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For many-objective problems, how to maintain the diversity and convergence of the distri-
bution of the solution set over Pareto front (PF) has always been the research emphasis. In
the iteration process, the state of population is critical to improve the level of evolution.
Therefore, this paper will use two convergence and diversity indicators to further
strengthen the usage of evolutionary state information and propose a dynamic learning
strategy. In addition, a dynamic learning strategy based many-objective evolutionary algo-
rithm (MaOEA) is proposed, called dynamic learning evolution algorithm (DLEA), which
continuously changes the direction of learning: convergence and diversity in the iteration
process. The purpose is to make the algorithm prefer to convergence in the early iteration
and prefer to diversity when it is close to PF in the late iteration, so that the convergence
and diversity of the final solution set can be well maintained. And then, the performance of
DLEA is measured by two indicators. Meanwhile, DLEA will be compared with four state-
of-the-art algorithms on the DTLZ and MaF, and its performance will be verified on a
many-objective combinatorial problem. And the experimental results and Friedman test
show that DLEA has great advantages.

� 2021 Elsevier Inc. All rights reserved.
1. Introduction

In the real world, there are many problems which contain multiple objectives that are required be optimized by tradeoffs
at the same time. We call them multi-objective optimization problems (MOPs). In general, these problems having more than
three objectives are called many-objective optimization problems (MaOPs). The solutions of such problems are not like
numerical optimization problems that only consider a single objective, but optimize each objective in the problem at the
same time. A MaOP can be represented as follows:
min F xð Þ ¼ f 1 xð Þ; f 2 xð Þ; :::; f M xð Þð ÞT
subject to x 2 X

ð1Þ
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where M is the objective number, and X is the decision space which can be mapped to objective space RM by function F
For MaOPs, due to the conflicting objectives, a solution set is often obtained instead of a single optimal solution. Each

solution is called Pareto optimal solution, and the whole is called Pareto front (PF). The Pareto optimal solution is closely
related to Pareto domination which is defined as follows: for the minimization problem, taking two solutions x1 and x2 in
X, if and only if for any i in {1, 2, . . ., M} satisfies fi(x1) � fi(x2), and there exists j in {1, 2, . . ., M} satisfies fj(x1) < fj(x2). Let’s
call it F(x1) Pareto dominates F(x2), and the notation is F(x1) � F(x2). And if and only if no solution� inX to satisfy F(x) � F(x*),
x* is called Pareto optimal solution.

Because of its unique population-based characteristics, evolutionary algorithms (EAs) are widely used to deal with opti-
mization problems. After years of development, more and more EAs have been proposed. Considering the characteristics of
MaOPs, a mass of many-objective evolutionary algorithms (MaOEAs) is proposed, which can effectively deal with all kinds of
MaOPs. Some MaOEAs are improved on the basis of the existing EAs [35–37], such as competitive mechanism based multi-
objective particle swarm optimization (CMOPSO) [50] and evolutionary multi-objective seagull optimization algorithm
(EMoSOA) [4]. Though different MaOEAs have their own advantages, all MaOEAs can be classified into the following
categories.

The first kind is the MaOEAs based on the dominance relationship. This MaOEAs first defines the dominance relationship
between the solutions, then use it to classify the solution in the population, and selects the solution according to the demand.
Generally, this MaOEAs will be combined with the second indicator to assist the selection. Among them, the most classical
algorithm is non-dominated sorting genetic algorithm II (NSGA-II) [7], which uses Pareto dominance to perform non-
dominated sorting to classify the solutions, and uses crowding distance to assist selection and increases the diversity of
the solution sets. However, the disadvantage of NSGA-II is that as the number of objectives increases, the number of non-
dominated solutions in the population will also increase, and even the solutions in the whole population are non-
dominated solutions. As a result, NSGA-II is not as effective in handling MaOPs as MOPs because it reduces the selection pres-
sure when the objective number is high. NSGA-III [9,15] uses reference points to increase selection pressure and the diversity
of solution sets. In addition, some researchers have proposed other dominance relationships. For example, e-dominance
[12,20] and fuzzy dominance [38], both have good performance in handling MaOPs.

The second type of MaOEAs are indicator-based algorithms, which rely on at least one evaluation indicator. However, the
defined indicators can make the population converge towards PF and there is no need for the second indicator to implement
additional operations to increase diversity. By controlling the evolution of the whole population towards a better indicator,
the final solution set can maintain convergence and diversity at the same time. For example, Fast hypervolume-based algo-
rithm (HypE) [2], uses HV [33,42] as the evaluation indicator of each generation of population. It is easy to understand in this
way, but some indicators also have the disadvantage of high computational complexity. In addition, a metaheuristic algo-
rithm based on R2 indicator is proposed (MOMBI-II) [14]. This indicator has low computational cost and weak-Pareto com-
patibility. It can use certain computational resources to deal with many-objective optimization problems, and it will not
reduce the selection pressure with the increase of the number of objectives.

The third category is MaOEAs based on decomposition. It is not based on the established indicator, but combines the
mathematical decomposition idea with EAs to decompose a MaOP into multiple sub-problems for simultaneous optimiza-
tion. Multi-objective evolutionary algorithm based on decomposition (MOEA/D) was first proposed by Zhang et al. [48] in
2007. The whole algorithm introduced three decomposition methods, namely weighted sum approach, Tchebycheff
approach, and penalty-based boundary intersection approach. Each decomposition approach has its own unique advantages
and disadvantages in handling various types of MOPs. After more than ten years of development, some new decomposition-
based MaOEAs have been proposed, such as by combining decomposition and domination (MOEA/DD) [23], as well as
decomposition and DE operator (MOEA/DDE) [22]. An algorithm combining the decomposition idea and Pareto adaptive
scalarizing methods (MOEA/D-PaS) [41] was proposed to balance the selection pressure toward the Pareto optimal and
the algorithm robustness to Pareto optimal front (PF) geometries. In addition, considering the relationship between sub-
problems, Wang et al. [40] proposed a new algorithm to allocate computational resources according to the optimization dif-
ficulty of sub-problems. And recently the evolutionary multi-objective optimization algorithm (DDEA) based on dynamic
decomposition was proposed by He et al. [13]. These algorithms also have good performance in handling MaOPs.

The algorithms mentioned above have relatively good performance in MaOPs or MOPs, but most MOEAs (MaOEAs) do not
consider the state information of the population during iteration. The state information is very important for improving the
convergence and diversity of the population. At the beginning of the search, most individuals are generated randomly, there-
fore, it is preferred to converge towards PF, so that the whole population converges into a good population. In the late stage
of the search, more attention should be paid to the diversity of the population. Since the convergence effect of individuals in
the late stage is relatively good, it is more preferred to select individuals that can increase the diversity of the population
when selecting new individuals. Based on this, a dynamic learning evolution algorithm (DLEA) is proposed in this paper,
which uses separate convergence and diversity indicators to change the selection ratio of individuals in the iterative process.
It means that individuals having better convergence are more likely to be selected in the early stage of the search, while indi-
viduals having better diversity are more likely to be selected in the late stage of the search.

The rest of the paper is arranged as follows. Section 2 will introduce the related work of dynamic learning evolution algo-
rithm (DLEA). The framework of DLEA is introduced in Section 3. The parameter sensitivity analysis and strategy selection of
DLEA and the results of comparison between DLEA and four state-of-the-art MOEAs will be described in Section 4, and Sec-
tion 5 is a summary of this work.
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2. Related work

In recent years, various improved EAs have been used to deal with various dynamic optimization problems (DOPs) and
dynamic multi-objective optimization problems (DMOPs). At the same time, many EAs and MOEAs with dynamic updating
strategies have been proposed to solve numerical optimization problems (NOPs) and MOPs/MaOPs, all of which have their
own advantages.

For DOPs and DMOPs, some novel methods have been proposed. For example, external archive and multi-population
strategy are used to improve harmony search (HS) algorithm to deal with DOPs [34]. This enables HS to adapt to the chang-
ing environment of DOPs. In addition, multi-population strategies were also used in [19,30,34] to deal with DOPs. Cao et al.
[3] proposed a particle swarm optimization (PSO) [18] algorithm based on short-term, long-term memory, and neighbor-
hood learning. Short-term memory and long-term memory are used to store the individual in the current environment
and the best individual in the history, respectively. At the same time, the neighborhood learning strategy is used to improve
the way of speed updating. These strategies can be combined to handle DOPs well. Liu et al. [27] also proposed a dynamic
multi-population particle swarm optimization algorithm (DP-DMPPSO) based on decomposition and prediction. Using the
archive update mechanism based on the objective space decomposition and the population prediction mechanism to accel-
erate the convergence, the results show that the algorithm has a good effect in processing DMOPs. Finally, various strategies
[10,11,29,31] are applied to implement a dynamic multi-objective evolutionary algorithm (DMOEAs) for DMOPs.

Various MOPs/MaOPs also have different characteristics, such as multi-mode and PF discontinuity. Therefore, it is difficult
to find a MOEA that performs well on all MOPs/MaOPs. Recently, many researchers proposed many dynamic optimization
strategies [25,43,47], which enabled MOEAs to make adaptive adjustments according to the characteristics of MOPs/MaOPs.
For example, neural network is associated with objective function [21,45], and weighted functions (such as weighted
Tchebycheff function) are used to handle objective and decompose the decision space to achieve better results. In addition,
a Pareto optimal solutions calculation method based on switching topology is proposed. In [26,44], dynamic population size,
external archives, greedy strategy, and local search strategy are also used to make adjustments. These strategies combined
with MOEAs can better compensate for the disadvantage that MOEAs cannot flexibly adapt to handle different types of
MOPs/MaOPs. Some researchers combined decomposition with dynamic resource allocation strategy and proposed a
multi-objective multifactorial optimization algorithm (MFEA/D-DRA) [46] to deal with multi-objective and multifactorial
optimization (MO-MFO). At the same time, dynamic decomposition is proposed in [13,28] to deal with different MOPs/
MaOPs. Different from traditional decomposition-based MOEAs [48], these algorithms do not use preset fixed reference vec-
tors to guide MOEAs to select solutions, but dynamically change the reference vectors according to the PF shape of MOPs/
MaOPs during the execution of MOEAs (for example, some Pareto optimal solutions are used as reference vectors). By using
dynamic decomposition, as long as the diversity of the selected reference vector can be guaranteed, the Pareto optimal solu-
tion set can be obtained with a good diversity and convergence as well as a good approximation to the Pareto-optimal front.
Jiang et al. [16] also proposed the combination of dynamic covariance matrix learning and multi-objective differential evo-
lution to deal with MOPs/MaOPs with variable linkages.

The above MOEAs with dynamic optimization strategy can make corresponding adjustments according to the character-
istics of the problem, but no MOEAs focus on the state information of population in iterative process. This is a very important
point, because the convergence of the whole population is very poor at the beginning of the iteration, especially when the
population initialization is just completed. In this case, MOEAs should pay more attention to convergence than diversity. As
the convergence of the population becomes better, MOEAs should prefer to maintain the diversity of the population. By using
this dynamic selection mechanism to maintain convergence and diversity, Pareto optimal solution can better represent
Pareto-optimal front.
3. The framework of DLEA

This section will first introduce the general framework of DLEA and then describe each step in detail. Some of the advan-
tages and disadvantages of DLEA compared with the traditional approach can be found in Table 1.
3.1. The general framework of DLEA

As shown in Algorithm 1, the general framework of DLEA is very similar to most MOEAs. The population P is first initial-
ized (Line 1), and then the iterative update process begins. On the basis of satisfying the iteration condition, tournament
selection is performed firstly (Line 3), and the newly generated offspring Offs is generated by crossover operator and muta-
tion operator (Line 4). Finally, population P and offspring Offs are selected through environmental selection to obtain the new
population Pnew with population size N. Among them, environment selection is different between DLEA and NSGA-II, which is
also the key point. This introduction will be given in Section 3.2.

As shown in Fig. 1(a), after the population initialization, the distribution of these individuals in the objective space is very
chaotic. In other words, the convergence and diversity of the population are poor. According to the current population, the
priority is to urge these individuals to converge to PF as soon as possible. This will be guided by indicator-based method. For
example, in a practical engineering problem, the individuals on PF are those who can minimize the cost. In this case, more
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Table 1
The advantage and disadvantage of dynamic learning strategy and other traditional methods.

Advantage Disadvantage

Non-dominated
methods

1. Processing works better when there are fewer
objectives;

2. A second indicator (such as crowding distance) is often
used as the selection criterion for two non-dominated
solutions to improve the performance of the algorithm.

1. The convergence effect becomes worse and worse as the
number of objectives increases;

2. Convergence speed is slow.

Indicator-based
methods

1. Convergence speed is fast;
2. Only a single indicator is used to select solutions, which

is easy to understand and operate;
3. The time cost is relatively small to make algorithm

implement efficiently.

1. The distribution of convergent population is bad;
2. Each indicator focuses on only one convergence advan-

tage and may not be more effective for certain problems.

Decomposition
methods

1. It is better to deal with the problem which has uniform
distribution solutions in Pareto front;

2. Problems of various types (such as non-convex prob-
lems) can be better handled by rational use of decompo-
sition methods.

1. The problem with uneven distribution solution in Pareto
front is not well handled;

2. The production mode of weight vector is relatively sim-
ple. When the problem is complex, the weight vector
uniformly generated cannot well guide the solution to
converge towards the entire Pareto front (convergence
and diversity).

Dynamic learning
strategies

1. Putting different emphasis in the early and late stages of
the algorithm according to the characteristics of popula-
tion evolution;

2. The entire evolutionary process can be accelerated or
slowed down for other purposes by controlling conver-
gence factors;

3. Different evaluation indicators can be flexibly chosen to
improve the performance of the algorithm.

1. Time cost is high, and two indicators are required be cal-
culated for each environmental selection;

2. The calculation time of different strategy is also differ-
ent, so the running time is uncertain when the indica-
tors are uncertain.

Pareto front

Pareto front

Pareto front

Pareto front

f1 f1

f1 f1

f2

f2

f2

f2

(a) (b)

(c) (d)

A

B

Fig. 1. The process of dynamic learning strategy. (a) The population state just after initialization. (b) The population state after initial evolution. (c) The
population distribution after a certain number of times guided by the dynamic learning strategy, and the diversity at this time is relatively poor. (d) That is
the final stage of the algorithm, the diversity-related solutions (such as individuals A and B in (c)) are guided to be selected, so that the convergence and
diversity on PF are very good in the end.

G. Li, Gai-Ge Wang, J. Dong et al. Information Sciences 574 (2021) 567–589
computational resources should be allocated to the process of convergence-related operations to achieve rapid convergence
of the population. And then, a small part of the computational resources is allocated to operations that increase the diversity
of the population to ensure that the population has a good diversity.

After implementing the operations mentioned above, the distribution of individuals in population will gradually move
towards the state in Fig. 1(b). However, the convergence level of the whole population is not enough at this time, so high
570
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selection pressure is still required to promote convergence. As the iteration goes on, the distribution of individuals in pop-
ulation will gradually move towards certain promising areas, as shown in Fig. 1(c). As introduced in Section 1, the indicator-
based algorithms converge quickly but lose diversity easily. The example in Fig. 1(c) shows that these individuals are close to
PF under the guidance of the indicator, but the convergence position is more inclined to the central region of PF. At this point,
more computational resources need to be tilted to increase the diversity of the population, such as the preference to keep the
individual A and the individual B in Fig. 1(c) into the next generation. By changing the computational resource allocation
according to the evolutionary state of the population, individuals in population can maintain good convergence and diver-
sity. As shown in Fig. 1(d), the individuals in the resulting solution set are uniformly distributed on PF.
3.2. Environmental selection

The environmental selection of DLEA can be found in Algorithm 2. Here, the input parameter P2N refers to the combined
population of P and Offs in Algorithm 1, whose population size is 2 � N. The purpose of environmental selection is to select N
best individuals from the combined population P2N as the parent population (Pnew) of the next iteration.

As shown in Line 1 of Algorithm 2, the non-dominated sorting of the population P2N is performed to obtain the non-
dominated layer FrontNo and the maximum layer (the layer requiring the selection individuals) MaxFNo. Then, individuals
whose number of layers is less than MaxFNo are put into Pnew (Line 2). The number of convergence-related variables Cn
and diversity-related variables Dn were calculated to select individuals in layer MaxFNo. The calculation of Cn can be shown
in Eq. (2).
Cn ¼ ndi � a� 1� gen
maxgen

� �� �
ð2Þ
where ndi is the number of individuals that need to be selected in layer MaxFNo at generation i, a 2 (0, 1) is a convergence
factor to control the convergence rate of the algorithm, the outermost sign is the integer function, gen is the current iteration,
and maxgen is the preset maximum iteration. And the calculation of Dn can be shown as follows.
Dn ¼ ndi � Cn ð3Þ
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The next step calculates the Ie+ [39] of all individuals in population P2N (Line 6), which is the minimum distance required
to describe a solution in the objective space in order to dominate another solution, as shown in Eq. (4). It is mainly used to
measure the convergence and diversity of individuals in a population, but it pays more attention to convergence. Here, we
use Ie+ as the indicator to select convergence-related individuals in the layer MaxFNo. According to the characteristics (the
smaller the indicator value is the better) of the indicator, we select Cn smallest individuals and put it into Pnew (Lines 9–
11). In order to maintain the diversity of the population, we use Lp-norm-based diversity maintenance mechanism [39] (Line
8), and the Lp-norm-based distance has been proved to be superior to the use of Euclidean distance or Manhattan distance as
the distance measurement method in diversity maintenance strategy [39]. After calculating this distance, we select Dn indi-
viduals in the layer MaxFNo according to the Lp-norm-based distance and put them into Pnew (Lines 12–14).

The DLEA uses the Ie+ and Lp-norm-based diversity maintenance mechanism as selection criteria of the layer MaxFNo for
the following reasons: this algorithm is to pay more attention to the convergence-related individuals in search upfront.
While, in the later stages, the algorithm pays more attention to the diversity of the population. Therefore, at least one indi-
cator is necessary to evaluate convergence and one indicator to evaluate diversity (diversity maintenance mechanism). Since
non-dominated sorting may lose selection pressure on MaOPs, so Ie+ is selected here. And Lp-norm-based distance is proved
to be better than Euclidean distance and Manhattan distance, therefore, DLEA uses Lp-norm-based distance instead of the
other two distances to measure the distance between individuals in the diversity maintenance mechanism. The calculation
of Ie+ can be shown in Eq. (4).
Ieþ x1; x2ð Þ ¼ mine f i x1ð Þ � e 6 f i x2ð Þ;1 6 i 6 Mð Þ ð4Þ

In addition, Eq. (5) is used in [39] as the cost required to delete an individual in population, which is equivalent to fitness

function.
F x1ð Þ ¼
X

x22Pn x1f g
�e�Ieþ x2 ;x1ð Þ=0:05 ð5Þ
where x1 and x2 are two different individuals in population, and M is the number of objectives. For Lp-norm-based distance,
the comparative experiment of parameter p in [39] shows that Lp-norm-based distance performs best when the parameter
p = 1/M. Moreover, compared with other values, the robustness is also very high when p = 1/M, because the value p at this
time can be adjusted with the change of the number of objectives.
3.3. Time complexity analysis

In DLEA, the time complexity of the tournament selection (Line 3 in Algorithm 1) and variation (Line 4 in Algorithm 1)
operations are O(N). Processing individuals using non-dominated sorting (Lines 1–2 in Algorithm 2) requires O(NlogM-2N)
computations. The calculation of Ie+ indicator (Line 6 in Algorithm 2) and Lp-norm-based distance (Line 8 in Algorithm 2)
requires the calculation of O(N2M) and O(N2), respectively. The time complexity of selecting convergence-related individuals
(Lines 9–11 in Algorithm 2) by Ie+ and selecting diversity-related individuals (Lines 12–14 in Algorithm 2) by Lp-norm-based
distance are O(N). So, the worst-case time complexity at one generation of DLEA is max{O(NlogM-2N), O(N2M)}.
4. Experiments

In this section, the parameter settings and running environment of the comparative experiments will be introduced. The
optimal setting of the parameter a in Eq. (2) will also be given experimentally. And why did DLEA choose the strategies
described in Section 3 will also be explained in this section. Finally, DLEA was compared with five state-of-the-art MOEAs
on DTLZ test suite [8].
4.1. Parameter settings

In the experiments on optimal setting of parameter a, a will take ten equally spaced values from 0.1 to 1. And 30 times
were run independently on 3, 5, 8, 10, and 15-objective DTLZ test suite. In the experiments on DLEA with different strategies,
four versions of DLEA will be compared, and the settings are shown in Table 6. The second experiment was run on 3-
objective DTLZ test suite. In the comparative experiments, DLEA will adopt the conclusions drawn in the first two experi-
ments for parameter setting and strategy selection. And then, DLEA will be compared to KnEA [23], I-DBEA [1], hpaEA [5],
and SPEA/R [17]. In this case, Das and Dennis’s approach [6] is used to generate the original reference points on the hyper-
plane, while the other algorithms should have the same initial population size to ensure fairness. In addition, the number of
generated reference points is the same as NSGA-III [9,15]. So, the corresponding population size N is set to 91, 210, 156, 275,
and 135, respectively. The corresponding number of FEs is 104*M/2.

In addition, the running device is PC, the system version is Windows 10, the processor is Intel(R) Core(TM) i3-8100 CPU
3.6 GHz, and the RAM is 8 GB.
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4.2. Experiments on optimal setting of parameter a

The reason that affects the performance of MaOEAs is not only the structure of the algorithm itself, but also the setting of
parameters, which may greatly affect the performance of the algorithm.

In DLEA, there are two parameters worth studying, one is the setting of parameter p in the Lp-norm-based distance, but
this has been proved in [39] that the best parameter p should be set to 1/M. The other is the parameter a used to calculate the
Cn in Eq. (2), which is a convergence factor and a 2 (0, 1). If the parameter is not well controlled, the performance of the
whole DLEA may become worse. If a is set too small, the algorithm may converge too slowly, and the final effect may not
reach the best in a limited time, and if a is set too large, premature convergence and local optimization may occur. Therefore,
parameter analysis of parameter a will be conducted next.

Table 2 shows the average IGD [24,49] value (the smaller IGD value, the better result) of DELA after running on 3-
objective DTLZ test suite. In total, 10 different a values are tested for comparison, and the last row of Table 2 is the average
Friedman ranking (the smaller the average ranking, the better the performance) of DLEA with different a values on DTLZ1-9.
As can be seen from Table 2, the average IGD value shows a smaller trend when the value of a changed from 0.1 to 1, but
some fluctuations are also included. The average ranking results can also prove this point. On the 3-objective DTLZ1-9, the
best performance is a = 0.9, followed by a = 0.2 and a = 0.4, and others perform relatively poorly.

Tables 3-5 are the average IGD results of DLEA under 5, 8, and 10-objective DTLZ test suite, respectively. According to the
average ranking in each table, the best performance in Tables 3-5 is a = 1.0, a = 1.0, and a = 0.9, while the other values are
relatively poor, which is similar to the results presented in Table 2. Therefore, it can be concluded that the closer the value of
a is to 0.9, the better the performance of DLEA will be.

Fig. 2 shows the Friedman ranking (the smaller the average ranking, the better the performance) of average IGD [47,48]
value (the smaller IGD value, the better result) of DELA after running on 3, 5, 8, and 10-objective DTLZ test suite. In total, 10
different a values are tested for comparison. As can be seen from Fig. 2, the Friedman ranking of average IGD value shows a
smaller trend when the value of a changed from 0.1 to 1, but some fluctuations are also included. On the 3-objective DTLZ1-
9, the best performance is a = 0.9, followed by a = 0.2 and a = 0.4, and others perform relatively poorly.

According to the average ranking in Fig. 2, the best performance on the 5-, 8-, and 10-objective DTLZ test suite is a = 1.0,
a = 1.0, and a = 0.9, while the other values are relatively poor, which is similar to the results on 3-objective DTLZ. DLEA has
the best performance when the value of a is in the interval [0.8, 1]. The reason may be that a larger convergence factor awill
lead to a larger value of Cn, so more individuals having better convergence can be selected at one iteration, so that the pop-
ulation can converge faster. With the continuous iteration, gen gradually increases, and the number of searching diversity-
related individuals increase so that the population also has a good diversity. The population obtained by using a smaller con-
vergence factor awill also have a good diversity, but due to the slower convergence rate, the final result is not as good as the
former.

In addition, this paper further analyzes the performance of DLEA with the value of a in the interval [0.8, 1]. Fig. 3 shows
the Friedman test results of the IGD values obtained by DLEA on the DTLZ test suite with different objective numbers. The
final subgraph in Fig. 3 is an average of the results for the five objectives, highlighted specifically in red. It can be seen from
Fig. 3 that all the curves are generally concave. The lowest point (optimal result) of each curve is in the interval [0.9, 0.93].
From the average results, the average performance is the best when a = 0.9. The average performance of a = 0.91 is slightly
Table 2
Average IGD values of DLEA (a = 0.1, 0.2, . . ., 1.0) on DTLZ1-9 with 3 objectives. The last row is average ranking of DLEA on DTLZ1-9 under different a.
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Table 3
Average IGD values of DLEA (a = 0.1, 0.2, . . ., 1.0) on DTLZ1-9 with 5 objectives. The last row is average ranking of DLEA on DTLZ1-9 under different a.

Table 4
.Average IGD values of DLEA (a = 0.1, 0.2, . . ., 1.0) on DTLZ1-9 with 8 objectives. The last row is average ranking of DLEA on DTLZ1-9 under different a.
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worse than a = 0.9. However, when the value of a is in the interval [0.8, 0.87] or the interval [0.95, 1], the performance of
DLEA is relatively poor.

In this paper, in order to ensure optimal performance of DLEA, a = 0.9 is selected as the parameter setting of subsequent
experiments.

4.3. Experiments on DLEA with different strategies

In order to analyze the effect of each part in DLEA on the results, this paper adjusts each part to obtain four versions of
DLEA. As shown in Table 6, gr in the second column is an additional parameter which is used to control the proportion of the
convergence-related solutions. When this parameter is used, the calculation of Cn is as follows:
Cn ¼ gr � ndi � a� 1� gen
max gen

� �� �
ð6Þ
where gr is set to the golden ratio. Since the golden ratio is used as the dividing standard in many fields, here we try to add gr
to control the proportion of convergence-related individuals. The third column is the adjustment of parameter a. The param-
eter a is not used in DLEA1, and it is recommended that a = 0.9 in DLEA2-4. In the fourth column, the selection criteria of
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Fig. 2. Friedman test results for different a (a = 0.1, 0.2, . . ., 1.0) under different objective numbers. The overall trend is that as the value of convergence
factor a increases, the value of Friedman ranking becomes smaller (the result is better).

Table 6
DLEA using different strategies, where gr is an additional parameter to control the proportion of the selected convergence-related solution.

Algorithm gr a Tournament Selection Convergence Diversity

DLEA1 TRUE FALSE FrontNo Ie+, choose min individual Lp-norm-based
DLEA2 FALSE 0.9 Ie+ Ie+, delete max individual Lp-norm-based
DLEA3 FALSE 0.9 Ie+ Ie+, choose min individual Lp-norm-based
DLEA4 TRUE 0.9 Ie+ Ie+, choose min individual Lp-norm-based

Table 5
Average IGD values of DLEA (a = 0.1, 0.2, . . ., 1.0) on DTLZ1-9 with 10 objectives. The last row is average ranking of DLEA on DTLZ1-9 under different a.
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Fig. 3. Friedman test results for different a (a = 0.8, 0.81, . . ., 1.0) under different objective numbers. All curves are concave in general and reach the lowest
point (the result is better) when a = 0.9, especially the average result.

Table 7
Average IGD values of DLEA1-4 on 3-objective DTLZ test suite.
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tournament selection are adjusted, in which DLEA1 used the layer number obtained after the non-dominated ranking of indi-
viduals, while DLEA2-4 used the Ie+ as the selection criteria. The fifth and sixth columns are respectively the indicators of
selective convergence-related individuals and diversity-related individuals in environmental selection. The selection of
diversity-related individuals is based on Lp-norm-based distance, while the selection of convergence-related individuals
has two selection strategies. The first is to select Cn individuals with the lowest Ie+. The second is to delete the individuals
with the highest Ie+ until the last Cn individuals are left. However, this strategy will calculate the cost of deletion after delet-
ing the individual with the minimum Ie+.
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Table 9
Average HV results obtained by DLEA and 4 state-of-the-art MOEAs on 3-objective DTLZ test suite.

Table 8
Average DM results obtained by DLEA and 4 state-of-the-art MOEAs on 3-objective DTLZ test suite.

Table 10
Average DM results obtained by DLEA and 4 state-of-the-art MOEAs on 5-objective DTLZ test suite.
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After 30 independent runs, average IGD values of DLEA1-4 on 3-objective DTLZ test suite are recorded, as shown in
Table 7. As can be seen in Table 7, the number of the best results of DLEA1 on 9 test problems is 2, 0, 4, and 3, respectively.
The results of the Friedman test on DLEA1-4 are also shown in the last row. According to Friedman test, the top performers
were DLEA3 (1.56 on average), followed by DLEA4 and DLEA1 (2.33 and 2.44 on average), and the worst performer is DLEA2
(3.67 on average). This indicates that compared with DLEA1, DLEA2, and DLEA4, using the strategy selected in DLEA3 can
achieve the best performance. Based on this, DLEA3 is compared with other state-of-the-art MOEAs in the following exper-
iments, and DLEA3 is referred to simply as DLEA below for convenience.

4.4. Comparative experiments

Tables 8–9 are the average diversity metric (DM) [32] and HV results of DLEA and 4 other state-of-the-art MOEAs running
30 times independently on 3-objective DTLZ test suite, respectively. From the results of DM values, DLEA performed the best
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Table 11
Average HV results obtained by DLEA and 4 state-of-the-art MOEAs on 5-objective DTLZ test suite.

Table 12
Average DM results obtained by DLEA and 4 state-of-the-art MOEAs on 8-objective DTLZ test suite.

Table 13
Average HV results obtained by DLEA and 4 state-of-the-art MOEAs on 8-objective DTLZ test suite.
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on all the test problems, followed by hpaEA, KnEA and SPEA/R performed equally on each of the seven test problems. The
worst performer was I-DBEA, which performed worst on almost all problems. The results of HV showed that KnEA, hpaEA,
and DLEA performed equally on the 3-objective DTLZ test suite, and all performed best on the two instances. Secondly, SPEA/
R had the highest HV value on DTLZ4, but its overall performance was similar to that of I-DBEA.

Tables 10 and 11 are the average DM and HV results of DLEA and 4 other state-of-the-art MOEAs running 30 times inde-
pendently on 5-objective DTLZ test suite, respectively. As can be seen from Table 10, DLEA achieved the best DM values on
the 5-objective DTLZ test suite except for DTLZ5. I-DBEA obtained the best DM value on DTLZ5. However, in terms of overall
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Table 15
Average HV results obtained by DLEA and 4 state-of-the-art MOEAs on 10-objective DTLZ test suite.

Table 14
Average DM results obtained by DLEA and 4 state-of-the-art MOEAs on 10-objective DTLZ test suite.

Table 16
Average DM results obtained by DLEA and 4 state-of-the-art MOEAs on 15-objective DTLZ test suite.
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effect, hpaEA has the best performance except for DLEA. KnEA and SPEA/R are similar in performance. As you can see from
Table 11, DLEA got the highest HV values on the three instances. The second is KnEA that obtained the maximumHV value on
the two instances. IBDEA and SPEA/R obtained the maximum HV values on DTLZ5 and DTLZ2, respectively. Although hpaEA
did not get the maximum HV result on any one instance, its overall performance was better than I-DBEA and SPEA/R.

Tables 12 and 13 are the average DM and HV results of DLEA and 4 other state-of-the-art MOEAs running 30 times inde-
pendently on 8-objective DTLZ test suite, respectively. It can be seen from Tables 12 and 13 that DLEA performs best under
the measurement of two indicators, obtaining the optimal DM results on 4 instances and the optimal HV results on 3
instances, respectively. The hpaEA got the best DM on three instances, and I-DBEA got the best HV on three instances. How-
ever, the performance of SPEA/R is relatively poor.
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Table 17
Average HV results obtained by DLEA and 4 state-of-the-art MOEAs on 15-objective DTLZ test suite.
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Tables 14 and 15 are the average DM and HV results of DLEA and 4 other state-of-the-art MOEAs running 30 times inde-
pendently on 10-objective DTLZ test suite, respectively. It can be seen from Tables 14 and 15 that DLEA performs best under
the measurement of two indicators, and obtains the optimal DM results and the optimal HV results on three instances. In
addition to DLEA, hpaEA and I-DBEA performed better, in which hpaEA got the best DM on the three instances and I-
DBEA got the best DM on DTLZ7. Both I-DBEA and KnEA obtained the maximum HV on two instances.

Tables 16 and 17 are the average DM and HV results of DLEA and 4 other state-of-the-art MOEAs running 30 times inde-
pendently on 15-objective DTLZ test suite, respectively. As can be seen from Table 16, hpaEA achieved the best DM on three
instances on the 15-objective DTLZ test suite. The second is DLEA, which has the best DM on the two instances. The optimal
DM results were obtained by KnEA and SPEA/R on DTLZ1 and DTLZ7, respectively. As can be seen from Table 17, hpaEA,
SPEA/R, and DLEA respectively obtained the optimal HV results on the two instances, while I-DBEA also obtained the max-
imum HV on DTLZ3. By these two measures, DLEA and hpaEA performed best, while I-DBEA and KnEA performed relatively
poorly.

Based on the results of DM and HV on the 3, 5, 8, 10, and 15-objective DTLZ test suite, DLEA performs best among several
MOEAs, regardless of whether the number of objectives is low (MOPs) or high (MaOPs). hpaEA performs well in these two
indicators, which is largely related to the evolution based on hypervolume. The results of KnEA, I-DBEA, and SPEA/R have
competitiveness in HV results, but there is almost no advantage in DM results, which indicates that these algorithms are
not strong in maintaining diversity. This has a great relationship with the characteristics of three algorithms, and the specific
reasons will be analyzed below.

From the characteristics of the problem, both DTLZ1 and DTLZ3 have local Pareto-optimal front, which may cause MOEAs
to fall into these local Pareto-optimal front. However, according to the experimental results, DLEA obtains the best DM on
most DTLZ1 and DTLZ3, and the best HV on DTLZ1. This indicates that DLEA has certain advantages when dealing with
MOPs/MaOPs with local Pareto-optimal front. Maybe because Ie+ is used to select the convergence-related solution, and
the Lp-norm-based diversity maintenance mechanism can make the solution distribution more uniform. This has advantages
over using reference point or knee point in dealing with such problems.

The Pareto-optimal front of DTLZ2 is a part of a sphere in the quadrant, uniformly distributed and without local optimal
Pareto-optimal front. As can be seen from the results in Tables 8–17, DLEA obtained the best DM on all instances of DTLZ2.
This shows that DLEA has a good ability to preserve diversity in dealing with problems of uniform distribution, which
depends on the Lp-norm-based diversity maintenance mechanism in DLEA. However, at the same time, the HV result is rel-
atively poor, because the solution selected by Ie+ is centrally distributed in a certain part in evolution. In addition, I-DBEA and
SPEA/R performed better on HV on DTLZ2. In the process of evolution, the decomposition-based method in I-DBEA leads the
Table 18
Comparison of runtime (s) among the five algorithms on 3-, 5-, 8-, 10-, and 15-objective DTLZ2.

Problem M KnEA I-DBEA hpaEA SPEA/R DLEA

DTLZ2 3 8.4951e-1 (2.52e-1) 9.3675e + 0 (1.38e-1) 1.0896e + 0 (9.30e-2) 3.3234e + 0 (3.74e-2) 5.0654e + 0 (6.02e-2)
5 9.5127e-1 (8.13e-3) 1.0383e + 1 (1.32e-1) 1.2577e + 0 (1.15e-2) 3.3014e + 0 (9.30e-3) 5.1105e + 0 (1.36e-2)
8 1.0895e + 0 (9.87e-3) 1.0492e + 1 (1.21e-1) 1.4116e + 0 (1.79e-2) 2.9415e + 0 (1.17e-2) 5.1721e + 0 (1.04e-2)
10 1.1384e + 0 (1.27e-2) 9.3445e + 0 (3.35e-1) 1.4158e + 0 (2.25e-2) 2.7958e + 0 (1.34e-2) 5.2056e + 0 (1.36e-2)
15 1.2756e + 0 (8.68e-2) 8.7883e + 0 (7.15e-1) 1.6180e + 0 (1.33e-1) 2.0690e + 0 (1.80e-1) 5.4031e + 0 (1.84e-1)

Rank 1 5 2 3 4
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Fig. 5. The final solution set obtained by the five MOEAs on 5-objective DTLZ7, shown by parallel coordinates. The last subfigure is the Pareto-optimal front
of 5-objective DTLZ7.

Fig. 4. The final solution set obtained by the five MOEAs on 5-objective DTLZ3, shown by parallel coordinates. The last subfigure is the Pareto-optimal front
of 5-objective DTLZ3.
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Table 19
Average DM results obtained by DLEA and 4 state-of-the-art MOEAs on 3-objective MaF test suite.
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solution to converge to PF through uniform distribution of reference points, and it is easy to lead the improvement of diver-
sity for such problems like DTLZ2 with uniform distributed PF. However, SPEA/R preserves the diversity of the solution set
through a method based on the density estimation of the reference direction.

The Pareto-optimal front of DTLZ4 is part of the sphere of the first quadrant, but is not uniformly distributed, so it can be
used to test the ability of MOEAs to keep the solutions well distributed. The results show that DLEA has the best DM on
DTLZ4, indicating that the diversity preserving mechanism used in DLEA can effectively maintain the diversity of solutions.
While the HV result of SPEA/R on DTLZ4 was the best, which was the effect of density estimation based on the reference
direction. By contrast, the results of I-DBEA on both indicators are not very good. The reason is that the uniformly generated
reference points in I-DBEA are not well adapted to such problems as DTLZ4. Due to the different densities of solutions in each
region of PF, good diversity cannot be maintained by relying on uniformly distributed reference points.

The Pareto-optimal front of DTLZ5 and DTLZ6 are missing. For example, in the case of three objectives, their Pareto-
optimal front is a curve instead of a surface. But they also have their own characteristics, it’s harder for DTLZ6 to converge
to PF than DTLZ5. From the results, no matter HV indicator or DM indicator, DLEA has the best comprehensive performance
on these two problems. At the same time, hpaEA has shown some competition in some DTLZ5 test cases. However, DLEA has
more advantages than hpaEA in dealing with DTLZ6 which is difficult to converge. KnEA, I-DBEA, and SPEA/R did not obtain
promising results on DTLZ5 and DTLZ6.

The Pareto-optimal front of DTLZ7 is disconnected and contains 2 M�1 Pareto-optimal front. This problem is mainly used
to test the ability of MOEAs to hold solutions in multiple subregions. The results showed that DLEA had the best DM on 3 and
5-objective DTLZ7. At the same time, the results of DLEA were basically the second best on HV results. This shows that DLEA
has some advantages in dealing with such a very complex PF problem. In addition, hpaEA and I-DBEA show similar perfor-
mance on the other instances and can handle some problems like DTLZ7 with multiple subregions. KnEA also got the best HV
results on the 3 and 5-objective DTLZ7. However, as the number of objectives increases, the performance also decreases,
indicating that the performance of knee-point based guidance is poor when the number of objectives is large. Although
the SPEA/R achieved the highest HV results on the 15-objective DLTZ7, the overall performance of the SPEA/R was almost
the worst. This is because density estimation strategy based on reference direction in SPEA/R is not easy to determine the
reference direction on PF with multiple subregions.

For DTLZ3, its PF belongs to the interval [0, 1] on each objective and contains some locally optimal Pareto fronts, so it will
bring great difficulties to optimization process. Fig. 4 shows the optimal solution set obtained by each algorithm running in
accordance with the same function evaluations on the 5-objective DTLZ3. It can be seen that the solution set obtained by
DLEA algorithm has the best convergence and diversity. DLEA converges to PF for each objective and performs well in diver-
sity maintenance. The results of hpaEA and I-DBEA showed good diversity maintenance, but neither of them could converge
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Table 20
Average DM results obtained by DLEA and 4 state-of-the-art MOEAs on 5-objective MaF test suite.

Table 21
Average DM results obtained by DLEA and 4 state-of-the-art MOEAs on 8-objective MaF test suite.
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Table 23
Average DM results obtained by DLEA and 4 state-of-the-art MOEAs on 15-objective MaF test suite.

MaF9 15 3.6667e-1 (1.54e-1) 3.8579e-2 (2.52e-2) 7.0208e-1 (6.06e-3) 8.5381e-2 (2.91e-2) 6.1285e-1 (3.54e-2)

MaF10 15 4.3261e-1 (2.64e-2) 2.2925e-1 (6.07e-2) 3.8337e-1 (4.58e-2) 1.2589e-1 (3.96e-3) 3.7137e-1 (2.90e-2)

MaF11 15 8.7223e-1 (2.79e-3) 8.7867e-1 (8.53e-3) 8.7156e-1 (4.26e-3) 9.0924e-1 (1.53e-2) 8.7087e-1 (4.03e-3)

MaF12 15 2.3655e-1 (4.13e-2) 8.1735e-2 (3.53e-3) 3.8523e-1 (1.80e-2) 2.7033e-1 (4.35e-2) 4.9441e-1 (2.05e-2)

MaF13 15 5.9792e-1 (3.34e-2) 2.7508e-2 (1.50e-2) 6.4374e-1 (2.74e-2) 1.0942e-1 (3.77e-2) 5.1215e-1 (1.31e-2)

MaF14 15 2.9343e-1 (3.13e-2) 3.9263e-1 (3.32e-1) 2.9165e-1 (2.78e-2) 2.4678e-1 (2.55e-2) 3.0335e-1 (2.32e-2)

MaF15 15 8.3058e-2 (1.86e-2) 9.7773e-2 (2.59e-2) 6.6988e-2 (1.35e-3) 6.4809e-2 (1.46e-17) 9.4350e-2 (1.36e-2)

Table 22
Average DM results obtained by DLEA and 4 state-of-the-art MOEAs on 10-objective MaF test suite.
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to PF. This also shows the inefficiency of decomposition-based algorithms for such problems with some locally optimal Par-
eto front. In addition, both KnEA and SPEA/R have poor performance in convergence and diversity, and even do not converge
to PF at all and have poor diversity.

DTLZ7 is a particular problem. Its PF is discontinuous and contains 2 M�1 Pareto front subregions. This problem can well
test the ability of the algorithm to preserve the solution in each subregion. Fig. 5 shows the optimal solution set obtained by
the five algorithms running on the 5-objective DTLZ7 according to the same function evaluations. It can be seen from the
above that every algorithm can converge to PF successfully, except that SPEA/R does not converge on the fifth objective.
However, from the point of diversity of solution sets, the performance of the algorithms is quite different. Among them,
the diversity of DLEA is the best, and it can maintain the diversity well on each objective. The second is SPEA/R. Although
SPEA/R does not converge on the fifth objective, it has good convergence and diversity in the first four objectives, which
is second only to DLEA. In addition, the diversity of KnEA is poor on the first objective and good on the other objectives.
The worst performers in diversity are I-DBEA and hpaEA, both of which have poor diversity maintenance on each objective.
According to the convergence and diversity of the obtained solutions and the simulation of PF, DLEA is the best among the six
algorithms.

In addition, Table 18 shows the average runtime (the data in parentheses are standard deviations) of the five algorithms
on DTLZ2. It can be seen from the results, the fastest is KnEA. This is because KnEA leads individuals to converge to the Pareto
front through the knee points in the population without additional diversity maintenance mechanisms, so the time complex-
ity is reduced. The runtime of hpaEA and SPEA/R is lower than DLEA. This is because DLEA will first implement a non-
dominated ranking for the whole population, and then it needs to calculate the Ie+ and Lp-norm-based distance of all indi-
viduals. On the other hand, I-DBEA runs the longest because it uses decomposition-based framework. However, DLEA has
the best performance under the same population size and FEs. This indicates that using the same computational resources,
DLEA contributes more to maintaining the convergence and diversity of the population.

Fig. 6 shows the memory footprint of the five MaOEAs, and it can be seen that DLEA has the smallest memory footprint.
KnEA also has a smaller memory footprint because it has no additional diversity maintenance mechanisms. The memory
footprint of hpaEA and SPEA/R is similar, but hpaEA is relatively small. The worst is I-DBEA, which has the largest memory
footprint due to its decomposition-based framework.

4.5. Experiments on CEC 2018

In order to further analyze the performance of the five algorithms in dealing with many-objective optimization problems,
this section will analyze the results of the five algorithms on the MaF (CEC 2018) test suite. In addition, MaF7 and DTLZ7 are
Fig. 7. The final solution set obtained by the five MOEAs on 10-objective MaF2, shown by parallel coordinates. The last subfigure is the Pareto-optimal front
of 10-objective MaF2.
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the same problem, but the results of MaF7 are also placed in the table for completeness. Finally, MaF8 is a multi-point dis-
tance minimization problem, used to calculate the Euclidean distance from a two-dimensional point � to a set of M two-
dimensional vertices of a polygon, where M refers to the number of objectives. And then, the optimal solution set of each
algorithm on MaF8 is also shown here using parallel coordinates in Fig. 9.

Tables 19–23 shows the DM results of the five algorithms on the 3, 5, 8, 10, and 15-objective MaF test suites. As can be
seen from the DM results, DLEA has good DM results on most instances. In particular, the best DM results are achieved on 31
MaF test cases having 3, 5, and 8 objectives among 45 test cases. With the increase in the number of objectives, DLEA still
holds certain competitiveness among the five algorithms. hpaEA showed the second-best performance, with 16 of the 75
instances and the best results on all instances of MaF13. KnEA and I-DBEA showed the similar performance, which have 6
and 7 best results, respectively. But the performance of the two algorithms was lower. Although SPEA/R only achieved four
best results, its performance improved as the number of objectives increased. In particular, three of the best results were
obtained on 15-objective MaF test cases. This shows that SPEA/R has the promise to handle MaOPs.

MaF2, also known as DTLZ2BZ, is a modification of DTLZ2. Fig. 7 shows the optimal solution set of the five algorithms on
MaF2 and can be shown in parallel coordinates. It can be seen from the results that the optimal solution set obtained by each
algorithm can converge to PF, but there are some differences in diversity maintenance. For example, DLEA does well in over-
all diversity, but it has less diversity on the lower part on each objective. The diversity of KnEA and SPEA/R remains similar,
but is generally inferior to that of DLEA. hpaEA maintains poor diversity on the first five objectives and good diversity on the
other objectives. However, I-DBEA performed poorly in diversity on all objectives and was the worst of the five algorithms.

Fig. 8 shows the optimal solution set obtained by the five algorithms on the 10-objective MaF5. MaF5 is concave badly-
scaled DTLZ4, so it also has the characteristics of uneven PF distribution. From the results, the convergence of several algo-
rithms on 10-objective MaF5 is similar. However, DLEA did not fully converge on the second objective, but it showed a very
good diversity. Both KnEA and SPEA/R fully converge to PF, but have less diversity on each objective than DLEA. The diversity
in the second objective of I-DBEA and hpaEA is relatively poor, especially I-DBEA, which hardly maintains the diversity in the
second objective. Overall, the performance of DLEA on 10-objective MaF5 is still superior.

Fig. 9 shows the results of the optimal solution set obtained by the five algorithms on 10-objective MaF8. In terms of the
results, SPEA/R had the worst performance on this problem, failing to converge on each objective and showing the worst
diversity. The second one with poor performance is I-DBEA, which is distributed in several intervals [0.75, 1.25] on each
objective, so the diversity is also poor. hpaEA performs better than KnEA which has good convergence but poor diversity.
The convergence and diversity of hpaEA remains good, but not as good as that of DLEA.

In summary, DLEA still shows a competitive advantage over the other four comparative algorithms in the MaF test suite.
Fig. 8. The final solution set obtained by the five MOEAs on 10-objective MaF5, shown by parallel coordinates. The last subfigure is the Pareto-optimal front
of 10-objective MaF5.
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Fig. 9. The final solution set obtained by the five MOEAs on 10-objective MaF8, shown by parallel coordinates. The last subfigure is the Pareto-optimal front
of 10-objective MaF8.
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4.6. Experiments on many-objective combinatorial problems

In this part, DLEA will be used to deal with many-objective knapsack problems (MOKPs) to verify the ability of DLEA when
dealing with many-objective combinatorial problems and compare it with the four state-of-the-art MOEAs. In this paper, five
different objectives of MOKPs are set for comparative experiments. The HV results of each algorithm running on MOKP can
be shown in Table 24.

The difference between MOKPs and traditional 0–1 knapsack problems is that the traditional 0–1 knapsack problems only
need to satisfy the weight constraint to maximize the value of goods in knapsack. In addition to satisfying the weight con-
straints, MOKPs also need to consider the optimization of multiple objectives. Assuming a MOKP with two objectives, namely
value and volume, which need to be optimized so that the goods can have a higher value and a smaller volume. In addition,
each knapsack has p different value of goods in MOKP. Each objective function fi(x) calculated the total profit which depends
on profit i (i = 1, 2, . . ., p). This raises the question of how to maximize all objective functions while satisfying the weight
constraint. Moreover, because the optimization direction of each objective conflict with each other, the PF of MOKPs is more
complex, which poses a great challenge to the performance of MOEAs.

As can be seen from Table 24, DLEA performed best on five sets of MOKPs with different objectives compared with the
four MOEAs. Compared with the other four algorithms, the HV results obtained by DLEA have great advantages. In addition,
Table 24
The HV results of DLEA and four state-of-the-art MOEAs run on MOKPs, where the two values are the mean and the standard deviation, the best results are
shown in blue.

587



G. Li, Gai-Ge Wang, J. Dong et al. Information Sciences 574 (2021) 567–589
I-DBEA and SPEA/R obtained the highest HV results on 15-objective MOKP and 3-objective MOKP, respectively. But DLEA also
obtained the second highest HV results on these two instances. At the same time, the results obtained by SPEA/R on all the
examples except 3-objective MOKP were poor, followed by KnEA. The hpaEA performed well overall, second only to DLEA.

The possible reasons for such a result are as follows. For combinatorial MaOPs like MOKPs, the difficulty lies in how to
generate as many effective solutions as possible, so that the final solution set can better represent the real PF. In other words,
solution set shows a good advantage in both convergence and diversity. In these comparative algorithms, I-DBEA uses uni-
formly distributed reference points to guide convergence, which cannot well adapt to such complex combinatorial optimiza-
tion problems. On the other hand, KnEA guides the evolution of other solutions in population by constantly identifying the
knee points in the generated solution, but whether many knee points can be generated in the evolutionary process is
unknown. Similarly, the reference direction of the SPEA/R seems to take little effect here, and the reason for the poor per-
formance of hpaEA is similar to that of SPEA/R. While DLEA adapts to the evolutionary characteristics of the population
by constantly changing the direction of evolution throughout the evolution process, so that the convergence and diversity
of the finally obtained population are well maintained.

5. Conclusions

In recent years, in order to improve the performance of MOEAs when dealing with various characteristics of MOPs/MaOPs,
researchers have proposed many MOEAs. However, these MOEAs fail to pay attention to the iterative process of the algo-
rithm itself. In this paper, a dynamic learning multi-objective evolutionary algorithm namely DLEA is proposed. DLEA is able
to accelerate convergence by paying more attention to convergence-related individuals in the early search process. In the
late stage of the search, more attention is paid to the diversity-related individuals, so that the obtained individuals are more
evenly distributed in PF. In addition, the parameter settings and strategy selection of DLEA are also demonstrated through
experiments to achieve the best performance. Through comparing with four state-of-the-art MOEAs, it is found that DLEA
has significant advantages no matter the number of objectives. In addition, the advantages of DLEA on solving combinatorial
many-objective problems were also verified in this paper.

In addition, Ie+ is used in this paper to maintain individual convergence and Lp-norm-based diversity maintenance mech-
anism is used to maintain diversity, but there are still many excellent strategies that can be used to maintain convergence
and diversity, which are not studied in this paper. The orientation of future work can start from this point and be improved in
the framework of DLEA to achieve better results. At present, new evolutionary algorithms based on agent model are grad-
ually developed. It is hoped that the dynamic learning strategy can be used to improve the performance of the evolutionary
algorithm in the future work. At the same time, using dynamic learning strategy to deal with the parameter adjustment of
neural network is also worth working for.
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