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a b s t r a c t 

Correlation-filter-based trackers have shown favorable accuracy and efficiency in visual 

tracking. However, most of these trackers are prone to drift in cases of heavy occlu- 

sions and temporal tracking failures because they only maintain the short-term memory 

of target appearance via a highly adaptive update mode. In this paper, we propose a re- 

liable visual tracking method based on a dual-memory selection (DMS) model to allevi- 

ate tracking drift. Considering that long-term memory is robust to heavy occlusions while 

short-term memory performs well in rapid appearance changes, the proposed DMS model 

combines these two memory patterns of the target appearance and adaptively selects a 

reliable memory pattern to handle the current tracking challenges via a memory selector. 

For each memory pattern, a memory tracker is established based on discriminative correla- 

tion filters. The short-term tracker aggressively updates the target model to capture recent 

appearance changes via a linear interpolation update model, while the long-term tracker 

conservatively updates the target model to maintain historical appearance characteristics 

with a memory-improved update model and a dynamic learning rate. Furthermore, a novel 

memory evaluation criterion (MEC) is developed to evaluate the reliability of each tracker 

for memory selection. From credibility and discriminability measurements considering the 

temporal context, the memory tracker with the highest reliability score is selected to de- 

termine the target location in each frame. Extensive experiments on public benchmark 

datasets demonstrate that the proposed tracking method performs favorably compared to 

multiple recent state-of-the-art methods. 

© 2020 Elsevier Inc. All rights reserved. 

 

 

 

 

 

 

1. Introduction 

Visual tracking is a fundamental and important topic in computer vision, and it has numerous applications, ranging

from video surveillance, human-machine interaction, and robotic services to automatic driving. This technique aims to

estimate the trajectory of an unknown target in an image sequence with only a given initial state. Although significant

progress [1,2,13,18,23,31] has been achieved over the past decades, designing an efficient and robust tracking algorithm is

still quite challenging due to several factors, such as target deformations, background clutters and occlusions. 

Recently, discriminative correlation filters (DCFs) have been successfully applied to visual tracking and have received

extensive attention. In general, DCF-based tracking methods follow the tracking-by-detection framework, in which the 

training, detection and updating steps are sequentially executed during the entire tracking process. However, unlike most
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Fig. 1. Comparisons of the proposed method with other state-of-the-art methods (Staple [1] , TLD [18] , Muster [17] , CSR-DCF [28] ) on several video se- 

quences ( Shaking, Jogging-2, Dragonbaby ) with significant deformation, heavy occlusions and out-of-plane rotation. Our method performs better than these 

methods by considering both the short-term memory and long-term memory of the target appearance in the proposed DMS model. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

existing tracking-by-detection trackers, DCF-based trackers perform the training and detection steps more efficiently us-

ing the circular sample assumption and fast Fourier transform (FFT) technique. Moreover, the introductions of approximate

dense sampling and high-dimensional features further enhance the accuracy of DCF-based tracking methods. 

However, correlation-filter-based trackers are prone to drift due to their highly adaptive model update modes, especially

when the target undergoes many more challenging factors, such as heavy occlusions and background clutters. Unreliable

tracking results will contaminate the filter over time, which can lead to tracking failure if not immediately addressed. To

mitigate the model drift problem, some researchers [4,5] design a dynamic learning rate based on the confidence of the

current tracking result. However, it is not easy to robustly evaluate the tracking confidence, and this is always unfeasible

in some complex scenarios. Other tracking methods [9,28] attempt to strengthen the model discrimination by reducing

boundary effects. Unfortunately, they generally need to solve a complicated model formulation with a time-consuming op-

timization procedure, which may limit their use in many real-time applications. Recently, a number of works [27,29] focus

on including a redetection scheme to refine unreliable tracking results. However, these methods always trust the redetection

result without careful checking. Once the redetection result is corrupted, they will lose the chance to recover from tracking

failures. 

Motivated by the work in [29] , we introduce the long-term memory of target appearance to alleviate the problem of

model drift. Long-term memory provides more historical information of target appearance and is thus robust for han-

dling heavy occlusions. Short-term memory is also an indispensable information resource for adapting to rapid appearance

changes, and it cannot be replaced by long-term memory. In fact, these two memory patterns are complementary to each

other, and cooperation between them is supposed to enhance both the adaptivity and robustness for visual tracking. Fig. 1

illustrates the specialities of trackers with different memories and the effectiveness of combining both short-term memory

and long-term memory. Thanks to the maintenance of short-term memory, the Staple tracker adapts well to large appear-

ance changes in the Skating1 sequence, where the long-term tracker TLD fails. However, when the target suffers from heavy

occlusions in the Jogging2 sequence, the long-term tracker TLD performs more robustly than the short-term tracker Staple.

By combining both short-term memory and long-term memory, our tracker and the MUSTer tracker perform favorably com-

pared to the Staple tracker and the TLD tracker. In particular, the multistore tracker (MUSTer) also exploits both short-term

memory and long-term memory to achieve better tracking performance. Despite the demonstrated success, MUSTer is com-

putationally expensive because it needs to perform keypoint matching-tracking and RANSAC estimation based on the SIFT

descriptors. Moreover, MUSTer has many parameters to carefully tune, which may weaken its generalizability in some new

datasets. 

In this study, we propose a dual-memory selection (DMS) model to alleviate the tracking drift problem by considering

both the short-term memory and long-term memory of target appearance. The dual-memory pattern is able to provide

a richer target appearance representation and enhance both the adaptivity and robustness for visual tracking. Specifically,

the proposed DMS model consists of four components: a short-term tracker, a long-term tracker, the memory evaluation
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criterion (MEC) and a memory selector. These four components work collaboratively to construct a reliable tracking frame-

work. Since long-term memory is robust for handling heavy occlusions and short-term memory performs well in adapting to

rapid appearance changes, we build two trackers based on correlation filters with short-term memory and long-term mem-

ory, respectively. The short-term tracker uses the linear interpolation update model to capture the recent target appearance.

The long-term tracker exploits the memory-improved update model to maintain the memory of the historical target appear-

ance. Furthermore, considering that different memory patterns have respective specialities to deal with different challenging

factors, it is desirable to design a memory selector to achieve better performance in various tracking scenes. The memory

selector is able to adaptively select a reliable memory pattern depending on the need for handling the current challenge.

Intuitively, a direct idea for memory selection is based on the estimation of the current target state. However, it is difficult

to distinguish drastic appearance changes from occlusions because they usually show similar appearance characteristics. 

To better perform memory selection, we propose a novel MEC that is based on the reliability evaluation of trackers with

short-term memory and long-term memory. Moreover, by introducing the temporal context into the reliability evaluation, a

stable output is obtained with temporal continuity. Finally, we conduct extensive evaluation experiments on the OTB-2013,

OTB-2015, VOT2015 and VOT2016 datasets. Compared with various state-of-the-art DCF-based and deep learning tracking 

algorithms, our tracker shows superior performance in terms of accuracy and speed. 

The main contributions of this paper can be summarized as follows. 

1. An adaptive DMS model is proposed for alleviating the problem of tracking drift. Considering that the short-term

memory and long-term memory of target appearance play different roles in addressing various challenges, the DMS

model adaptively selects the most reliable memory pattern via a memory selector according to the immediate re-

quirement. 

2. A novel MEC is developed for memory selection by evaluating the reliability of trackers with short-term memory and

long-term memory. Moreover, the introduction of a temporal context helps output a more stable motion trajectory

with temporal continuity. 

3. Extensive experiments on four large-scale benchmarks have been conducted to demonstrate the competitive perfor-

mance of our tracker compared with other state-of-the-art tracking algorithms. 

The remaining context of our work is organized as follows. Section 2 gives an overview of related works to ours.

Section 3 presents an elaboration of our work including the dual-memory selection model (DMS), short-term tracker, long-

term tracker and memory evaluation criterion (MEC). In Section 4 , extensive experimental results are shown with detailed

discussions. Finally, the proposed work is concluded in Section 5 . 

2. Related works 

There are several surveys that review the recent research progress in visual tracking, which can be found in [25,37] . In

this section, we only discuss the works that are the most related to ours, namely, correlation tracking methods, multiexpert

tracking methods and deep learning tracking methods. 

2.1. Correlation tracking 

In recent years, DCFs have been extensively studied by the object tracking community due to their excellent accuracy

and efficiency. In [3] , Bolme et al. developed a high-speed ( ~ 700 FPS) tracker called minimum output sum of squared

error (MOSSE), which can be regarded as the pioneering work in applying correlation filters to visual tracking. Since only

grayscale features were used, the MOSSE tracker suffered from poor discrimination in challenging videos. Based on this

seminal study, several works have been presented to improve the tracking precision with multidimensional features. Hen-

riques et al. [13] learned kernelized correlation filters (KCFs) in the Fourier domain by exploiting the circulant structure

of training samples and HOG features. Danelljan et al. [10] introduced color name (CN) descriptors and further proposed

an adaptive dimensionality reduction technique for keeping a reasonable computational overhead. Although this method 

achieved impressive tracking performance, there is still much room for improvement, e.g., including scale estimation and

context information, designing long-term tracking frameworks, reducing boundary effects and combining multiple features. 

Danelljan et al. [7] presented a discriminative scale space tracker (DSST) to handle scale variations of the target. Mueller

et al. [30] incorporated global context information into the standard formulation of correlation filters to alleviate model

drift. Ma et al. [29] developed a long-term correlation tracking (LCT) framework equipped with a redetection module. In

this system, when a tracking failure occurred, the redetector was activated to recover the target location. In [9] , Danelljan

et al. proposed adopting training samples larger than the learned filter to reduce boundary effects with a spatial regulariza-

tion component. Rather than using shifted sample patches, Galoogahi et al. [12] established a background-aware correlation

filter from real negative training samples for enhancing the model discrimination. Bertinetto et al. [1] developed a Staple

algorithm that increased the tracking robustness by combining the HOG template model and color histogram model. In [24] ,

multiple correlation filters were learned from several complementary features to model diverse appearance characteristics of

the target based on multiview learning [14,42] . Zhao et al. [50] proposed cascaded correlation filters trained with high-level

and low-level convolutional features to achieve robust tracking. 
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2.2. Multiexpert tracking 

To handle complex target appearance variations in visual tracking, an increasing number of researchers have focused

on employing multiple experts to improve model diversity. Multiple experts can be established with different appearance

patterns, and the best expert is carefully selected based on a certain well-designed evaluation criterion. In [46] , Zhang

et al. collected the current tracker and its historical snapshots to constitute an expert ensemble. Each expert reflected an

updating state of the tracker at different time nodes. During contamination of the current tracker with noisy samples, a

multiexpert restoration scheme was performed by selecting the best expert based on a minimum entropy criterion. Hong

et al. [17] presented a multistore tracker (MUSTer) that integrated the short- and long-term stores to provide different

target appearance memories. The experts with these two memory stores were designed to address different scenarios, and

the final output was decided by a controller that considered the inconsistency between them. Wang et al. [36] proposed a

multicue analysis framework to explore the strengths of multiple types of features. They constructed multiple experts from

different views and designed an adaptive switch mechanism to select the most robust expert via pair-evaluation and self-

evaluation. Nai et al. [32] developed a multipattern correlation tracker (MPCT) in which multiple experts learned diverse

target appearance patterns of the target to consider drastic appearance changes. Through a two-stage selection algorithm, a

suitable expert was selected in each frame for target localization. 

2.3. Deep tracking 

Deep learning [47] has extensive applications in various visual tasks, including image recognition [43] , place recogni-

tion [45] , face-pose estimation [15] and image ranking [44] . Motivated by the remarkable success in the aforementioned

areas, numerous works have been developed to improve the performance of visual tracking based on deep learning. Qi

et al. [33] considered different characteristics of different CNN layers and employed an online Hedge algorithm to construct

a strong tracker by combining all CNN-based weak trackers. Bertinetto et al. [2] applied a fully convolutional Siamese net-

work to learn a similarity function. The target was determined by finding the candidate with the maximum similarity to the

exemplar image through an exhaustive search. Kuai et al. [22] developed a target objectness model and a target template

model to solve the problem of distortion and fixed template in Siamese-network-based trackers. Fan et al. [11] proposed

a parallel tracking and verification framework to further improve both the accuracy and efficiency of visual tracking. This

tracker used the DSST algorithm for fast tracking inference, while the verifier employed a Siamese network for accurate

verification. 

The recent and popular long short-term memory (LSTM) network showed great potential in visual tracking due to its

capacity to handle sequential data and learn long-term dependencies. Kim et al. [19] constructed an RLSTM tracker for

spatiotemporal attention learning by combining the LSTM and a residual framework. Yang et al. [39] learned a recurrent

filter and adapted it to appearance variations of the target via an LSTM network. In [40] , a dynamic memory network

was proposed to improve the accuracy of template-matching trackers, where the LSTM was employed to maintain target

appearance variations with an addressable memory. Note that the LSTM shares some similarity with the proposed dual-

memory model because both maintain short-term and long-term memory to capture and remember the target appearance.

However, their working mechanisms are intrinsically different, which is mainly reflected by the memory storage modes.

Based on the recurrent neural network (RNN), the LSTM introduces an additional cell state to store the long-term memory

of the previous information. Furthermore, the short-term memory and long-term memory are adaptively combined into a

unified memory state using an input gate and forget gate. In contrast to the LSTM, the proposed method explicitly builds

the short-term and long-term memory models based on the correlation filters with different update modes and learning

rates. The memory selector is then applied to select the most reliable one via the MEC. 

3. Our method 

In this section, we first introduce the proposed DMS model in Section 3.1 , which serves as the overall framework of our

method. Then, we establish the short-term tracker and long-term tracker in Section 3.2 and Section 3.3 , respectively. Finally,

the MEC is elaborated in Section 3.4 by considering stable credibility and discriminability measurements. 

3.1. Dual-memory selection model (DMS) 

The DMS model contains four important components: a short-term tracker, a long-term tracker, the MEC and a mem-

ory selector. At each frame, these components work collaboratively to provide a reliable tracking result. The short-term

tracker emphasizes the memory of recent target appearance and can well adapt to drastic appearance changes. The long-

term tracker maintains the memory of historical target appearance and is robust to heavy occlusions. Based on the MEC, the

DMS model adaptively selects a reliable tracker that is expert for handling the current challenging factors and regards the

corresponding output as the target position, 

p t T = SEL 
(

p t S , p 
t 
L 

)
, (1)
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Fig. 2. The overall framework of the proposed tracking method. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

where p t 
T 

is the target position in frame t and p t 
S 

and p t 
L 

are the positions output by the short-term tracker and long-term

tracker, respectively. SEL is the memory selector and will be specifically described in the following section. For accuracy

and efficiency, we employ DCFs as the baseline of the short-term tracker and long-term tracker, which follow the tracking-

by-detection paradigm. Accordingly, the tracking position p t is determined in image I t by searching for the maximal score,

p t = arg max 
p∈ I t 

y 
(
δ
(
I t , p 

)
, θ t−1 

)
, (2) 

where δ is a patch extraction function that extracts the image patch of the target size at position p . For each extracted

candidate image patch, the function y assigns a score according to the model parameters θ . In the DCF-based methods,

scores can be obtained from the correlation response map. Then, we obtain tracking results p t 
S 

and p t 
L 

of the short-term

tracker and long-term tracker, respectively. The core module of the DMS model is the development of the MEC. It serves

as the basis for SEL to perform memory selection by evaluating the reliability of the short-term tracker T t 
S 

and long-term

tracker T t 
L 
, 

SEL 
(

p t S , p 
t 
L 

)
= 

{
p t S , i f R 

(
T t S 

)
> R 

(
T t L 

)
p t L , otherwise 

(3) 

where R ( · ) refers to the reliability evaluation function, and its concrete form can be found in Section 3.4 . The overall

framework of our method is shown in Fig. 2 . 

3.2. Short-term tracker 

The short-term tracker employs a highly adaptive correlation filter to capture recent appearance changes of the target

object. The standard DCF formulation performs both training and detection in the Fourier domain. At the training stage, a

multichannel correlation filter h is learned from an image patch f of size M × N centered around the target location. The im-

age patch f consists of a D - dimensional feature map, and all its circular shifts f ( m, n ) ∈ { 0 , 1 , . . . , M − 1 } × { 0 , 1 , . . . , N − 1 }
can be regarded as training samples for learning. Each training sample is assigned a Gaussian function label g ( m, n ) accord-

ing to its distance from the target location. The filter h is then obtained by optimizing the ridge regression model as follows:

min 

h 

∥∥∥∥∥g −
D ∑ 

d=1 

h 

d � f d 

∥∥∥∥∥
2 

+ λ
D ∑ 

d=1 

∥∥h 

d 
∥∥2 

. (4) 

Here, � represents the circular correlation and λ( λ ≥ 0) is a regularization parameter to control overfitting. Based on the

convolution theorem, Eq. (4) can be efficiently solved in the Fourier domain, and the d - th channel of filter H is given by 

H 

d = 

G 

∗
� F d ∑ D 

k =1 

(
F k 

)∗
� F k + λ

, d = 1 , . . . , D, (5) 

where � is elementwise multiplication and the fraction denotes elementwise division. The capital letters denote the discrete

Fourier transform (DFT) of the corresponding quantities, and 

∗ denotes complex conjugation. At the detection stage, an image
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patch z centered around the predicted target location is extracted in a new frame. The correlation response map r of z is

then calculated as follows: 

r t = F 

−1 

( ∑ D 
d=1 

(
A 

d 
t−1 

)∗
� Z d t 

Y t−1 + λ

) 

, (6)

where A 

d 
t−1 

and Y t−1 are the numerator and denominator of H 

d 
t−1 

, respectively. F 

−1 denotes the inverse DFT. The target

location is determined by searching for the maximum correlation response value. 

The short-term tracker T S is aggressively updated in the t frame with the linear interpolation update model to adapt to

drastic appearance changes, 

A 

d 
t = ( 1 − ηS ) A 

d 
t−1 + ηS G 

∗
� F d t 

Y t = ( 1 − ηS ) Y t−1 + ηS 

D ∑ 

k =1 

(
F k t 

)∗
� F k t , 

T t,d 
S 

= 

A 

d 
t 

Y t + λ

(7)

where ηS is the learning rate of the short-term tracker. It remains fixed during the entire tracking process to maintain

high adaptivity. Inspired by [28] , we introduce a color mask that reflects the target likelihood to training samples based on

color histograms. By assigning larger weights to target pixels and smaller weights to background pixels, the color mask can

effectively enhance the spatial reliability and alleviate model drift. 

3.3. Long-term tracker 

To ensure an efficient tracking process, the long-term tracker also exploits a discriminative correlation filter to locate

the target. However, unlike the short-term tracker, the long-term tracker adopts a memory-improved update model [24] to

maintain the memory of the historical target appearance. As is known, the linear interpolation update model emphasizes

recent frames and reduces the effects of historical frames exponentially over time; thus, it can effectively capture recent

appearance changes of the target. In fact, historical appearance characteristics are very important to recover from tracking

failures when the target temporally disappears in the view or undergoes heavy occlusions. Therefore, we incrementally

update the long-term tracker T L to improve the memory of historical target appearance, 

A 

d 
t = A 

d 
t−1 + ηt 

L G 

∗
� F d t 

Y t = Y t−1 + ηt 
L 

D ∑ 

k =1 

(
F k t 

)∗
� F k t , 

T t,d 
L 

= 

A 

d 
t 

Y t + λ

(8)

where ηt 
L 

is the learning rate of the long-term tracker. It is adaptively adjusted according to the current tracking quality. 

To measure the tracking quality more accurately, we consider the response values of both the long-term tracker and

short-term tracker at the target position p t 
T 

(determined by the DMS model in Eq. (1) ). The current tracking quality q t is

defined as follows: 

q t = 

1 

2 

(
r S 

(
p t T 

)
+ r L 

(
p t T 

))
. (9)

Here, r S and r L refer to response maps of the short-term tracker and long-term tracker, respectively. Note that Eq. (9) is

an absolute measurement of the current tracking quality, which is unreasonable to serve as the criterion for adjusting the

learning rate since response values may significantly fluctuate in different video sequences. We thus use the relative mea-

surement Q 

t of the current tracking quality by considering the average of all past frames, 

Q 

t = 

q t 

1 

t −1 

∑ t 

i =2 
q i 

. 
(10)

Based on the measurement of current tracking quality, the learning rate ηt 
L 

is adjusted adaptively as follows: 

ηt 
L = ρ · Q 

t , (11)

where ρ is a constant learning factor. 

In contrast to the highly adaptive short-term tracker, the long-term tracker is more conservative for maintaining robust-

ness. On the one hand, the long-term tracker exploits a memory-improved update model to improve the memory of the

historical target appearance. On the other hand, the long-term tracker adaptively adjusts the learning rate to reduce the

effects of corrupted tracking results. By retaining both adaptivity and robustness, these two complementary trackers provide

a firm basis for the DMS model. 
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3.4. Memory evaluation criterion (MEC) 

As a core component of the DMS model, MEC plays a vital role in improving tracking performance. After establishing the

short-term tracker and long-term tracker, the memory selector in the DMS model will make a suitable selection from their

tracking results based on the MEC. To provide a reliable evaluation criterion for memory selection, we elaborate the formu-

lation of MEC by considering two important measurements. These measurements are described in the following section. 

The first is the credibility measurement. We employ a color-histogram-based Bayes classifier to measure the tracking

credibility of the short-term tracker and long-term tracker. There are two important reasons for exploiting such a method to

perform credibility measurements. On the one hand, the color histogram captures the statistical characteristics of the object

appearance and is thus robust to fast deformations. On the other hand, it is efficient to obtain the target likelihood scores

as credibility measurements by using a lookup table and integral image method. Let x k denote the bin of color histograms

to which pixel k belongs. To distinguish the pixels inside the target region O from those inside the background region B , we

calculate the target likelihood at location k using Bayes rules as follows: 

P 
(
k ∈ O | O 

′ , B, x k 
)

≈
P 
(
x k | k ∈ O 

′ )P 
(
k ∈ O 

′ )∑ 

�∈ { O ′ ,B } P ( x k | k ∈ �) P ( k ∈ �) 
. (12) 

In practice, a safer foreground region O 

′ that is slightly smaller than O will be extracted to avoid mislabeling. We can easily

observe that Eq. (12) contains the prior terms and likelihood terms. The prior term can be approximated as P 
(
k ∈ O 

′ ) =∣∣O 

′ ∣∣/ (∣∣O 

′ ∣∣ + | B | ), where | · | refers to the cardinality. For the likelihood terms, we directly estimate them from the color

histograms, i.e., P 
(
x k | k ∈ O 

′ ) ≈ N O ′ ( x k ) / 
∣∣O 

′ ∣∣ and P ( x k | k ∈ B ) ≈ N B ( x k )/| B |, where N �( x k ) denotes the number of pixels in

region � with bin x k . Then, Eq. (12) can be simplified to 

P 
(
k ∈ O | O 

′ , B, x k 
)
= 

N O ′ ( x k ) 

N O ′ ( x k ) + N B ( x k ) 
. (13) 

By summing the target likelihood scores of all pixels in the corresponding tracking results, the tracking credibility of tracker

T with memory M ∈ { S, L } can be calculated as follows: 

e t C, M 

= 

1 ∣∣� 

t 
M 

∣∣ ∑ 

k ∈� t 
M 

l k , (14) 

where � 

t 
M 

denotes the region extracted from the corresponding tracking result at frame t and l k refers to the target likeli-

hood at location k , e.g., l k = P 
(
k ∈ O | O 

′ , B, x k 
)
. 

The second is the discriminability measurement. A discriminative tracker is supposed to have high confidence at the

target location and be less ambiguous at other locations. Therefore, we apply the average peak-to-correlation energy (APCE)

criterion [35] to measure the tracking discriminability, 

e t D, M 

= 

| r max − r min | 2 
mean 

(∑ 

i, j 

(
r i, j − r min 

)2 
) . (15) 

Here, r max , r min and r i,j are the maximum, the minimum and the i - th row and j - th column elements of the response map,

respectively. From Eq. (15) , we can observe that the APCE becomes larger if a tracker has only one sharp peak and produces

smooth response values in all other areas. This behavior indicates that the tracker has strong discriminability in distinguish-

ing the target from the background. Otherwise, the APCE becomes smaller when it is ambiguous to determine the target

location. 

The two aforementioned measurements are based on the current frame evaluation, which is susceptible to sudden noise

and easily causes performance fluctuations. To obtain a more stable output with temporal continuity, we introduce the

temporal context information into the reliability evaluation of memory. We argue that a reliable memory tracker is supposed

to have the following two important properties: (1) it should maintain excellent performance over a period of time, not just

at the current frame, and (2) the excellent performance should be as stable as possible. In other words, the memory tracker

with better stability is preferred in our study. Specifically, we use the mean to standard deviation ratio to quantify the

stability for a certain measurement (taking the tracking credibility for example), 

E t C, M 

= 

U 

M 

C √ 

V 

M 

C 
+ ξ

, (16) 

where ξ is a small constant to avoid a zero in the denominator. U 

M 

C 
and V M 

C 
are the weighted mean value and vari-

ance of the credibility measurement in a temporal window 
, which can be denoted as U 

M 

C = 

1 
ζ

∑ 

τ w 

τ e τ
C, M 

and V M 

C =
1 
ζ

∑ 

τ w 

τ
(
e τ

C, M 

− U 

M 

C 

)2 
, where τ ∈ [ t − 
 + 1 , t ] . w = 

{
ω 

0 , ω 

1 , . . . , ω 


−1 
}
, ( ω > 1) is a weight sequence that gives more focus

on the recent measurements, and w 

τ is the (τ − t + 
) −th element. ζ is a normalization scalar denoted as ζ = 

∑ 

τ w 

τ . 
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Table 1 

The description of evaluation datasets. 

Dataset Year Number of sequences Number of attributes Number of frames Number of evaluated trackers 

OTB-2013 2013 51 11 29,486 29 

OTB-2015 2015 100 11 59,035 31 

VOT2015 2015 60 5 21,455 62 

VOT2016 2016 60 5 21,455 70 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

In the t frame, we calculate the reliability score of tracker T with memory M by linearly combining credibility and

discriminability measurements as follows: 

R 

(
T t M 

)
= ( 1 − μ) · E t C, M 

+ μ · E t D, M 

. (17)

Here, E t 
D, M 

is the discriminability measurement with consideration of stability, which can be obtained as E t 
C, M 

in Eq. (16) . μ
is a tradeoff between credibility and discriminability measurements. Eq. (17) indicates that the tracker showing excellent and

stable credibility and discriminability over a period of time will obtain a higher reliability score. Then, the target location is

determined by the most reliable tracker. We summarize the proposed DMS tracking method in Algorithm 1 . 

Algorithm 1 The Proposed DMS Tracking Algorithm. 

Input: 

Image I t ; 

Target position p t−1 
T 

at the t − 1 frame. 

Output: 

Target position p t 
T 

at the t frame. 

1: Extract the image patch z t at p t−1 
T 

from I t and apply the color mask to it; 

2: for each tracker T with memory M ∈ { S, L } do 

3: Compute the response map r t 
M 

and estimated position p t 
M 

using Eq.(6) and Eq. (2); 

4: Compute the credibility e t 
C, M 

and discriminability e t 
D, M 

using Eq. (14) and Eq. (16); 

5: Get E t 
C, M 

and E t 
D, M 

with consideration of the temporal context into e t 
C, M 

and e t 
D, M 

using Eq. (17); 

6: Evaluate the reliability R 
(
T t 

M 

)
using Eq. (17); 

7: end for 

8: Get the target position p t 
T 

using Eq. (1) and Eq. (3); 

9: Update the short-term tracker with ηS using Eq. (7); 

10: Compute the current tracking quality Q 

t using Eq. (9) and Eq. (10); 

11: Compute the learning rate ηt 
L 

with Q 

t using Eq. (11); 

12: Update the long-term tracker with ηt 
L 

using Eq. (8); 

4. Experimental results and analysis 

In this section, we first introduce implemental details of our method including experimental environments and parameter

settings. Then we present extensive comparisons on the OTB benchmark [37,38] and VOT benchmark [20,21] with state-of-

the-art trackers to demonstrate the superiority of the proposed method. Finally, more detailed analysis is given on the

parameters. A brief description of all evaluated datasets can be found in Table 1 . 

4.1. Implementation details 

Our DMS tracker runs at approximately 40 frames per second (FPS) on a PC with an Intel Core i7-6700HQ CPU at 2.6 GHz

and 8 G memory using a MATLAB implementation. In our implementation, a combination of grayscale, HOG and CN features

is used to provide a rich appearance representation for the training and testing samples. All extracted samples are further

multiplied by a Hanning window to reduce boundary discontinuities. The short-term tracker and long-term tracker are

constructed based on the standard DCF formulation, following the parameters recommended in [36] . However, unlike the

short-term tracker, the long-term tracker exploits a memory-improved update model with an adaptive learning rate, and

the learning factor ρ in Eq. (11) is set to 1. The temporal window 
 and the weighting factor ω in the weight sequence

w are set to 15 and 1.2, respectively. The tradeoff parameter μ between the credibility and discriminability measurements

in Eq. (17) is set to 0.3. Note that all parameters used in our experiments remain the same for all video sequences and

datasets. 
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4.2. Evaluation on OTB benchmark 

4.2.1. Experimental settings 

Evaluation datasets. We conduct extensive experiments on the OTB benchmark with the OTB-2013 and OTB-2015

datasets. The OTB-2013 dataset contains 51 video sequences and is extended by the OTB-2015 dataset with 100 video se-

quences. These video sequences have various challenging factors with 11 annotated attributes, including IV (illumination

variation), SV (scale variation), OCC (occlusion), DEF (deformation), MB (motion blur), FM (fast motion), IPR (in-plane rota-

tion), OPR (out-of-plane rotation), OV (out of view), BC (background clutters) and LR (low resolution). The overall perfor-

mance and attribute-based performance will be reported on the OTB-2013 and OTB-2015 datasets later. 

Evaluation metrics. The one-pass evaluation (OPE) criterion is used in the OTB evaluation, which means that the tested

tracker will run throughout a video sequence only with the initial state at the first frame to perform the performance evalu-

ation. Generally, the performance of a tested tracker is quantitatively measured by two metrics: precision plots and success

plots. The precision plots show the percentage of frames whose center location error CLE 
(
x p , x g 

)
= ‖ x p − x g ‖ 2 between the

predicted tracking location x p and ground-truth location x g is smaller than a given threshold. The success plots reflect the

percentage of frames whose overlap score O 

(
B p , B g 

)
= 

| B p ⋂ 

B g | 
| B p ⋃ 

B g | between the predicted bounding box B p and ground-truth

bounding box B g is greater than a given threshold. As in [37] , the distance precision (DP) scores at a threshold of 20 pix-

els in the precision plots and the area-under-curve (AUC) scores in the success plots are used to rank the performance for

comparisons. 

Evaluation trackers. We evaluate the proposed DMS tracker with comparison to 12 state-of-the-art trackers, including

MEEM [46] , KCF [13] , DSST [7] , SAMF [26] , LCT [29] , MUSTer [17] , Staple [1] , SRDCF [9] , BACF [12] , CSR-DCF [28] , LMCF [35] ,

MCCT-H [36] . These trackers are mostly based on correlation filters due to the accuracy and efficiency. In addition, we

compare our tracker with other 12 deep learning-based trackers for a further evaluation including CNT [48] , SiamFc [2] ,

DeepSRDCF [8] , CNN-SVM [16] , ACFN [6] , CFnet [34] , HDT [33] , MCPF [49] , PTAV [11] , RFL [39] , MemTrack [40] and DMN [41] .

4.2.2. Quantitative comparisons on OTB-2013 

Overall performance. We present the overall quantitative comparisons on the OTB-2013 dataset in Fig. 3 , including the

precision plots and success plots of the proposed DMS tracker and other state-of-the-art trackers. The DP scores and AUC

scores of all compared trackers are shown in the legend. Overall, the DMS tracker performs well on these two evaluation

metrics, obtaining a DP score of 86.5% and an AUC score of 66.4%, which respectively rank the first and the second among

all compared trackers. Note that the MUSTer, LCT and our methods consider both the short-term memory and long-term

memory of target appearance to improve the tracking performance. The excellent results of these methods in the precision

plots and success plots indicate the effectiveness of cooperation between short-term memory and long-term memory. More-

over, our method performs better than the MUSTer and LCT methods, which is mainly due to the DMS model proposed in

this paper. By carefully evaluating the reliability of the short-term tracker and long-term tracker, the DMS model selects the

most reliable tracker to handle the current challenging factors. 

The computational speed is also an important metric for evaluating the performance of a tracker. In Table 2 , we list the

average FPS and the DP scores to comprehensively evaluate the efficiency and accuracy of some state-of-the-art trackers.
Fig. 3. Overall performance evaluation on the OTB-2013 benchmark with 51 video sequences. The DP scores and AUC scores are shown in the legend of 

the precision plots (left) and success plots (right) to rank all compared trackers. 
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Table 2 

Speed comparisons (i.e., average frames per second (FPS)) of the proposed tracker with state-of-the-art trackers on the OTB-2013 benchmark. The 

DP scores (%) are also listed for more comprehensive comparisons. The top three performances are highlighted by the red, blue and green fonts, 

respectively. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

From Table 2 , we observe that the KCF tracker obtains the best tracking speed (277.5 FPS). Unfortunately, its accuracy has

difficulty meeting the need for high-quality tracking. The SRDCF and CSR-DCF trackers significantly improve the accuracy,

but at the expense of tracking speed. Overall, our DMS tracker performs favorably in both accuracy and efficiency, achieving

an 86.5% DP score while still running at 39.6 FPS. 

Attribute-based performance. We further analyze the attribute-based performance of our DMS tracker and other track-

ers in Fig. 4 using precision plots and success plots. In fact, the eleven attributes annotated on the OTB-2013 dataset cover

the most challenging factors in visual tracking and are very valuable for evaluating the strengths and weaknesses of a tracker

from different aspects. From Fig. 4 , we observe that our DMS tracker performs well against other competing trackers un-

der most attributes. In the precision plots, our DMS tracker achieves excellent performance and ranks within the top 3 on

10 of the 11 attributes. In the success plots, the DMS tracker ranks within the top 3 on 9 of the 11 attributes. In particu-

lar, the DMS tracker obtains both the highest DP and AUC scores in cases of occlusion (87.0%/67.0%), out-of-plane rotation

(87.3%/65.9%), deformation (89.4%/70.1%) and illumination variation (82.0%/64.2%). In detail, for the sequences with out-of-

plane rotation attributes, our tracker outperforms the second-best tracker MCCT-H (by 1.6%) and the third-best tracker BACF

(by 1.9%) in terms of DP scores. For the sequences with occlusion attributes, our tracker performs better against the MUSTer

tracker (by 1.7%) in terms of DP scores and the MCCT-H tracker (by 0.9%) in terms of AUC scores. Note that in addition to

our DMS tracker, the MUSTer, MCCT-H, LCT and LMCF trackers perform well in cases of occlusion. Among these trackers, the

MUSTer and LCT trackers retain the historical appearance information of the target object and are thus able to detect the

target when it reappears. The MCCT-H and LMCF trackers carefully evaluate the tracking confidence and adaptively adjust

the updating rate to reduce the effects of unreliable samples. By integrating these two effective strategies, the proposed DMS

tracker achieves the best performance among the aforementioned trackers under occlusion. In addition, the DMS tracker per-

forms well under scale variation, in-plane rotation, fast motion and background clutters. Unfortunately, however, the DMS

tracker suffers from inferior performance in cases of low resolution. The reason is that the low resolution attribute only

includes four sequences, which easily causes large bias when performing the performance evaluation. At first glance, the

improvement of the proposed method is not particularly significant. However, our DMS tracker achieves excellent tracking

with more robust performance. We find that the two most competitive trackers, BACF and MCCT-H, perform very poorly un-

der deformation and background clutter, which rank ninth and fifth among all trackers and are lower than our tracker, with

6.6% and 2.7% in terms of DP scores. In general, the proposed DMS method performs robustly against other state-of-the-art

trackers in most challenging scenes. 

4.2.3. Quantitative comparisons on OTB-2015 

Overall performance. Fig. 5 (a) presents the comparison results of the overall performance on the OTB-2015 dataset

in terms of precision plots and success plots. From the results, we can observe that our DMS tracker achieves the best

performance in the precision plots with a DP of 85.2% and the second-best performance in the success plots with an AUC

of 64.1%. Compared with another top method, MCCT-H, our method obtains a 1.1% gain in DP scores and a very close

performance in AUC scores. Compared with other DCF-based trackers that also intend to alleviate the model drift problem

either by reducing boundary effects (e.g., SRDCF, BACF, CSR-DCF) or by inducing multiple features (e.g., SAMF, Staple), the

proposed DMS tracker outperforms the best performing tracker (BACF) among them by 2.9% and 1.2% in terms of DP scores

and AUC scores, respectively. The underlying reason can be attributed to the introduction of the long-term memory, which

provides more historical information of target appearance to enhance the model robustness. 

In addition, we compare the proposed tracker with some related trackers that also integrate the short-term memory

and long-term memory of target appearance into their methods. The MUSTer tracker exploits the short-term memory to

perform instant tracking and the long-term memory to control the final output. The LCT tracker utilizes the long-term

memory to estimate the confidence of each tracking result obtained with the short-term memory. The other three trackers

are all based on the LSTM network, which introduces the cell state and various gates to improve the long-term memory

of previous information. Again, we draw the precision plots and success plots in Fig. 5 (b) for the performance evaluation.

Due to the robust representation ability of deep features, the DMN, MemTrack and RFL trackers significantly outperform

the MUSTer and LCT trackers that use handcrafted features to represent the target appearance. However, our method using

similar handcrafted features performs favorably against the MemTrack and RFL trackers and achieves performance that is

comparable with that of the DMN tracker. The results show the effectiveness of the proposed DMS model in integrating

short-term memory and long-term memory compared to other related trackers. 
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Fig. 4. Attribute-based performance evaluation on the OTB-2013 benchmark using precision plots and success plots. The number of video sequences for 

each attribute is shown in the title. 
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Table 3 

Attribute-based performance comparsion on the OTB-2015 benchmark using DP scores and AUC scores. The top three performances are 

highlighted by the red, blue and green fonts, respectively. 

Fig. 5. Overall performance evaluation on the OTB-2015 benchmark with (a) state-of-the-art trackers, (b) some related trackers. The DP scores and AUC 

scores are shown in the legend of the precision plots (left) and success plots (right) to rank all compared trackers. 

 

 

 

 

Attribute-based performance. We report the DP scores and AUC scores of our method and 12 other compared methods

under different attributes in Table 3 . As shown in Table 3 , our method achieves the best results on 8 of the 11 attributes

in terms of DP scores and impressive results on all attributes in terms of AUC scores. These outstanding results demon-

strate the robustness of the proposed method regarding different challenging attributes. Specifically, for the sequences with
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Table 4 

Comparisons of the proposed tracker with some state-of-the-art deep learning trackers on the OTB-2013 and OTB-2015 benchmarks. The DP scores and 

AUC scores are used to rank all compared trackers. The top three performances are highlighted by the red, blue and green fonts, respectively. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

occlusion and out-of-view attributes, the DMS tracker performs favorably against other state-of-the-art trackers such as

BACF and Staple. This result is mainly because the DMS tracker enhances the long-term memory of target appearance via

the memory-improved update model. For the sequences with deformation and in-plane rotation attributes, the DMS tracker

obtains high scores in both DP and AUC. This can be attributed to the maintenance of the short-term memory, which is an

indispensable information resource for adapting to the rapid appearance variations of the target. Moreover, with the help

of the cooperation between short-term memory and long-term memory in the proposed DMS model, our tracker achieves

excellent adaptivity and robustness to deal with various challenging factors, e.g., fast motion, background clutter and motion

blur. 

4.2.4. Qualitative comparisons 

Fig. 6 shows some qualitative results of the proposed DMS tracker and several state-of-the-art trackers, including SAMF,

MEEM, MUSTer, SRDCF, Staple, and MCCT-H, on 9 challenging video sequences. These sequences are obtained from the

OTB-2015 dataset with various challenging factors. The MEEM tracker contains multiple experts with different target states

and performs robustly in motion blur ( Blurowl ), but it fails to adapt to the scale variation ( Human2 ) because it does not

equip a scale estimator. Although the SAMF tracker is able to deal with the scale variation ( Box ) with a scale adaptive

kernelized correlation filter, it performs poorly in fast motion ( Blurowl ) due to the limited search area. The SRDCF tracker

increases negative samples and the search area by exploiting training and testing samples with larger spatial supports,

leading to excellent performance in background clutter ( Soccer ) and fast motion ( Blurowl ). However, it cannot accurately

locate the target undergoing heavy occlusions ( Girl2 and Box ). This is because the SRDCF tracker aggressively updates the

target model without careful checking. With the introduction of long-term memory, the MUSTer tracker is able to recover

from tracking failures caused by heavy occlusions ( Girl2 and Box ). However, it fails to adapt to the significant appearance

changes, such as out-of-plane and in-plane rotation ( Dragonbaby and Human2 ). The Staple tracker is robust to deformation

( Singer2 and Tiger2 ) with the combination of HOG and color features but is less effective in handling motion blur ( Blurowl )

and background clutter ( Shaking ). The MCCT-H tracker achieves high robustness in most challenging video sequences except

for the Soccer sequence, where the target undergoes various appearance changes, e.g., variations in illumination and scale,

background clutter, occlusions and so on. Overall, our tracker performs favorably in all these sequences. By strategically

utilizing the short-term memory and long-term memory of the target appearance with the DMS model, our tracker performs

adaptively and robustly to deal with various challenging factors. 

4.2.5. Comparisons with deep learning trackers 

To provide a comprehensive evaluation, we compare our DMS method with 9 deep-learning-based tracking methods on

the OTB-2013 and OTB-2015 datasets. The comparison results can be found in Table 4 with the DP scores and AUC scores.

On the OTB-2013 dataset, our method has a certain gap compared with the best-performing method MCPF (with DP of

91.6% and AUC of 67.7%) and achieves results that are comparable with those of the PTAV method (with DP of 89.4% and

AUC of 66.3%) and HDT method (with DP of 88.9% and AUC of 60.3%). On the OTB-2015 dataset, our method ranks second

and first on the DP and AUC metrics, respectively, showing impressive performance compared with other deep-learning-

based methods. Note that our method only exploits the conventional handcrafted features, while others use powerful deep

features to obtain a performance improvement. However, exacting deep features is very computationally expensive. Among

all compared deep learning methods, only the SiamFc, CFnet and PTAV methods achieve real-time performance. However,

the SiamFc and CFnet methods perform worse than our method by a large margin. Although the PTAV method performs

slightly better than our method on the OTB-2013 dataset, it is less effective on the OTB-2015 dataset and runs slower than

our method. 

4.3. Evaluation on VOT benchmark 

4.3.1. Experimental settings 

Evaluation datasets. The VOT2015 and VOT2016 datasets are used to evaluate the proposed DMS tracker on the VOT

benchmark. The VOT2015 dataset contains 60 video sequences that are selected from a large sequence pool via a fully

automatic selection methodology. The VOT2016 dataset uses the same sequences as the VOT2015 dataset but with a further
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Fig. 6. Some sampled tracking results of the proposed DMS tracker with 6 state-of-the-art trackers in the Blurowl, Box, Dragonbaby, Girl2, Human2, Shaking, 

Singer2, Soccer, Tiger2 sequences, where the target undergoes vaiours challenging factors, e.g., heavy occlusions, background clutters and drasitic defomation. 
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refined annotation. These carefully selected video sequences are more challenging to track due to the optimized diversity in

visual attributes. 

Evaluation metrics. In contrast to the OTB evaluation, the VOT benchmark applies a reset-based evaluation mechanism

to fully leverage the dataset, which means that the tested tracker will be reinitialized once a failure is detected. Following

the protocol in [20,21] , we exploit three evaluation metrics to analyze the tracking performance: accuracy, robustness and

expected average overlap (EAO). The accuracy measures the average overlaps A = 

1 
N v alid 

∑ N v alid 
t=1 

O 

(
B t p , B 

t 
g 

)
between the pre-

dicted and ground-truth bounding boxes in valid frames. The robustness reflects the number of failures N F during tracking,

where a failure is detected when the overlap between the predicted bounding box and ground-truth bounding box is zero.

The EAO decides the final performance ranks of the compared trackers, which is actually a no-reset average overlap esti-

mator on the OTB evaluation but with reduced bias and variance. It is computed as the average of the expected average

overlap curve values over a sequence length range [ N lo , N hi ], 

EAO = 

1 

N hi − N lo 

∑ 

N S = N lo : N hi 

ˆ �N S , (18) 

where ˆ �N S 
averages the average overlaps �N S 

= 

1 
N S 

∑ N S 
t=1 

O 

(
B t p , B 

t 
g 

)
of all N S -frame-long sequences. In addition, the average

overlap (AO) in the OTB benchmark is reused in the VOT2016 benchmark for extended evaluation. 

Evaluation trackers. There are 62 and 70 trackers participating in the VOT2015 and VOT2016 challenges, respectively.

For presentation clarity, we only compare our tracker with some baseline and top-ranked trackers in the corresponding

challenge. These trackers come from various classes, e.g., correlation filters-based trackers, deep learning-based trackers and

structured SVM-based trackers. 

4.3.2. Evaluation on VOT2015 

We show the sequence-pooled AR-raw and AR-rank plots on the VOT2015 benchmark in Fig. 7 . The EAO plot is also

shown in Fig. 7 for ranking the overall performance of our tracker and of other compared trackers. According to the AR-

raw and AR-rank plots, the best accuracy and robustness are achieved by the MDNet tracker, which is also the winner

of the VOT2015 challenge. We observe that our DMS tracker is close to the winner in terms of accuracy and achieves

competitive performance among the top-ranked trackers in terms of robustness. In the EAO plot, our DMS tracker ranks

third among all participating trackers in the VOT2015 challenge, where the previous three top-performing trackers are the

MDNet, DeepSRDCF and EBT trackers, respectively. Note that both the first-ranked and the second-ranked trackers utilize

deep features to obtain high performance. 

4.3.3. Evaluation on VOT2016 

The comparison results of our method with the top fifteen trackers on the VOT2016 benchmark are summarized in

Table 5 . According to the VOT2016 benchmark, any tracker that exceeds the average performance (0.255) of the 15 tested

trackers can be considered state-of-the-art. Clearly, all compared trackers here are state-of-the-art. As shown in Table 5 ,

our DMS tracker obtains an EAO of 0.314, which ranks fourth among all participating trackers in the VOT2016 challenge.

In terms of accuracy, the proposed DMS tracker performs significantly better than most of the compared trackers but is

slightly inferior to the best-performer SSAT. Regarding robustness, our tracker achieves performance comparable with that

of deep learning trackers such as C-COT and TCNN. In addition, the AO score of our tracker is 0.451, which outperforms
Fig. 7. Performance evaluation on the VOT2015 benchmark with (a) AR raw plots, (b) AR rank plots (the most upper tracker has the best accuracy rank 

and the most right tracker has the best robustness rank) and (c) expected average graph (the most right tracker is the best-performing). 
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Table 5 

Performance evaluation on the VOT2016 benchmark in terms 

of EAO, accuracy, robustness and AO metrics. 

Trackers EAO Accuracy Robustness AO 

C-COT 0.331 0.539 0.238 0.469 

TCNN 0.325 0.554 0.268 0.485 

SSAT 0.321 0.577 0.291 0.515 

DMS 0.314 0.562 0.308 0.451 

MLDF 0.311 0.490 0.233 0.428 

Staple 0.295 0.544 0.378 0.388 

DDC 0.293 0.541 0.345 0.391 

EBT 0.291 0.465 0.252 0.370 

SRBT 0.290 0.496 0.350 0.333 

STAPLE + 0.286 0.557 0.368 0.392 

DNT 0.278 0.515 0.329 0.427 

SSKCF 0.277 0.547 0.373 0.391 

SiamFC-R 0.277 0.549 0.382 0.421 

DeepSRDCF 0.276 0.528 0.326 0.427 

SHCT 0.266 0.547 0.396 0.392 

MDNet_N 0.257 0.541 0.337 0.457 

Fig. 8. Effects of (a) ρ , (b) μ, (c) 
 and (d) ω with different values. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

the correlation-filter-based trackers Staple and DeepSRDCF by 6.3% and 2.4%. Overall, our proposed DMS tracker achieves

state-of-the-art performance on the VOT2016 benchmark in various aspects. 

4.4. Parameter analysis 

In this section, we analyze the effects of several important parameters on the tracking performance using DP scores.

These parameters include the learning factor ρ in Eq. (11) , the tradeoff parameter μ in Eq. (17) , the temporal window 


and the weighting factor ω in the weight sequence w . All parameter experiments are conducted on the OTB-2015 dataset. 

(1) Effect of ρ: The parameter ρ in Eq. (11) is a learning factor that decides the basic learning rate of the long-term

tracker. Combined with ρ , the relative tracking quality measurement Q 

t adaptively adjusts the learning rate in frame t

to reduce the effects of corrupted tracking results. A larger ρ means that more information of subsequent frames can

be updated in the long-term target model and vice versa. Fig. 8 (a) depicts the corresponding DP scores when we set

ρ to 0.7, 0.8, 0.9, 1.0, 1.1, 1.2 and 1.3. We observe that the best tracking performance is achieved by setting a moderate

value of ρ to 1.0. 

(2) Effect of μ: The parameter μ in Eq. (17) is a tradeoff between credibility and discriminability measurements, which

play different roles in the reliability evaluation function. The credibility measures the target likelihood of the current

tracking result of a tracker, whereas the discriminability measures the capacity to distinguish the target from the

background of a tracker. To better balance these two important measurements, we analyze how the tracking perfor-

mance of the proposed DMS tracker is influenced by different μ. As shown in Fig. 8 (b), the lack of any measurement

in the reliability evaluation function leads to a degraded tracking performance when we set μ to 0 or 1. The highest

DP score was obtained with μ at 0.3. 

(3) Effects of 
 and ω: To avoid performance fluctuations in the reliability evaluation function, we introduce the temporal

context information for keeping more stable measurements with a weight sequence w . There are two parameters 


and ω in the weight sequence w . On the one hand, 
 controls the size of the temporal window, and more historical

frames will be considered with the increase in 
. Fig. 8 (c) shows the DP scores for different 
. We can easily find that

the tracking performance significantly decreased when we only consider the current frame with 
 at 1. The result

indicates the importance of temporal context information for maintaining performance stability. In addition, we find
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that too much historical information also causes poor tracking performance when we increase 
 to 30. Therefore,

we set 
 to 15 in our experiments because it achieves the greatest performance. On the other hand, ω decides the

importance of each historical frame. It assigns larger weights to recent frames as recent measurements are more

valuable for performing the reliability evaluation. Particularly, equal weights will be assigned for each historical frame

by setting ω = 1 . As shown in Fig. 8 (d), the DP score is maximized by setting ω to 1.2. 

5. Conclusion 

In this paper, we consider both the short-term memory and long-term memory of the target appearance for enhancing

the adaptivity and robustness of visual tracking and further propose a DMS model to select a reliable memory pattern

to handle the current tracking challenges. Specifically, we establish a memory tracker for each memory pattern based on

DCFs. Furthermore, to perform a robust reliability evaluation for memory selection, an MEC is presented by considering the

credibility and discriminability of each memory tracker with temporal continuity. Comprehensive experimental comparisons 

and analyses are conducted on multiple tracking benchmarks to demonstrate the superiority of our method against other

state-of-the-art methods. 
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