cluster size accordingly. Otherwise,
this step is not necessary when building upon an existing edge
cloud infrastructure. Similarly, on the testing input module, since
SECTest supports the expansion of testing tools, users can decide
whether to deploy new testing tools at the start of the test. When
users configure test parameters and test cases in the test input
module, the data will be transmitted to the control deployment
module. The control deployment module will parse the test
parameters and allocate test tasks to the test tool containers on
the worker nodes in the cluster, which will then execute the
test tasks. Finally, the visualization module collects test results
from each testing node, processes and analyzes them, and then
publishes the results.

C. Integrated Deployment Testing Tools

One of the key features of SECTest is the ability for users
to easily define performance testing tasks and deploy testing
tools in configuration files. SECTest utilizes Dockerfiles to build
testing tool images. These images are then uploaded to an
image repository, from which each edge cloud node pulls the

Authorized licensed use limited to: HUNAN UNIVERSITY. Downloaded on August 20,2025 at 02:07:46 UTC from IEEE Xplore. Restrictions apply.

1772 IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 18, NO. 3, MAY/JUNE 2025

image and creates testing tool containers. SECTest allows for
the deployment of containers for different testing tools into the
same namespace as the pods running the microservices under
test. Additionally, it supports the deployment of testing tool
containers in any Kubernetes namespace without affecting their
functionality. Integration tasks for testing tools are specified
in YAML files, and the choice of YAML is driven by two
reasons: 1) Due to its simple format, YAML does not require
additional complex configuration files, and deployment tasks
can be completed solely through YAML configuration. 2) Users
can embed test code and commands directly into YAML files.

III. METHODOLOGY

A. SECTest Applications and Task

We have selected three classic satellite service applications:
object detection applications, web microservice applications,
and inter-satellite data transmission tasks. With the enhancement
of satellite high-resolution camera performance, image process-
ing and classification in-space have become quite prevalent [17].
Additionally, some satellite edge computing frameworks and
edge cloud platforms are opening up to more service applica-
tions. Currently, these applications are typically executed in the
cloud. As a result, it is of great significance to study the service
quality of such applications.

Web Microservice Application: We developed two simple
Web microservice applications with identical functionalities
using Python and Golang. These applications were deployed to
each edge cloud node in the test cluster by building images and
creating containers. In this context, we used Python to simulate
the POST and GET request methods in the HTTP protocol, and
Golang to simulate the POST and GET request methods in the
gRPC protocol. Locust was utilized to simulate multiple users
executing numerous service requests on the web microservice
applications within the cluster, subsequently distributing the
request load to the microservice applications on other nodes.

Object Detection Application: In the training phase, we use
three object detection models, YOLOv5 [18], Faster-RCNN [19]
and RetinaNet [20], and train them using the DOTA dataset [21].
The trained model is then built into an image and created as a
container, which is deployed to the edge cloud cluster through
a YAML file. From the input module of SECTest, users input
image test cases. The deployment control module then uploads
the object detection tasks to the satellite edge cloud, distributing
the testing tasks to each edge cloud node for execution.

Data Transmission Task: Given the inter-satellite communi-
cation transmission task, a satellite can potentially communi-
cate with multiple satellites within any given period. Multiple
satellites can collaborate to perform data transmission tasks.
During actual inter-satellite data transmission, additional com-
munication overhead may also occur. Consequently, based on the
simulated satellite network topology, we select satellite nodes
that can communicate within a certain period of time to execute
the data transmission task.

SECTest is compatible with the diversity of microservice
application types to be tested, supporting users to develop mi-
croservice applications using any programming language. Nev-
ertheless, to complete the testing of microservice applications

on SECTest, certain prerequisites need to be met. Customized
microservices must be successfully deployed to edge devices,
ensuring that their microservice applications are compatible with
the hardware and software environment of the edge devices,
and can start and run normally. Only when these prerequisites
are met can the true performance and behavior of microservice
applications be demonstrated through testing on SECTest.

B. QoS Evaluation Metrics

SECTest not only can be adjusted according to specific test
content, but it can also customize a diverse range of met-
rics based on the characteristics and requirements of the in-
tegrated testing tools. This flexible and adaptable feature en-
ables SECTest to demonstrate powerful application potential
in various testing scenarios. For QoS testing of microservices,
selecting appropriate evaluation metrics is crucial. In order
to comprehensively evaluate the performance of microservice
architecture, we specifically focus on these metrics, including
latency, throughput, average response time, and packet drop rate.
When evaluating the quality of testing services for microservice
applications in satellite edge clouds, each selected metric carries
unique significance. The testing metrics collectively provide a
comprehensive view of the performance, scalability, user ex-
perience, network reliability, and data integrity of microservice
applications under stress within satellite edge clouds. This holis-
tic perspective is instrumental in optimizing service quality in
complex, distributed satellite cloud environments.

Total Latency: Whenever a satellite performs a communi-
cation task, it attempts to establish contact with neighboring
satellites. Therefore, when neighboring satellites come into
communication range and need to complete communication
tasks, direct communication connections are established. Trans-
mission delay may occur during inter-satellite communication,
where transmission delay is defined as [22]:

Ttrans =
Dtrans

B log2 (1 +
PtG2

max

kBτL(xy))
(1)

where Dtrans represents the transmission packet size between
satellites x and y. B denotes the channel bandwidth in Hertz,
while Pt is the transmission power. Gmax refers to the peak gain
of both antennas of satellite x in the direction of their main lobe.
kB is the Boltzmann constant, and τ represents the thermal noise
in Kelvin. Finally,L(xy) is the path loss for an inter-satellite link
between satellites x and y [22]. Inference delay refers to the total
time spent by LEO satellites from the start of target recognition
to the completion of the task. Therefore, the total latency of an
image inference application task is:

Ttotal = Ttrans + Tinfer (2)

Throughput: TP represents the throughput of successfully trans-
mitted data packets through the communication bandwidth chan-
nel B. Taking into account the possibility of inter-satellite
communication failures, data packets are transmitted within
reach between satellites x and y. This process continues until a
communication mechanism cannot be established between the
satellites within a time period Tconnect. The communication
latency between satellites is denoted as Ttrans. We define TP

Authorized licensed use limited to: HUNAN UNIVERSITY. Downloaded on August 20,2025 at 02:07:46 UTC from IEEE Xplore. Restrictions apply.

ZENG et al.: SECTEST: AN INTEGRATED TESTING PLATFORM FOR QOS IN SATELLITE EDGE CLOUDS 1773

Fig. 3. The example of the StarLink constellation includes four orbits, each
with ten satellites.

as [23]:

TP =

∑n
i=0(Tconnect) ·B∑n

i=0(Tconnect + Ttrans)
(3)

Packet Drop Rate: We define the probability of data packet D
experiencing data reduction during transmission from satellite
x to satellite y, as the percentage calculated between the total
lost data packets DtotalPL and the total successfully transmitted
data packets DtotalPT , and is defined as [23], [24]:

PDR(x, y) =
DtotalPL

DtotalPT
(4)

Average Response Time: During the satellite service request
process, a complete request cycle involves satellite x sending a
service request to satellite y, and upon receiving the request,
satellite y sends a response message back to satellite x. We
define the average response time of the edge cloud system’s
microservices requests as:

R̄ =

∑n
i=0(treq + tresp)

N
(5)

where treq is the time when satellite x sends a request to y, tresp
is the time when satellite y sends a response back to x after
receiving the request, and N is the total number of requests.

IV. EXPERIMENT

A. Experimental Setup

To simulate the operational trajectories of the satellite cluster,
we utilized the STK system toolkit to model the topological
changes in the StarLink satellite network. As illustrated in Fig. 3,
the orbital altitude was set at 550 kilometers with an inclination
angle of 45 degrees. Four orbits from the Starlink constellation
were selected, each containing 10 LEO satellites, resulting in a
total of 40 satellites [25]. We randomly selected a satellite node
and calculated its connectivity in the satellite network topology
changes within a five-minute interval. The resulting satellite
network topology, as shown in Fig. 4, indicates that within this
five-minute interval, this satellite can form a communicative
cluster with its adjacent four satellites. The specific experimental
parameters are detailed in Table I. Carrier bandwidth, Thermal

Fig. 4. Network topology for communication satellites within five minutes.

TABLE I
EXPERIMENTAL PARAMETERS FOR SIMULATING THE STARLINK

CONSTELLATION

noise, and EIRP plus receiver antenna gain are utilized for
calculating communication delays.

B. The Real-World Satellite-Based Edge Cloud Cluster

The ideal environment for evaluating the QoS in SECTest is a
real-world edge cloud cluster composed of small LEO satellites.
According to weight standards, satellites weighing up to 180 kg
are classified as small LEO satellites, which are primarily made
up of the platform and computational payload [26]. The mi-
croservices for SECTest evaluation primarily run on the compu-
tational payload of these satellites. Currently, commercial com-
puting systems aboard small LEO satellites must meet several
key requirements. These include low power consumption, high
performance, and ease of system integration [27]. Additionally,
the weight of these commercial systems is significantly lower
than the limitations imposed on the satellite’s computational
payload. We have fully considered the energy consumption and
weight constraints of computational payloads on real operational
small LEO satellites. Moreover, we have taken into account the
characteristics of the heterogeneous computing environments in
LEO satellite constellations.

Hence, we constructed a realistic satellite edge cloud cluster
environment consisting of 5 physical nodes and 5 virtual nodes.
The physical nodes included 3 Atlas 200I DK A2 and 2 Phytium
D2000 nodes. The 5 virtual nodes were created and deployed on
a single Intel i7 CPU to dynamically adjust the cluster’s scale.
One of the Atlas nodes served as the master node, while the
remaining nodes functioned as worker nodes. The schematic
diagram of the built edge cloud cluster is depicted in Fig. 5.

The computing architectures of the Atlas, Phytium, and i7-
CPU nodes are different, making programming in a unified

Authorized licensed use limited to: HUNAN UNIVERSITY. Downloaded on August 20,2025 at 02:07:46 UTC from IEEE Xplore. Restrictions apply.

1774 IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 18, NO. 3, MAY/JUNE 2025

Fig. 5. Architecture of real satellite edge cloud cluster.

TABLE II
THE PARAMETERS OF REAL COMPUTATION NODES

environment challenging. The Atlas and virtual nodes were
installed with the Ubuntu-v22.04 system, while the Phytium
nodes were installed with the CentOS 7 system. The parameters
of the nodes and those used in the experiments are detailed in
Table II.

C. Integrated Testing Tools

Based on the aforementioned QoS evaluation metrics, we have
selected iperf3, Locust and ghz as our testing tools. These tools
will be deployed by creating containers and deploying them into
the same namespace on each node.

Iperf3 [28]: This tool provides functionality to measure net-
work throughput and packet loss. It will help in evaluating the
network performance of our satellite edge cloud cluster.

Locust [29]: This tool is used for performance testing of web
microservice applications. It simulates varying workloads of
HTTP servers with different numbers of users, enabling us to
evaluate the performance of our web microservice application.

Ghz [30]: This is an open-source grpc benchmarking and
load testing tool. It can simulate multiple worker threads on a
single server and initiate concurrent requests to these threads
simultaneously, offering various load strategy options. We use
ghz to evaluate the performance of different computing capacity
servers in handling high-concurrency requests.

TABLE III
PERFORMANCE COMPARISON OF THREE DIFFERENT MODELS IN DOTA DATASET

TABLE IV
COMPARISON OF INFERENCE DELAY OF DIFFERENT MODELS AT DIFFERENT

NODES

D. Result

1) Latency: We have deployed YOLOv5, Faster-RCNN, and
RetinaNet models in different pods with the same namespace on
worker physical nodes. The master node is used for distributing
testing tasks, while the Worker nodes are used for executing
object detection testing tasks. As shown in Tables III and V,
compared to Faster-RCNN and RetinaNet, YOLOv5 has sig-
nificantly fewer parameters and FLOPS. Using the lightweight

Authorized licensed use limited to: HUNAN UNIVERSITY. Downloaded on August 20,2025 at 02:07:46 UTC from IEEE Xplore. Restrictions apply.

ZENG et al.: SECTEST: AN INTEGRATED TESTING PLATFORM FOR QOS IN SATELLITE EDGE CLOUDS 1775

TABLE V
COMPARISON OF COMMUNICATION DELAY BETWEEN DIFFERENT NODES AT

DIFFERENT BANDWIDTHS

YOLOv5 model, each node can reduce the average image infer-
ence latency by 27 times and 29 times, respectively, compared
to the other two models. On the other hand, the computing
capability of the nodes in the edge cloud cluster also affects the
processing latency. As illustrated in Tables II and III, the Phytium
D2000 provides a more powerful computing capability than the
Atlas 200I DK A2. Therefore, the processing latency of P-Node3
and P-Node4 is lower than that of P-Node1 and P-Node2 across
the three different models. Additionally, as shown in Table IV, in
the simulated satellite cluster, the inter-satellite communication
transmission latency of different nodes varies under different
bandwidth conditions due to their different positions in orbit.

2) Throughput and Packet Drop Rate: The actual service sce-
narios of satellite edge clouds extend beyond remote areas with
poor network conditions, encompassing conventional networks
and large-scale network transmission environments as well.
To comprehensively evaluate the throughput performance of
satellite edge cloud clusters under resource-constrained condi-
tions, conventional network settings, and when confronted with
high-load or high-bandwidth demands, we conducted tests on
packet drop rate and throughput for 5 physical edge cloud nodes
within a 5-minute timeframe, across bandwidths of 50 Mbps,
100 Mbps, and 500 Mbps. The master node served as the data
sender, distributing data to the other Worker nodes in the cluster.
The results of throughput and packet drop rate tests for the
worker nodes are illustrated in Figs. 6 and 7. The experimental
findings indicate that an increase in bandwidth leads to an
expected increase in throughput for each edge cloud node.
Simultaneously, with the ability to transmit more data within the
same timeframe, the likelihood of data loss during transmission
also significantly increases, resulting in a rise in the packet drop
rate. Interestingly, except for P-Node1, the overall packet drop
rate at 100 Mbps bandwidth is higher than that at 500 Mbps
bandwidth. This may be attributed to the heavier network load
during data transmission on the 100 Mbps bandwidth network.

Fig. 6. Throughput of different nodes at different bandwidths.

Fig. 7. Packet drop rate of different nodes at different bandwidths.

3) Average Response Time: In SECTest, the locust container
on the edge cloud Master node simulates user requests and
distributes them to the web microservices on each node, then
collects the response times. We selected 5 edge cloud physical
nodes and 5 virtual nodes, testing the response times of the edge
cloud cluster services with different combinations of node types
and quantities. At the start of the load test, we simulated HTTP
requests from 50 users, distributed across the nodes via locust.
To assess the satellite edge cloud cluster’s response capability
and ability to maintain service stability during sudden peaks
in request volume, we randomly selected time points within a
5-minute period to perform two abrupt increases in the number
of simulated users. The increases were by 100 and 500 users,
respectively. We followed the same testing procedure when
invoking the gRPC network communication protocol in the test
cluster microservices. For reference, we repeated the testing
process multiple times. Figs. 8 and 9 shows our test results.

The response time curves in Figs. 8 and 9 depict the response
trends of edge cloud clusters formed by different combinations
of node types and quantities when facing sudden spikes in
requests. When there is a sudden surge in user requests, the
response times of all node combinations in the edge cloud
cluster increase correspondingly for a short period. However,
subsequent load balancing of these requests distributes them
across various nodes, gradually restoring stability, and thereby
reducing the response times of microservices over time.

Based on the experimental results from Tables VI and VII, we
analyze the concurrent request response performance of edge

Authorized licensed use limited to: HUNAN UNIVERSITY. Downloaded on August 20,2025 at 02:07:46 UTC from IEEE Xplore. Restrictions apply.

1776 IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 18, NO. 3, MAY/JUNE 2025

TABLE VI
RESPONSE TIME FOR LOAD TESTING OF HTTP AND GRPC PROTOCOLS IN A SATELLITE EDGE CLOUD CLUSTER COMPRISING PHYSICAL AND VIRTUAL NODES

TABLE VII
RESPONSE TIME FOR LOAD TESTING OF HTTP AND GRPC PROTOCOLS IN A SATELLITE EDGE CLOUD CLUSTER COMPRISING PURELY PHYSICAL OR PURELY

VIRTUAL NODES

Fig. 8. Average response time variation for HTTP protocol testing across
different cluster sizes.

Fig. 9. Average response time variation for gRPC protocol testing across
different cluster sizes.

cloud clusters. This analysis focuses on three key aspects: node
type, node quantity, and the communication protocol used for
requests.

Node Type: Under the condition of the same number of nodes
in the cluster, different types of node combinations imply varying
computational power for the cluster. An edge cloud cluster
composed solely of physical nodes exhibits faster response times
when handling concurrent HTTP and gRPC protocol requests.
When virtual nodes are added, the response time for handling
concurrent requests increases, but not significantly. Conversely,
an edge cloud cluster composed solely of virtual nodes has rel-
atively weaker high-concurrency processing capabilities. How-
ever, this is not absolute. A cluster made entirely of virtual nodes
demonstrated a lower overall average response time for gRPC
requests compared to a cluster composed of two physical nodes
and three virtual nodes.

Node Quantity: Increasing the number of nodes can poten-
tially enhance the system’s ability to handle concurrent requests,
but this is not always the case. The experimental results in-
dicate that increasing the number of nodes does not always
lead to reduced response times. For instance, the minimum
response time for handling gRPC requests in an edge cloud
cluster composed of five physical nodes is still higher than
that of a cluster composed of four nodes. This could be due to
load balancing strategies, inter-node communication overhead,
or other system bottlenecks. As shown in Table VII, with an
increase in the number of nodes, the system should be able to
handle more concurrent requests, thereby reducing the average
response time. Nevertheless, when the number of nodes reaches
a certain point, improvements may become less noticeable due
to network latency, inter-node communication overhead, and the
complexity of load balancing algorithms.

Request Type: In the satellite edge cloud cluster, the response
time for handling concurrent gRPC requests is significantly

Authorized licensed use limited to: HUNAN UNIVERSITY. Downloaded on August 20,2025 at 02:07:46 UTC from IEEE Xplore. Restrictions apply.

ZENG et al.: SECTEST: AN INTEGRATED TESTING PLATFORM FOR QOS IN SATELLITE EDGE CLOUDS 1777

Fig. 10. Histogram and density plot of response time distribution for single-point load testing of the gRPC protocol on Phytium D2000, i7-10700 k CPU, and
Atlas 200I DK A2 over 5 minutes.

TABLE VIII
RESPONSE TIME FOR SINGLE-POINT LOAD TESTING OF THE GRPC PROTOCOL ON PHYTIUM D2000, I7-10700 K CPU, AND ATLAS 200I DK A2 OVER 5 MINUTES

shorter than for handling HTTP requests. This is because gRPC
uses the HTTP/2 protocol, which supports multiplexing and
bidirectional streaming, allowing for more efficient use of net-
work resources and reduced latency. In Tables VI and VII, the
response time for gRPC requests is markedly shorter than for
HTTP requests, confirming the performance advantages of the
gRPC protocol.

Overall, the pure physical node combination has the shortest
overall response time and the lowest peak response time com-
pared to other combinations, indicating that pure physical nodes
have better recovery capabilities when dealing with sudden
loads. The recovery time for mixed nodes is slightly longer, but
their overall recovery capability is still good. When virtual nodes
are added, the mixed node combinations take slightly longer to
process requests under heavy load, but their overall performance
remains satisfactory. This suggests that an appropriate mix of
node types can achieve a balance between performance and
resource utilization. The response time for pure virtual nodes
is relatively high, indicating that pure virtual nodes have weaker
recovery capabilities after sudden load spikes. Overall, all types
of node combinations are able to stabilize the system after
handling sudden surges in requests, providing an acceptable
quality of service.

E. Single-Point Load Testing of the gRPC Protocol

To analyze and explain in detail how hardware performance
impacts the processing of requests by microservice applications
in satellite edge clouds, we used ghz to to conduct single-node
load testing of the gRPC protocol on nodes with varying compu-
tational capacities. We deployed the testing tool ghz on the nodes
of Atlas 200I DK A2, Phytium D2000, and Intel i7-10700 k
CPU. On each node, we simulated 5 working threads and set the
initial gRPC request load to 50 requests per second. The load
strategy involved increasing the number of requests per second

incrementally until reaching 500 requests per second. The test
duration was 5 minutes, aimed at evaluating the response time
of the microservice applications under a continuously increasing
request load.

In Fig. 10 Table VIII, Phytium D2000 exhibited stronger
computational capability when handling high-concurrency re-
quests. Compared to other nodes, its average response time was
faster, enabling it to handle and respond to concurrent requests
more quickly, thereby demonstrating outstanding overall perfor-
mance in microservice request handling. The outcome further
validates the Phytium’s advantage in processing microservice
requests. During the load testing on a single virtual machine
deployed on Intel i7-10700 k CPU, the average response time
showed a significant decrease compared to the load testing con-
ducted on a cluster composed entirely of virtual nodes. This can
be attributed to several factors. Firstly, reducing communication
overhead between multiple virtual nodes lowers latency and
minimizes performance loss caused by network communication.
Secondly, enabling individual virtual nodes to access more CPU
resources enhances their ability to process requests. Therefore,
optimizing resource allocation and minimizing unnecessary
communication overhead is crucial for improving overall per-
formance in resource-constrained satellite edge clouds.

V. RELATED WORK

A. Satellite Network Testing Platforms and Measurement

With the significant reduction in satellite launch speed and
cost, research in satellite application testing has advanced con-
siderably. Currently, satellite network testing can be categorized
into the following types: (1) testing platforms relying on theoret-
ical modeling and simulation; (2) platforms using actual satellite
systems for measurement; (3) simulation testing based on real
data.

Authorized licensed use limited to: HUNAN UNIVERSITY. Downloaded on August 20,2025 at 02:07:46 UTC from IEEE Xplore. Restrictions apply.

1778 IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 18, NO. 3, MAY/JUNE 2025

Celestial [34] is a microVM-based LEO edge virtual testing
platform that effectively simulates individual satellites and their
motion, along with ground station servers under real network
conditions and application-agnostic environments. This ensures
network testing accuracy while maintaining scalability. Star-
ryNet [35], as a network testing framework, can flexibly con-
struct experimental network testing environments, simulating
satellite dynamics and the network behavior of large ISTNs.
StarryNet achieves constellation consistency, network system
realism, and flexibility while evaluating network performance.
StarPerf [36] is a simulation testing platform for evaluating
and optimizing the performance of mega constellations. It can
simulate the high mobility impacts of large satellite networks and
analyze network performance under different topology options.
As a type of simulation satellite testing platform, its core capa-
bility lies in the ability to simulate the real motion trajectories of
satellite clusters. The advantages of simulation testing platforms
include high operability, flexibility, and lower testing costs.

Platforms based on actual satellite systems [37], [38], [39],
[40], [41] offer the advantage of high accuracy and precision in
testing, as they rely on real data. The extensive coverage of real
satellite constellations also allows for a broader range of testing
types. Unlike modeling and simulation testing platforms, testing
on simulation systems based on real satellite data [42], [43], [44],
[45], [46] ensures a high degree of authenticity and accuracy in
the test data. Its advantages include high safety and efficiency
in testing. Simulation testing can be conducted in a virtual
environment, avoiding the risks and potential losses associated
with directly operating real satellites. Additionally, simulation
testing can quickly simulate various complex scenarios and
conditions, shortening the testing cycle and reducing time costs.

B. Microservice Testing in Satellite Edge Clouds

Microservice applications have become an integral part of
satellite edge clouds computing architectures, offering services
with lower latency and enhanced computational capabilities.
With the evolution of cloud-native satellite systems, there’s a
growing demand for testing microservice performance and vali-
dating the effectiveness of optimization algorithms. SatEC [47],
inspired by the constellation model of the Iridium communi-
cation system, constructs a testing environment on the ground
for simulation purposes, aiming to assess the communication
range and network performance of satellite networks. Tiansuan
constellation [40], deploys AI-related image inference microser-
vices based on the Kubeedge platform within real cloud-native
satellite systems, primarily testing inference accuracy and com-
putational latency. Huang et al. [48] developed an open-source
platform combining STHN and EC based on KubeEdge, altering
traditional microservice deployment methods. They deployed
three interconnected neural network microservices and tested
the effectiveness of their microservice scheduling algorithm in
reducing computational latency.

C. Microservice Integration Testing on Edge Clouds

In cloud environments, microservices integration testing is
primarily categorized into two types: integrating different mi-
croservices to test the same metrics and integrating various

testing tools to evaluate different metrics. Camilli et al. [49] pro-
posed the MIPaRT method and platform, which automates the
performance and reliability testing of microservices operations
and can be integrated into the DevOps cycle, supporting con-
tinuous testing and monitoring. By validating on open-source
benchmarks, they demonstrated insights into the performance
and reliability behavior of microservices. Giallorenzo et al. [50]
illustrated how to utilize Jolie, a programming language for
microservices composition, to integrate and design applications
based on microservices architecture. Raith et al. [51] extended
the open-source tool Galileo to propose a distributed load test-
ing framework for edge cloud cluster benchmarking, primarily
for end-to-end testing between different components. In the
context of multi-cloud storage platforms, Cao et al. [52] de-
signed a framework that supports unit testing and can isolate
testing environments, integrating Tempest and Mock for testing
the storage functionalities of edge devices. Additionally, Reile
et al. [12] introduced an integration testing tool for microservices
deployment in the cloud, which supports extensive microser-
vices integration testing and the publication of test results. How-
ever, this tool has limitations in narrow integration testing and
load testing. These studies and tools provide diverse solutions
for microservices integration testing in cloud environments but
also reveal their respective limitations, highlighting areas for
optimization under different testing requirements.

D. Comparison of Satellite Network Testing Platforms
and Frameworks

With the gradual enhancement of satellite computing re-
sources and capabilities, deploying and managing AI inference
services on satellites using cloud environments has become more
convenient. Solely relying on theoretical analysis and simula-
tion platforms, without validation of actual systems and real
environments, may lead to significant disparities between the-
oretical derivation results and actual test outcomes. Traditional
simulation platforms for network measurement in the cloud are
no longer suitable for current scenarios.

Table IX provides a brief overview of the latest satellite net-
work testing platforms and frameworks, comparing them based
on common features and the distinct functionalities supported
by SECTest. Compared to other research, SECtest possesses
core capabilities in satellite constellation testing, suitable for
satellite edge clouds, and capable of simulating actual satellite
cluster trajectories. Unlike other works, SECtest dynamically
generates and manages test clusters by computing network
topology changes during satellite cluster operation, rendering
it more adaptive and practical. One of SECtest’s primary advan-
tages lies in its ability to integrate and extend multiple testing
tools, enhancing its network performance testing capabilities to
support testing across multiple network protocols. Additionally,
SECtest supports customization and extension of testing metrics,
providing greater flexibility compared to traditional simulation
testing platforms. In terms of testing scope, SECtest not only
evaluates microservices’ QoS across the entire satellite cluster
but also conducts end-to-end testing under various conditions.

In SECtest, the microservice applications used for testing
are written in Python and Golang. Requests to the services are

Authorized licensed use limited to: HUNAN UNIVERSITY. Downloaded on August 20,2025 at 02:07:46 UTC from IEEE Xplore. Restrictions apply.

ZENG et al.: SECTEST: AN INTEGRATED TESTING PLATFORM FOR QOS IN SATELLITE EDGE CLOUDS 1779

TABLE IX
COMPARISON WITH THE MOST POPULAR SATELLITE NETWORK TEST PLATFORMS AND FRAMEWORKS

associated with running containers, implying that microservice
programs can be defined in any programming language and
executed through containers. All applications can be deployed
and managed on SECtest using YAML files.

VI. DISCUSSION

We developed SECTest as a testing platform to evaluate
QoS in satellite edge cloudss, supporting user-defined exper-
iments and the integration of testing tools. We demonstrated
the extensibility of SECTest in integrating testing tools and
customizing test metrics. The experiments showed that SECTest
can not only assess key QoS metrics of satellite edge clouds
but also test the QoS variations of individual nodes. This
extensibility allows developers to customize and execute test
cases. Additionally, SECTest enables services on the satellite
edge clouds to benefit from comprehensive integrated test-
ing, reducing deployment and update costs, minimizing the
effort required to modify test code, and significantly lower-
ing the cost of QoS testing for microservices in satellite edge
clouds.

For future research directions, SECTest can be improved in
several areas. Currently, SECTest relies on manual design and
execution of test cases, even though this approach provides
solid support for integrated testing on satellite edge clouds.
Nonetheless, expanding the functionality of SECTest to en-
able automatic generation of test cases and achieve higher
test coverage represents one of our future research directions.
Additionally, SECTest has demonstrated robust extensibility in
integrating testing tools, thus expanding its testing capabili-
ties and scope. However, careful consideration must be given
when deploying testing tools on SECTest. Currently, there is
no mechanism to resolve potential conflicts between different
testing tools that might run concurrently. Furthermore, redun-
dancy in the functionalities provided by integrated testing tools
needs to be considered. In the future, we aim to establish
standards for integrating testing tools more flexibly to meet
the QoS testing requirements of services on the satellite edge
clouds.

In the SECTest for evaluating the QoS of satellite mi-
croservices, the data link layer and network layer of satellite

communication protocols are involved. These layers ensure
reliable data transmission in environments with high bit error
rates and dynamic topologies. Data loss during inter-satellite
transmission can be recovered through automatic repeat request
(ARQ) or forward error correction (FEC). However, retransmis-
sion mechanisms in high-latency links may lead to prolonged
recovery times, and redundant transmissions can increase band-
width consumption. SECTest will simulate scenarios with high
bit error rates and signal attenuation to test the performance
of ARQ and FEC. Additionally, satellite communication links
typically use frame protocols like high-level data link control or
point-to-point protocol for data encapsulation and synchroniza-
tion. In high-speed satellite environments, the Doppler effect can
complicate frame synchronization, and the overhead of frame
protocols can impact bandwidth utilization. SECTest will further
evaluate the performance of different frame protocols under
packet loss conditions. MoreOver, in LEO satellite networks,
the dynamic topology requires inter-satellite routing protocols
to quickly adapt to changes. Routing protocols need to converge
rapidly to prevent data loss, but frequent routing updates can in-
crease computational and communication overhead. To address
this, routing paths can be pre-calculated based on satellite orbit
information. SECTest will support real-time routing adjustments
to handle topology changes and help optimize routing protocol
design by assessing routing convergence time and computational
overhead.

One important aspect of QoS testing on satellite edge clouds
that deserves consideration is the cost of using cloud resources.
The computing resources and energy required to maintain oper-
ations on satellites are limited. Long-term testing on the satel-
lite edge cloud can incur significant energy consumption and
computing resource costs. As developers, we aim to complete
the entire testing process efficiently and swiftly to ensure no
waste of satellite resources. Given the test objectives and metrics,
developers can deploy testing tools to the edge cloud cluster on
SECTest quickly and cost-effectively, executing scalable tests
manually. However, SECTest currently lacks effective solutions
for optimizing energy consumption and reducing the computing
resources needed for prolonged testing on the satellite edge
cloud. In future research, SECTest will better address and resolve
these issues.

Authorized licensed use limited to: HUNAN UNIVERSITY. Downloaded on August 20,2025 at 02:07:46 UTC from IEEE Xplore. Restrictions apply.

1780 IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 18, NO. 3, MAY/JUNE 2025

VII. CONCLUSION

We have designed and implemented SECTest, a QoS inte-
gration testing platform for satellite edge cloud environments.
This platform holds significant and guiding implications for
testing service quality in satellite edge cloud clusters, addressing
key challenges in testing service quality within satellite edge
cloud environments. SECTest provides a structured and efficient
method to assess the reliability and performance of these ser-
vices. SECTest can integrate with changes in satellite network
topology. It supports the management of satellite edge cloud
cluster scales. Additionally, it integrates and extends multiple
testing tools into a unified platform. The platform also allows
for custom test parameter input and the publication of test results.
We have built a real satellite edge cloud cluster based on Ku-
bernetes and, furthermore, utilized containerization technology
to integrate and deploy various testing tools within it. Subse-
quently, we evaluated the key service quality indicators of dif-
ferent types of microservice applications, thereby demonstrating
the feasibility and effectiveness of SECTest. In the future, we
plan to expand the range of testing tools to provide comprehen-
sive testing of satellite edge cloud environments from multiple
perspectives. Additionally, we aim to support automated testing
on SECTest, which is another avenue of our research.

REFERENCES

[1] G. Zeng, J. Luo, Y. Zhang, Y. Qiao, and S. Teng, “A framework for QoS of
integration testing in satellite edge clouds,” in Proc. 2024 IEEE Int. Conf.
Web Serv., 2024, pp. 1109–1111.

[2] C. Wang, Y. Zhang, Q. Li, A. Zhou, and S. Wang, “Satellite computing: A
case study of cloud-native satellites,” in Proc. 2023 IEEE Int. Conf. Edge
Comput. Commun., 2023, pp. 262–270.

[3] X. Gao, R. Liu, A. Kaushik, and H. Zhang, “Dynamic resource allocation
for virtual network function placement in satellite edge clouds,” IEEE
Trans. Netw. Sci. Eng., vol. 9, no. 4, pp. 2252–2265, Jul./Aug. 2022.

[4] L. Hao, P. Ren, and Q. Du, “Satellite QoS routing algorithm based on
energy aware and load balancing,” in Proc. 2020 Int. Conf. Wireless
Commun. Signal Process., 2020, pp. 685–690.

[5] X. Wang, H. Liy, W. Yao, T. Lany, and Q. Wu, “Content delivery for
high-speed railway via integrated terrestrial-satellite networks,” in Proc.
2020 IEEE Wireless Commun. Netw. Conf., 2020, pp. 1–6.

[6] S. Wang and Q. Li, “Satellite computing: Vision and challenges,” IEEE
Internet Things J., vol. 10, no. 24, pp. 22514–22529, Dec. 2023.

[7] Y. Zhang, Q. Wu, Z. Lai, and H. Li, “Enabling low-latency-capable
satellite-ground topology for emerging leo satellite networks,” in Proc.
IEEE Conf. Comput. Commun., 2022, pp. 1329–1338.

[8] T. Pfandzelter and D. Bermbach, “QoS-aware resource placement for leo
satellite edge computing,” in Proc. 2022 IEEE 6th Int. Conf. Fog Edge
Comput., 2022, pp. 66–72.

[9] Y. Turk and E. Zeydan, “Satellite backhauling for next generation cellular
networks: Challenges and opportunities,” IEEE Commun. Mag., vol. 57,
no. 12, pp. 52–57, Dec. 2019.

[10] O. Liubimov, “Use of micro-services architecture and containerization for
the fast development and testing of the cubesat nanosatellites software,”
J. Rocket-Space Technol., vol. 31, no. 4, pp. 128–137, 2023.

[11] Y. Sun, M. Peng, S. Zhang, G. Lin, and P. Zhang, “Integrated satellite-
terrestrial networks: Architectures, key techniques, and experimental
progress,” IEEE Netw., vol. 36, no. 6, pp. 191–198, Nov./Dec. 2022.

[12] C. Reile, M. Chadha, V. Hauner, A. Jindal, B. Hofmann, and M. Gerndt,
“Bunk8s: Enabling easy integration testing of microservices in kuber-
netes,” in Proc. IEEE Int. Conf. Softw. Anal. Evol. Reengineering, 2022,
pp. 459–463.

[13] C. Dumitrache, G. Predusca, G. Gavriloaia, N. Angelescu, D. Circiu-
marescu, and D. C. Puchianu, “Comparative analysis of routing protocols
using GNS3, wireshark and IPerf3,” in Proc. 2022 14th Int. Conf. Electron.
Comput. Artif. Intell., 2022, pp. 1–6.

[14] T. F. Düllmann, A. V. Hoorn, V. Yussupov, P. Jakovits, and M. Ad-
hikari, “CTT: Load test automation for TOSCA-based cloud applications,”
in Proc. Companion 2022 ACM/SPEC Int. Conf. Perform. Eng., 2022,
pp. 89–96.

[15] R. Mukherjee and K. S. Patnaik, “A survey on different approaches for
software test case prioritization,” J. King Saud Univ.- Comput. Inf. Sci.,
vol. 33, no. 9, pp. 1041–1054, 2021.

[16] Y. Han, S. Shen, X. Wang, S. Wang, and C. M. V. Leung, “Tailored learning-
based scheduling for kubernetes-oriented edge-cloud system,” in Proc.
IEEE Conf. Comput. Commun., 2021, pp. 1–10.

[17] B. Zhang et al., “Progress and challenges in intelligent remote sensing
satellite systems,” IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens.,
vol. 15, pp. 1814–1822, 2022.

[18] G. Jocher et al., “ultralytics/yolov5: v3.1 - bug fixes and performance
improvements,” Oct. 2020.

[19] S. Ren, K.R. HeGirshick, and J. Sun, “Faster R-CNN: Towards real-time
object detection with region proposal networks,” IEEE Trans. Pattern Anal.
Mach. Intell., vol. 39, no. 6, pp. 1137–1149, Jun. 2017.

[20] T.-Y. Lin, P. Goyal, R. Girshick, K. He, and P. Dollár, “Focal loss for
dense object detection,” in Proc. IEEE Int. Conf. Comput. Vis., 2017,
pp. 2980–2988.

[21] G.-S. Xia et al., “DOTA: A large-scale dataset for object detection in
aerial images,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., 2018,
pp. 3974–3983.

[22] I. Leyva-Mayorga, B. Soret, and P. Popovski, “Inter-plane inter-satellite
connectivity in dense leo constellations,” IEEE Trans. Wireless Commun.,
vol. 20, no. 6, pp. 3430–3443, Jun. 2021.

[23] P. Tam, S. Math, and S. Kim, “Intelligent massive traffic handling scheme in
5 G bottleneck backhaul networks,” KSII Trans. Internet Inf. Syst., vol. 15,
no. 3, pp. 874–890, 2021.

[24] M. Esmaeilzadeh, N. Aboutorab, and P. Sadeghi, “Joint optimization of
throughput and packet drop rate for delay sensitive applications in TDD
satellite network coded systems,” IEEE Trans. Commun., vol. 62, no. 2,
pp. 676–690, Feb. 2014.

[25] F. Wang, D. Jiang, Z. Wang, J. Chen, and T. Q. S. Quek, “Seamless
handover in LEO based non-terrestrial networks: Service continuity and
optimization,” IEEE Trans. Commun., vol. 71, no. 2, pp. 1008–1023,
Feb. 2023.

[26] Q. Li et al., “Exploring real-time satellite computing: From energy
and thermal perspectives,” in Proc. 2024 IEEE Real-Time Syst. Symp.,
pp. 161–173, 2024.

[27] G.M. Capez et al., “On the use of mega constellation services in space:
Integrating leo platforms into 6G non-terrestrial networks,” IEEE J. Sel.
Areas Commun., vol. 42, no. 12, pp. 3490–3504, Dec. 2024.

[28] P. Loreti et al., “SRv6-PM: A cloud-native architecture for performance
monitoring of SRv6 networks,” IEEE Trans. Netw. Service Manag., vol. 18,
no. 1, pp. 611–626, Mar. 2021.

[29] G. R. Russo, T. Mannucci, V. Cardellini, and F. L. Presti, “Serverledge:
Decentralized function-as-a-service for the edge-cloud continuum,”
in Proc. 2023 IEEE Int. Conf. Pervasive Comput. Commun., 2023,
pp. 131–140.

[30] K. Bojan, “Ghz,” 2024. Accessed: Jun. 16, 2024. [Online]. Available: https:
//github.com/bojand/ghz

[31] X. Wang, J. Lin, J. Zhao, X. Yang, and J. Yan, “Eautodet: Efficient
architecture search for object detection,” in Proc. Eur. Conf. Comput. Vis.,
2022, pp. 668–684.

[32] T. Chen, R. Li, J. Fu, and D. Jiang, “Tucker bilinear attention network for
multi-scale remote sensing object detection,” IEEE Geosci. Remote Sens.
Lett., to be published, doi: 10.1109/LGRS.2023.3296984.

[33] Y. Pang, Y. Zhang, Q. Kong, Y. Wang, B. Chen, and X. Cao, “SOCDet:
A lightweight and accurate oriented object detection network for satellite
on-orbit computing,” IEEE Trans. Geosci. Remote Sens., vol. 61, 2023,
Art. no. 5608115.

[34] T. Pfandzelter and D. Bermbach, “Celestial: Virtual software system
testbeds for the leo edge,” in Proc. 23 rd ACM/IFIP Int. Middleware Conf.,
2022, pp. 69–81.

[35] Z. Lai et al., “StarryNet: Empowering researchers to evaluate futuristic
integrated space and terrestrial networks,” in Proc. 20th USENIX Symp.
Networked Syst. Des. Implementation, 2023, pp. 1309–1324.

[36] Z. Lai, H. Li, and J. Li, “STARPERF: Characterizing network performance
for emerging mega-constellations,” in Proc. 2020 IEEE 28th Int. Conf.
Netw. Protoc., 2020, pp. 1–11.

[37] S. Narayana, R. V. Prasad, V. Rao, L. Mottola, and T. V. Prabhakar,
“Hummingbird: Energy efficient gps receiver for small satellites,” in Proc.
26th Annu. Int. Conf. Mobile Comput. Netw., 2020, pp. 1–13.

Authorized licensed use limited to: HUNAN UNIVERSITY. Downloaded on August 20,2025 at 02:07:46 UTC from IEEE Xplore. Restrictions apply.

https://github.com/bojand/ghz
https://github.com/bojand/ghz
https://dx.doi.org/10.1109/LGRS.2023.3296984

ZENG et al.: SECTEST: AN INTEGRATED TESTING PLATFORM FOR QOS IN SATELLITE EDGE CLOUDS 1781

[38] V. Singh, A. Prabhakara, D. Zhang, O. Yağan, and S. Kumar, “A
community-driven approach to democratize access to satellite ground
stations,” in Proc. 27th Annu. Int. Conf. Mobile Comput. Netw., 2021,
pp. 1–14.

[39] A. Singla, “SatNetLab: A call to arms for the next global internet testbed,”
2021.

[40] S. Wang, Q. Li, M. Xu, X. Ma, A. Zhou, and Q. Sun, “Tiansuan constel-
lation: An open research platform,” in Proc. 2021 IEEE Int. Conf. Edge
Comput., 2021, pp. 94–101.

[41] R. Xing et al., “Deciphering the enigma of satellite computing with cots
devices: Measurement and analysis,” in Proc. 30th Annu. Int. Conf. Mobile
Comput. Netw., 2024, pp. 420–435.

[42] D. Vasisht, J. Shenoy, and R. Chandra, “L2D2: Low latency distributed
downlink for leo satellites,” in Proc. 2021 ACM SIGCOMM 2021 Conf.,
2021, pp. 151–164.

[43] D. Vasisht and R. Chandra, “A distributed and hybrid ground station
network for low earth orbit satellites,” in Proc. 19th ACM Workshop Hot
Topics Netw., 2020, pp. 190–196.

[44] J. GP Rodrigues and A. Aguiar, “Extracting 3 D maps from crowdsourced
gnss skyview data,” in Proc. 25th Annu. Int. Conf. Mobile Comput. Netw.,
2019, pp. 1–15.

[45] C. Ge et al., “QoE-assured live streaming via satellite backhaul in 5G
networks,” IEEE Trans. Broadcast., vol. 65, no. 2, pp. 381–391, Jun. 2019.

[46] J. Zhang, S. Dong, H. Yuan, W. Li, Y. Guo, and J. Zhang, “Interface
verification and satellite-ground testing of high-precision time comparison
system between leo satellites and beidou satellites,” in Proc. 2023 5th Int.
Conf. Geosci. Remote Sens. Mapping, 2023, pp. 120–126.

[47] L. Yan et al., “SatEC: A 5G satellite edge computing framework based on
microservice architecture,” Sensors, vol. 19, no. 4, 2019, Art. no. 831.

[48] Y. Huang and X. Zhang, “Microservice scheduling for satellite-terrestrial
hybrid network with edge computing,” in Proc. 2022 IEEE/CIC Int. Conf.
Commun. China, 2022, pp. 24–29.

[49] M. Camilli, A. Guerriero, A. Janes, B. Russo, and S. Russo, “Microservices
integrated performance and reliability testing,” in Proc. 3rd ACM/IEEE Int.
Conf. Automat. Softw. Test, 2022, pp. 29–39.

[50] S. Giallorenzo, F. Montesi, M. Peressotti, F. Rademacher, and N. Unwer-
awattana, “JoT: A jolie framework for testing microservices,” in Proc. Int.
Conf. Coordination Lang. Models, 2023, pp. 172–191.

[51] P. Raith, T. Rausch, P. Prüller, A. Furutanpey, and S. Dustdar, “An
end-to-end framework for benchmarking edge-cloud cluster management
techniques,” in Proc. 2022 IEEE Int. Conf. Cloud Eng., 2022, pp. 22–28.

[52] R. Cao, Z. Tang, C. Liu, and B. Veeravalli, “A scalable multicloud
storage architecture for cloud-supported medical Internet of Things,” IEEE
Internet Things J., vol. 7, no. 3, pp. 1641–1654, Mar. 2020.

Guogen Zeng received the MS degree in software
engineering from Hunan University, China, in 2022.
He is currently working toward the doctoral degree
in energy and power with Hunan University, China.
His research interests include software testing, highly
trusted software, edge computing, and artificial intel-
ligence.

Juan Luo (Member, IEEE) received the bachelor’s
degree in electronic engineering from the National
University of Defense Technology, Changsha, Hunan,
China, in 1997, and the master’s and PhD degrees in
communication and information system from Wuhan
University, Wuhan, Hubei, China, in 2000 and 2005,
respectively. From 2008 to 2009, she was a visiting
scholar with the University of California at Irvine,
Irvine, CA, USA. She is currently a professor and vise
dean with the College of Computer Science and Elec-
tronic Engineering, Hunan University, Changsha. She

has published more than 100 papers. Her research interests include focused on
the Internet of Things, cloud computing, and AI. She is a member of ACM and
SIGCOM. She is also a Distinguished Member of CCF.

Yufeng Zhang received the PhD degree from the
College of Computer, National University of Defense
Technology, Changsha, China, in 2013. He is an
associate professor with the College of Computer
Science and Electronic Engineering, Hunan Univer-
sity, China. His research interests include artificial
intelligence and software engineering.

Ying Qiao received the BE degree from Xi’an Uni-
versity, Xi’an, China, in 2017, and the MSc degree
in software programming from Central South Uni-
versity, Changsha, China, in 2020. She is currently
working toward the PhD degree in computer science
and technology with Hunan University, Changsha,
China. Her current research interests include mobile
edge computing and satellite IoT.

Shuyang Teng received the bachelor’s degree in dig-
ital media technology from Hunan University, China,
in 2021. He is currently working toward the doctoral
degree in computer science and technology with Hu-
nan University, China. His research interests include
Edge computing and satellite Internet.

Keqin Li (Fellow, IEEE) received a BS degree in
computer science from Tsinghua University, in 1985,
and the PhD degree in computer science from the
University of Houston in 1990. He is a SUNY Distin-
guished professor with the State University of New
York and a National Distinguished professor with
Hunan University (China). He has authored or co-
authored more than 1110 journal articles, book chap-
ters, and refereed conference papers. He holds more
than 75 patents announced or authorized by the Chi-
nese National Intellectual Property Administration.

Since 2020, he has been among the world’s top few most influential scientists in
parallel and distributed computing regarding single-year impact (ranked 2) and
career-long impact (ranked 4) based on a composite indicator of the Scopus cita-
tion database. He is listed in Scilit Top Cited Scholars (2023-2024) and is among
the top 0.02% out of more than 20 million scholars worldwide based on top-cited
publications. He is listed in ScholarGPS Highly Ranked Scholars (2022-2024)
and is among the top 0.002% out of over 30 million scholars worldwide based
on a composite score of three ranking metrics for research productivity, impact,
and quality in the recent five years. He received the IEEE TCCLD Research
Impact Award from the IEEE CS Technical Committee on Cloud Computing
in 2022 and the IEEE TCSVC Research Innovation Award from the IEEE CS
Technical Community on Services Computing in 2023. He won the IEEE Region
1 Technological Innovation Award (Academic) in 2023. He was a recipient of the
2022-2023 International Science and Technology Cooperation Award and the
2023 Xiaoxiang Friendship Award of Hunan Province, China. He is a member
of the SUNY Distinguished Academy. He is an AAAS fellow, an AAIA fellow,
an ACIS fellow, and an AIIA fellow. He is a member of the European Academy
of Sciences and Arts. He is a member of Academia Europaea (Academician of
the Academy of Europe).

Authorized licensed use limited to: HUNAN UNIVERSITY. Downloaded on August 20,2025 at 02:07:46 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 900
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00111
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 1200
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00083
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00063
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

