
Soft Comput (2016) 20:555–566
DOI 10.1007/s00500-014-1522-3

METHODOLOGIES AND APPLICATION

Hybrid immune algorithm based on greedy algorithm
and delete-cross operator for solving TSP

Guo Pan · Kenli Li · Aijia Ouyang · Keqin Li

Published online: 25 November 2014
© Springer-Verlag Berlin Heidelberg 2014

Abstract This paper first introduces the fundamental prin-
ciples of immune algorithm (IA), greedy algorithm (GA)
and delete-cross operator (DO). Based on these basic algo-
rithms, a hybrid immune algorithm (HIA) is constructed to
solve the traveling salesman problem (TSP). HIA employs
GA to initialize the routes of TSP and utilizes DO to delete
routes of crossover. With dynamic mutation operator (DMO)
adopted to improve searching precision, this proposed algo-
rithm can increase the likelihood of global optimum after
the hybridization. Experimental results demonstrate that the
HIA algorithm is able to yield a better solution than that of
other algorithms, which also takes less computation time.

Keywords Delete-cross operator · Dynamic mutation ·
Greedy algorithm · Immune algorithm · TSP

1 Introduction

Traveling salesman problem (TSP) is a classical combina-
tional optimization problem with strong performances in
engineering and wide applicability. TSP problem can be for-
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mally described as: already known N citiesC={C1,C2, . . . ,

CN}, and the distance between two randomly selected cities
is denoted as d(ci , c j ), then the solution of the closed
path passing all the cities within C just once will be
Cπ={Cπ(1),Cπ(2),Cπ(N )} to minimize the total travel dis-
tance

∑N−1
i=1 d(Cπ(i),Cπ(i+1)) + d(Cπ(N ),Cπ(1)).

There aremany types of TSPs, such asmultiobjective TSP
(Shim et al. 2012), dynamic TSP (Cheong and White 2012),
Dubins TSP (Le Ny et al. 2012), sequence-dependent TSP
(Alkaya andDuman 2013), double TSP (Carrabs et al. 2013).
For large-scale TSP problems, people tend to figure out an
acceptable approximate solution within the time limit. The
approximate algorithms for TSP problems can be catego-
rized into tour construction algorithms and tour improvement
ones. Tour construction algorithm starts from an illegal solu-
tion and changing the path gradually until the legal route
is acquired. These kinds of algorithms cover the Clarke–
Wright algorithm (Clarke and Wright 1964), nearest neigh-
bor algorithm (Hurkens and Woeginger 2004), greedy algo-
rithm (Hassin and Keinan 2008) and Christofides algorithm
(An et al. 2012), etc. Tour improvement algorithm searches
for a solutionwith better quality by adopting a certain strategy
after the acquisition of initial legal solution. These kinds of
algorithms include local search strategy (Opt, LK, LKH, LK-
circulation (Karapetyan and Gutin 2011), etc), tabu search
(Pedro et al. 2013), simulated annealing (Kalender et al.
2013), cuckoo search algorithm (Ouaarab et al. 2013), parti-
cle swarm algorithm (Beheshti et al. 2013), ant colony opti-
mization algorithm (Gan et al. 2010; Cecilia et al. 2013;
Mavrovouniotis and Yang 2013; Mora et al. 2013), neural
network (Yang and Yi 2013), memetic algorithm (Badillo
et al. 2013), GA–PSO–ACO (Deng et al. 2012), artificial
bee colony algorithm (Marinakis et al. 2011; Kıran et al.
2013), genetic algorithm (Yuan et al. 2013; Nagata and Soler
2012), multiagent optimization system (Xie and Liu 2009),
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and artificial vaccines (Montiel and Diaz Delgadillo 2013),
etc.

By imitating the mechanisms of the biological immune
systemwhich goes through immune response, immunemem-
ory and immune regulation, the artificial immune system
(AIS) constructs a self-organizing artificial intelligence sys-
tem with strong robustness. With more research related
with artificial immune system going on, the issue of arti-
ficial immunity has become another hot research area fol-
lowing the step of neural network, fuzzy logic and evolu-
tionary computation (Dasgupta and Forrest 1999). Based
on immunity theories, several heuristic algorithms have
been proposed up to now. In 1995, Hunt and his col-
leagues presented the first artificial immune system model,
i.e., B Cellular Network Model (Hunt and Cooke 1995).
Chun (1997) proposed another immune algorithm based
on immune network theories, which conducts selective
operation according to individual fitness value and simi-
larity, thereby restraining similar individuals and keeping
the diversity of the population. From this perspective, the
algorithm has global optimum searching ability. De Cas-
tro and Von Zuben (2002) put forward a clonal selection
algorithm which imitates the clonal selection in immune
system. Specifically speaking, by conducting cloning and
mutating operations to selected individuals for local opti-
mum searching, the algorithm replaces the individuals with
low fitness value in the population with randomly gen-
erated individuals to ensure the diversity of the popula-
tion.

The selection, crossover,mutation and immuneoperator in
immune algorithm are considered important influential fac-
tors on the algorithm’s global search performance. However,
the searching direction of the immune algorithm in immune
operation is always overlooked.To acquire high-performance
candidate solution, the searching direction should be able to
indicate the potential heading direction of immune algorithm
in certain areas. The adoption of random numbers in immune
operation usually leaves candidate solution in a random posi-
tion in the searching space. If the position of the optimum is
far from the current searching space, which cannot be prelim-
inarily recognized, the speed of locating the optimumwill get
lowered, especially in the case of multi-optimization prob-
lems.

Aiming to solve the problems of slow convergence and
low accuracy of the immune algorithm, this paper has come
up with the HIA algorithm for TSP. The main contributions
of the paper are summarized as follows. By adopting a hybrid
method, the immune algorithm is used for global search in
individuals while the greedy algorithm is used to initialize
population and conduct local search in chromosome jointly
with delete-cross operator. When upgrading the individu-
als, we adopt the high-frequency mutation operator based
on dynamic mutation probability to improve the mutation

operator. These strategies stress the potential searching direc-
tion of immune algorithm, which gives progenies chance to
advance towards the direction and search for other space
of high quality. Strengthened superior antibodies therefore
achieve mature affinity, and and strike a balance between
deep exploitation and broad exploration. The simulation on
TSP cases demonstrates that HIA possesses reliable global
convergence and rapid rate of convergence.

The rest of our paper is organized as follows: The defi-
nitions of Directed Graph and TSP are outlined in Sect. 2.
We then describe the basic principles of IA, GA and DO in
Sect. 3. Section 4 proposes the HIA algorithm for TSP. Sec-
tion 5 presents the experimental results and analysis. Finally,
we conclude our work in Sect. 6.

2 Description of TSP

Definition 1 Directed Graph It is assumed that the triple of
directed graph D consists of V , E and F . V is a nonempty set
here, and its elements are called the nodes of directed points;
E is a set, and its elements are called segmental arc (edge);
F is a map (function) from E to V × V .

Definition 2 TSP It is assumed that C = {c1, c2, . . . , cn} is
the set of n cities. L = {li j | c j , c j ⊂ C} is a set consisting
of connections of two random factors (cities) within Set C .
di j (i, j = 1, 2, , n) is the Euclidean distance of li j , which is

di j =
√

(xi − x j )2 + (yi − y j )2 (1)

G = (C, L) is a directed graph. The purpose of TSP is to
search for the shortest Hamilton cycle in the directed graph
D, which essentially is the shortest closed tour visiting all the
factors (cities) in C = {c1, c2, . . . , cn} which happens only
once.

Metaphorically speaking TSP can be simply described as:
assume that there are n cities, one traveling salesman starts
from one city, travels to all the others one by one and heads
back, and to the departure city. A shortest route is needed.

TSP can be categorized into symmetric traveling salesman
problem and asymmetric traveling salesman problem. If the
distance from A to B is the same as the distance from B to A,
then it is called symmetric TSP, otherwise, it is an asymmetric
TSP. The issue of symmetric TSP will be the focus of this
paper.

Given data of TSP include the weight of each edge in a
finite complete graphwhose purpose is to search for a Hamil-
ton cycle with the minimum total weight. There are different
closed paths for a TSPwith n cities. The best way to solve the
problem is global search, but when n is comparatively big,
it becomes impossible to find the exact optimum with global
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search. As for the high representativeness and wide applica-
bility of TSP, many questions can be modeled and solved as
a kind of TSP problem.

3 Fundamental algorithms

3.1 Immune algorithm

3.1.1 Basic principles

The immune system is a natural defense one protecting living
organisms from intruding pathogens or bacteria. The perma-
nent cycle of immune response against such pathogens dis-
plays many dynamic characteristics (Zhang and Qian 2011;
Zhang et al. 2014). Biological immune system is a highly
evolved biological systemwhich aims to distinguish external
harmful antigen from internal organizations, thus maintain-
ing the stable organism. From the perspective of calculation,
biological immune system is a systemwith high concurrency,
distribution, self-adaptation and self-organization. It is supe-
rior in terms of learning, recognition and memory ability.

Immune system has the following features:

– The ability to generate diversified antibodies. The immune
system can generate a mass of antibodies to resist all kinds
of antigen.

– Self-regulating mechanism. The immune system pos-
sesses a mechanism to maintain balance, which can reg-
ulate itself by the production of appropriate quantity of
necessary antibodies after either inhibiting or enhancing
the antibodies.

– Immune memory function. Part of the cells generating
antibodies will be preserved as memory. During the future
invasion of congeneric antigens, corresponding memory
cells will be triggered immediately and produce a mass of
antibodies.

An immune algorithm is developed from basic theories
on artificial immunity (IEEE 2013); it is the expansion
and development of the application and studies on artificial
immunity theories. As artificial immunity is based on the
fundamental concepts and theories of biological immune sys-
tem, the theories of biological immune system are considered
as the direct source of immune algorithm. Referring mainly
to features of the immune system such as antigen recogni-
tion immune memory and immune regulation, immune algo-
rithm applies concepts and theories of immune system into
the calculation. Among the features, antigen recognition is
the process in which the recognition is finished by express-
ing the mutual matching and selection between epitope on
the surface of antigen and the counterpoint on the surface of
antibody. Immune memory means that the immune system

canmaintain andmemorize the antibodywhich reacts to anti-
gen asmemory cells; when congeneric antigens invade again,
the system will instantly recognize the process of reacting.
Immune regulation happens during immune reaction when
the stimulus of antigen to immune cells is reduced due to the
generation of abundant antibody. Against such backdrop, the
differentiation and multiplication of antibody are restrained,
and the balance between antigens and antibodies as well as
between two antibodies can bemaintained to a certain degree.
Besides, the core of immune algorithm lies in the immune
vaccine, which is rooted in the concepts and theories of bio-
logical vaccine. Biological vaccine was invented by med-
ical scientists based on the immune memory feature of the
immune system.Quick recognition of antigen can be realized
through vaccine injection.

The immune algorithm is a calculation model for solving
all kinds of combinatorial search and optimal computation
problems in the fields of science, technology and engineering
by integrating the genetic algorithm on the basis of abstract-
ing and reflecting artificial immune theories. When adopting
this model, we can abstract out a problem and solution as
a antigen and antibody respectively, and the vaccine in the
model corresponds to certain characteristic information of
the solution of the problem to be solved.

The core concept of immune algorithm is to upgrade the
population fitness and speed up the iterative process to pre-
vent degeneration of the population through vaccination and
immune selection on the basis of rational extraction of vac-
cine. The immune algorithm inherits the genetic operator of
genetic algorithm, which results in a stronger global search
ability. Moreover, the added immune operators enable the
immune algorithm to effectively prevent degradation in the
late stage of generic algorithm and accelerate convergence.
In addition, based on related theories, the probability of the
immune algorithm to converge is 1, which implies that it has
strong convergence properties.

Both immune algorithms and genetic algorithms adopt
global search strategies, and give priority to the information
exchange among individuals in the population. Hence, they
share a lot in common. For example, they possess almost
identical algorithm structure with an iterative process con-
sisting of generation of an initial population, evaluation cri-
terion calculation, information exchange among individuals
in the population, and generation of a new population. The
optimum of a problem will be acquired through its higher
probability. Besides, the two algorithms are both parallel and
inherently advantageous in that it can be combinedwith other
intelligent calculation methods.

Some differences do exist, though, between immune algo-
rithms and genetic algorithms, which mainly lie in ways
of evaluation, selection and production of individuals. In
genetic algorithm (Xu et al. 2014), evaluation of individu-
als is done through calculating individual fitness, which is
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the only criterion for selecting parent individuals in the algo-
rithm.Whereas in immune algorithms, evaluation of individ-
uals is done through calculating affinity, on which individ-
ual selection is based. Individual affinity contains antibody–
antigen affinity (matching degree) and antibody–antibody
affinity (level of similarity). It reflects the diversification of
the real immune system, so its evaluation of individuals is
more comprehensive and therefore, the individual selection
is more reasonable in immune algorithms. Besides, new indi-
viduals can be generated through immune operations such
as crossover and mutation in immune algorithm. Although
inherent immune operations such as crossover and mutation
are broadly adopted in immune algorithm, somemechanisms
which are missing in the algorithm can be used to generate
new antibodies. These mechanisms include clonal selection,
immunememory and vaccination.Meanwhile, immune algo-
rithms can promote or restrain the generation of antibodies.
This reflects the self-adjusting function of immune action and
ensures the diversity of individuals. Moreover, the immune
algorithm converges fast , making it less likely to get trapped
in local optimums (Ding et al. 2012; Chen et al. 2013).

3.1.2 Fundamental definitions

Definition 3 Antigen in bioscience: an antigen is a kind of
material which can stimulate the immune system and induce
it to generate immune response and then generate intra-
corporal or extracorporeal idiosyncratic reaction with cor-
responding immune response products. In the algorithm of
this paper, an antigen means all possible wrong genes, which
are non-optimal genes of individuals.

Definition 4 Antibody in bioscience: antibody means the
immune globulin which can realize specific binding with
antigen and is produced in the process of immune cells being
transformed into plasmocyte after the immune system gets
stimulated by the antigen. An antibody in the paper refers
to the new individual based on certain corrected individual
genes byvaccine. Theprocess of correcting certain individual
genes using the vaccine is called vaccination, and its purpose
is to eliminate negative effects brought by the new individual
when it comes into being.

Definition 5 Immune vaccine: immune vaccine here refers
to the estimation on the acquired optimum individual gene
based on the environment evolution or the problem which
needs to be worked out.

Definition 6 Immune operator: similar to the theory of
immunity in bioscience, an immune operator is divided into
two categories: pan-immunity and objective immunity. These
two categories correspond to nonspecific immunity and spe-
cific immunity in bioscience, respectively. Pan-immunity is

the immunity type in which the immune operation is con-
ducted in each stage after themutation operation of each indi-
vidual in the population. Objective immunity is the immu-
nity type in which individuals show immune reactions only
on application points after certain judgment of the mutation
operation of individuals. The former mainly happens in the
initial stage of individual evolution, which is basically not
working during the evolution, otherwise, the assimilation in
the usual sense is highly likely to happen. The latter normally
accompanies the whole process of the population evolution,
and is a frequently used operator in immune operation.

Definition 7 Immune regulation: during the process of
immunization, the generation of many antibodies will
decrease the antigen stimulation to immune cells and restrain
the differentiation and multiplication of antibodies. And the
mutual stimulation and restraint exist among simultaneously
generated antibodies. The mutual restrictions between anti-
gens and antibodies as well as between different antibodies
enable the antibodies tomaintain certain intensity and further
keep the immune balance of the organism.

Definition 8 Immunememory: immunememorymeans that
the immune system can memorize and keep the antibod-
ies which can react to antigens. When congeneric antigens
invade again, corresponding memory cells will be activated,
thereby producing a great many antibodies. The immune
reaction time will be substantially shortened. Antigen recog-
nition is the process in which the recognition is finished by
expressing the mutual matching and selection between epi-
tope on the surface of antigen and the chemical base on
the counterpoint on the surface of antibody. The matching
process is also a process of unceasing learning on antigen,
and finally the most suitable antibody will be selected to
combine with the antigen and the latter will be eliminated.

3.1.3 The flow of immune algorithm

Analyze the problem and the characteristics of its solution,
then design the appropriate form of expression for the solu-
tion. The flow of immune algorithm is demonstrated as fol-
lows:

3.1.4 Components of immune algorithm

1. Extraction of immune vaccine
In immune algorithm, vaccine refers to a kind of fea-
ture information extracted from the prior knowledge of
detailed to-be-solved problems. It can be seen as an esti-
mation of the best individual matching model for to-
be-solved problems. As a unique mechanism for indi-
vidual update and optimization, proper selection of the
vaccine is the prerequisite for effective realization of
immune operations, which is important to the operating
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Algorithm 1 Immune algorithm
Input: L , D, P , N , n, Pc, Pm , G
Output: b
1: Step 1: Generate initial antibody population and extract vaccine.
2: Step 2: Update individuals: run crossover operator, mutation oper-

ator and vaccination operator.
3: Step 3: Calculate the fitness of each individualwithin the population.
4: Step 4: Execute immune selection operation: implement immune

detection operator, immune balance operator and selection operator.
5: Step 5: Record the optimal individuals.
6: Step 6: Judge whether the maximum iteration has been achieved. If

the answer is yes, then output the optimum; or goes back to Step 2.

efficiency and performance of the algorithm. Regarding
the process of choosing vaccine for a certain problem,
the vaccine can be made based on the feature informa-
tion of the problem. Extraction methods vary according
to different actual problems. For instance, while solving
the TSP problem, the distance between different cities
can be regarded as the vaccine; while applied to the cate-
gorization and cluster of model identification, the feature
value distance between sample and template or samples
can be deemed as the vaccine; the optimum solution for
each generation can be seen as the vaccine as well to
dynamically establish a vaccine database. When the cur-
rent optimum has higher affinity than the worst vaccine
in the library, the worst vaccine will get replaced.

2. Vaccination operator
As explained above, the vaccine comes from the prior
knowledge of the problem. The amount and accuracy of
the information has great influence on the performance
of the algorithm.
Suppose the population size is N and α × N antibod-
ies are selected from the antibody population according
to the probability α. Vaccination operation is conducted
on them. According to known information, that is, previ-
ously extracted vaccine, vaccination is implemented for
each gene position of the selected antibodies according to
the vaccination probability Pi . If vaccination is decided
to be done, the gene value relevant to each gene of the
vaccine will be used to change the corresponding genes
of current antibodies. This will make individuals more
likely to adapt well.

3. Immune detection operator
The immune detection operator is able to judge whether
the antibodies are optimized or not after receiving vacci-
nation, that is, whether the affinity value of the antibodies
with vaccination is higher than the previous antibodies
or not. If yes, the antibodies with vaccination will be put
among the new population; otherwise, the parent anti-
bodies prior to the vaccination are used to replace the
new antibodies.
In general evolutionary algorithms, the process of choos-
ing operators does not detect new individuals, making

the crossed and varied individuals worse than the par-
ent individuals, that is, degeneration. This greatly affects
the convergence of the algorithm. For immune algo-
rithm, its convergence is fundamentally guaranteed by
the immune selection operator. The immune selection
can guide the evolution direction. In this way, individuals
evolve towards optimized direction and the degeneration
phenomenon which might happen in general evolution-
ary algorithms is avoided, thus improving the algorithm
efficiency and convergence speed.

4. Immune balance operator
In the immune system, the concentration of antibodies
with great adaptability constantly increases. When the
concentration reaches a certain value, the production of
such antibodies will be restrained. On the contrary, it will
improve the production and selection probability of anti-
bodies with low concentration. Such mechanism ensures
the diversity of the updated antibody populations and
avoids immature convergence to some extent. Thanks to
the immune balance operators, the higher the antibody
concentration, the more the inhibition; the lower the con-
centration, the greater the promotion.

1. Concentration calculation Concentration Ci is defined
as the proportion of the antibodies with an adaptability
close to that of the i individual in the population. See
formula (1):

Ci =
∑

j (|Fitness( j) − Fitness(i)| ≤ ε)

N
(2)

In the formula, ε is adjustable parameters between 0 and
1 such as 0.5; N is the total number of current antibodies
(population size).

2. Concentration probability calculation
A concentration threshold value is set to calculate anti-
bodies whose concentration is higher than the set value.
Suppose the amount is k(1 ≤ k ≤ N , N is population
size). The concentration probability of the k antibodies
with higher concentration is:

Pd(k) = 1

N

(

1 − k

N

)

(3)

Then the rest of the N − k antibodies with lower concen-
tration have a concentration probability of:

Pd(N−k) = 1

N

(

1 + k

N
g

k

N − k

)

(4)

It can be noted that the concentration probability of all
antibodies is 1. The more the antibodies with higher con-
centration than the set threshold value in the population,

123



560 G. Pan et al.

the smaller the concentration probability Pd(k) of anti-
bodies with high concentration, and the greater the con-
centration probability Pd(N−k) of antibodies with low
concentration; the fewer the antibodies with higher con-
centration than the set threshold value, the greater the
concentration probability Pd(k) of antibodies with high
concentration, and the smaller the concentration proba-
bility Pd(N−k) of antibodies with low concentration.

3. Calculation of the probability of selection
The probability of selection is composed of two parts:
adaptability and concentration probability. The selection
probability of antibodies with higher concentration is:

p = αgp f + (1 − α)gpd(k) (5)

and the selection probability of antibodies with lower
concentration is:

p = αgp f + (1 − α)gpd(n−k) (6)

In the formula, p f is the adaptability probability of anti-
bodies and the defined as the ratio between the adapt-
ability of antibodies and the total adaptability; pd is the
depth probability of antibodies; 0< α < 1, 0< p f < 1,
0< pd < 1.

Obviously, from the selection probability it can be con-
cluded:

(a) The greater the adaptability of antibodies, the greater the
corresponding selection probability.

(b) The more the antibodies with higher concentration than
the set threshold value in the population, the smaller the
concentration probability Pd(k) of antibodies with high
concentration and the smaller the selection probability p.
The probability for the antibody being selected is small,
so it is restrained; on the contrary, the fewer the anti-
bodies with higher concentration than the set threshold
value, the greater the concentration probability Pd(k) of
antibodies with high concentration and the greater the p.
The probability for the antibody being selected is high,
whichmeans its effect is enhanced. Hence, the greater the
concentration of antibodies, the immune balance opera-
tor will make the antibodies more restrained, whilst the
lower the concentration, it will promote the performance
of antibodies.

3.2 Greedy algorithm

Greedy algorithm refers to choosing the best or optimized
(the most favorable) in each step so as to bring about the
best or optimized overall performance of the algorithm. For

instance, in the problem of TSP, if the salesman chooses the
nearest city every time, it can be regarded as a kind of greedy
algorithm.

Greedy algorithm is particularly effective in solving
the problem of optimal substructure. Optimal substructure
means that the local optimum can determine the global opti-
mum. Put simply, the problem can be divided into sub-
problems for solution. The optimum for the sub-problems
can be recurred to the optimum for the final problem.

The difference between greedy algorithm and dynamic
planning lies in that the former selects the solution for each
sub-problem without backspacing. Dynamic planning will
save previous algorithm results which serve as a basis for
the subsequent selection. It has the function of backspac-
ing. Greedy algorithm can solve some optimization problems
such as the minimum spanning tree in the chart and Huff-
man encoding. For other problems, greedy algorithm, how-
ever, usually cannot offer a desirable answer. Provided that
a problem can be solved by greedy algorithm, greedy algo-
rithm tends to be the best solution for the problem. Greedy
algorithm is highly efficient and the answer it offers is close
to the optimized results. It can also be used as auxiliary algo-
rithmor directly to solve some problemswhich do not require
precise results.

The basic principle of greedy algorithm is: It starts with
the initial solution of a problem to approach the set goal step
by step so as to obtain better solutions using the least time.
When it cannot proceed anymore in a certain algorithm, it
will stop. This algorithm has the following disadvantages:
(1) it cannot guarantee that the final solution is the best; (2)
it cannot be used for maximal or minimal solution problems;
(3) it can only acquire a rough scope of the feasible solutions
which satisfy certain constraints. The greedy algorithm can
be applied extensively. For example, Prim algorithm seek-
ing the minimal spanning tree and Kruskal algorithm are
both good examples of greedy algorithms. The application-
oriented algorithms of greedy algorithm include Dijksstras
single-source shortest path and Chvatals greedy set cover
heuristic method, etc.

3.3 Delete-cross operator

In order to accelerate the algorithm’s convergence, delete-
cross strategy can be adopted to delete the crossover paths
of the travel route (Shi et al. 2007). For the position X of an
antibody, line[i] indicates the segment between the node i
and i + 1 the node in X . A Boolean function is defined to
judge whether the segments are crossed or not. If they are
crossed, the Boolean function is true; otherwise the function
is false. The pseudo code of the delete-cross strategy can be
demonstrated as follows:

f or(i = 1; i < m, i + +)

i f (crossover(line[i], line[ j]) is true)
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Fig. 1 Schematic diagram of delete-crossover

f or(k = 0; k < ( j − i)/2; k + +)

swap(x j−k, xi+k+1)

It can be seen from Fig. 1 that: before and after the delete-
cross strategy is adopted, nothing has changed in the two
travel circuits except that segments line[i] and line[ j] are
respectively transformed to line′[i] and line′[ j]. In line with
the principle that the sum of the two lines is greater than the
third line in a triangle, a conclusion can be easily obtained
from Fig. 1: line′[i]+ line′[ j] < line[i]+ line[ j]. It means
that delete-cross strategy can improve the algorithm perfor-
mance. If such a strategy is adopted for all antibodies with
immune selection operator in the immune algorithm, the
search quality will be greatly enhanced.

4 Hybrid immune algorithm for TSP

4.1 Basic principles

With added functions such as vaccine operator, immune
detection operator and immune balance operator, the immune
algorithm has been greatly improved in terms of updat-
ing and selecting individuals, as well as maintaining the
diversity when compared with genetic algorithms. How-
ever, the algorithm is not perfect as it randomly initial-
izes the population, and the process of updating individ-
uals gives rise to some infeasible solutions for not using
the greedy obsolete mechanism. Because of this, when it
comes to solving NP-hard problems such as TSP, the con-
vergence speed is slow and the search efficiency is yet
to be strengthened. Hence, two local strategies , namely
the greedy algorithm and delete-cross operator, are inte-
grated into the immune algorithm, which serves as the the

global algorithm. This, using the hybrid method, shapes
the hybrid immune algorithm. The immune algorithm is
used for the global search of individuals while the greedy
algorithm for the initialization of population. Thereafter,
the greedy algorithm is used together with the delete-cross
operator used together for local seeking in the chromo-
somes. When individuals are updated, the mutation oper-
ator in the basic immune algorithm is modified and high-
frequency mutation operator based on dynamic mutation
probability is adopted so as to enhance the search effi-
ciency and quality. The experiment shows that the hybrid
immune algorithm is more effective and efficient than the
basic one.

4.1.1 Greedy initialization of population

Most of the genes covered by the immune algorithm come
from individuals themselves. Therefore, the quality of indi-
viduals determines the algorithm efficiency. If the adaptabil-
ity value of all individuals in the population is poor, it will
definitely affect the global performance of the algorithm,
which is prominent in TSP problems. In order to overcome
such shortcomings, all points in TSP problems are sequenced
to build gene fragments based on the gene library, thereby
building the chromosome string.

Build gene library
For N citieswith TSP problem,C citieswhich are nearest
to i city are encoded based on distances ranging from
small to large, thus forming N × C (c < n) matrix and
further gene library AN×C . Ai j element is the code of the
city whose distance is j to i city in terms of closeness.
The line i element is the code of C cities which are close
to i city. A[i] and A[ j] elements are respectively the city
which is the nearest to i city and the second nearest one
to i city. It goes on like this. The cities ranking before
C form gene library. Usually the value of C is roughly
equal to 3.
Generate initial population
The first city i code is generated randomly. The code j of
the city which is near to the city is selected first in the line
i of the gene library. As the next traveling city, the city
code h with closer distance in the line j is selected from
the gene library. Based on this rule, the next cities are
selected to form gene fragments. If all cities in the gene
library have appeared in previous codes, the city which
has never been used will be randomly selected.
The initial population generated by building gene library
is currently the best solution for building population
individuals. This is a kind of greedy selection strat-
egy. The gene fragments of the gene library are char-
acterized by short definition length, low order and high
adaptability value and therefore, it is also called building
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blocks. Such sub-string set (also called building blocks)
with short definition length, low order and high adapt-
ability plays an important role in the immune algo-
rithm because the combination of these building blocks
will become the chromosomes which have better per-
formance. In the model principle, the building blocks
are supposed to organized small blocks into larger
ones by IA so as to prompt IA to locate the optimum
quickly.

4.1.2 Greedy local strategy and delete-cross operator local
strategy

The evolutionary mechanism of the immune algorithm aims
to enhance the global performance of the population by keep-
ing the good individuals, and further searching for optimiza-
tion step by step. In this paper, greedy selection strategy is
adopted in the process of immune evolution. In other words,
filial generation of individuals will replace parent individu-
als if they are better enough after going through crossover or
mutation and other gene operations; otherwise, the replace-
ment will not be conducted. Besides, delete-cross operator
is implemented using the solutions obtained from conduct-
ing immune operator in each generation. If they are better
than parent individuals, the replacement will happen. The
purpose is to ensure that the evolution direction of individ-
uals and the search quality are satisfactory, search precision
can be improved and the errors reduced in random opera-
tions.

4.1.3 Inver-over mutation operator based on dynamic
mutation probability

Dynamic mutation operator
In order to accelerate the convergence of the algorithm,
the following formula is used to dynamically change the
mutation probability p.

p < − − −p ×
(

1 − I t

I tm
× 0.01

)

(7)

High-frequency mutation operator
ForTSPproblem, Inver-overmutationoperator is adopted
for the mutation in this paper. The experiment has proved
that themutation operator (Michalewicz 2000) is superior
to traditional genetic operators such as partial mapped
crossover, order crossover and cycle crossover (Lar-
ranaga et al. 1999), etc.

4.2 Procedures of hybrid immune algorithm

The detailed steps for realizing immune algorithm are as fol-
lows:

Algorithm 2 Hybrid immune algorithm
Input: L , D, P , N , n, Pc, Pm , G
Output: b
1: Step1: Extract antigens according toTSP, that is, vaccine is extracted

according to the objective function form and constraint conditions
of the TSP problem. Algorithm parameters, such as population size,
maximum iterations, crossover probability andmutation probability,
should be set in the first place.

2: Step 2: Initialize the population by the greedy algorithm.
3: Step 2.1: Greedy crossover operator: a certain number of antibod-

ies are selected based on the adaptability value and antibody selec-
tion probability determined by antibody concentration. Then ran-
domly select two individuals from these individuals. The crossover
positions are controlled by the crossover probability Pc. The genes
of crossover positions are operated with crossover. Compare the
new individuals with old ones, and use Greedy strategy for solution
replacement.

4: Step 2.2: Greedymutation operator: rand is produced for antibodies
with the crossover operation. When the dynamic mutation probabil-
ity Pm > rand , Inver-over mutation operation is conducted to gen-
erate new individuals. Compare the new individuals with old ones,
and use Greedy strategy for solution replacement.

5: Step 2.3: Vaccination operator: previously extracted vaccines are
used for the vaccination of the selected antibodies. In other words,
the values of the corresponding gene positions of the antibodies are
changed based on the relevant gene positions in the vaccines.

6: Step 3: Calculate the adaptability of each antibody in the population.
7: Step 4: Immune selection.
8: Step 4.1: Immune detection operator: compare the adaptability val-

ues of two antibodies before and after vaccination. If the antibod-
ies after vaccination are not as excellent as parent antibodies, then
choose the latter to replace the antibodies after vaccination to par-
ticipate the population selection. Antibody concentration shall be
calculated for individuals after immune detection.

9: Step 4.2: Immune balance algorithm: selection probability is deter-
mined based on the adaptability and concentration of antibodies. See
the selection probability in the following formula.

p = αgp f + (1 − α)gpd (8)

In the formula, p f is the adaptability probability of antibodies and
defined as the ratio between the adaptability of antibodies and the
total adaptability ; pd is the concentration probability of antibodies.
The greater the antibody concentration , the immune balance oper-
ator will make the antibodies more restrained, whilst the lower the
concentration, it will promote the performance of antibodies.α is the
proportion index and determines the function degree of adaptability
and concentration.

10: Step 4.3: Selection operator: the selection is conducted using some
common selection methods such as roulette wheel and simulated
annealing for new populations. In this paper, the roulette wheel
mechanism is adopted.

11: Step 5: Generate new individuals after delete-cross operator is car-
ried on each of the individuals obtained after immune selection.
Compare the new individuals with old ones, and use Greedy strat-
egy for solution replacement

12: Step 6: Search optimal individuals in the new population and record
them.

13: Step 7: Judge whether the conditions permit stop or not, that is, the
maximum iteration. If yes, then stop the circulation and export the
optimum; otherwise, go back to step 3 for iteration.

The flow chart of hybrid immune algorithm is demon-
strated in Fig. 2.
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Fig. 2 Flowchart of HIA

5 Experiment and discussion

In order to better illustrate the performance of HIA, many
sample instances are selected from the well-known TSPLIB
test library for testing. Each test is run for 10 independent
replications. The simulation environment is: Windows XP
operating system, Intel Dual core 2.2 GHz CPU, 2 G mem-
ory and using the C language by software VC++ 6.0. The
experimental condition is the same as that in literature Wang
et al. (2011). The parameter settings of IA and HIA in the
experiment are as follows: the population size of antibodies
is 50; the memory library capacity is 10; the crossover prob-
ability is 0.6; the initial mutation probability Pm = 0.78; the
conditions for algorithm stop vary due to different experi-
mental purposes.

In Tables 1, 2 and 3, BIO stands for the basic Inver-
Over operator memetic algorithm (Guo and Michalewicz
1998), IIO stands for the improved Inver-Over operator
memetic algorithm (Wang et al. 2011), GSTM stands for
the greedy sub-tour mutation (GSTM) algorithm (Albayrak
and Allahverdi 2011), ILKMA stands for the InverCover &
LKMA (removelocalsearch) memetic algorithm (Wang et al.
2011). In order to discuss the performance of the proposed
HIA, we compared the HIA against the BIO, the IIO, the
GSTM, the ILKMA and the IA. In this section, the bench-
mark set is composed of 14 examples from TSPLIB with the
size ranging from 52 to 442. Table 1 provides the data of IIO
and BIO, Table 2 for the data of GSTM and ILKMA, and
Table 3 for the experimental results generated by HIA and
IA.

Table 1 Error comparisons
between improved invercover
operator and basic invercover
operator

Instance IIO BIO

Best (%) Ave. (%) Time (s) Best (%) Ave. (%) Time (s)

berlin52 0.0000 0.0000 0.0664 0.0000 0.2307 0.0654

kroA100 0.0658 0.9496 0.0893 0.1927 1.7287 0.0874

pr144 0.7488 1.4835 0.0978 0.8695 2.5208 0.0969

ch150 1.1949 2.3468 0.1163 2.3591 3.6581 0.1138

kroB150 2.3995 4.5790 0.1152 3.7849 5.3142 0.1109

pr152 1.4101 3.1746 0.1026 3.1785 3.9318 0.0997

rat195 3.4438 5.0065 0.1199 3.9173 5.2734 0.1187

d198 3.3714 5.2700 0.1392 4.4867 6.5868 0.1341

kroA200 2.5129 4.7034 0.1386 3.3983 6.2303 0.1343

ts225 1.3487 2.4773 0.1424 1.4261 3.3603 0.1390

pr226 1.2219 2.4013 0.1429 2.0481 3.0035 0.1391

pr229 8.3895 10.7337 0.1802 9.7197 10.9705 0.1780

lin318 6.9476 9.7992 0.1976 8.9248 10.9648 0.1935

pcb442 8.5431 11.4006 0.2543 12.2868 13.5251 0.2526

Average 2.9710 4.5947 0.1359 4.0423 5.5214 0.1331
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Table 2 Error comparisons
between ILKMA and GSTM on
14 TSPLIB instances

Instance ILKMA GSTM

Best (%) Ave. (%) Time (s) Best (%) Ave. (%) Time (s)

berlin52 0.0000 0.0000 0.4867 0.0000 0.0000 0.8360

kroA100 0.0000 0.0000 0.6193 0.0000 1.1836 6.9870

pr144 0.0564 0.1350 0.6878 0.0000 1.0809 13.5980

ch150 0.0000 0.3585 0.8566 0.4596 0.6357 11.2400

kroB150 0.0421 0.6456 0.7829 0.9644 1.7616 11.6840

pr152 0.0000 0.1259 0.7144 0.7695 1.6202 7.9370

rat195 0.4305 0.6586 0.8503 0.6027 1.8425 15.0500

d198 0.3359 0.6800 0.9391 0.3866 1.2193 12.0960

kroA200 0.4052 0.5816 0.9047 0.8683 1.5432 13.2920

ts225 0.0000 0.4850 0.9815 0.2527 0.4994 11.5590

pr226 0.1344 0.4270 0.9206 0.7242 1.5287 13.8430

pr229 0.6661 2.3401 1.1949 1.2326 2.9169 17.4240

lin318 1.3610 2.3058 1.2731 0.9827 3.3099 14.6430

pcb442 1.4494 2.1127 1.6723 2.0501 2.7758 19.1320

Average 0.3486 0.7754 0.9203 0.6638 1.5655 12.0940

Table 3 Error comparisons
between HIA and BIA on 14
TSPLIB instances

Instance HIA BIA

Best (%) Ave. (%) Time (s) Best (%) Ave. (%) Time (s)

berlin52 0.0000 0.0000 0.0399 0.0000 0.0047 0.7245

kroA100 0.0000 0.0000 0.0724 0.0012 1.2485 5.8994

pr144 0.0714 0.1284 0.0856 0.0041 1.3456 13.7889

ch150 0.0254 0.3218 0.1034 0.3142 0.9872 12.4040

kroB150 0.0345 0.5412 0.1041 0.9864 1.8324 11.5234

pr152 0.0000 0.0923 0.0922 0.7818 1.7325 7.2481

rat195 0.3246 0.5989 0.1094 0.6235 1.9024 12.3478

d198 0.2984 0.6543 0.1301 0.4034 1.1198 13.8404

kroA200 0.3822 0.5782 0.1314 0.8818 1.4524 14.4024

ts225 0.0000 0.4699 0.1385 0.3495 0.5013 12.8948

pr226 0.1026 0.4079 0.1389 0.7880 1.4781 14.7818

pr229 0.5981 2.1985 0.1687 1.3402 2.8045 18.2436

lin318 1.1973 2.2844 0.1881 1.0081 3.1182 15.7049

pcb442 1.3488 2.0286 0.2638 2.5244 2.7205 20.1232

Average 0.3131 0.7360 0.1262 0.7148 1.5892 12.4234

We can see that the computation precision of HIA is much
higher than that of BIO, IIO, ILKMA, GSTM and IA. In
Tables 1, 2 and 3, where, Best denotes the best value of the
error (%) of the solution to the optimum solution, Ave.(%)
denotes the average value of the errors of 10 independent
runs to the optimum solution and time (s) denotes the CPU
time which is the average time of 10 independent runs. We
can see from the three tables that: for the average value of

the Average Error, HIA is more efficient and effective than
BIO, IIO, ILKMA, GSTM and IA; in terms of the average
value of the Best Error, the performance of HIA is better than
that of BIO, IIO, GSTM and IA, but the average value of the
Best Error of HIA (0.07148%) is higher than that of ILKMA
(0.0564%) for solving pr144; in terms of the average value of
the Average Time, HIA is smaller than that of BIO, ILKMA,
GSTM and IA, but the average value of the Average Time
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Fig. 3 Best error for the 14
TSP instances

Fig. 4 Average error for the 14
TSP instances

of HIA (0.2638 s) is bigger than that of IIO (0.2543 s) for
solving pcb442. Figure 3 shows that HIA has competitive
advantages over BIO, IIO, ILKMA, GSTM and IA in terms
of the errors which occur in the 10 independent runs. Figure 4
shows that HIA has competitive advantages over BIO, IIO,
ILKMA, GSTM and IA in terms of average errors of the
average values of 10 independent runs.

6 Conclusion

When a basic immune algorithm is used to solve TSP prob-
lems, the antibody population is randomly initialized, which
might lead to many infeasible solutions. As a consequence,
iterations of the algorithm have to be increased to find an
acceptable solution. The whole process is time-consuming
and the search precision is yet to be improved. Hence, in this
paper, we adopt the greedy algorithm to initialize antibodies
to obtain local optimums, 80% of which are the edges of the
global optimum. In addition, the intersection ofmultiple local
optimal paths contains more edges of the global optimum. In
the immune algorithm, the global search is conducted on
antibodies first obtained through greedy algorithm. Greedy
crossover operator and greedy dynamicmutation operator are
applied so that “the survival of the fittest” can be realized.
The delete-cross strategy will be applied to the antibodies
in each new generation. This can delete the crossover paths
in the travel route and effectively accelerate the convergence
of the algorithm. The TSP experiment results prove that the
hybrid immune algorithm has reliable and fast global con-
vergence, which can effectively enhance the search ability of

the immune algorithm. It has to be noted, however, whether
the algorithm can be universally applied to other NP opti-
mization problems needs to be examined in future studies.
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