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1 [ INTRODUCTION

Packet classification is the key functional module in many network

devices, such as Firewall, priority routing-enabled routers, and Open-

Flow switch, to name only a few.

Its core operation is to match packet headers in the rule table and

Summary

As a core component of many network infrastructures, packet classification requires match-
ing packet headers against a series of predefined rules. Its performance determines, to some
extent, how fast packets can be processed. There already exists many proposals, which optimize
the throughput of packet classification, but few of them take power consumption into account.
To meet the requirements of green network computing, this paper focuses on energy-efficient
solutions that provide reasonable throughput as well. Similar to recent advancements, the
graphics processing unit (GPU) is adopted to accelerate rule matching. Then, inspired by the
frequency-variable energy-consuming model for air conditioners, a fuzzy control-based energy
efficiency optimizing model is proposed for GPU-accelerated packet classification. As demon-
strated in the evaluation experiments, when the GPU is in the idle status, the proposed model
can save 10 W. In running status, the fuzzy control-based energy efficiency optimizing model can
avoid GPU shutdownissue caused by GPU self-protection mechanism when the GPU temperature
rises to 95°C. Furthermore, by improving the resource configuration of GPU kernels according to
the model, the overall energy efficiency is enhanced by up to 15.5%, while simultaneously keeping

throughput at the same level.
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In TCAM-based solutions, the overall power consumption is deter-
mined by the number of activated blocks to process matching, the
total number of entries, and the lengths of entries as well. Hence, to
reduce consumed energy, some smart techniques have been adopted
to group or preprocess the rules.8 10 While in the GPU scenario, there

are much more controllable factors, which affect power consump-

then to process the input packet according the matched rule(s).

Performance has long been a hot topic in packet classification,-”

while energy efficiency is gaining traction recently.8-10

In comparison to conventional solutions,»2 ternary content
addressable memory (TCAM)-based schemas-12 achieve really high
performance. But their high power consumption indeed restricts their
use in practice.

Recently, the graphics processing unit (GPU) has been shown to be of
value in supporting high-speed packet processing.13-1¢ |t is also more
controllable than TCAM and thus poses more chances to control power
consumption while maintaining superior performance.17-19

It is also why more supercomputers in Green500 list20 than Top500

list21 use GPUs as cooperating processors.

tion during packet classification, such as the number of threads acti-
vated and even how they are arranged, the detail behavior of mem-
ory accesses and calculations during the kernel execution, and so on.
We have more chances to control power consumption, which, cor-
respondingly, makes the task more challenging. To our best knowl-
edge, till the writing of this paper, no current work conducted
focuses on energy-efficient optimization of GPU-accelerated packet
classification.

The key idea of our approach is partly derived from a daily
energy-consuming product, the air conditioner, whose power con-
sumption can be significantly reduced via a frequency-variable control
system.?2-24 And such a frequency-variable feature is also enabled in

some advanced models of modern GPUs. Therefore, in this paper, we
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propose the fuzzy control-based energy efficiency optimizing (FCEEO)
model thatintroduces a fuzzy control mechanism to reduce GPU power
consumption when processing packet classification, while keeping a
high throughput at the same time.

The rest of this paper is organized as follows. An overview of prior
work on the subject is given in Section 2. Section 3 describes the packet
classification. In Section 4, we provide details of the energy model. The
experimental results are presented in Section 5, and finally, Section 6

summarizes the main conclusions of this work.

2 | RELATED WORK

The most widely used packet classification hardware is TCAM; how-
ever, its high power consumption has restricted the development of
TCAM. Therefore, there are many studies on the energy-efficient issue
of TCAM.

Agrawal?® proposed a TCAM power model, describing how TCAM
power is scaled with parameters such as voltage, operating frequency,
number of entries, length of entries, and circuit-level parameters.
Meiners® used a TCAM power model for optimizing the power con-
sumption of packet classification with the proposed TCAM SPIiT archi-
tecture.

In recent years, packet classification based on GPU has become a
research focus. In the meanwhile, GPU also suffers from the problem of
high power consumption.

In the field of low-power GPU research, Rhul® designed a
locality-aware memory hierarchy to improve the GPU performance
and energy efficiency by adaptively adjusting the access granularity.
Mal? proposed GreenGPU, a holistic energy management frame-
work for GPU-CPU heterogeneous architectures. By distributing
workloads and throttling the frequencies of the GPU cores and the
memory dynamically, GreenGPU can maximize energy savings with
only marginal performance degradation.

GPUWattch!? isa GPU power consumption model, which has config-
urable clock cycle-level power modeling tools. Therefore, GPUWattch
has high accuracy for energy modeling. Using GPUWattch for mea-
surement, it shows that dynamic voltage and frequency scaling (DVFS)
algorithms are useful for reducing dynamic power consumption in
general-purpose GPU workloads.

However, GPUWattch is not suitable for packet classification
energy-consumption calculation analyses. Further, the supported
modeling products are limited, such as Geforce GTX480, Quadro
FX5800, and Tesla C2050, and do not include Tesla K20, which is our
experimental platform.

Combining the features of multiparameters and variable frequency
on GPU platform, some methods can be used for reference with respect
to energy saving.

Li26.27 proposed a workload-dependent dynamic power manage-
ment model in a multicore server environment, to reduce energy con-
sumption through M/M/m queuing models and digital circuit power
models. This technique considers parameters such as energy supply,
core speed, task response time, and task processing speed by optimiz-
ing the average task response time, to improve the system performance

and reduce the power consumption.

Alcala?? proposed weighted linguistic fuzzy rules in combination
with a rule selection process, developed fuzzy logic controllers for air
conditioning systems, and focused on energy performance. By means
of artificial intelligence based on fuzzy control, their system is capa-
ble of assessing, diagnosing, and suggesting the best operation mode.
Chiou?? proposed a fuzzy control model to achieve both energy savings
and steadiness in the temperature of air conditioning systems. Zhao?8
proposed anested structural classifier based on fuzzy rough techniques
used in machine learning. Taheri2? used fuzzy logic to blend different
parameters and proposed an energy-aware distributed dynamic clus-
tering protocol for wireless sensor networks. Suardinata®® used fuzzy
logic to classify packets into different priorities, which could simplify
complex problems.

However, no fuzzy control model has been developed thus far for use
in a GPU-based packet classification energy-efficient solution. In sum-
mary, fuzzy control is beneficial for energy conservation and could be

innovatively used for GPU-based packet classification.

3 | PACKET CLASSIFICATION

Packet classification is an important process in a router. Once a packet
isreceived, the packet header fields are extracted as attribute domains,
which are used for matching with the rule set. After a match with
the corresponding rule is found, the packet is operated by the action
defined in the rule, such as forward or drop. These attribute fields are
generally represented as a 5-tuple, including the source IP address,
destination IP address, source port, destination port, and protocol.

Inthe TCAM matching process, the packet header attribute fields are
seen as a query keyword, and the rules are seen as the entries table in
TCAM. Then, the keyword is used for matching entries concurrently.

From Meiners,® we know that reducing the number of parallel query
entries in a TCAM chip can optimize the power consumption of packet
classification. By using the TCAM power model?5 to compute the power
of a TCAM search operation, we verified that energy consumption has
a linear correlation with the number of parallel entries, as shown in
Figure 1.

Although TCAM has a query speed of O(1) by querying all entries
in parallel, the high energy consumption is a serious problem.
Compared to TCAM, GPU has better parallel controllability, which
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FIGURE1 Ternary content addressable memory (TCAM) power with
parallel entries
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FIGURE2 Basic structure of fuzzy control

brings us a method to control the power consumption of packet
classification.

The packet classification forward principle for GPU is similar to that
for TCAM.

The difference is that the GPU launches multithreads to deal
with a batch of packets simultaneously. Further, GPU has better pro-
grammable and extensible functions.

The speed of the GPU memory is faster than that of an ordinary
memory. A mainstream PC memory is DDR3 SDRAM with an equiv-
alent frequency of 1600 MHz, and the mainstream GPU memory
is GDDR5, which can reach an equivalent frequency of 5400 MHz.
GDDRS5 is based on the DDR3 SDRAM memory but is specifically for
GPU use and has higher computational performance.

If we put the rules in a linear mode on the basis of the PC memory,
we cannot achieve the desired performance as in the case of TCAM,
because TCAM is parallel hardware. There are some packet classifica-
tion algorithms that canimprove the matching speed, such as hash, tries
tree, bit vector, HiCuts, HyperCut, and EffiCuts.® 7 However, computing
with CPU and PC memory leads to a hardware performance bottleneck.
Hence, we implement the HiCuts algorithm with a parallel-accelerating
hardware GPU.1é The HiCuts algorithm changes the linear rule place-
ment to a multidimensional space placement, searching in the subre-
gions recursively. The use of the GPU hardware considerably enhances
the throughput performance. By comparing with the result of linear
algorithms, our improved HiCuts algorithm will not affect the accuracy
of packet classification. We did not study the energy problemin our pre-
vious work but have now realized that the issue of energy efficiency
is important in practical GPU execution. Therefore, we conducted this
further study.

4 | MODEL-DRIVEN ENERGY OPTIMIZATION

4.1 | Fuzzy control model

Fuzzy control is based on fuzzy logic, which is applied to the fields
of control, artificial intelligence, and so on. The term “fuzzy” refers
to the logic that cannot be exactly expressed by “true” or “false”
but by “partially true.” Fuzzy control simulates the operation of
the human-reasoning process. When the complexity of the sys-
tem increases, the values of the variable parameters may not just
increase but also change frequently. Some of these factors are dif-

ficult to grasp; instead, people focus on the main part and ignore
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FIGURE3 Overlap of fuzzy variables

the secondary part. Thus, in fact, the description of the system
is fuzzy.

As shown in Figure 2, the basic structure of fuzzy control con-
tains fuzzy control rules, fuzzy inference, and input and output
components.22 The process of fuzzy inference is based on a collec-
tion of fuzzy logic rules in the form of IF-THEN statements, where
the IF part is called the “antecedent” and the THEN part is called the
“consequent.”31

For example, a set of fuzzy rules may look like the following:

IF temperature IS very cold THEN stop fan
IF temperature IS cold THEN turn down fan
IF temperature IS normal THEN maintain fan

IF temperature IS hot THEN speed up fan
The main fuzzy inference process is as follows:

IFX1is A1, IFX5 is A,, ... and IFX, isA,, THENY is B.

A special characteristic is that the interval of fuzzy variables may
have some overlaps,3! as shown in Figure 3. This is an important differ-
ence between fuzzy inference and classical inference.

In the variable-frequency air conditioner, which uses fuzzy control
model, more energy can be saved. Figure 4 is an example of energy con-
sumption comparison between variable-frequency air conditioner and

fixed-frequency air conditioner.

4.2 | Energy-efficient fuzzy control GPU model

From the TCAM energy consumption analysis model and the
GPUWattch model,’” we can conclude that the power consump-

tion will be affected by many parameters, such as voltage, frequency,
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FIGURE4 Air conditioner energy consumption comparison

temperature, computing tasks, parallel program efficiency,and comput-
ing time. Further, some parameters are difficult to measure or control. If
we unilaterally increase the device frequency to add the task process-
ing speed, the reduction of task execution time can decrease the power
consumption. However, on the other hand, the higher temperature
caused by the speed will increase the total power consumption.

Hence, various parameters constitute a game system. To design an
energy consumption optimization solution based onthe GPU for packet
classification, by introducing a fuzzy control model that has achieved
better energy-saving results in the case of a variable-frequency air
conditioner, we propose the FCEEO model.

Inthe case of the energy optimization solution for GPU-based packet
classification, we find that the following groups of parameters are
related to energy consumption:

(1) GPU hardware configuration parameters

e GPU compute mode
Graphics processing unit has 4 compute modes: Default, Exclu-
sive_Thread, Exclusive_Process, and Prohibited. By adjusting the
mode, we can adopt the corresponding hardware features for
computing, and this may lead to different power consumption
values.

e GPU running frequency
If sufficient power supply and thermal headroom are avail-
able, increasing the GPU core and memory clock frequency can
enhance the GPU performance within a reasonable range.
Nvidia Tesla K20 GPU supports 6 running frequencies.

(2) GPU software configuration parameters

e GPU thread scheduling
Reasonable task decomposition and appropriate thread schedul-
ing can increase the speed of parallel computing, thereby reduc-
ing the total computation time to save energy. The GPU can allo-
cate the number of grids, blocks, and threads to schedule the
threads. In fact, the interval of these allocating variables may

have overlaps.

e Algorithm optimization

The GPU has different levels of memory; an efficient use of the

GPU memory can reduce the computation time to save energy.

Fixed-frequency
level 3

e Data calculation scale

Network packet traffic has a seasonally changing regularity, such
as leisure time and busy time, and this trend can be measured and
predicted. During the busy time, a relatively large-task calcula-

tion scale will consume more energy.
(3) Other relative parameters

o GPU temperature
Heavy computing tasks may lead to an increase in tempera-
ture, which may in turn lead to an increase in overall power
consumption. Although it is difficult to compute the effects of
temperature on GPU energy consumption, by monitoring the
GPU temperature, we can obtain a reference for power con-
sumption. Meanwhile, GPU Tesla K20m has a high temperature
self-protection mechanism; the GPU will shut down if the GPU

temperature reaches 95°C.

e Throughput speed
In packet classification, the primary guarantee is throughput
speed; therefore, energy savings cannot come at the cost of
high-throughput performance.

Here, we use P to represent the GPU total power; S, the packet clas-
sification throughput (speed); N, the task calculation scale (the number
of the tasks); F, the GPU running frequency; T, the working tempera-
ture; A, the GPU thread allocating optimization level (will be divided
into several levels of optimization); and O, the algorithm optimization
level (O1 = unoptimized and O2 = optimized).

We use the fuzzy control model to integrate these parameters. The
FCEEO model is specified in Figure 5; the fuzzy inferformulas are in
Equations (1) and (2); here, P denotes the power parameter that should
have as small a value as possible. The total power P is in direct propor-
tiontoS,N, F,and T, and in inverse proportion to A and O. The variables
F, A, and O can be adjusted in the GPU configuration. Further, S repre-
sents the speed parameter, which should be as fast as possible; S has a

direct relationship with only A, O, and F.

SNFT

p
“"a0 "

(1)

s:xA?O. 2)
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For example, a set of fuzzy rules is as follows: <
IF GPU IS idle THEN set Compute Mode in Prohibited 204—,

IF GPU IS running THEN set Compute Mode in Default
IF power IS high THEN decrease Frequency

IF speed IS low THEN increase Frequency

IF power IS high THEN decrease Grid, Block, or Thread
IF speed IS low THEN increase Grid, Block, or Thread

In the next experiment, we use FCEEO to find the minimum total
power P while ensuring that the value of S is as high as possible. First,
we fix the N scale and maximum S and then adjust the F, A, and O

parameters, to find the minimum value of P.

5 | EXPERIMENTS AND EVALUATION

To simulate a compute node in a heterogeneous supercomputing sys-
tem, we set up the experimental environment on a Dell PowerEdge
T620 server, which runs Ubuntu Server 12.04 systems and is equipped
with 2 Nvidia Tesla K20 GPUs and 2 Intel E5-2630 CPUs. We mea-
sure the real-time power and temperature via the Nvidia management
library.*

Firstly, we conduct a experiment that collect real-time running status
of GPU while performing packet classification. The results are shownin
Figure 6. As depicted, both the power and the temperature change con-
tinuously. During the first few seconds, the power changes significantly
because of the device initialization. Then, the main program only runs
on GPU1. And the power consumption drops obviously when the main
program finishes 61 seconds later.

Next, we studies various types of parameters, which may affect the

energy consumption.

*Note that K20 is in the limited list of supported models32 of Nvidia management library.

0 10 20 30 40 50 60 70
Time (s)
(B) GPU Temperature

FIGURE6 Graphics processing unit (GPU) running status

5.1 | GPU hardware configuration parameters

5.1.1 | GPU compute mode

As mentioned earlier, there are 4 GPU compute modes: Default, Exclu-
sive_Thread, Exclusive_Process, and Prohibited. In the case of the nor-
mal status, the GPU is set in the default mode. The exclusive_Thread
mode implies only 1 context per device, usable from 1 thread at a time.
The exclusive_Process mode implies only 1 context per device, usable
from multiple threads at a time. Finally, the prohibited mode means
disable GPU, that is, no contexts per device.

We conducted the packet classification experiment in GPU1 with dif-
ferent compute modes, while keeping GPU2 in the default mode as a
reference. The other parameters were as follows: trace no. 104671000,
rule acl_1k, and linear algorithm.

Figure 7 shows the power situation when the program is in the
stable-running state. When the GPUs are in the idle state and the
default compute mode, the power value of GPU1 is 27.33 W and that
of gpu2 is 26.52 W. When the program is running on GPU1, the power
value is 65 W. If GPU1 is in the prohibit mode, the power value drops
to only 16.25 W. Meanwhile, the system changes the program to run
in GPU2 automatically, and the power value of GPU2 is increased
to 66.79 W.
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Therefore, we can set the GPU compute mode to the prohibit mode
when there is no program running. Compared to the default mode, the
prohibit mode can save 10 W of power.

5.1.2 | GPU Running Frequency
Tesla K20 GPU has six supported combination frequencies as Table 1;

by adjusting the frequency, we can change the GPU speed.

The experimental parameters are as follows: data trace no.
10467100, rule acl_1k, linear algorithm, and default compute mode.

The result is shown in Figure 8. When the GPU core and the mem-
ory clock frequencies are set to 705 and 2600, respectively, the energy
consumption is the lowest and the throughput is relatively high. In fact,
this combination of frequencies is the default setting.

5.2 | GPU software configuration parameters
5.21 | GPU thread scheduling

We change the allocation of the number of grids, blocks, and threads,
to find their impact on the energy consumption.
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The experimental parameters are as follows: data trace no.
10467100, rule acl_1k, linear algorithm, and default compute mode.

As shown in Figure 9, when the minimum number of threads is allo-
cated in {1 grid-1 block-256 threads}, the energy consumption is the
highest at 2429.83 J. The top square shows the projection to assist the
3D image.

When allocating more thread resources, we find that the energy and
the program-running time show a corresponding relationship, as shown
in Figure 10; that is, the more the parallel computing resources, the
shorter is the running time and the less is the energy consumption.
However, the lowest energy is not allocated in {1 grid-8 blocks-1024
threads}, instead by {1 grid-8 blocks-768 threads} allocating method
with 133.84 J.

This implies that the allocation of superfluous parallel-computing
resources will result in an increase in the energy consumption.

5.2.2 | Algorithm optimization

Figure 11 shows an energy comparison in different algorithms.

Here, “Linear” is the baseline algorithm, “DVFS” is the traditional

FIGURE12 Graphics processing unit (GPU) power with data scale
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FIGURE13 Graphics processing unit (GPU) temperature with data
scale

energy-efficient algorithm used on GPU, “HiCuts on GPU” is the HiCuts
algorithm, which changed the linear rule placement to a multidimen-
sional space placement and implemented on GPU platform,1¢ and
“FCEEQ” is the optimized algorithm based on “HiCuts on GPU.”

We find that the “Linear” algorithm has a larger energy consumption
due to that the computing time is proportional to data scale. “DVFS”
algorithm has limited adjustable parameters. “FCEEQ” algorithm is
energy efficient because of that the fuzzy control model can adjust

more parameters and select a better GPU running solution.

523 |

Next, we conducted a packet classification experiment by changing the

Data calculation scale

scale of the trace data. The other parameters were fixed as follows: rule
acl_5k, linear algorithm, and default compute mode.

As shown in Figure 12, with an increase in the data scale along the
x-axis, while the throughput is stable, both the GPU computing time and
the energy consumption exhibit a trend of linear growth. This implies
that the GPU handles more data with more energy consumption and

that these 2 parameters have a linear relationship.
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TABLE2 The accuracy of packet classification with acl_1k data
Trace No. LinearonCPU HicutsonCPU HicutsonGPU Hicuts on GPU (Prohibited Mode)
1 591 591 591 0
2 49 49 49 0
7868 407 407 407
7869 716 716 716 (0]
7870 571 571 571
Abbreviations: CPU indicates central processing unit; GPU, graphics processing unit.
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FIGURE 14 Accuracy of packet classification

5.3 | Other relative parameters

53.1 |

The experimental GPU product model is Tesla K20m, a passive cooling

GPU temperature

GPU without a fan. Here, we record the changes in temperature. The
experimental parameters are as follows: data trace no. 8289120, rule
acl_5k, linear algorithm, and default compute mode.

As shown in Figure 13, when the GPU is in the idle state, the tem-
perature is relatively low 51°C (123.8°F). After the GPU changes into
the working state, the temperature increases along with the working
load. The highest temperature is 88°C ; this will increase the energy
consumption of the computer-cooling process.

532 |

We conducted an additional experiment on the accuracy of packet clas-

Packet classification accuracy

sification for evaluation. Table 2 shows the accuracy of packet classifi-
cation with acl_1k data. The first column is trace number, the second
column linear on CPU is a baseline algorithm, which provides cor-
rect matched rule number. The third and fourth columns are matched
rule numbers with our algorithms; the same results indicate that the
accuracy is 100%. The other types of firmware and interprocess com-
munication data have the same results as shown in Figure 14. We
used different configuration parameters according to FCEEO model
but found that when the GPU is set to prohibited mode, the accuracy
is 0% as shown in column 5 of Table 2. This is normal because GPU
has been stopped. Therefore, using the FCEEO model to change GPU
frequency and adjust other parameters will not affect the accuracy of

packet classification when GPU is in working status.

FIGURE15 Graphics processing unit performance vs thread allocation

533 |

We find that the allocation of a different number of grids, blocks, and
threads will result in different performance values. To achieve a higher

Throughput and energy

throughput, we need to reasonably assign GPU hardware resources.
Previous experiments mainly considered only the aspect of high per-
formance and did not taken into account the energy efficiency while
maintaining the high performance of GPU-based packet classification.
We conducted experiments on power consumption issues with differ-
ent resource allocation combinations, as shown in Figure 15. As indi-
cated in the horizontal units, we assigned different numbers of thread
and block resources.

These experiments showed that when the block-thread combi-
nation was {8 blocks-256 threads}, {8 blocks-1024 threads}, and
{12 blocks-256 threads}, we could achieve high throughput perfor-
mance, but only the 8-256 combination was energy efficient. This allo-
cation not only ensured a throughput of 63 Mbps with a relatively high
performance but also saved 132.92 J of energy at most. When different
thread-scheduling combinations were adopted, the maximum energy
cost was 4396.55 and the minimum energy cost was 3714.51, leading
to asaving of upto 15.51%.

This can be attributed to the fact that when we use superfluous par-
allel threads, the throughput performance will not improve but will lead
to increased power consumption. According to the fuzzy control model
to select the appropriate hardware resource allocation scheme, we will

be able to achieve higher performance at lower power consumption.

6 | CONCLUSION

Packet classification is one of the most important components of net-
work packet processing, which suffers from not only high performance
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issues but also challenges on energy efficiency. In this paper, we focused
on the GPU platform that can significantly accelerate rule-matching
process, studied on reducing power consumption while keeping a high
throughput and finally proposed an FCEEO model to achieve our objec-
tives. As demonstrated in the evaluation results, by switching the com-
puting mode of GPU according to the model-based analysis, we can
save 10 W when GPU stays idle. Monitoring GPU temperature is use-
ful to prevent a program interruption, because the high-temperature
self-protection mechanism will shut down GPU when the tempera-
ture reaches 95°C. Furthermore, the proposed model also directs us to
arrange thread configurations for kernel executing, through which the
overall power consumption decreased by upto 15.5%. At the same time,
the FCEEO model can keep a high throughput at the same level.
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