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Abstract
Recently, some researchers concentrate on applying multi-view learning to the correlation filter tracking to achieve both

the efficiency and accuracy. However, most of them fail to effectively collaborate multiple views to deal with more

complex environment. Moreover, their methods are prone to drift in case of long-term occlusion due to the memory loss. In

this paper, we propose a novel multi-view correlation filters-based tracker for robust visual tracking. First, we present an

adaptive multi-view collaboration strategy to highlight different contributions of different views by jointly considering the

reliability and discrimination. Second, an effective memory-improved model update rule is introduced to avoid falling into

a contaminated target model. Compared with the conventional linear interpolation update rule, it can effectively deal with

long-term occlusion by improving the memory of historical models. Furthermore, instead of assigning a unified learning

rate for all views in each frame, we design varying learning rates for different views according to their respective

evaluations on the current tracking result, which can prevent the target models of all views from being contaminated at the

same time. Finally, a failure-aware scale update scheme is developed to avoid noisy scale estimation in case of temporal

tracking failure. Extensive experimental results on the recent benchmark demonstrate that our tracker performs favorably

against other state-of-the-art trackers with a real-time performance.

Keywords Visual tracking � Correlation filter � Multi-view learning � Scale estimation

1 Introduction

Visual tracking is of great importance for numerous com-

puter vision applications, such as driverless [7, 44], human–

computer interaction [41, 46] and video surveillance

[42, 43]. Generally, model-free online tracking is desirable.

Given the only initial state in the first frame with bounding

box, the task is then to determine the location and size of the

object in the subsequent frames. Rare prior information

makes it difficult to achieve robust tracking. Besides, sig-

nificant appearance changes caused by occlusion, deforma-

tion and background clutter also complicate the problem.

Recently, discriminative correlation filter (DCF)-based

visual tracking methods receive extensive attention. They

show remarkable performance in terms of accuracy and

speed. Accuracy is improved by using multi-channel fea-

tures and approximate dense sampling scheme, while high

speed is strongly benefited from exploiting the fast Fourier

transform (FFT) at both detection and learning stages. Based

on the conventional DCF, a variety of tracking methods are

developed for the further improved performance. These

improvements can be broadly divided into several aspects,

including reducing boundary effect [6, 10], inducing multi-

ple kernels and templates [3, 35], changing target response

[4], etc.Although excellent results have been reported, above
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trackers suffer from expensive computational cost as they

usually need to solve quite complicated models in the

learning stage, which precludes their applications in real-

time sceneries. Moreover, single and fixed feature repre-

sentation is not always powerful enough to deal with some

challenging scenes, e.g., occlusions or deformation.

In order to achieve both the efficiency and robustness,

some researchers focus more on applying multi-view

learning to the correlation filter tracking. Li et al. [22] pro-

pose a multi-view correlation tracker to fuse several features

and select the discriminative features to do tracking. Berti-

netto et al. [1] solve two independent ridge regression

problems,where the inherent structure of each feature is fully

leveraged. By integrating multiple complementary cues into

the framework of correlation filter, these works achieve

robust and real-time visual tracking. However, there still

exist several factors that may affect the tracking perfor-

mance. (1) Fixed multi-view collaboration strategy: On the

one hand, it is not an easy thing to design a suitableweight for

each view. On the other hand, since the target appearance

continuously changes over time, the fixed multi-view col-

laboration strategy will be difficult to adapt to drastic

appearance variations. (2) Loss of memory: Due to the linear

interpolation update rule, the targetmodel for each viewpays

more attention to recent frames and decays the effect of

previous frames exponentially over time. After a period of

update activity, historical models will be almost forgotten by

the current target model which has been updated. Therefore,

the updated model is prone to drifting away when the target

suffers from long-term occlusion (as can be seen in Fig. 1).

(3) Consistent or constant learning rate: Consistent means

that the target models of all views are updated with the same

learning rate. Once an inaccurate tracking result occurs, all

views will be contaminated and thus increase the risk of

model drift.Constant implies that a fixed learning ratewill be

employed in all frames regardless of the track quality. It is

obvious that a tracker with the consistent or constant learning

rate is sensitive to the inaccurate tracking result.

To address above issues, we propose a novel multi-view

correlation filters-based tracker,1 which exploits both the

consensus and complementary characteristics of multiple

views to achieve robust visual tracking. Specifically, we

obtain multiple views from multiple features like grays-

cale, HOG and CN features to provide a more robust and

comprehensive target representation. Multiple views cap-

ture diverse appearance characteristics of the target from

different perspectives; thus, a collaboration of them is

supposed to boosting tracking performance. Considering

that the target object undergoes varying challenging factors

over time, we present an adaptive multi-view collaboration

strategy to highlight different contributions of different

views in each frame based on the reliability and discrimi-

nation evaluation. Furthermore, we design an effective

memory-improved model update rule with view-specific

learning rate to alleviate the model drift problem. On the

one hand, we improve the memory of previous target

observations to prevent falling into a contaminated target

model. On the other hand, learning rates are dynamically

adjusted for different views according to their respective

evaluations on the current tracking result, which further

avoids the contamination of all views at the same time. In

addition, we develop a failure-aware scale update

scheme to ensure accurate scale estimation. Both quanti-

tative and qualitative experiments on the recent benchmark

have been performed to validate the superiority of the

proposed tracker compared to other state-of-the-art track-

ing methods.

1. An adaptive multi-view collaboration strategy is pre-

sented under the framework of correlation filters.

Instead of assigning fixed weights, we highlight

different contributions of different views by jointly

considering the reliability and discrimination in each

frame.

2. An effective memory-improved model update rule is

proposed to avoid falling into a contaminated target

model. Different from the conventional linear interpo-

lation update rule, the proposed method updates the

Fig. 1 Comparison of the proposed method (marked with the red box)

with Staple (marked with the green box) on the lemming sequence,

where the target suffers from the long-term occlusion. Although both

of two methods apply multi-view learning to the correlation filter

based tracking, the proposed tracker can be able to recover the target

after the long-term occlusion due to our memory-improved model

update rule, which improves the memory of historical models (color

figure online)

1 Note that the concept ‘‘multi-view’’ in this paper is different from

that in 3D video domain. Generally, in visual object tracking, multiple

Footnote 1 continued

views indicate that multiple features are extracted to capture the

different appearance characteristics of the target within a single

camera view. But in 3D video domain, multiple views commonly

refer to multiple camera views of the same scene.
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current target model in an incremental way, which

improves the memory of previous observations.

3. A varying and view-specific learning rate is designed

to reduce the risk of model drift. The learning rates are

dynamically adjusted for different views according to

their respective evaluations on the current tracking

result. With the diverse learning rates, there still exists

the potential to prevent the target model of a certain

view from drifting, even an inaccurate tracking result

occurs.

4. A failure-aware scale update scheme is developed. To

avoid inaccurate scale estimation in case of failing

translation estimation, we will disable the target scale

estimation module once the underlying tracking failure

is detected.

In the reminder of the paper, we firstly discuss the most

related works to ours in Sect. 2. Then, we give a detail

introduction of our multi-view correlation filters, multi-

view collaboration strategy, online update model and fail-

ure-aware scale update scheme in Sect. 3. Experimental

results and discussions can be found in Sect. 4. Finally, we

conclude our work in Sect. 5.

2 Related works

Visual tracking [1, 10, 17, 19, 23, 25, 29, 30, 53] is a hot

topic in the field of computer vision. A comprehensive

review of visual tracking methods can be found in

[21, 32, 39]. In this section, we only discuss the most

related works to ours including correlation tracking and

multi-view learning.

2.1 Correlation tracking

In recent years, correlation filters have attracted extensive

attention in visual tracking due to their high-speed per-

formance. Bolme et al. [5] model the target appearance by

learning a minimum output sum of squared error (MOSSE)

filter and perform tracking by correlating this filter over a

search window. Henriques et al. [16] take advantage of the

circulant structure of samples to solve kernel regularized

least squares problem in Fourier domain. The work is

further extended in KCF tracker [17] with HOG feature,

which achieves the amazing performance in terms of both

accuracy and efficiency. Danelljan et al. [8] propose a

discriminative scale space tracker (DSST) to incorporate

scale estimation in the DCF-based tracking framework. In

[33], an anisotropy filter response is exploited instead of

Gaussian-shaped response to promote the robustness

against occlusion. To reduce the boundary effect, Danelljan

et al. [10] present a novel correlation tracking method

named as spatially regularized discriminative correlation

filters (SRDCF) with penalizing correlation filter coeffi-

cients. Ma et al. [27] design a long-term correlation

tracking framework to re-detect the target object in case of

tracking failure with a detection module. Dong et al. [11]

develop an occlusion-aware visual tracking algorithm to

avoid the drifting problem caused by noisy updates. Li

et al. [20] propose a distortion-aware correlation tracking

framework, which boosts the tracking performance by

solving the distortion problem in correlation filter based

methods. Zhang et al. [52] exploit and complement the

strength of correlation filters and particle filters to achieve

more robust tracking performance. In [38], both the global

and local information are considered into the correlation

filters-based tracking, which significantly improves the

robustness of the tracking accuracy. Sun et al. [34] care-

fully check the current track quality of translation corre-

lation filters via a reverse evaluation strategy. A relocation

mechanism will be activated to refine the tracking result

once the track quality is low. However, these DCF-based

methods mostly pay more attention to design a sophisti-

cated model in the learning stage of the whole tracking

process with a high computational cost. In this paper, we

focus more on the detection and updating stage of the

correlation tracking paradigm to achieve a real-time

performance.

2.2 Multi-view learning

Multi-view learning [12, 45] is a promising paradigm to

improve the tracking performance with complementary

cues. How to effectively fuse multiple features to realize

more robust tracking performance attracts wide attention.

Zhang et al. [51] propose a novel entropy criterion-based

collaborative strategy, which determines the weight of each

support vector machine (SVM) by evaluating the uncer-

tainty of the corresponding probability distribution. Simi-

larly, entropy criterion is also employed to measure the

discriminative ability of one feature in [28]. Different from

the work [51], Ma et al. [28] concentrate on the combined

evaluation rather than independent evaluation of each

feature. Moreover, they design an iterative method to

optimize the weighted entropy-based objective function.

Yoon et al. [47] establish multiple trackers based on dif-

ferent feature representations and perform tracker interac-

tion and selection within a probabilistic framework.

Notwithstanding good performance is reported in terms of

accuracy, above methods have high computation cost. To

realize an effective and efficient tracker, some researchers

apply multi-view learning to the correlation filters. Li et al.

[23] propose a scale-adaptive kernel correlation filter

tracker by directly concatenating multiple features. Li et al.

[22] present a multi-view correlation filters tracker to do
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tracking. Kullback–Leibler (KL) divergences between the

distribution of each view and the fused distribution is

minimized to obtain the fused probability distribution.

Bertinetto et al. [1] develop a novel tracker called Staple,

which combines the scores of both template model and

color statistics models. Zhang et al. [50] jointly train an

ensemble of correlation filters with multiple views to per-

form tracking via an efficient cotrained model. In [26], the

channel reliability score is estimated for weighting per-

channel in the stage of detection. However, these multi-

view learning-based tracking methods either exploit fixed

multi-view collaboration strategy or introduce the expen-

sive computational cost without using efficient correlation

filters. Considering that both the robustness and efficiency

play important roles in visual tracking, we apply multi-

view learning to the correlation filter tracking with an

adaptive multi-view collaboration strategy. Moreover, we

design view-specific learning rates to reduce the risk of

model drift.

3 Our method

In this section, we first review the typical discriminative

correlation filters formulation. Next, we carefully introduce

our adaptive multi-view collaboration strategy, which

highlights different contributions of different views by

jointly considering the reliability and discrimination. Then,

we elaborate the proposed memory-improved online

update model. Furthermore, a varying and view-specific

learning rate is designed and analyzed in detail. Last but

not least, a failure-aware scale update scheme is developed

to avoid inaccurate scale estimation. The whole process of

our method is shown in Fig. 2 and summarized in Algo-

rithm 1.

3.1 Discriminative correlation filters

Let f denote an image patch consisting of d feature chan-

nels. The aim of the typical DCF formulation is to learn a

multi-channel discriminative correlation filter h from this

single patch f, which is centered around the target object.

This is achieved by minimizing the sum of squared error e
between the actual correlation response and the desired

correlation response g,

e ¼ g�
Xd

l¼1

hlHf l

�����

�����

2

2

þk
Xd

l¼1

hl
�� ��2

2
; ð1Þ

where, H stands for circular correlation, kðk� 0Þ is a

regularization parameter which controls overfitting. Typi-

cally, the desired correlation response g is selected to be

the Gaussian function, which implies that the correlation

response output at location n is larger when the corre-

sponding sample is closer to the target object. Convolution

Theorem tells us that the correlation in time domain cor-

responds to the element-wise multiplication in Fourier

Algorithm 1 The Proposed Tracking Algorithm
Input:

Image It;
Previous target position pt−1 and scale st−1;
Target model Av

t−1, Dv
t−1 for each view v ∈ {g, c, h}.

Output:
Current target position pt and scale st;
Updated model Av

t , Dv
t for each view v ∈ {g, c, h}.

1: sample the patch zt at pt−1 with scale st−1 from It.
2: while v ∈ {g, c, h} do
3: Extract the feature from zt.
4: Compute the response map rvt using Eq. (3).
5: Compute the appearance similarity Sa and spatial simlarity Ss using Eq. (4) and Eq. (5).

6: Compute the reliability ζvrel,t by combining Sa and Ss via Eq. (6).
7: Compute the discrimination ζvdis,t using Eq. (7).
8: Compute the weight wv

t based on ζvrel,t and ζvdis,t using Eq. (8).
9: end while
10: Obtain the fused response map rt by collaborating multi-view response maps with wv

t
using Eq. (9).

11: Get the target position pt by maximizing rt.
12: Check the tracking failure marker mt using Eq. (12) and estimate the target scale st if

mt = 0.
13: while v ∈ {g, c, h} do
14: Extract the feature from the new sampled patch z∗

t at pt with scale st.
15: Compute the learning rate ηv

t using Eq. (11)
16: Update the current target model Av

t , Dv
t with ηv

t using Eq. (10).
17: end while
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domain. Therefore, Eq. (1) can be efficiently minimized in

the Fourier domain and the l�th channel of filter H is given

by

Hl ¼ G� � Fl

Pd
k¼1 Fkð Þ� � Fk þ k

; l ¼ 1; . . .; d; ð2Þ

where, � refers to complex conjugation, � is the element-

wise multiplication and the fraction denotes the element-

wise division. In addition, the capital letters denote the

discrete Fourier transform (DFT) of the corresponding

quantities. As for the derivation of Eq. (2), we refer readers

to [8] for more detail.

When a new frame t arrives, the response map rt can be

computed with an image patch zt (centered at the predicted

target location) and the correlation filter Hl
t�1 updated in

the previous frame,

rt ¼ F�1

Pd
l¼1 Al

t�1

� �� � Zl
t

Dt�1 þ k

 !
; ð3Þ

where F�1 represents the inverse DFT, Al
t�1 and Dt�1 are

the numerator and denominator of Hl
t�1. Then, the target

can be located by searching for the peak of the response

map rt.

3.2 Multi-view collaboration strategy

Multi-view learning is helpful for accurately locating the

target object since different features can provide comple-

mentary information to deal with more complex environ-

ment. Here, we employ three kinds of complementary

features, i.e., grayscale, color names (CN), HOG feature to

represent the object appearance. Grayscale feature provides

a basic description of the object. CN feature is an important

visual cue to distinguish the target from the background,

while HOG feature shows its superiority in case of

nondistinctive color distributions between the target and

the background. For each view v 2 g; c; hf g, we respec-

tively establish an independent correlation filter hv. These

filters can work in parallel to calculate the corresponding

response map rv. The final response map rt in the t frame

can be obtained by fusing rvt with consideration of two

important factors of each view: reliability and

discrimination.

Reliability Reliability reveals the accuracy of the tracking

result. Based on the tracking smooth assumption, we

exploit the appearance similarity and the spatial similarity

between two consecutive frames to measure the reliability

for each view. Since the change between two consecutive

frames is little, the more reliable tracking result is supposed

to approach the target in the last frame in terms of the

appearance and location. To this end, we first calculate the

center position cvt of the tracking result for each view and

extract the corresponding image patch pvt . As a single

image patch is usually used to represent the target

Fig. 2 The flowchart of the proposed tracking method. When a new

frame arrives, we respectively calculate the response map rv for each

view v 2 g; c; hf g with the corresponding correlation filter hv. Then

we adaptively combine the response maps of all views based on the

reliability and discrimination measurement. The target location is

finally determined by searching for the maximal value of the fused

response map r. As for the target scale, we activate the scale

estimation module when mt ¼ 0. In the updating stage, we incre-

mentally update the current target model with a new learned model

for each view. Moreover, the learning rates are dynamically adjusted

for different views according to their respective evaluations on the

current tracking result
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appearance, the appearance similarity between the patch pvt
and patch pt�1 can be defined as

Sa pvt ; pt�1

� �

¼ exp NCC pvt ; pt�1

� �� �

¼ exp

P
i;j pvt i; jð Þ � pvt
� �

pt�1 i; jð Þ � pt�1ð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

i;j pvt i; jð Þ � pvt
� �2P

i;j pt�1 i; jð Þ � pt�1ð Þ2
q

0
B@

1
CA:

ð4Þ

Here, pvt and pt�1 denote the mean value of matrix pvt and

pt�1. NCC pi; pj
� �

means the normalized correlation coef-

ficient between pi and pj, which is usually used as a kind of

similarity measurement between two image patches.

However, the appearance similarity always becomes

unreliable when the background exhibits a similar

appearance compared to the target, so it is necessary to

impose the distance constraint by inducing the spatial

similarity. We exploit the Euclidean distance to measure

the spatial similarity between the current tracking result of

view v and the target in the last frame as follows,

Ss cvt ; ct�1

� �
¼ exp �

cvt � ct�1

�� ��2
2

d2

 !
; ð5Þ

where, d is a parameter which controls the steepness of the

exponential function. Accordingly, the reliability of each

view can be measured by combining the appearance sim-

ilarity and the spatial similarity between two consecutive

frames,

fvrel;t ¼ Sa pvt ; pt�1

� �
� Ss cvt ; ct�1

� �
: ð6Þ

The higher fvrel;t means the better reliability of the tracking

result of view v.

Discrimination Besides reliability, a good view should

have enough discriminative ability to distinguish the target

object from the background. The peak-to-sidelobe ratio

(PSR) measures the strength of a peak relative to the

sidelobe, which can be used to evaluate the discrimination

of view v in the t frame,

fvdis;t ¼
max rvt

� �
� ls rvt

� �

rs rvt
� � ; ð7Þ

where, ls and rs are the mean value and standard deviation

of the sidelobe area, which is defined as the response map

area excluding a given window (set to 15% of response

map in this paper) around the peak. From Eq. (7), we can

observe that making the PSR larger needs to satisfy two

conditions: (1) the peak which refers to the response value

of the target object should be stronger relative to the mean

response value of the sidelobe; (2) response values of the

sidelobe (here refers to the response values of other

samples) should be stable at a low level as much as pos-

sible. These two conditions indicate that the PSR is larger

when the determination from a view is less ambiguous.

Therefore, PSR can be treated as a reasonable metric to

measure the discriminative ability of a view.

We argue that a view which is both reliable and dis-

criminative should be assigned larger weight during the

process of the target location. Therefore, we define the

weight assignment function,

wv
t ¼ 1� cð Þfvrel;t þ cfvdis;t; ð8Þ

where, c is a trade-off between the reliability and the dis-

crimination. Then, we calculate the final response map rt in

the t frame by a linear combination of the response maps of

all views,

rt ¼
X

v2 g;c;hf g
wv
t r

v
t : ð9Þ

Note that each view has its own specialty and advantage in

dealing with varying challenging factors, and this should be

fully explored and applied in their collaboration. With the

above linear weighted function, the collaboration of multi-

view correlation filters can be well performed by consid-

ering different contributions of different views in the fusion

of response maps.

3.3 Online model update

It is necessary to update the target model to adapt to

appearance changes. The most commonly used linear

interpolation update rule pays more attention to recent

models, thereby ignoring the important historical infor-

mation. We insist that all previous target models have

much importance on the determination of the target loca-

tion. To improve the memory of this important informa-

tion, we incrementally update the current target model with

a new learned model for each view as follows,

Av;l
t ¼ A

v;l
t�1 þ gvt G

� � Fv;l
t

Dv
t ¼ Dv

t�1 þ gvt
Xd

k¼1

Fv;k
t

� ���Fv;k
t :

ð10Þ

Here, gvt is a variable which denotes the learning rate of

view v in the t frame. Since the model learned from the first

frame is absolutely reliable, we assign a larger learning rate

for it. As for other new learned models, a common

approach is to update the models of all views based on the

measurement of the current tracking quality. Once the

measurement is inaccurate, the target models of all views

will either be contaminated with a noisy tracking result or

struggle to adapt to drastic appearance variations. In con-

trast to above design, we dynamically adjust the learning

rates for different views according to their respective
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evaluations on the current tracking result. If a view is

confident enough about its decision and shows good

agreement with the current tracking result, it will consider

a good quality track. Then, new corresponding model will

be much learned. Otherwise, small learning rate should be

set. Based on the above analysis, we design the varying

learning rates in the t frame for different views as follows,

gvt ¼
g0; if t ¼ 1;

L � exp � 1� cvt � svt
� �2� �

; otherwise
;

(
ð11Þ

where g0 is the learning rate for the first frame that does not

depend on v and t. L is a constant learning factor. cvt
measures the confidence of view v in the t frame, which can

be defined as the peak of rvt , i.e., c
v
t ¼ max rvt

� �
. We denote

svt as the consistency score and calculate it using the

overlap ratio between the bounding boxes of the current

tracking result and the result of view v: svt ¼
Bv
t\Btj j

Bv
t[Btj j .

3.4 Scale estimation

Accurate scale estimation plays an important role in robust

visual tracking. Similar to [8], we learn a one-dimensional

scale correlation filter to estimate the scale changes of the

target. Let P� Q be the current target size and S indicate

the number of the possible target size. We sample S image

patches around the target and denote the size of each patch

as sP� sQ, where s 2 a �S�1
2b c; a �S�3

2b c; . . .; a S�1
2b c

n o
, a

denotes the scale factor. Then, all these patches are nor-

malized to a uniform size to learn the scale correlation

filter. The final target size is determined with the maximal

correlation response. However, directly updating the scale

of the target is risky when a temporal tracking failure

occurs. Inaccurate appearance representation will have a

negative impact on the scale estimation. And the noise in

scale will also contaminate the target translation model,

which makes the matter worse. Therefore, it is necessary to

detect the potential tracking failure before estimating the

target scale. We define a tracking failure marker mt using

the consensus characteristics of multiple views,

mt ¼
0;

Bv1
t \ Bv2

tj j
Bv1
t [ Bv2

tj j [ s

1; otherwise

8
<

: ; ð12Þ

where, v1 and v2 are any two of different views, s is a

threshold which decides the current tracking state. Once the

tracking failure is detected in the t frame, i.e., mt ¼ 1, the

estimation of the target scale will be stopped.

4 Experimental evaluation

In this section, we evaluate the proposed method with

extensive experiments on two challenging benchmark

datasets, they are OTB2013 [39] and its updated version

OTB2015 [40], respectively. Both quantitative and quali-

tative comparisons are conducted with other state-of-the-

art methods. One-pass evaluation (OPE) criterion is used in

all experiments.

4.1 Implemental details

The proposed tracking algorithm is implemented in Matlab

and runs at 30 frames per second (meets the real-time

demand) on a PC machine with Intel Core i7-6700HQ CPU

2.6 GHz and 8 G memory. The parameters used in this

work are fixed in all experiments and set as follows. All

related parameters in correlation filters keep the same in

work [8]. The parameter d2¼ 200. The trade-off parameter

c between the reliability and the discrimination in Eq. (8) is

0.8. The learning rate g0 for the first frame and the learning

factor L in Eq. (11), respectively, set to 1.1 and 0.7. The

threshold s in Eq. (12) is set to 0.5.

4.2 Evaluation metrics

Two widely used metrics are exploited to provide a rea-

sonable evaluation in this section: (1) precision plot, which

reflects the percentage of frames whose center location

error (CLE) is within a given threshold. CLE is obtained by

the average Euclidean distance between the predicted tar-

get location and the ground-truth. In the precision plot, we

refer the result at error threshold of 20 as distance precision

(DP) and use it for comparisons; (2) success plot, which

shows the ratios of successfully tracked frames whose

overlap scores suppress a given threshold. The overlap

score is defined as the overlap O rg; rp
� �

¼ rg\rpj j
rg[rpj j between

the ground truth bounding box rg and predicted bounding

box rp. In the success plot, area under curve (AUC) is

usually adopted for ranking performance.

4.3 Comparisons on OTB2013 benchmark

OTB2013 benchmark is a public challenging dataset with

51 video sequences. These sequences contain 11 chal-

lenging factors including IV (Illumination variation), SV

(Scale variation), OCC (Occlusion), DEF (Deformation),

MB (Motion blur), FM (Fast motion), IPR (In-plane rota-

tion), OPR (Out-of-plane rotation), OV (Out of view), BC

(Background clutters) and LR (Low resolution). Next, we
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will report the experimental results in terms of overall

performance and attribute-based performance.

4.3.1 Evaluated methods

We evaluate our tracker with 39 state-of-the-art tracking

methods. They are MEEM [48], DLSSVM [31], Staple [1],

CNT [49], RPT [24], TGPR [13], KCF [17], DSST [8],

SAMF [23], SiamFC_3s [2], SCM [53], Struck [14] and

other 27 excellent trackers which are listed in the bench-

mark [39]. Among these trackers, Staple, RPT, KCF, DSST

and SAMF are several correlation filters based tracking

algorithms. CNT and SiamFC_3s are developed with the

framework of deep learning. MEEM, DLSSVM, Struck,

SCM and TGPR are other different types of tracking

methods. Note that we only show the most 12 competitive

methods and our method in following comparisons for

clarity.

4.3.2 Quantitative comparison

Overall performance Figure 3 shows the precision plots

and success plots of the overall performance. All trackers

are ranked by the DP scores and the AUC scores in the

legend, respectively. In the precision plots, our tracker

achieves the second performance with an average DP of

82.9%, which is very close to the best performing tracker

MEEM. Although the performance difference exists in DP,

our tracker achieves much higher speed than MEEM

tracker which loses the real-time performance. In the suc-

cess plots, the proposed method ranks the first and per-

forms 1.3% better than SiamFC_3s. Note that Staple and

SAMF are two correlation filters-based methods which also

exploit multiple features for improving performance. But

we can observe that our tracker outperforms them by a

large margin. The underlying reason for the significant

performance improvement is that we consider the different

contributions of different features. In summary, the preci-

sion plots and success plots demonstrate that the proposed

method performs favorably against other state-of-the-art

trackers.

Attribute-based performance It is valuable to evaluate the

performance of trackers from different perspectives.

Attribute-based performance evaluation can reflect the

robustness of one tracker against different challenging

factors. Figures 4 and 5 illustrate the precision plots and

success plots of our method and other state-of-the-art

methods in different attributes, respectively. The proposed

algorithm ranks within top 3 on 7 out of 11 attributes in

precision plots and on 8 out of 11 attributes in success

plots. Specially, our method achieves much excellent per-

formance on the sequences with attributes ‘‘occlusion.’’

‘‘out of view’’ and ‘‘low resolution.’’ For the sequences

with attribute ‘‘low resolution,’’ our method achieves the

DP of 66.9% and AUC of 53.0%, which ranks the first in

both two evaluation metrics. It’s worth mentioning that our

method obtains significant improvements on the sequences

with attribute ‘‘occlusion’’ compared to other state-of-the-

art trackers. The reason can be attributed to the memory-

improved model update rule developed in this paper, which

improves the memory of historical models to deal with

model drift.

4.3.3 Qualitative comparison

We show some sampled tracking results of our method

over 7 challenging sequences in Fig. 6. Besides, the

tracking results of several state-of-the-art trackers (e.g.,

KCF, CNT, SCM and Staple) are also presented for

comparisons.

Fig. 3 The overall performance on the OTB2013 benchmark. All trackers are ranked based on the DP scores in the legend of the precision plots

and the AUC scores in the legend of the success plots
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Background clutter It is difficult to deal with the back-

ground clutter encountered in the Ironman and Soccer

sequences, where the background near the targets has the

similar color or texture as the targets through the whole

process. In the Ironman sequence, only our tracker can

track the target object well. Other trackers drift away to the

background at the beginning of the sequence. In the Soccer

sequence, the CNT, SCM and Staple trackers lose track of

the target after frame 240. Although the KCF tracker can

lock on the correct target at all frames, it does not handle

scale variations well. Overall, only our method performs

well in terms of accuracy and robustness in this sequence.

Occlusion Target objects suffer from heavy occlusions in

the Girl, Lemming and Jogging-1 sequences. In the Girl

sequence, the KCF and Staple trackers lose the target when

the head of the girl is occluded by the man at frame 433.

The CNT, SCM and our trackers can track the target from

the beginning to the end. In the Lemming sequence, the

target hides behind the background for a long time (from

frame 340 to frame 375). When the target reappears, only

the CNT and our trackers can re-detect the target accu-

rately. In the Jogging-1 sequence, the target is almost fully

occluded by lamp post at frame 68. The KCF, SCM and

Staple trackers drift away to the background at frame 80,

whereas the CNT and our trackers perform well at all

frames.

Out-of-plane rotation In the Basketball and Tiger2

sequences, the target objects undergo significant appear-

ance variations like out-of-plane rotation. The KCF and our

trackers achieve the best performance in the Basketball

sequence, while the CNT, SCM and Staple trackers grad-

ually drift away from the target at frame 62 and frame 641.

In the Tiger2 sequence, the Staple and our trackers perform

better than the CNT, SCM and KCF trackers with a

stable track.

4.3.4 Comparison with deep learning trackers

To provide a more comprehensive experimental evaluation

of our method, we compare the proposed tracker with other

7 deep learning trackers on the OTB2013 benchmark in

this section. The comparison results are shown in Table 1

with DP scores and AUC scores. From the results, we find

that our method achieves satisfactory performance among

all compared deep learning trackers. Note that our method

only exploits hand-craft features such as grayscale, HOG

Fig. 4 Attribute-based performance evaluation on the OTB2013 benchmark with precision plots. The number of sequences for each attribute is

shown in the title
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and CN features. Although deep learning trackers like

DeepSRDCF and CNN-SVM using powerful deep features

are more robust to occlusions and deformations, they suffer

from expensive computational cost.

4.4 Comparisons on OTB2015 benchmark

OTB2015 benchmark is an updated version of the

OTB2013 benchmark with 100 video sequences. Similarly,

OTB2015 benchmark is also annotated with 11 attributes.

Due to the space limitation, we only list the DP scores and

the AUC scores of the overall performance and attribute-

based performance of all evaluated methods.

4.4.1 Evaluated methods

We evaluate the proposed methods with 9 competing

trackers and other 29 state-of-the-art trackers. The 9

competing trackers are MEEM [48], LCT [27], DLSSVM

[31], RPT [24], KCF [17], DSST [8], SAMF [23], SCM

[53] and Struck [14]. Other 29 baseline trackers are listed

in [40]. For clarity, only the most 9 compared methods and

our method are presented.

4.4.2 Quantitative comparison

Overall performance We show the DP scores and the AUC

scores of the overall performance in Table 2. It can be

observed that our tracker ranks second in the DP scores,

which is slightly lower than the best performing tracker

MEEM. While in the AUC scores, our method achieves the

best performance among all evaluated methods. We can

also observe that MEEM and DLSSVM perform better in

the DP scores than in the AUC scores. This is because they

are not equipped with the scale estimation. Overall, the

proposed method performs well against other state-of-the-

art trackers.

Attribute-based performance Tables 3 and 4 summarize the

comparison results in terms of the DP scores and the AUC

scores of attribute-based performance. The proposed

method ranks within top 3 on 8 out of 11 attributes in the

DP scores and the first on almost all of attributes in the

AUC scores, respectively. As can be seen in Tables 3

and 4, our tracker performs well in most challenging sce-

nes, especially in case of illumination variation, occlusion,

out of view and low resolution. On the low resolution

sequences, our method has absolute advantages with the

Fig. 5 Attribute-based performance evaluation on the OTB2013 benchmark with success plots. The number of sequences for each attribute is

shown in the title
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DP of 77.6% and the AUC of 50.0%, which significantly

outperforms the second best method by 9.7% and 6.5%.

These advantages benefit from the proposed multi-view

collaboration strategy, which effectively fuses multiple

features to provide more rich information. On the out of

view sequences, our tracker and MEEM achieve impres-

sive performance. It can be attributed to the use of his-

torical models. Even if the target leaves the view, our

Fig. 6 Some sampled tracking results of 5 trackers in the Ironman, Soccer, Girl, Lemming, Jogging-1, Basketball, Tiger2 sequence

Table 1 The DP scores and AUC scores of the proposed method and some deep learning trackers on the OTB2013 benchmark

Trackers SiamFC_3s [2] CFnet [36] SO-DLT [37] CNT [49] Goturn [15] DeepSRDCF [9] CNN-SVM [18] Ours

DP 0.809 0.807 0.810 0.724 0.620 0.849 0.852 0.829

AUC 0.616 0.611 0.595 0.551 0.444 0.641 0.597 0.629

The best performance is marked with the italic fronts, the second best performance is marked with the bold fronts, the third best performance is

marked with the bold italic fronts
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tracker and MEEM can still locate the correct target when

it reappears. In addition, we observe that the proposed

method does not perform favorably in sequences with the

attribute of fast motion. It may be because the search

region we set is small for computational efficiency. Gen-

erally, our tracker achieves the excellent performance in

most challenging scenes compared to other competing

trackers.

4.4.3 Qualitative comparison

Figure 7 illustrates some sampled tracking results of our

method and several state-of-the-art methods in 5 chal-

lenging sequences. The selected trackers include DSST,

SCM, LCT and Struck. The DSST and LCT trackers fail to

deal with the deformation after frame 330 in the Girl2

sequence. The Struck, DSST and SCM trackers drift away

Table 2 The DP scores and AUC scores of the proposed method and other state-of-the-art trackers on the OTB2015 benchmark

Trackers SCM [53] Struck [14] KCF [17] DSST [8] SAMF [23] RPT [24] MEEM [48] LCT [27] DLSSVM [31] Ours

DP 0.570 0.640 0.691 0.679 0.749 0.756 0.781 0.761 0.763 0.771

AUC 0.451 0.465 0.479 0.519 0.557 0.542 0.534 0.569 0.544 0.582

The best performance is marked with the italic fronts; the second best performance is marked with the bold fronts; the third best performance is

marked with the bold italic fronts

Table 3 The DP scores of the proposed method and other state-of-the-art methods in different attributes on the OTB2015 benchmark

Trackers SCM [53] Struck [14] KCF [17] DSST [8] SAMF [23] RPT [24] MEEM [48] LCT [27] DLSSVM [31] Ours

IV 0.608 0.557 0.713 0.715 0.702 0.806 0.746 0.743 0.727 0.783

OPR 0.575 0.603 0.677 0.662 0.750 0.742 0.812 0.768 0.780 0.785

SV 0.570 0.614 0.640 0.650 0.713 0.723 0.756 0.698 0.719 0.732

OCC 0.574 0.551 0.630 0.610 0.739 0.694 0.768 0.704 0.730 0.772

DEF 0.562 0.549 0.627 0.555 0.697 0.735 0.786 0.715 0.746 0.698

MB 0.275 0.584 0.598 0.565 0.643 0.683 0.729 0.667 0.728 0.711

FM 0.321 0.638 0.629 0.575 0.669 0.728 0.779 0.713 0.732 0.706

IPR 0.537 0.633 0.693 0.691 0.717 0.745 0.794 0.781 0.776 0.744

OV 0.426 0.482 0.494 0.477 0.619 0.580 0.681 0.587 0.621 0.668

BC 0.582 0.559 0.712 0.703 0.686 0.789 0.746 0.734 0.728 0.764

LR 0.596 0.666 0.554 0.561 0.679 0.589 0.625 0.531 0.670 0.776

The best performance is marked with the italic fronts; the second best performance is marked with the bold fronts; the third best performance is

marked with the bold italic fronts

Table 4 The AUC scores of the proposed method and other state-of-the-art methods in different attributes on the OTB2015 benchmark

Trackers SCM [53] Struck [14] KCF [17] DSST [8] SAMF [23] RPT [24] MEEM [48] LCT [27] DLSSVM [31] Ours

IV 0.502 0.431 0.481 0.564 0.531 0.553 0.526 0.573 0.530 0.605

OPR 0.437 0.429 0.456 0.487 0.544 0.521 0.537 0.560 0.542 0.572

SV 0.443 0.410 0.397 0.482 0.497 0.491 0.480 0.505 0.472 0.539

OCC 0.441 0.402 0.446 0.469 0.552 0.490 0.521 0.531 0.522 0.587

DEF 0.414 0.393 0.444 0.433 0.517 0.505 0.505 0.524 0.527 0.521

MB 0.269 0.467 0.464 0.475 0.524 0.526 0.562 0.540 0.578 0.569

FM 0.299 0.478 0.469 0.469 0.521 0.554 0.561 0.567 0.559 0.556

IPR 0.411 0.453 0.468 0.507 0.522 0.531 0.533 0.563 0.537 0.538

OV 0.345 0.375 0.397 0.390 0.490 0.464 0.492 0.457 0.472 0.528

BC 0.473 0.437 0.503 0.530 0.534 0.577 0.525 0.557 0.523 0.575

LR 0.412 0.361 0.307 0.387 0.435 0.364 0.366 0.357 0.403 0.500

The best performance is marked with the italic fronts, the second best performance is marked with the bold fronts, the third best performance is

marked with the bold italic fronts
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from the target due to the challenge of occlusions at frame

731 in the Liquor sequence. The SCM tracker is less robust

to the scale variation and out-of-plane rotation at frame 200

in the Twinning sequence and frame 45 in the Dog

sequence. Moreover, all compared trackers do not perform

well in the Human6 sequences, where the target undergoes

various appearance variations including fast motion,

occlusion and out of view. Overall, our tracker achieves the

excellent performance in above mentioned sequences.

4.5 Ablation analysis

In this section, we carry out the ablation analysis to give a

deeper understand of the proposed method. All experi-

ments are conducted in the OTB2013 benchmark and the

comparison results are illustrated in Fig. 8.

We evaluate the effectiveness of each component of the

proposed method to prove its contribution. Based on the

proposed method, we present four variants with different

configurations for comparisons: (1) the Ours_WACS

method: our method without the adaptive multi-view col-

laboration strategy; (2) the Ours _WPUM method: our

method without the proposed online update model. It

means that the conventional linear interpolation update rule

and the consistent and constant learning rate are used in

this method; (3) the Ours_WFASU method: our method

without the failure-aware scale update scheme; (4) the

Ours_WALL method: our method without all components

proposed in this paper. From Fig. 8, we have the following

observations. First, by adaptively collaborating multiple

views with consideration of the reliability and discrimina-

tion, our method improves the ‘‘Ours_WACS’’ method by

6.7% and 4.6% in the precision plots and success plots.

Second, our method improves the ‘‘Ours_WPUM’’ by

8.0% and 5.5% in the DP scores and the AUC scores,

which demonstrates the effectiveness of the proposed

online update model. Third, our method obtains the per-

formance gains compared with the ‘‘Ours_WFASU’’

method in both DP scores and AUC scores. It can be

demonstrated that our scale update method is more robust

against the direct scale update fashion by detecting the

underlying tracking failure. Fourth, our method outper-

forms the ‘‘Ours_WALL’’ method by a large margin

(12.1% in the precision plots and 7.9% in the success plots)

by combining all components into a unified framework.

Fig. 7 Some sampled tracking results of 5 trackers in the Girl2, Liquor, Twinning, Dog, Human6 sequences
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These results prove the contribution of each component

proposed in this paper.

4.6 Parameter analysis

There are several important parameters influencing the

performance of our tracker, such as the regularization

parameter k in Eq. (1), trade-off parameter c in Eq. (8), the

learning parameters g0 and L in Eq. (11) and the threshold

s in Eq. (12). In this section, we analyze the effects of these
parameters on the OTB2013 benchmark with DP scores.

1. Effect of k: The parameter k in Eq. (1) is a regular-

ization parameter which controls overfitting by gov-

erning the relative importance of the regularization

term compared with the error term in the ridge

regression model. The larger k means the heavier

penalization imposed on the filter coefficients. Table 5

shows the corresponding DP scores when we set k to 0,

0.01, 0.1, 1 and 10, respectively. The best tracking

performance is achieved with k at 0.01.

2. Effect of c: the parameter c is a trade-off between the

reliability and the discrimination in the weight assign-

ment function Eq. (8). To evaluate the effect of c, we
parameterize it by a discrete set {0.2, 0.3, 0.4, 0.5, 0.6,

0.7, 0.8, 0.9, 1.0}. Figure 9a shows the corresponding

DP scores for different c. It can be observed that too

small c results in a degraded tracking performance,

which implies the importance of the discrimination in

collaborating multiple views. While too large c is also

not a proper selection as reliability is an indispensable

factor to measure a view as well. Therefore, we set a

moderate value of c to 0.8 because it achieves the best

performance.

3. Effect of s: The parameter s in Eq. (12) is the threshold
which controls the update of the target scale. Once the

underlying tracking failure occurs, we will stop

estimating the target scale to avoid inducing noises.

Similarly, we exploit the same method as evaluating c
to analyze s. We parameterize it by a discrete set {0.1,

0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9} and the corre-

sponding DP scores are shown in Fig. 9b. From

Fig. 9b, we find that the greatest DP score is achieved

when we set s to 0.5.

4. Effects of g0 and L: The g0 and L in Eq. (11) decide the

learning rates in each frame. Specifically, g0 reflects

the importance of the memory for the first frame, while

L controls the learning rates for subsequent frames. To

better explore the relationship between this two

learning parameters, we list Table 6 by exploiting

different g0 and L. As can be seen in Table 6, the

tracking performance is degraded when g0 is set too

large. This is because excessive memory for the first

frame will make the tracker less robust to drastic

appearance variations. Our tracker achieves the best

tracking performance by setting g0 to 1.1 and L to 0.7.

5 Conclusion

In this paper, we propose a novel multi-view correlation

filters-based tracking algorithm to achieve both robustness

and efficiency. First, to better collaborate multiple views to

Fig. 8 The precision plots and success plots of our method with different configurations

Table 5 The DP scores using different k values

k ¼ 0 k ¼ 0:01 k ¼ 0:1 k ¼ 1 k ¼ 10

DP 0.827 0.829 0.828 0.823 0.817

Bold value indicates the best performance
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deal with more complex environment, we present an

adaptive multi-view collaboration strategy by jointly con-

sidering the reliability and discrimination. Then consider-

ing that the conventional linear interpolation update model

looses the memory of historical models over time, we

propose an effective memory-improved model update rule

to maintain these important information. Furthermore, we

design dynamic and diverse learning rates to prevent all

models from being contaminated at the same time. Last but

not least, a failure-aware scale update scheme is introduced

to reduce the impact of failing translation estimation.

Extensive experiments are performed on the recent

benchmark with an excellent performance against several

state-of-the-art trackers.
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10. Danelljan M, Häger G, Khan FS, Felsberg M (2015) Learning

spatially regularized correlation filters for visual tracking. In:

2015 IEEE international conference on computer vision, ICCV

2015, Santiago, Chile, December 7–13, 2015, pp 4310–4318

Fig. 9 Effects of a c and b s with different values

Table 6 The DP scores using different g0 and L values

g0 ¼ 0:9 g0 ¼ 1:0 g0 ¼ 1:1 g0 ¼ 1:2 g0 ¼ 1:3

L ¼ 0:5 0.804 0.806 0.796 0.791 0.781

L ¼ 0:6 0.805 0.808 0.801 0.806 0.796

L ¼ 0:7 0.823 0.806 0.829 0.803 0.801

L ¼ 0:8 0.805 0.821 0.806 0.805 0.807

L ¼ 0:9 0.794 0.805 0.825 0.823 0.809

Bold value indicates the best performance

Neural Computing and Applications (2020) 32:9047–9063 9061

123



11. Dong X, Shen J, Yu D, Wang W, Liu J, Huang H (2017)

Occlusion-aware real-time object tracking. IEEE Trans Multimed

19(4):763–771

12. Fang Y, Zhang H, Ye Y, Li X (2014) Detecting hot topics from

twitter: a multiview approach. J Inf Sci 40(5):578–593

13. Gao J, Ling H, Hu W, Xing J (2014) Transfer learning based

visual tracking with gaussian processes regression. In: Computer

vision-ECCV 2014—13th European conference, Zurich,

Switzerland, September 6–12, 2014, proceedings, part III,

pp 188–203

14. Hare S, Saffari A, Torr PHS (2011) Struck: structured output

tracking with kernels. In: IEEE International conference on

computer vision, ICCV 2011, Barcelona, Spain, November 6–13,

2011, pp 263–270. https://doi.org/10.1109/ICCV.2011.6126251

15. Held D, Thrun S, Savarese S (2016) Learning to track at 100 FPS

with deep regression networks. In: Computer vision-ECCV

2016—14th European conference, Amsterdam, The Netherlands,

October 11–14, 2016, proceedings, part I, pp 749–765

16. Henriques JF, Caseiro R, Martins P, Batista JP (2012) Exploiting

the circulant structure of tracking-by-detection with kernels. In:

Computer cision-ECCV 2012—12th European conference on

computer vision, Florence, Italy, October 7–13, 2012, proceed-

ings, part IV, pp 702–715. https://doi.org/10.1007/978-3-642-

33765-9_50

17. Henriques JF, Caseiro R, Martins P, Batista J (2015) High-speed

tracking with kernelized correlation filters. IEEE Trans Pattern

Anal Mach Intell 37(3):583–596. https://doi.org/10.1109/TPAMI.

2014.2345390

18. Hong S, You T, Kwak S, Han B (2015) Online tracking by

learning discriminative saliency map with convolutional neural

network. In: Proceedings of the 32nd international conference on

machine learning, ICML 2015, Lille, France, 6–11 July 2015,

pp 597–606

19. Li G, Peng M, Nai K, Li Z, Li K (2018) Visual tracking via

context-aware local sparse appearance model. J Vis Commun

Image Represent 56:92–105

20. Li H, Wu H, Zhang H, Lin S, Luo X, Wang R (2017) Distortion-

aware correlation tracking. IEEE Trans Image Process

26(11):5421–5434

21. Li X, Hu W, Shen C, Zhang Z, Dick AR, van den Hengel A

(2013) A survey of appearance models in visual object tracking.

ACM Trans Intell Syst Technol 4(4):58:1–58:48. https://doi.org/

10.1145/2508037.2508039

22. Li X, Liu Q, He Z, Wang H, Zhang C, Chen W (2016) A multi-

view model for visual tracking via correlation filters. Knowl

Based Syst 113:88–99

23. Li Y, Zhu J (2014) A scale adaptive kernel correlation filter

tracker with feature integration. In: Computer vision-ECCV 2014

workshops—Zurich, Switzerland, September 6–7 and 12, 2014,

proceedings, part II, pp 254–265. https://doi.org/10.1007/978-3-

319-16181-5_18

24. Li Y, Zhu J, Hoi SCH (2015) Reliable patch trackers: robust

visual tracking by exploiting reliable patches. In: IEEE confer-

ence on computer vision and pattern recognition, CVPR 2015,

Boston, MA, USA, June 7–12, 2015, pp 353–361

25. Li Z, Gao S, Nai K (2017) Robust object tracking based on

adaptive templates matching via the fusion of multiple features.

J Vis Commun Image Represent 44:1–20. https://doi.org/10.

1016/j.jvcir.2017.01.012

26. Lukezic A, Vojir T, Zajc LC, Matas J, Kristan M (2017) Dis-

criminative correlation filter with channel and spatial reliability.

In: 2017 IEEE conference on computer vision and pattern

recognition, CVPR 2017, Honolulu, HI, USA, July 21–26, 2017,

pp 4847–4856

27. Ma C, Yang X, Zhang C, Yang M (2015) Long-term correlation

tracking. In: IEEE conference on computer vision and pattern

recognition, CVPR 2015, Boston, MA, USA, June 7–12, 2015,

pp 5388–5396

28. Ma L, Lu J, Feng J, Zhou J (2015) Multiple feature fusion via

weighted entropy for visual tracking. In: 2015 IEEE international

conference on computer vision, ICCV 2015, Santiago, Chile,

December 7–13, 2015, pp 3128–3136

29. Nai K, Li Z, Li G, Wang S (2018) Robust object tracking via

local sparse appearance model. IEEE Trans Image Process

27(10):4958–4970

30. Nai K, Xiao D, Li Z, Jiang S, Gu Y (2019) Multi-pattern corre-

lation tracking. Knowl Based Syst. https://doi.org/10.1016/j.kno

sys.2019.05.032

31. Ning J, Yang J, Jiang S, Zhang L, Yang M (2016) Object tracking

via dual linear structured SVM and explicit feature map. In: 2016

IEEE conference on computer vision and pattern recognition,

CVPR 2016, Las Vegas, NV, USA, June 27–30, 2016,

pp 4266–4274

32. Smeulders AWM, Chu DM, Cucchiara R, Calderara S, Dehghan

A, Shah M (2014) Visual tracking: an experimental survey. IEEE

Trans Pattern Anal Mach Intell 36(7):1442–1468. https://doi.org/

10.1109/TPAMI.2013.230

33. Sui Y, Zhang Z, Wang G, Tang Y, Zhang L (2016) Real-time

visual tracking: Promoting the robustness of correlation filter

learning. In: Computer vision-ECCV 2016—14th European

Conference, Amsterdam, The Netherlands, October 11–14, 2016,

proceedings, part VIII, pp 662–678

34. Sun S, An Z, Jiang X, Zhang B, Zhang J (2019) Robust object

tracking with the inverse relocation strategy. Neural Comput

Appl 31:123–132

35. Tang M, Feng J (2015) Multi-kernel correlation filter for visual

tracking. In: 2015 IEEE international conference on computer

vision, ICCV 2015, Santiago, Chile, December 7–13, 2015,

pp 3038–3046

36. Valmadre J, Bertinetto L, Henriques JF, Vedaldi A, Torr PHS

(2017) End-to-end representation learning for correlation filter

based tracking. In: 2017 IEEE conference on computer vision and

pattern recognition, CVPR 2017, Honolulu, HI, USA, July 21–26,

2017, pp 5000–5008

37. Wang N, Li S, Gupta A, Yeung D (2015) Transferring rich fea-

ture hierarchies for robust visual tracking. CoRR arXiv:1501.

04587

38. Wang X, Hou Z, Yu W, Pu L, Jin Z, Qin X (2018) Robust

occlusion-aware part-based visual tracking with object scale

adaptation. Pattern Recognit 81:456–470

39. Wu Y, Lim J, Yang M (2013) Online object tracking: a bench-

mark. In: 2013 IEEE conference on computer vision and pattern

recognition, Portland, OR, USA, June 23–28, 2013,

pp 2411–2418. https://doi.org/10.1109/CVPR.2013.312

40. Wu Y, Lim J, Yang M (2015) Object tracking benchmark. IEEE

Trans Pattern Anal Mach Intell 37(9):1834–1848

41. Xie G, Zeng G, Jiang J, Fan C, Li R, Li K (2017) Energy man-

agement for multiple real-time workflows on cyber-physical

cloud systems. Future Gener Comput Syst. https://doi.org/10.

1016/j.future.2017.05.033

42. Xie K, Li X, Wang X, Xie G, Wen J, Cao J, Zhang D (2017) Fast

tensor factorization for accurate internet anomaly detection. IEEE

ACM Trans Netw 25(6):3794–3807

43. Xie K, Li X, Wang X, Cao J, Xie G, Wen J, Zhang D, Qin Z

(2018) On-line anomaly detection with high accuracy. IEEE

ACM Trans Netw 26(3):1222–1235

44. Xie K, Peng C, Wang X, Xie G, Wen J, Cao J, Zhang D, Qin Z

(2018) Accurate recovery of internet traffic data under variable

rate measurements. IEEE ACM Trans Netw 26(3):1137–1150

45. Xu C, Tao D, Xu C (2013) A survey on multi-view learning.

CoRR arXiv:1304.5634

9062 Neural Computing and Applications (2020) 32:9047–9063

123

https://doi.org/10.1109/ICCV.2011.6126251
https://doi.org/10.1007/978-3-642-33765-9_50
https://doi.org/10.1007/978-3-642-33765-9_50
https://doi.org/10.1109/TPAMI.2014.2345390
https://doi.org/10.1109/TPAMI.2014.2345390
https://doi.org/10.1145/2508037.2508039
https://doi.org/10.1145/2508037.2508039
https://doi.org/10.1007/978-3-319-16181-5_18
https://doi.org/10.1007/978-3-319-16181-5_18
https://doi.org/10.1016/j.jvcir.2017.01.012
https://doi.org/10.1016/j.jvcir.2017.01.012
https://doi.org/10.1016/j.knosys.2019.05.032
https://doi.org/10.1016/j.knosys.2019.05.032
https://doi.org/10.1109/TPAMI.2013.230
https://doi.org/10.1109/TPAMI.2013.230
http://arxiv.org/abs/1501.04587
http://arxiv.org/abs/1501.04587
https://doi.org/10.1109/CVPR.2013.312
https://doi.org/10.1016/j.future.2017.05.033
https://doi.org/10.1016/j.future.2017.05.033
http://arxiv.org/abs/1304.5634


46. Yang B, Li Z, Jiang S, Li K (2018) Envy-free auction mechanism

for VM pricing and allocation in clouds. Future Gener Comput

Syst 86:680–693

47. Yoon JH, Yang M, Yoon K (2016) Interacting multiview tracker.

IEEE Trans Pattern Anal Mach Intell 38(5):903–917

48. Zhang J, Ma S, Sclaroff S (2014) MEEM: robust tracking via

multiple experts using entropy minimization. In: Computer

vision-ECCV 2014—13th European conference, Zurich,

Switzerland, September 6–12, 2014, proceedings, part VI,

pp 188–203

49. Zhang K, Liu Q, Wu Y, Yang M (2016) Robust visual tracking

via convolutional networks without training. IEEE Trans Image

Process 25(4):1779–1792. https://doi.org/10.1109/TIP.2016.

2531283

50. Zhang L, Suganthan PN (2017) Robust visual tracking via co-

trained kernelized correlation filters. Pattern Recognit 69:82–93

51. Zhang S, Yu X, Sui Y, Zhao S, Zhang L (2015) Object tracking

with multi-view support vector machines. IEEE Trans Multimed

17(3):265–278. https://doi.org/10.1109/TMM.2015.2390044

52. Zhang T, Xu C, Yang M (2017) Multi-task correlation particle

filter for robust object tracking. In: 2017 IEEE conference on

computer vision and pattern recognition, CVPR 2017, Honolulu,

HI, USA, July 21–26, 2017, pp 4819–4827

53. Zhong W, Lu H, Yang M (2014) Robust object tracking via

sparse collaborative appearance model. IEEE Trans Image Pro-

cess 23(5):2356–2368

Publisher’s Note Springer Nature remains neutral with regard to

jurisdictional claims in published maps and institutional affiliations.

Neural Computing and Applications (2020) 32:9047–9063 9063

123

https://doi.org/10.1109/TIP.2016.2531283
https://doi.org/10.1109/TIP.2016.2531283
https://doi.org/10.1109/TMM.2015.2390044

	Multi-view correlation tracking with adaptive memory-improved update model
	Abstract
	Introduction
	Related works
	Correlation tracking
	Multi-view learning

	Our method
	Discriminative correlation filters
	Multi-view collaboration strategy
	Online model update
	Scale estimation

	Experimental evaluation
	Implemental details
	Evaluation metrics
	Comparisons on OTB2013 benchmark
	Evaluated methods
	Quantitative comparison
	Qualitative comparison
	Comparison with deep learning trackers

	Comparisons on OTB2015 benchmark
	Evaluated methods
	Quantitative comparison
	Qualitative comparison

	Ablation analysis
	Parameter analysis

	Conclusion
	Acknowledgements
	References




