
Accelerate RDP RAID-6 Scaling by
Reducing Disk I/Os and XOR Operations

Guangyan Zhang, Keqin Li, Jingzhe Wang, and Weimin Zheng

Abstract—Disk additions to anRAID-6 storage system can increase the I/O parallelism and expand the storage capacity simultaneously.
To regain loadbalanceamongall disks includingold and new,RAID-6 scaling requiresmoving certain data blocks onto newly addeddisks.
Existing approaches toRAID-6 scaling, restricted bypreserving a round-robin data distribution, requiremigrating all the data, which results
in an expensive cost for RAID-6 scaling. In this paper, we proposeRS6—a newapproach to acceleratingRDPRAID-6 scaling by reducing
disk I/Os and XOR operations. First, RS6 minimizes the number of data blocks to be moved while maintaining a uniform data distribution
across all data disks. Second, RS6 piggybacks parity updates during data migration to reduce the cost of maintaining consistent parities.
Third, RS6 selects parameters of datamigration so as to reduce disk I/Os for parity updates.Ourmathematical analysis indicates that RS6
providesuniformdata distribution,minimal datamigration, and fast data addressing.Wealso conductedextensive simulation experiments
to quantitatively characterize the properties of RS6. The results show that, compared with existing “moving-everything” Round-Robin
approaches, RS6 reduces the number of blocks to be moved by 60.0%–88.9%, and saves the migration time by 40.27%–69.88%.

Index Terms—Data migration, load balance, migration parameter, parity update, RAID-6 scaling

1 INTRODUCTION

1.1 Motivation

RAID-6 [1]–[3] storage systems provide large I/O band-
width via parallel I/O operations and tolerate two disk

failures bymaintaining dual parity.With higher possibility of
multiple disk failures [4], [5], RAID-6 has received more
attention than ever. RAID-based architectures are also used
in clusters and large-scale storage systems [6], [7]. A typical
instance is the NetAppWAFL file system [8] that works with
RAID-6. As user data grow rapidly, applications often de-
mand increasingly larger storage capacity. One solution is
adding more disks to a RAID-6 array. It is also desirable that
the bandwidth of a RAID-6 array increases with the member
disks [9], [10]. Such disk addition is termed as RAID-6 scaling.

In order to regain load balance after RAID-6 scaling, data
need to be redistributed evenly among all disks including old
and new. In today’s server environments, the cost of down-
time is extremely high [11]. Therefore, RAID-6 scaling re-
quires an efficient approach to redistributing the data online
with the following requirements. (1) Data redistribution
should be completed in a short time. (2) The impact of data
redistribution on application performance should be quite
low. (3) Data reliability should be guaranteed during the
scaling process.

There are multiple coding methods proposed for RAID-6
arrays. According to the layout of data and parity, RAID-6
codes can be categorized into horizontal codes [3], [13]–[15]
and vertical codes [12], [16]–[20]. Existing scaling approaches
are proposed for general case in RAID-0 or RAID-5 [21]–[27].
They cannot adapt to various codingmethods in RAID-6, and
therefore are not suitable for RAID-6 scaling. An efficient
approach to RAID-6 scaling should be designed based on the
characteristics of each codingmethod respectively. Currently,
the RDP code represents the best performing RAID-6 codes
for storage systems [28]. This paper focuses on the problem of
RDP-based RAID-6 scaling.

Typical RAID scaling approaches [22], [24]–[26] preserve a
round-robin data distribution after adding disks. Although
Round-Robin is a simple approach to implement on RAID-6,
it results in high overhead. First, all data blocks are migrated
based on the round-robin order in the scaling process. Second,
all parities need to be recalculated andmodified during RAID
scaling. The expensive cost for RAID-6 scaling means that
either data redistribution will be completed in a long time, or
the impact of data redistribution on application performance
will be significant. There are some optimizations of data
migration [22], [26] proposed for RAID scaling, e.g., I/O
aggregation and rate control. They can be used to improve
the performance of RAID-6 scaling to certain extent, but
still suffer from large data migration and heavy parity
updates.

1.2 Initial Idea and Technical Challenges
Our initial idea to improve the efficiency of RDP RAID-6
scaling is minimizing data migration in the process of RAID
scaling. Zheng and Zhang [27] proposed the FastScale
approach to accelerating RAID-0 scaling by minimizing data
migration. FastScale provides a good starting point for effi-
cient scaling of RAID-6 arrays. However, optimizing data

• G. Zhang, J. Wang, and W. Zheng are with the Department of Computer
Science and Technology, Tsinghua University, Beijing 100084, China.
E-mail: gyzh@tsinghua.edu.cn, wjz416@gmail.com,
zwm-dcs@tsinghua.edu.cn.

• K. Li is with the Department of Computer Science, State University of
New York, New Paltz, New York 12561. E-mail: lik@newpaltz.edu.

Manuscript received 18May 2013; revised 05Oct. 2013; accepted 10Oct. 2013.
Date of publication 20 Oct. 2013; date of current version 12 Dec. 2014.
Recommended for acceptance by Y. Pan.
For information on obtaining reprints of this article, please send e-mail to:
reprints@ieee.org, and reference the Digital Object Identifier below.
Digital Object Identifier no. 10.1109/TC.2013.210

32 IEEE TRANSACTIONS ON COMPUTERS, VOL. 64, NO. 1, JANUARY 2015

0018-9340 © 2013 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

redistribution for RAID-6 scalingwill bemore difficult, due to
the need of maintaining consistent, dual parities.

One of the reasons is that the dual parity layouts of RAID-6
codes are complex. Another reason is that the stripes are
dramatically changed after scaling. Using FastScale in
RAID-6 scaling directly will bring high overhead of parity
migration, modification, and computation. Moreover, the
parity disk in a RAID-6 array tends to become a performance
bottleneck during RAID scaling. It is a technical challenge to
design a new data redistribution scheme for RDP RAID-6
scaling, which provides uniform data distribution, minimal
data migration, and efficient parity updates.

1.3 Our Contributions
In this paper, we propose RS6—a new data redistribution
approach to accelerating RDP RAID-6 scaling. Different from
the round-robin scheme, no data are moved among original
disks. RS6moves data blocks from old disks to new disks just
enough to preserve the uniformity of data distribution. With
the restriction ofmaintaining a uniformdata distribution, RS6
reaches the lower bound of the migration fraction. Further-
more, the RS6migrating scheme keeps asmany blocks within
the same rowordiagonal parity set as possible. Consequently,
there are more opportunities to use the read-modify-write
alternative for efficient parity updates.

RS6 also optimizes online parity updates with two tech-
niques. First, it piggybacks parity updates during data
migration to reduce the numbers of additional disk I/Os and
XOR computations. Second, with different migration para-
meters, the RS6 migrating scheme performs obviously differ-
ent numbers of data reads or XOR operations dedicated for
parity updates (see Section 6.2). RS6 selects the best migration
parameters to minimize the cost of parity updates while
requiring minimal data migration.

RS6 has several unique features as follows.
RS6maintains a uniformdata distribution across old data
disks and new data disks after RAID-6 scaling.
RS6 minimizes the amount of data to be migrated during
a scaling operation.
RS6minimizes the cost of parity updates while providing
the above two features.
RS6 computes the location of a block easily without any
lookup operation.
An array scaled using the RS6 approach can be recon-
structed after the loss of any two of its disks.

We conducted extensive simulation experiments to quan-
titatively characterize the properties of RS6. The results
show that, compared with existing “moving-everything”
approaches, RS6 reduces the number of blocks to be
moved by 60.0%–88.9%, and saves the migration time by
40.27%–69.88%.

1.4 Paper Organization
The rest of the paper is organized as follows. We review
related work in Section 2. In Section 3, we present how RS6
accelerates RAID-6 scalingwith three techniques. In Section 4,
we develop our addressing algorithm. We examine the prop-
erties of RS6 in Section 5, and compare the performance of RS6
with that of existing solutions in Section 6. Finally, we con-
clude this paper in Section 7.

2 RELATED WORK

Efforts concentratingonRAIDscaling approaches aredivided
into two categories, i.e., optimizing the process of datamigra-
tion and reducing the number of data blocks to be moved.

2.1 Optimizing Data Migration for RAID Scaling
The conventional approaches to RAID scaling preserve the
round-robin order after adding disks. All data blocks are
migrated in the scaling process. Brown [24] designed a re-
shape toolkit in the Linux kernel (MD-Reshape), whichwrites
mapping metadata with a fixed-size data window. User
requests to the window have to queue up until all data blocks
within the window are moved. Therefore, the window size
cannot be too large. Metadata updates are quite frequent.
Gonzalez and Cortes [22] proposed a gradual assimilation
approach (GA) to control the speed of RAID-5 scaling.

The MDM method [23] eliminates the parity modification
cost of RAID-5 scaling by exchanging some data blocks
between original disks and new disks. However, it does not
guarantee an even data and parity distribution. Also, it does
not increase (just maintains) the data storage efficiency after
adding more disks.

A patent [29] presents a method to eliminate the need to
rewrite the original data blocks and parity blocks on original
disks. However, the obvious uneven distribution of parity
blocks will bring a penalty to write performance.

Franklin et al. [30] proposed to use spare disks to provide
immediate access to new space. During data redistribution,
new data are mapped to spare disks. Upon completion of the
redistribution, new data are copied to the set of data disk
drives. Similar to WorkOut [31], this kind of method requires
spare disks to be available.

Zhang et al. [25], [26] discovered that there is always a
reordering window during data redistribution for round-
robin RAID scaling. By leveraging this insight, they proposed
the ALV approach to improving the efficiency of RAID-5
scaling.However, ALV still suffers from large datamigration.

2.2 Reducing Data Migration for RAID Scaling
With the development of object-based storage, randomized
RAID [21], [32]–[34] reduce data migration while delivering a
uniform load distribution. The cut-and-paste placement strat-
egy [34] uses randomized allocation strategy to place data
across disks. Seo and Zimmermann [35] proposed an ap-
proach to finding a sequence of disk additions and removals
for the disk replacement problem. The goal is to minimize the
data migration cost. The SCADDAR algorithm [21] uses a
pseudo-random function to minimize the amount of data to
be moved. RUSH [36], [37] and CRUSH [38] are two algo-
rithms for online placement and reorganization of replicated
data. The Random Slicing strategy [39] keeps a small table
with information about previous insert and remove opera-
tions to reduce the required amount of randomness. These
randomized strategies are designed for object-based storage
systems. They only provide mapping from logical addresses
to a set of storage devices, while the data placement on a
storage device is resolved by additional software running on
the device itself.

The HP AutoRAID [40] allows an online capacity expan-
sionwithout requiringdatamigration.Newly createdRAID-5

ZHANG ET AL.: ACCELERATE RDP RAID-6 SCALING BY REDUCING DISK I/Os AND XOR OPERATIONS 33

volumesuse all the disks in the system, but previously created
RAID-5 volumes continue to use only the original disks.

To reduce data migration, the semi-RR algorithm [21]
modifies the round-robin scheme, and requires a blockmove-
ment only if the target disk number is one of new disks. Semi-
RR reduces data migration significantly. Unfortunately, it
does not guarantee uniform distribution of data blocks after
subsequent scaling operations. This will deteriorate the initial
equally distributed load.

The GSR approach [41] to RAID-5 scaling divides data on
the original array into two consecutive sections. It moves the
second section of data onto the new disks, while keeping the
first section of data unmoved. In this way, GSR minimizes
data migration and parity modification. The main limitation
of GSR is the performance of RAID systems after scaling.
Especially, there is a large performance penalty when the
workload exhibits a strong locality in its access pattern.

The SDM scheme [42] increases the size of the row parity
set, while keeping the size of the diagonal parity set un-
changed. It provides uniform data distribution and minimal
data migration. Unfortunately, SDM can be used in RAID-6
scaling for one time, rather than for multiple times. Further-
more, a RAID-6 array scaled using SDM is unable to be
reconstructed after the loss of any two disks of the array.

Zheng and Zhang [27] proposed the FastScale approach to
RAID-0 scaling. FastScale minimizes data migration while
maintaining a uniform data distribution. FastScale provides a
good starting point for RAID-6 scaling. However, RAID-6
scaling is more challenging, as discussed in Section 1.2.

3 HOW RS6 PERFORMS RAID SCALING

RS6 accelerates RAID-6 scaling with three techniques, i.e.,
minimizing data migration, piggyback parity updates, and
selecting migration parameters. The first technique improves
the migration efficiency of regular data. The three techniques
reduce the overhead of parity updates during RAID scaling
together. To better understand how RS6 works, we first give
an overview of the data migration process.

3.1 System Architecture and Procedure Overview
Fig. 1 demonstrates the architecture of a typical disk array. A
disk array is made up of a disk array controller, some hard
disks, and a memory buffer. The memory buffer caches data
and layout metadata for higher performance. The array con-
troller consists of four modules: an address mapper, a parity
calculator, a data re-organizer, and an access monitor. The
address mapper, according to the layout metadata, forwards
incoming I/O requests to the corresponding disks. The parity
calculator performs XOR calculations when writing data,
recovering data, or migrating data. The data re-organizer
moves the data on the array. The access monitor keeps track
of the popularity of data on the harddisk array.Adisk array is
connected to a storage server over a host channel.

Before scaling, only the disks in the original disk set serve
I/O requests from the storage server. When the storage
capacity is almost exhausted or the I/O bandwidth is unable
to meet the performance requirement, new disks will be
added to the RAID-6 array. First of all, the data re-organizer
selects the best combination of two migration parameters to
minimize the cost of parity updates. One of the two para-
meters determines two disks between which new disks are
inserted. The other parameter determines which data will be
moved. See Section 3.4 for more details.

Then, data redistribution is performed by the following
four steps. First, the data re-organizer reads data from the
original disks into user data buffer. Second, the parity calcu-
lator generates a new parity block according to the data in the
data buffer. Third, the data re-organizer writes data and the
newparity intonew locations simultaneously, andwrites zero
to original locations of moved data. Fourth, the data re-
organizermodifies the layoutmetadata in thememory buffer.
The layout metadata will be synchronized onto disks when
necessary.

Once an I/O request from a storage server arrives, the
address mapper forwards this request to the corresponding
disk according to the layout metadata. In this way, RAID-6
scaling can be performed without stopping foreground
applications.

Fig. 1. The disk array architecture. The new disk set has larger I/O parallelism than the original disk set.

34 IEEE TRANSACTIONS ON COMPUTERS, VOL. 64, NO. 1, JANUARY 2015

Asmore andmore data blocks aremoved to newdisks, the
newly added disks are gradually available to serve user
requests. When data redistribution is completed, a balanced
load distribution among all the disks is obtained.

3.2 Minimizing Data Migration
During RAID-6 scaling, RS6 moves a fraction of existing data
blocks from original disks to new disks. The goal is that data
migration is minimal while data distribution across all the
disks is uniform. RAID-6 scaling is over when data migration
is finished. After that, newly added capacity is available, and
new data can be filled into the RAID-6 gradually. This sub-
section focuses on an overview of how RS6 minimizes data
migration for RAID-6 scaling. For more details on data
migration and data filling, see the description in Sections
4.2 and 4.3.

To understand how the RS6 approach works, and how it
minimizes data migration while maintaining uniform data
distribution across all the disks, we take the th RAID scaling
operation from disks to as an example. We
suppose each disk consists of data blocks. Before this scaling
operation, there are data blocks stored on data
disks. The blocks on the two parity disks will keep unmoved.

Suppose that newly added disks are inserted after Disk 2
according to the result of selecting the best migration para-
meters. We let denote the least common multiple of
and . Each consecutive locations in a data disk are
grouped into a segment. For the data disks, segments
with the same physical address are grouped into one region.
Locations on all disks with the same block number form a row
or a row stripe. For different regions, the ways for data
migration and data filling are completely identical. Therefore,
we will focus on one region.

In one region, as shown in Fig. 2, there are small
stripe sets before scaling,while there are large stripe sets
after scaling. Before datamigration, RS6 introduces a normal-
izing operation to shuffle rows, which helps to reduce the cost
of parity updates. The first small stripe sets keep
unmoved. The remaining rows are divided into shares
evenly,which aremovedbehind small stripe sets in turn. Take

Fig. 2 as an example. Rows 8 and 9 are put behind the first
small stripe set. Rows 10 and 11 are put behind the second
small stripe set. Thus, thefirst large stripe set includes Rows 0,
1, 2, 3, 8, and 9. It should be noted that the normalization of the
logical view does not result in any data migration.

After being normalized, different large stripe sets have the
same way for data migration and data filling. Therefore, we
will focus on one large stripe set. In a large stripe set, as shown
in Fig. 3, all data blockswithin a parallelogramwill bemoved.
Such a parallelogram is termed a moving parallelogram. The
base of amoving parallelogram is , and the height is

. To restrict the moving parallelogram within the data
disks, the disk number of each data block within the moving
parallelogram is modulared by . Fig. 3 depicts the moving
trace of eachmigrating block. For onemovingdata block, only
its disk number is changed while its physical block number is
unchanged. The source locations of moving data are the
intersection of the moving parallelogram and original disks.
The target locations of moving data are on new disks and
outside the moving parallelogram.

After data migration, in a large stripe set, only the moving
parallelogram is empty. The intersection of the moving
parallelogram and each disk has data blocks.
Therefore, each data disk, either old or new, has data
blocks. That is to say, RS6 regains a uniformdata distribution.
In a large stripe set, the total number of data blocks to be
moved is the area of the intersection of the moving parallelo-
gram and original disks, i.e., . This reaches
the minimal number of moved blocks in each large stripe set,
i.e., . We
can claim that the RAID scaling using RS6 minimizes data
migrationwhilemaintaining uniformdata distribution across
all data disks.

After data migration, RS6 maintains consistent row and
diagonal parities for data in a large stripe set. Hence, an array
scaled using RS6 is able to tolerate two simultaneous disk
failures. After RAID-6 scaling, new data can be filled gradu-
ally. new data blocks are placed into each row
consecutively. These new blocks are distributed in a round-
robin order. More details about data filling are given in
Section 4.3.

3.3 Piggyback and Aggregated Parity Updates
RDP RAID-6 arrays can protect against double disk failures
bymaintainingdual parity information. RS6moves a block by
cutting it and pasting it into another location within the same
row stripe. Thismigrating operation does not change the total
content of a row stripe, and therefore does not require updat-
ing a row parity.

Fig. 2. RS6’s normalizing operation during RAID-6 scaling from 6 disks to
8. Here, , , so we have , which is the least common
multiple of 4 and 6. One region consists of 12 rows.

Fig. 3. RS6’s data migration during RAID-6 scaling from 6 disks to 8.

ZHANG ET AL.: ACCELERATE RDP RAID-6 SCALING BY REDUCING DISK I/Os AND XOR OPERATIONS 35

RS6 changes the total contents of a diagonal stripe, and
therefore requires updating a diagonal parity. The moving
scheme of RS6 reduces the cost of diagonal parity updates
significantly. Take Fig. 3 as an example. After RAID scaling,
we have . Here, de-
notes data block , which is noted by in the figure. Before
RAID scaling,we have . So,we have

. In this manner, to calculate that is
the XOR sum of six blocks, only two XOR operations are
required.

RS6 also piggybacks parity updates during datamigration
to reduce the number of additional disk I/Os. Let us continue
the above example. Since and need to be moved, they
will be in the memory buffer and available for computing
parity. As a result, to maintain a consistent diagonal parity,

, only a parity read and a parity write are added. In
addition, all these three reads from , , and , are on
three disks, and therefore can be done in parallel. Similarly,
the three writes to , , and , can also be done in
parallel. This parallelismwill further reduce the cost of parity
updates.

Since disk I/O performsmuch better with large sequential
access, RS6 writes multiple successive diagonal parity blocks
via a single I/O if possible. For example, as shown in Fig. 3,
only two I/Os, instead of six I/Os, are required to write all
diagonal parity blocks in a large stripe set. The first I/O is
responsible for writing diagonal parity blocks , , , and

. The second I/O is responsible for writing diagonal parity
blocks , and . It is worthwhile to mention that if they are
only logically in sequential order, the benefits of writing all of
them in one operation is less than if the blocks are actually
physically adjacent.

3.4 Selecting Migration Parameters
There are two factors in the RS6moving scheme that affect the
I/Ocost of diagonal parityupdates.One is todecide twodisks
between which new disks are inserted. The other is to decide
which data are to be moved. Before one RAID-6 scaling
operation, RS6 selects the best migration parameters to mini-
mize the number of disk I/Os for updating diagonal parities.

For different large stripe sets, the ways for updating
diagonal parities are completely identical. Therefore, we will
focus on one large stripe set. Without loss of generality, we
assume that this scaling operation is from data disks to

data disks. We let denote the location of the first
new disk in a large stripe set. Let denote the distance
between the upper-left vertex of the moving parallelogram
and the upper-right vertex of all the data blocks in the large
stripe set. Take Fig. 3 as an example, we have and

.
As shown in Fig. 4, RS6 traverses all possible values of

and . For each combination of them, it calculates the
number of data reads for updating diagonal parities using
the getCost function. Then, RS6 selects the best combination of

and with the minimal cost.
For given and , the getCost function is used to

calculate the number of data reads for updating diagonal
parities in a large parity set. There are usually two alternative
methods to compute the new diagonal parity, namely, recon-
struction-write and read-modify-write. The main difference

between the two methods lies in the data blocks that must be
pre-read for the computation of the new parity blocks [43].

As shown in Fig. 5, denotes the set of those blocks
protected by diagonal parity before scaling (line 2).
denotes the set of those blocks protected bydiagonal parity
after scaling (line 5). denotes the set of data blocksmoved in
this scaling operation (line 3).With piggyback parity updates,

Fig. 4. The FindBestParam algorithm used in RS6.

Fig. 5. The getCost function used in the FindBestParam algorithm.

36 IEEE TRANSACTIONS ON COMPUTERS, VOL. 64, NO. 1, JANUARY 2015

the reconstruction-write method reads blocks in the set .
denotes the intersection of and . The read-modify-write
method reads parity block and blocks in the set

. Therefore, the reconstruction-write
method reads blocks,while the read-modify-writemethod
reads blocks.

RS6 chooses oneof the twomethods for thefirst diagonal
stripe to minimize the number of pre-read operations. If
we have < (i.e., <), the
read-modify-write method is used (line 11). Otherwise, the
reconstruction-write method is used (line 13). For the last
diagonal stripe, only the reconstruction-write method is used
(line 15). Finally, the number of disk I/Os for updating all
diagonal parities in a large stripe set is returned.

Because the best parameters will not change dynamically,
the FindBestParam function is executed only once at the
beginning of a scaling operation. The result is saved and can
be useddirectly in the process of RAID scaling. Therefore, RS6
selects the best migration parameters without bringing any
additional overhead into RAID scaling.

4 HOW RS6 PERFORMS DATA ADDRESSING

In this section, we describe howRS6maps a logical address to
the corresponding physical address in a RAID-6 system.

4.1 The Addressing Algorithm
Fig. 6 shows the Addressing algorithm to minimize data
migration required by RAID scaling. A two-dimensional
array is used to record the history of RAID scaling.

is the initial number of data disks in the RAID. After
the th scaling operation, the RAID consists of data
disks. and are the corresponding migration
parameters, and , for the th scaling operation.

First, the Addressing algorithm uses the x2b function
(shown in Fig. 7) to get the physical block number for logical
block . This physical block number will not change after any
number of scaling operations, because RS6 only moves data
blocks within the same row stripe. Second, it calculates
logical row numbers according to the physical block number
and saves them in an array, , with the Normalizing function
(shown in Fig. 8). is the row number in a logical view

during the th scaling. Finally, it uses theMapping function to
calculate the disk number for a logical block number, .

The x2b function. After the th scaling operation,
locations are available for new data

blocks. First, the x2b function determines the number of
scaling times after which the data block, , is added. Then,
it gets the physical block number easily.

TheNormalizing function. Before datamigration, RS6 uses
the Normalizing function to construct a logical view by shuf-
fling rows, which helps to reduce the cost of diagonal parity
updates. It should be noted that the normalization of the
logical view does not result in any data migration. When a

Fig. 6. The Addressing algorithm used in RS6.

Fig. 7. The x2b function used in the Addressing algorithm.

Fig. 8. The normalizing procedure used in the Addressing algorithm.

ZHANG ET AL.: ACCELERATE RDP RAID-6 SCALING BY REDUCING DISK I/Os AND XOR OPERATIONS 37

RAID is constructed from scratch (i.e.,), the logical row
number is just the physical block number (lines 1–2). Let us
examine the th (>) scaling, where disks are added into a
RAID made up of disks (lines 4–5).

RS6 calculates its logical row number, , for the
th scaling (line 6). We let denote the least common

multiple of and (line 7). Each consecutive rows are
grouped into a region. For different regions, the ways for row
shuffling are completely identical. There are large
stripe sets after scaling. There are small stripe sets before
scaling. The first small stripe sets keep unmoved.
The left rows are divided into shares evenly,which
are moved behind small stripe sets in turn.

In the logical view for the th scaling, physical row is
logical row (line 9) in region (line 8). It is in small stripe set

before this scaling (line 10). If is one of thefirst
small stripe sets (line 11), there are regions and large stripe
sets in front of logical row (line 12). Otherwise, row is in
share (line 15). There are regions, large stripe sets, and
one small stripe set in front of logical row (line 16).

The Mapping function. Finally, let us see the Mapping
function. When a RAID is constructed from scratch (i.e.,

), it is actually a round-robin RDP RAID-6 array. The
disk number of block can be calculated via one modular
operation (line 3).

Let us examine the th (>) scaling, where disks are
added into a RAID made up of disks (lines 4–5).

Case 1. If block is an original block (line 8), RS6 calculates
its original disk number, , before the th scaling (line 9). Ifwe
have , RS6 adds by due to the addition of new
disks (line 11).

If data block needs to be moved (line 19), RS6 changes
the disk ordinal number via theMoving function (line 20).
If data block does not need to be moved (line 21), RS6
keeps the disk number unchanged (line 22).

Case 2. If block is a new block (line 23), RS6 determines
which disk places it on via the Placing function (line 24).

4.2 Moving Old Data
The code of lines 12–19 in Fig. 9 is used to decidewhether data
block will be moved during a RAID scaling. As shown in
Fig. 3, there is amoving parallelogram in each large stripe set.
The base of the parallelogram is , and the height is . If
and only if a data block is within themoving parallelogram, it
will be moved. In the logical view after being normalized, the
row number of block in a large stripe set is (line 12). One
parallelogrammapped to row is a line segment, whose two
end points are and (lines 13–14). If is within the line
segment, block is within the moving parallelogram, and
therefore it will be moved (line 19).

Once a data block is determined to bemoved, RS6 changes
its disk number with theMoving function given in Fig. 10. As
shown in Fig. 11, the intersection of a moving parallelogram
and original disks is divided into four parts: the upper trian-
gle, the lower triangle, the upper parallelogram, and the lower
parallelogram. How a data block moves depends on which
part it lies in. Nomatter which is bigger between and , the
upper triangle and the lower triangle keep their shapes
unchanged. The upper triangle will be moved to the left by
disks (lines 9, 21), while the lower triangle will be moved to

the right by disks (lines 11, 23). However, the two paralle-
lograms are sensitive to the relationship between and .
They are twisted from parallelograms to rectangles when

(line 12), and from rectangles to parallelograms when
< (line 24). RS6 keeps the relative locations of all data

blocks in the same row. After data migration, the whole
moving parallelogram becomes empty, while any location in
the other part has a data block.

4.3 Placing New Data
When block is at a location newly added after the last
scaling, it is addressed via thePlacing function given in Fig. 12.
If block is a new block, it is the th new block (line 1). In the
logical view after being normalized, the row number of block
is (line 2). In row stripe , the first new block is on disk

(line 3). Let us go backward to line 13 in Fig. 9. is one of two
end points of a line segment that a moving parallelogram
ismapped to row . Block is the th newdata block in stripe

(line 4). Therefore, the disk number of block is
(line 5). The order of placing new blocks

is shown in Fig. 13.

Fig. 9. The Mapping function used in the Addressing algorithm.

38 IEEE TRANSACTIONS ON COMPUTERS, VOL. 64, NO. 1, JANUARY 2015

4.4 Remarks about the Addressing Algorithm
The addressing algorithm of RS6 is very simple and elegant.
For instance, the Addressing algorithm requires fewer than 50
lines of C code. This reduces the likelihood that a bug will
cause a data block to be mapped to a wrong location.

When a disk array boots, the RAID topology needs to be
obtained from disks. The RS6 algorithm depends on how
many disks are added during each scaling operation. If a
RAID-6 array is scaled for times, RS6 needs to store
integers (,) on stable storage. and

() can be calculated when the array is loaded.

5 THEORETICAL PROOFS OF PROPERTIES

For a RAID-6 scaling operation, it is desirable to ensure an
even load distribution on all data disks and minimal block
movement. Furthermore, since the location of a block may be
changed during a scaling operation, another objective is
to quickly compute the current location of a block. In this
section, we formally prove that RS6 satisfies all the three
requirements.

Theorem 5.1. RS6 maintains a uniform data distribution after
each RAID scaling.

Proof Sketch. Assume that there are old data disks and
new data disks during a RAID scaling. In the

logical viewafter beingnormalized, thewholedata space is
divided into multiple regions with the same size. For
different regions, the ways for data migration and data
filling are completely identical. One region is divided into
multiple large stripe sets with the size of locations.
After being normalized, different large stripe sets have the
same way for data migration and data filling. Therefore, it
suffices to show that RS6 maintains a uniform data
distribution in each large stripe set after this RAID scaling.

Before this RAID scaling, there are data blocks on
each of the old data disks. As shown in Fig. 11, the
intersection of themoving parallelogramand eachdisk has

data blocks. Therefore, each old data disk has
data blocks after this scaling.

Fig. 11. The variation of data layout involved in migration. is moved onto the location of . is moved onto the location of . When , is
twisted to a rectangle and moved onto the location of ; is twisted to a rectangle and moved onto the location of . When < , is twisted to a
parallelogram and moved onto the location of ; is twisted to a parallelogram and moved onto the location of .

Fig. 10. The Moving function used in the Mapping function.

ZHANG ET AL.: ACCELERATE RDP RAID-6 SCALING BY REDUCING DISK I/Os AND XOR OPERATIONS 39

According to theRS6moving scheme, nodatablocks are
moved onto the moving parallelogram. So, each new disk
holds at most data blocks after
this scaling. All new disks can hold at most

data blocks. Since each old disk contributes
blocks to the newdisks, data

blocks are put onto new disks. Consequently, any location
on new disks outsides the moving parallelogram holds
a data block. Therefore, each new data disk has

data blocks after this scaling.
Each disk, either old or new, has data blocks. That
is to say, RS6 regains a uniform data distribution. ◽

Theorem 5.2. RS6 performs the minimum number of data
migration during each RAID scaling.

Proof Sketch. Assume that there are old data disks and
new data disks during a RAID scaling. Again, it

suffices to show that RS6 performs the minimum number
of data migration in each large stripe set during this RAID
scaling.

To maintain a uniform data distribution, the mini-
mum number of blocks to be moved is

,where each olddatadisk has data blocks.
For one large stripe set, each old disk has data blocks.
Therefore, theminimumnumber of blocks to bemoved for
one large stripe set is

.
As shown in Fig. 11, the intersection of the moving

parallelogram and each disk has data blocks. In
other words, each old disk contributes blocks to
the new disks. In total, data blocks are
moved onto new disks, which is exactly the minimum
number of blocks to be moved. ◽

Theorem 5.3. The Addressing algorithm of RS6 has time
complexity after RAID scalings.

Proof Sketch. Let denote the time complexity of the
Addressing algorithm. Let , , and denote the
time complexities of the x2b, Normalizing, and Mapping

functions, respectively. Then, we have
.

For the x2b function, we have , for all ,
where and are some two constants. SinceNormalizing
is a recursive algorithm, we can represent by using a
recurrence relation. First, it is clear that for some
constant . Next, we have , for all

, where is some constant. Solving the above recur-
rence relation, we get .

Since Mapping is a recursive algorithm, we can repre-
sent byusing a recurrence relation. First, it is clear that

for some constant . Next, we notice that both
theMoving function and thePlacing function take constant
time. Thus, we have , for all ,
where is some constant. Solving the above recurrence
relation, we get .

In summary, we have
. ◽

6 EXPERIMENTAL EVALUATION

This section mainly presents results of a comprehensive
experimental evaluation comparing RS6 with existing solu-
tions. We first demonstrate the importance of RS6’s selecting
the best migration parameters. Then, we examine the proper-
ties of RS6—uniform data distribution, minimal data migra-
tion, and fast data addressing. Finally, we analyze their
performance in the redistribution time, and explain the reason
behind their difference.

6.1 Evaluation Methodology
To examine the importance of RS6’s selecting the best migra-
tion parameters, we traverse all combinations of and

for a RAID-6 scaling operation, and calculate the corre-
sponding numbers of data reads and XOR operations dedi-
cated for parity updates. The larger the differences among the
numbers of data reads (or XOR operations) with different
parameters are, themore important the selection ofmigration
parameters is.

To quantitatively characterize the properties of RS6, we
compare RS6 with the round-robin algorithm [22], [24], [25]
and the Semi-RR algorithm [21] via simulation experiments.
ALV [26], MDM [23] and FastScale [27] cannot be used in
RAID-6, so they are not compared.AnRDParray is definedby
a controlling parameter , which must be a prime number
greater than 2 [3]. From a 6-disk RDP RAID-6 array, we add
two, four, two, four, two disks in turn using the three algo-
rithms respectively. Each disk has a capacity of 128 GB, and

Fig. 12. The Placing function used in the Mapping function.

Fig. 13. The layout of new data blocks.

40 IEEE TRANSACTIONS ON COMPUTERS, VOL. 64, NO. 1, JANUARY 2015

the size of a data block is 64 KB. In other words, each disk
holds blocks.

Finally, to compare their performance in the redistribution
time, we calculate total numbers of disk I/Os and XOR
operations during the above five scaling operations, and
further get the corresponding redistribution time during an
off-line scaling.

6.2 Best Migration Parameters
In this section, we examine the importance of RS6’s selecting
the best migration parameters. For this purpose, we inspect
the RAID-6 scaling operation from four data disks to six data
disks. We traverse all combinations of and , and
calculate the corresponding numbers of data reads dedicated
for parity updates. The numbers of data reads for parity
updates with different parameters are compared in Table 1.
We can see that the numbers of data reads in the 30 cases are
significantly different. The maximum is 21, while the mini-
mum is only 8.

We also traverse all combinations of and , and
calculate the corresponding numbers of XOR operations
dedicated for parity updates. The numbers of XORoperations
for parity updates with different parameters are listed in
Table 2. Similarly, the numbers of XOR operations in the 30
cases are significantly different. Themaximum is 23,while the
minimum is only 7.

We can safely claim that the numbers of data reads or XOR
operations dedicated for parity updates change obviously
with different parameters. RS6 selects the best migration
parameters according to the number of disk I/Os for updating
diagonal parities. For the above example, RS6 will select
() as the best migration parameters since 8
is the minimal number of data reads.

The number of XOR operations is not considered as a
selecting metric for two reasons. First, there is a linear rela-
tionship between the number of data reads and the number of

XOR operations, if the impact of piggyback parity updates is
not taken into account. Second, the time for performing aXOR
operation on two data blocks is usually a few microseconds,
which is negligible compared tomillisecondsof disk I/O time.

6.3 Uniform Data Distribution
Weuse the coefficient of variation of the numbers of blocks on
different disks as a metric to evaluate the uniformity of data
distribution across all the data disks. The coefficient of varia-
tion expresses the standard deviation as a percentage of the
average. The smaller the coefficient of variation is, the more
uniform the data distribution is.

Fig. 14 plots the coefficient of variation versus the number
of scaling operations. For the round-robin and RS6 algo-
rithms, both the coefficients of variation remain 0 percent as
the times of disk additions increases. Conversely, the semi-RR
algorithm causes excessive oscillation in the coefficient of
variation. The maximum is even 12.5 percent. This indicates
that RS6 maintains a uniform data distribution after each
RAID scaling, while Semi-RR fails to do so.

6.4 Minimal Data Migration
Fig. 15 plots the migration fraction (i.e., the fraction of data
blocks to be migrated) versus the number of scaling opera-
tions.Using the round-robin algorithm, themigration fraction
is constantly 100%. Thiswill bring a very largemigration cost.

TABLE 1
The Numbers of Data Reads for Parity Updates with Different

Parameters

The maximum is 21 while the minimum is only 8.

TABLE 2
The Numbers of Data XOR Operations for Parity

Updates with Different Parameters

The maximum is 23 while the minimum is only 7.

Fig. 14. Comparison of uniformity of data distribution.

Fig. 15. Comparison of data migration ratio.

ZHANG ET AL.: ACCELERATE RDP RAID-6 SCALING BY REDUCING DISK I/Os AND XOR OPERATIONS 41

The migration fractions using the semi-RR algorithm and
using RS6 are identical. They are significantly smaller than
the migration fraction of using the round-robin algorithm.
Assume that there are old disks and newdisks
during a RAID scaling. To regain a uniform data distribution,
the minimal number of blocks to be moved is

, where each old data disk has data blocks.
Our numerical analysis indicates that the migration fractions
using semi-RR and using RS6 reach this lower bound. That is
to say, RS6 performs the minimum number of data migration
during each RAID scaling. Compared with the round-robin
algorithm, RS6 reduces the number of blocks to be moved by
60.0%–88.9%.

6.5 Fast Data Addressing
To quantitatively characterize the calculation overheads, we
run different algorithms to calculate physical addresses for all
datablocks ona scaledRAID.Thewhole addressingprocess is
timed and then the average addressing time for each block is
calculated. The testbed used in the experiment is an Intel Core
i5-2300 2.80 GHz machine with 4 GB of memory. A Ubuntu
12.04 x64 is installed.

Fig. 16 plots the addressing time versus the number of
scaling operations. The round-robin algorithm has a low

calculation overhead of or so. The calculation over-
heads using the semi-RR and RS6 algorithms both take on an
upward trend. This is because the addressing algorithms of
RS6 and Semi-RR have time complexity after RAID
scalings. Among the three algorithms, RS6 has the largest
overhead. Fortunately, the largest addressing time using RS6
is , which is negligible compared to milliseconds of
disk I/O time.

6.6 Total Scaling Time
To obtain total times of RAID-6 scaling operations using
different approaches, we calculate total numbers of I/O
operations and XOR operations. The total numbers of I/O
operations during scaling using the three approaches are
shown in Fig. 17. Compared with the round-robin approach,
RS6 reduces the number of disk I/Os by 40.24%–69.88%.

We also calculate the total number of XOR operations
under various cases as shown in Fig. 18. The round-robin
and Semi-RR approaches have similar computation cost. RS6
decreases 74.82%–82.50% computation cost compared with
other approaches.

The total scaling times in different cases are demonstrated
in Fig. 19. Compared with other approaches, RS6 performs
consistently better during each scaling, and decreases the
scaling time by 40.27%–69.88%.

Fig. 16. Comparison of addressing time.

Fig. 17. Comparison of the number of disk I/Os.

Fig. 18. Comparison of the number of XOR operations.

Fig. 19. Comparison of total scaling time.

42 IEEE TRANSACTIONS ON COMPUTERS, VOL. 64, NO. 1, JANUARY 2015

7 CONCLUSIONS AND FUTURE WORK

This paper presents RS6—a new approach to accelerating
RDP RAID-6 scaling by reducing disk I/Os and XOR opera-
tions. First, RS6 minimizes the number of data blocks to be
moved while maintaining a uniform data distribution across
all data disks. Second, RS6 piggybacks parity updates during
data migration to reduce the cost of maintaining consistent
parities. Third, RS6 selects parameters of data migration so as
to reduce disk I/Os for parity updates.

Some conclusions can be drawn from our simulation
experiments and numerical analysis. First, the numbers of
data reads or XOR operations dedicated for parity updates
change obviously with different parameters. RS6 is able to
choose the best migration parameters with the minimal
number of disk I/Os for updating parities. Second, RS6
minimizes data migration, while maintaining a uniform data
distribution. Third, although the time complexity of the RS6
addressing algorithm is with scaling operations, the
addressing time that is less than is acceptable. Finally,
compared with existing “moving-everything” Round-Robin
approach, RS6 can reduce the number of blocks to be moved
by 60.0%–88.9%, and saves the migration time by 40.27%–

69.88%.
RDP is a horizontal code, and RS6 does not handle RAID-6

scaling with vertical codes. We believe that RS6 provides a
good starting point for efficient scaling of RAID-6 arrays
based on vertical codes. In the future, we will focus on the
problem of RAID-6 scaling with vertical codes.

ACKNOWLEDGMENTS

This work was supported in part by the National Natural
Science Foundation of China under Grant 60903183, Grant
61170008, and Grant 61272055, in part by the National Grand
Fundamental Research 973 Program of China under Grant
2014CB340402, and in part by the National High Technology
Research and Development Program of China under Grant
2013AA01A210.

REFERENCES

[1] D. A. Patterson, G. A. Gibson, andR.H. Katz, “A case for redundant
arrays of inexpensive disks (RAID),” in Proc. Special Interest Group
Manage. Data Conf. (SIGMOD), 1988, pp. 109–116.

[2] P. Chen et al., “RAID: High-performance, reliable secondary stor-
age,” ACM Comput. Surveys, vol. 26, no. 2, pp. 145–185, Jun. 1994.

[3] P. Corbett, B. English, A. Goel, T. Grcanac, S. Kleiman, J. Leong, and
S. Sankar, “Row-diagonal parity for double disk failure correction,”
in Proc. 3rd USENIX Conf. File Storage Technol. (FAST’04), Feb. 2004,
pp. 1–14.

[4] E. Pinheiro,W.Weber, and L. Barroso, “Failure trends in a large disk
drive population,” in Proc. 5th USENIX Conf. File Storage Technol.
(FAST’07), Feb. 2007, pp. 17–29.

[5] B. Schroeder and G. Gibson, “Disk failures in the real world: What
does anMTTFof 1,000,000 hoursmean to you?” inProc. 5thUSENIX
Conf. File Storage Technol. (FAST’07), Feb 2007, pp. 1–16.

[6] K. Hwang, H. Jin, and R. Ho, “RAID-x: A new distributed disk
array for I/O-centric cluster computing,” in Proc. 9th Int. Symp.
High-Perform. Distrib. Comput. (HPDC’00), Aug. 2000, pp. 279–286.

[7] Y. Saito et al., “FAB: Buildingdistributed enterprise disk arrays from
commodity components,” in Proc. Int. Conf. Archit. Support Program.
Languages Oper. Syst. (ASPLOS’04), Oct. 2004, pp. 48–58.

[8] J. Edwards, D. Ellard, C. Everhart, R. Fair, E. Hamilton, A. Kahn, A.
Kanevsky, J. Lentini, A. Prakash, K. Smith, and E. Zayas, “Flexvol:
flexible, efficient file volume virtualization in WAFL,” in Proc.
USENIX Annu. Tech. Conf., Berkeley, CA, USA, 2008, pp. 129–142.

[9] X. Yu et al., “Trading capacity for performance in a disk array,” in
Proc. 4th Conf. Symp. Oper. Syst. Design Implementation (OSDI’00),
Oct. 2000, pp. 243–258.

[10] S. Ghandeharizadeh and D. Kim, “On-line reorganization of data in
scalable continuous media servers,” in Proc. 7th Int. Conf. Database
Expert Syst. Appl., Sep. 1996, pp. 755–768.

[11] D.A.Patterson,“Asimpleway to estimate the cost ofdown-time,” in
Proc. 16th Large Installation Syst. Admin. Conf. (LISA’02), Oct. 2002,
pp. 185–188.

[12] C. Jin et al., “P-code: A new RAID-6 code with optimal properties,”
in Proc. 23rd Int. Conf. Supercomput. (ICS’09), 2009, pp. 360–369.

[13] M. Blaum et al., “EVENODD: An efficient scheme for tolerating
double disk failures in RAID architectures,” IEEE Trans. Comput.,
vol. 44, no. 2, pp. 192–202, Feb. 1995.

[14] M. BlaumandR. Roth, “On lowest densityMDS codes,” IEEE Trans.
Inf. Theory, vol. 45, no. 1, pp. 46–59, Jan. 1999.

[15] J. Plank, “The RAID-6 liberation codes,” in Proc. File Storage Technol.
(FAST’08), 2008, pp. 97–110.

[16] Y. Cassuto and J. Bruck, “Cyclic lowest density MDS array codes,”
IEEE Trans. Inf. Theory, vol. 55, no. 4, pp. 1721–1729, Apr. 2009.

[17] C. Wu et al., “H-code: A hybrid MDS array code to optimize partial
stripe writes in RAID-6,” in Proc IEEE Int. Parallel Distrib. Process.
Symp. (IPDPS’11), 2011, pp. 782–793.

[18] C. Wu et al., “HDP code: A horizontal-diagonal parity code to
optimize I/O load balancing in RAID-6,” in Proc. IEEE/IFIP 41st
Int. Conf. Dependable Syst. Netw. (DSN’11), 2011, pp. 209–220.

[19] L. Xu and J. Bruck, “X-code: MDS array codes with optimal encod-
ing,” IEEE Trans. Inf. Theory, vol. 45, no. 1, pp. 272–276, Jan. 1999.

[20] L. Xu et al., “Low-densityMDS codes and factors of complete graphs,”
IEEE Trans. Inf. Theory, vol. 45, no. 6, pp. 1817–1826, Sep. 1999.

[21] A. Goel, C. Shahabi, S.-Y. Yao, and R. Zimmermann, “SCADDAR:
An efficient randomized technique to reorganize continuous
media blocks,” in Proc. 18th Int. Conf. Data Eng. (ICDE’02), 2002,
pp. 473–482.

[22] J. Gonzalez and T. Cortes, “Increasing the capacity of RAID5 by
online gradual assimilation,” in Proc. Int. Workshop Storage Netw.
Archit. Parallel I/Os, Sep. 2004, pp. 17–24.

[23] S. R. Hetzler, “Data storage array scaling method and system with
minimal data movement,” US Patent 20080276057, Jun. 2008.

[24] N. Brown. (2010, Feb.) Online RAID-5 Resizing. Drivers/md/raid5.c in
the Source Code of Linux Kernel 2.6.32.9 [Online] Available: http://
www.kernel.org/.

[25] G. Zhang, J. Shu, W. Xue, and W. Zheng, “SLAS: An efficient
approach to scaling round-robin striped volumes,” ACM Trans.
Storage, vol. 3, no. 1, pp. 1–39, Mar. 2007, article 3.

[26] G. Zhang, W. Zheng, and J. Shu, “ALV: A new data redistribution
approach to RAID-5 Ssaling,” IEEE Trans. Comput., vol. 59, no. 3.
pp. 345–357, Mar. 2010.

[27] W. Zheng and G. Zhang, “FastScale: Accelerate RAID scaling by
minimizing data migration,” in Proc. 9th USENIX Conf. File Storage
Technol. (FAST’11), Feb. 2011, pp. 149–161.

[28] J. S. Plank, J. Luo, C. D. Schuman, L. Xu, and Z.Wilcox-O’Hearn, “A
performance evaluation and examination of open-source erasure
coding libraries for storage,” in Proc. 7th USENIX Conf. File Storage
Technol. (FAST’09), 2009, pp. 253–265.

[29] C. B. Legg, “Method of increasing the storage capacity of a level five
RAID disk array by adding, in a single step, a new parity block and
N–1 new data blocks which respectively reside in a new columns,
where N is at least two document type and number,” US Patent
6000010, Dec. 1999.

[30] C. R. Franklin and J. T. Wong, “Expansion of RAID subsystems
using spare space with immediate access to new space,” US Patent
10/033,997, 2006.

[31] S. Wu, H. Jiang, D. Feng, L. Tian, and B. Mao, “WorkOut: I/O
workload outsourcing for boosting the RAID reconstruction perfor-
mance,” in Proc. 7th USENIX Conf. File Storage Technol. (FAST’09),
Feb. 2009, pp. 239–252.

[32] J.Alemanyand J. S. Thathachar, “Randomstripingnewsondemand
servers,”Univ. ofWashington, Seattle,WA,USA, Tech. Rep. TR-97-
02-02, 1997.

[33] J. R. Santos, R. R. Muntz, and B. A. Ribeiro-Neto, “Comparing
random data allocation and data striping in multimedia servers,”
in Proc. Meas. Modeling Comput. Syst., 2000, pp. 44–55.

[34] A. Brinkmann, K. Salzwedel, and C. Scheideler, “Efficient, distrib-
uted data placement strategies for storage area networks (extended
abstract),” in Proc. ACM Symp. Parallel Algorithms Archit., 2000,
pp. 119–128.

ZHANG ET AL.: ACCELERATE RDP RAID-6 SCALING BY REDUCING DISK I/Os AND XOR OPERATIONS 43

[35] B. Seo and R. Zimmermann, “Efficient disk replacement and data
migration algorithms for large disk subsystems,” ACM Trans. Stor-
age J., vol. 1, no. 3, pp. 316–345, Aug. 2005.

[36] R. J.Honicky andE. L.Miller, “A fast algorithm for online placement
and reorganization of replicated data,” in Proc. 17th Int. Parallel
Distrib. Process. Symp. (IPDPS’03), Apr. 2003, pp. 1–10.

[37] R. J.HonickyandE.L.Miller,“Replicationunder scalablehashing:A
family of algorithms for scalable decentralized data distribution,” in
Proc. 18th Int. Parallel Distrib. Process. Symp. (IPDPS’04), Apr. 2004.
pp. 1–10.

[38] S. A. Weil, S. A. Brandt, E. L. Miller, and C. Maltzahn, “CRUSH:
Controlled, scalable, decentralized placement of replicated data,” in
Proc. Int. Conf. Supercomput. (SC), Nov. 2006. pp. 1–12.

[39] A. Miranda, S. Effert, Y. Kang, E. L. Miller, A. Brinkmann, and
T. Cortes, “Reliable and randomized data distribution strategies for
large scale storage systems,” in Proc. 18th Int. Conf. High Perform.
Comput. (HiPC’11), Dec. 2011.

[40] J.Wilkes, R. Golding, C. Staelin, and T. Sullivan, “TheHP autoRAID
hierarchical storage system,” ACM Trans. Comput. Syst., vol. 14,
no. 1, pp. 108–136, Feb. 1996.

[41] C. Wu and X. He, “GSR: A global stripe-based redistribution
approach to accelerate RAID-5 scaling,” in Proc. 41st Int. Conf.
Parallel Process. (ICPP’12), 2012, pp. 460–469.

[42] C.Wu, X. He, J. Han, H. Tan, and C. Xie, “SDM: A stripe-based data
migration scheme to improve the scalability of RAID-6,” in Proc.
IEEE Int. Conf. Cluster Comput. (CLUSTER’12), 2012, pp. 284–292.

[43] C. Jin, D. Feng, H. Jiang, L. Tian, J. Liu, and X. Ge, “TRIP: Temporal
redundancy integrated performance booster for parity-based RAID
storage systems,” in Proc. IEEE 16th Int. Conf. Parallel Distrib. Syst.
(ICPADS’10), 2010, pp. 205–212.

Guangyan Zhang received the bachelor’s and
master’s degrees in computer science from Jilin
University, China, in 2000 and 2003, respectively,
and the doctor’s degree in computer science and
technology from Tsinghua University, Beijing,
China, in 2008. He is now an associate professor
with the Department of Computer Science and
Technology, Tsinghua University. His current
research interests include big data computing,
network storage, and distributed systems.

Keqin Li received the BS degree in computer
science from Tsinghua University, China, in
1985, and PhD degree in computer science from
the University of Houston, Texas, in 1990. He is a
SUNY distinguished professor of computer sci-
ence in the State University of New York, New
Paltz. His research interests include design and
analysis of algorithms, parallel and distributed
computing, and computer networking.

Jingzhe Wang is now an undergraduate student
in the Department of Computer Science and
Technology at Tsinghua University, China. His
current research interest include network storage.

WeiminZheng received themaster’sdegree from
Tsinghua University, China, in 1982. He is a
professor with the Department of Computer Sci-
ence and Technology, Tsinghua University. His
research covers distributed computing, compiler
techniques, and network storage.

▽ For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

44 IEEE TRANSACTIONS ON COMPUTERS, VOL. 64, NO. 1, JANUARY 2015

