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Abstract—In RAID-5, data and parity blocks are distributed across all disks in a round-robin fashion. Previous approaches to RAID-5
scaling preserve such round-robin distribution, therefore requiring all the data to bemigrated. In this paper, we rethink RAID-5 data layout
and propose a new approach to RAID-5 scaling called MiPiL. First, MiPiL minimizes data migration while maintaining a uniform data
distribution, not only for regular data but also for parity data. It moves the minimum number of data blocks from old disks to new disks for
regaining a uniform data distribution. Second, MiPiL optimizes online data migration with piggyback parity updates and lazy metadata
updates. Piggyback parity updates during data migration reduce the numbers of additional XOR computations and disk I/Os. Lazy
metadata updates minimize the number of metadata writes without compromising data reliability. We implement MiPiL in Linux Kernel
2.6.32.9, andevaluate its performanceby replaying three real-system traces. The results demonstrate thatMiPiL consistently outperforms
the existing “moving-everything” approach by 74.07-77.57% in redistribution time and by 25.78-70.50% in user response time. The
experiments also illustrate that under the WebSearch2 and Financial1 workloads, the performance of the RAID-5 scaled using MiPiL is
almost identical to that of the round-robin RAID-5.

Index Terms—Data migration, disk array, metadata update, parity update, RAID-5 scaling

1 INTRODUCTION

VIA disk striping and rotated parity, RAID-5 [1], [2]
achieves high performance, large capacity, and data

reliability. As a result, it is widely used on servers. In recent
years, user data grow explosively and computing powers
enhance rapidly. Under this background, to increase the
capacity and I/O performance of a RAID-5 storage system,
scaling it up is a commonmethod. First, by addingmoredisks,
a RAID-5 volume provides larger storage capacity and higher
I/Operformance [3], [4]. This canmeet the increasing require-
ments on storage systems in various online applications [4],
while avoiding the extremely high downtime cost [5]. Second,
RAID-based architectures are also used for clusters and large-
scale storage systems,where scalability plays a significant role
[6]-[8]. Such disk addition is termed “RAID-5 scaling”.

Performing the process of RAID-5 scaling is a difficult
technical challenge for two reasons. First, to regain uniform
data distribution in all disks including old and new, a RAID-5
scaling requires certain blocks to be moved onto added disks.
In other words, RAID-5 scaling means restriping RAID-5
when new disks are added. Second, in today’s server envir-
onments, many applications access data constantly. The cost
of downtime is extremely high [5], giving rise to the necessity
of online and real-time scaling. Therefore, RAID-5 scaling

requires an efficient approach to redistributing the data online
with the following requirements. (1) Data redistribution
should be completed in a short period of time. (2) The impact
of data redistribution on application performance should not
be significant. (3) Data reliability should be guaranteed even if
the system crashes and/or one disk fails during the scaling
process.

Existing approaches to RAID-5 scaling [9]-[11] are restrict-
ed by preserving a round-robin data distribution after adding
disks. Therefore, 100 percent of data blocks need to be
migrated. Large data migration results in expensive cost of
a RAID-5 scaling. There are some efforts [9], [11] concentrat-
ing on optimization of data migration. They improve the
performance of RAID-5 scaling to certain extent, but do not
completely overcome the limitation of large data migration.

In this paper, we rethink RAID-5 data layout for better
scalability and propose a new approach to RAID-5 scaling
called MiPiL (Minimizing data migration, Piggyback parity
updates, and Lazy metadata updates). It accelerates RAID-5
scaling by minimizing data migration. MiPiL moves data
blocks from old disks to new disks for regaining a uniform
data distribution, while notmigrating data among old disks.
The migration fraction of MiPiL reaches the lower bound
of the migration fraction for RAID-5 scaling. We design
an elastic addressing function through which the location
of one block can be easily computed without any lookup
operation.

MiPiL has several unique features as follows.
MiPiLmaintains auniformdatadistribution afterRAID-5
scaling, not only for regular data but also for parity data.
MiPiL minimizes the amount of data to be migrated
during a scaling.
MiPiL preserves simple management of data due to
deterministic placement.
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MiPiL sustains the above three features after multiple
disk additions.

MiPiL also optimizes online data migration with piggy-
back parity updates and lazy metadata updates. Piggyback
parity updates during data migration reduce the numbers of
additional XOR computations and disk I/Os. Lazy metadata
updates minimize the number of metadata writes without
compromising data reliability. Here, metadata is used tomap
a logical address as seen by the host to a physical location
inside an array.

We implement MiPiL in the software RAID of Linux
Kernel 2.6.32.9. The benchmark studies on the three real-
system workloads (i.e., Financial1, TPC-C, and WebSearch2)
show thatMiPiLoutperforms the existing “move-everything”
approach by 74.07-77.57% in redistribution time and by
25.78-70.50% in user response time simultaneously. Our
experiments also illustrate that under the WebSearch2 and
Financial1 workloads, the performance of the RAID-5 scaled
using MiPiL is almost identical to that of the round-robin
RAID-5.

The rest of the paper is organized as follows. In Section 2,
we present the design of MiPiL, including the design objec-
tives, an illustration of howMiPiL works, and the addressing
algorithm. In Section 3, we describe the optimization techni-
ques of MiPiL, i.e., piggyback parity updates and lazy meta-
data updates. In Section 4, we give an implementation of
MiPiL in a Linux Kernel. In Section 5, we demonstrate experi-
mental results to show the performance ofMiPiL. In Section 6,
we review related research in the literature. We conclude the
paper in Section 7.

2 THE MIPIL APPROACH

We propose the MiPiL approach by rethinking RAID-5 data
layout for better scalability. MiPiL minimizes data migration
while maintaining a uniform data distribution, not only for
regular data but also for parity data.

2.1 Design Objectives
ForRAID-5 scaling, it is desirable to ensure an even load on all
the disks and to require minimal data migration. A parity
block and a regular data block sustain loads with different
access patterns. Therefore, not only should regular data be
distributed evenly, parity data should also be distributed
evenly. Since the location of a block may be changed during
a scaling operation, another objective is to quickly compute
the current location of a block.

Assume that the thRAID-5 scaling operation is performed
from disks to , and that each disk consists of data
blocks. The following four requirements should be satisfied
for RAID-5 scaling.

Requirement 1 (Uniform Data and Parity Distributions):
After this scaling operation, each one of the disks holds

data blocks and parity blocks.
Requirement 2 (Minimal Data Migration): During this
scaling operation, the expected number of blocks to be
moved is .
Requirement 3 (Fast Data Addressing): After this scaling
operation, the location of a block is computed by an
algorithm with low time and space complexities for
regular data and parity data.

Requirement 4 (Data Reliability during Scaling): Data are
not lost or corrupted if the system or one disk fails in the
middle of scaling.

2.2 Overview of How MiPiL Works
During a RAID-5 scaling, MiPiL moves a fraction of existing
data blocks from original disks to new disks. The goal is that
data migration is minimal, while data distribution across all
the disks is uniform. A RAID-5 scaling is over when data
migration is finished. After that, newly added capacity is
available, and new data can be filled into the RAID-5
gradually.

2.2.1 First Scaling Operation
To understand how the MiPiL approach works, we examine
the first RAID-5 scaling operation from disks to , where

< . As shown in Fig. 1, every consecutive locations in
one disk are grouped into one segment. segments with the
same physical address are grouped into one region. In Fig. 1,
different regions are separated by wavy lines.

Fig. 1. RAID-5 scaling from 3 disks to 5 using MiPiL.
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Before data migration, MiPiL introduces a normalizing
operation to shuffle rows and columns, which helps to align
parity blocks on the edge of migration parallelograms. This
normalizing operation includes two steps. First, the row
number is transformed by the equation ,
where is the original row number, and is the difference
between and the row number of the parity data in the
final column. After this step, the parity blocks in the last
columns are distributed in the minor diagonal. Second, the
first columns are transformed with regard to the row
number of the parity data in each column. Take Fig. 1 as an
example, parity blocks , , and are in Columns 0, 1, and
2 respectively before the column transformation. After the
column transformation, the three parity blocks are in Col-
umns 1, 2, and 0 respectively. After this step, the parity blocks
in thefirst columns aredistributed in theminor diagonal. It
should be noted that the normalization of the logical view
does not result in any data migration.

Afterwards, as far as a region is concerned, all the data
blocks within a parallelogram will be moved. The base of the
parallelogram is , and theheight is . In otherwords,

data blocks are selected from each old disk and
migrated to new disks. The blocks are consecutive
in the logical view. Fig. 1 depicts the moving trace of each
migrating block. For one moving data block, only its row
number is changed while its column number is unchanged.

After data migration, each disk, either old or new, has
regular data blocks and one parity block within one

region. This indicates that MiPiL regains a uniform data
distribution. The total number of data blocks to be moved is
the area of the moving parallelogram, i.e., .
This reaches the minimal number of moved blocks,

. We can claim
that theRAID-5 scalingusingMiPiL can satisfyRequirement 1
and Requirement 2.

MiPiL moves a block by reading it and writing it into
another location within the same stripe. This copying opera-
tion changes the total content of the stripe, and therefore
requires a parity update. Subsection 3.1 depicts how MiPiL
recomputes and updates the parity efficiently.

After a RAID-5 scaling, new data can be filled gradually.
As shown in the final state in Fig. 1, new data blocks
are placed into each stripe sequentially. These new blocks are
distributed in a round-robin order in the logical view (data
filling in Fig. 1). See the description of the Placing( ) procedure
in Subsection 2.3 for more details.

2.2.2 Successive Scaling Operations
From the last subsection, we conclude that MiPiL succeeds in
meeting the first two requirements for the first scaling opera-
tion. In that scenario, the initial state is the standard RAID-5
layout, where parity information is distributed across all the
old disks in a round-robin manner. For successive scaling
operations, howMiPiL constructs a logical viewwhere parity
data are distributed in a round-robin manner is a grand
challenge.

MiPiL uses two functions, and , to help con-
struct this logical view. denotes the ordinal number of
the disk holding the parity data in column . For example,
since Disk 2 holds the parity data for column 5, .

denotes the value for column when counting columns.
The counting order is sequential in the granularity of regions.
Within a region, counting is in the order of . The follow-
ing equation defines :

The following equation defines :

where , and gives the total number
of disks after the th scaling operation. Moreover, we have

, and . If , the parity
data ismoved; otherwise, the parity data keep unmoved. This
manner guarantees that the distribution of parity data is
uniform and the migration of parity data is minimal.

Fig. 2 shows howMiPiL maintains the round-robin layout
of parity data in the logical view after multiple scaling opera-
tions. For RAID-5 scaling from 3 disks to 4, only one parity

Fig. 2. MiPiL maintains the round-robin layout of parity data after multiple
scaling operations.
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block ismoved for each region. To construct adesirable logical
view, the four columns in each region are reorganized with
regard to the value of . We can see that parity data is
distributed in a round-robin manner.

Let us continue to examine a second scaling operation
“ ”. For region 0, parity data is moved from disk
0 to disk 4. However, the other four parity blocks in region 0
are notmoved. Likewise, only ismoved for region 1. After
thefive columns in each region are reorganizedwith regard to
the value of , parity data is distributed in a round-robin
manner. This desirable logical viewwill be the initial state for
the next scaling operation.

We can see that after each scaling operation, the distribu-
tion of parity blocks in each region is even. Furthermore, the
number of parity blocks to bemoved isminimal. It should also
be noted that the transformation of the logical view does not
result in any data migration.

2.3 The Addressing Method

2.3.1 The Addressing Algorithm
Fig. 3 shows the addressing algorithm to minimize data
migration required by RAID-5 scaling. The array records
the history of RAID-5 scaling. When a RAID is constructed
from scratch (i.e., ), it is a standard RAID-5 array made
up of disks actually. The address of block can be
calculated via one division and one modular (lines 3-6). After

the th scaling operation, the RAID-5 array consists of
disks.

Let us examine the th scaling operation, where disks are
added into a RAID made up of disks (lines 8-9). First, if
block is an original block (line 10), MiPiL calculates its old
address ( , ) before the th scaling (line 11). Then, block ( ,
) is normalized into point in the logical view (line 12). If

needs to bemoved,MiPiL changes the disk number (line
15). Otherwise,MiPiL keeps the disk number unchanged (line
17). Second, if block is a new block, MiPiL places it via the
placing procedure (line 19).

The code of line 14 is used to decide whether data block
will be moved. As shown in Fig. 1, there is a parallelogram in
each region. The base of the parallelogram is , and the height
is . A data block will be moved if and only if it is within a
parallelogram. One parallelogram mapped to row is a line
segment. Its beginning and ending columns are and

, respectively. If is within the line segment, block is
within the parallelogram, and therefore it will be moved.

2.3.2 The Normalizing Procedure
The goal of normalizing (see Fig. 4) is tomake the logical view
of the data layout regular so as to simplify subsequent
calculations. MiPiL locates the last column in the current
region (line 2), and the row number of the parity block in the
last column (line 3). First, to make the parity data in the last
column onto row , the row number is transformed by
the equation (line 5). Second, the first
columns are reorganizedwith regard to the rownumber of the
parity data in each column (lines 7-8). It should be noted that
the normalization of the logical view does not result in data
migration.

2.3.3 The Moving Function
Once a data block is determined to be moved, MiPiL changes
its disk number with the moving function (see Fig. 5). As
shown in Fig. 6, a migrating parallelogram is divided into
three parts, i.e., a head triangle, a body parallelogram, and a

Fig. 3. The addressing algorithm in MiPiL.

Fig. 4. The normalizing procedure.
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tail triangle. How a blockmoves depends onwhich part it lies
in. The head triangle and the tail triangle keep their shapes
unchanged. The head triangle will bemoved by rows (lines
3, 9), while the tail triangle will be moved by rows (lines 5,
11). The body is twisted from a parallelogram to a rectangle
when (line 6),while froma rectangle to a parallelogram
when < (line 12). MiPiL keeps the relative locations of all
blocks in the same column. The only exception is for a body
parallelogram when < . If a regular data block has a
smaller row number than the parity block in the same column
(line 13), this data block will move upwards by onemore row
(line 14). The goal is to guarantee the uniform distribution of

parity blocks. In this case, the relative locations between the
regular data and the parity data are not maintained.

2.3.4 The Placing Procedure
When block is at a location newly added after the last
scaling, it is addressed via the placing procedure (see Fig. 7).
Block is the th new block (line 1). Each stripe holds new
blocks. So, we have (line 3). In turn,MiPiL normalizes
toget the corresponding columnnumber in the logical view

(line 4). As shown in Fig. 1, the order of placing new blocks in
each column in the logical view is obvious and simple (see
the upward arrows). In the logical view, MiPiL gets the row
number according to the column number (line 5). If < ,
MiPiL denormalizes to get the disk number (line 7);
otherwise, the disk number is just the row number (line 9).

The addressing algorithm used in MiPiL is very simple. It
requires fewer than 100 lines of C code, reducing the likeli-
hood that a bug will cause a data block to be mapped to the
wrong location.

2.4 Satisfaction of the Requirements
The purpose of this experiment is to quantitatively character-
ize whether the MiPiL approach satisfies the first three re-
quirements described in Subsection 2.1. How MiPiL satisfies
Requirement 4will be discussed in Section 3. For this purpose,
we compare MiPiL with the round-robin approach. From a
four-disk array,we addone disk repeatedly for 10 times using
the two approaches respectively. Each disk has a capacity of
128 GB, and the size of a data block is 64 KB. In other words,
each disk holds blocks.

Uniform data distribution. We use the coefficient of vari-
ation as a metric to evaluate the uniformity of data distribu-
tion across all the disks. The coefficient of variation expresses
the standard deviation as a percentage of the average. For the
two algorithms, the coefficients of variation remain 0% as the
times of disk additions increases. This indicates that MiPiL

Fig. 5. The moving function.

Fig. 6. The variation of data layout involved in migration.

Fig. 7. The placing procedure.
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succeeds inmaintaining uniform distributions of regular data
and parity data.

Minimal Data Migration: Fig. 8 plots the migration frac-
tion (i.e., the fraction of data blocks to be migrated) versus
the number of scaling operations. Using the round-robin
approach, the migration fraction is constantly 100%. This
“moving-everything” approach will cause very expensive
migration cost.

The migration fractions of regular data and parity data
using MiPiL are significantly smaller than the migration
fractions using the round-robin approach. To gain a uniform
data distribution, the minimal fractions of data blocks and
parity blocks to be moved for RAID-5 scaling are identical to
the percentage of newdisks. Our calculation indicates that the
migration fractions with MiPiL reach this theoretical mini-
mum. Another obvious phenomenon is that the migration
fractions decrease with the increase of the number of scaling
operations. The reason behind this phenomenon is that the
migration fractions withMiPiL are identical to the percentage
of new disks, which decreases with the number of scaling
operations.

Fast Data Addressing: We run different algorithms to
calculate the physical addresses for all data blocks on a scaled
RAID. The whole addressing process is timed and then
the average addressing time for each block is calculated. The
testbed used in the experiment is an Intel Dual Core i7-2640M
2.80 GHz machine with 4 GB of memory. A Windows 7
Enterprise Edition is installed.

Fig. 9 plots the addressing time versus the number of
scaling operations. The round-robin algorithm has a low
calculation overhead in data addressing and in parity addres-
sing. MiPiL also has a low calculation overhead in parity
addressing. The calculation overhead using MiPiL in data
addressing increases gradually. Fortunately, the largest ad-
dressing time using MiPiL is 0.96 which is negligible
compared to milliseconds of disk I/O time.

The reason that data addressing time of the MiPiL ap-
proach is worse than that of the counterpart approach is
demonstrated as follows. Let denote the time complexity
of the Addressing algorithm. Since Addressing is a recursive
algorithm, we can represent by using a recurrence rela-
tion. First, it is clear that for some constant . Next,
we notice that both the Moving function and the Placing

procedure take constant time. Thus, we have
, for all , where is some constant. Solving

the above recurrence relation, we get .
The Addressing algorithm ofMiPiL has time complexity
after RAID scalings.

3 OPTIMIZATION TECHNIQUES

The MiPiL approach succeeds in minimizing data migration
for RAID-5 scaling. In this section, we describe how MiPiL
optimizes the process of data migration. Meanwhile, we can
see how MiPiL satisfies Requirement 4 described in
Subsection 2.1.

3.1 Piggyback Parity Updates
Data reliability is ensured by RAID-5 by maintaining the
parity information as the XOR sum of all the data blocks in
a stripe. MiPiL copies some blocks in a stripe, without need of
erasing old blocks. This changes the total content of the stripe,
and therefore requires a parity update. MiPiL piggybacks
parity updates during data migration to minimize the num-
bers of additional XOR computations and disk I/Os.

Before performing data migration for scaling, new disks
are zeroized. This zeroizing operation does not take up the
scaling time. To consider how one parity block is updated, we
divide data stripes in the RAID into four categories.

In a stripe of the first category, no data migration is
required. As shown in Fig. 10, stripe 2 is in this category.
MiPiL does not change any content of the stripe, and therefore
does not require a parity update. In this case, no additional
XOR computation or disk I/O is needed.

In a stripe of the second category, regular data blocks are
migrated and no parity block is moved. As shown in Fig. 10,
stripes 0 and 1 are in this category.Without loss of generality,
we assume that blocks in a stripe are , , , , and
before scaling. After data migration, blocks in this stripe are

, , , , , , and . Since the original parity block
, we have the new parity block

. Since
and need to be moved, they will be in memory and
available for computingparity. Toupdateparity, only aparity

Fig. 9. Comparison of addressing time.
Fig. 8. Comparison of data migration ratio.
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read and a parity write are added. We take Stripe 0 as an
example, only is read and is written.

In a stripe of the third category, regular data blocks are
migrated and a parity block is moved. As shown in Fig. 10,
stripe 3 is in this category. Without loss of generality, we
assume that blocks in a stripe are , , , , and before
scaling. After data migration, blocks in this stripe are , ,

, , , , , and . Since the original parity block
, we have the new parity block

. Since and need to be moved, they will be in
memory and available for computing parity. By consideration
of updating parity, a block read is eliminated and no addi-
tional write is added.

In a stripe of the fourth category, no regular data block is
migrated and a parity block is moved. As shown in Fig. 10,
stripe 4 is in this category. Without loss of generality, we
assume that blocks in a stripe are , , , , and before
scaling. After data migration, blocks in this stripe are , ,

, , , and . Since , we have
. Since the content

of newly added disks is 0, a block read and a block write are
eliminated by consideration of updating parity. We take
Stripe 4 as an example, there is no need to write .

As far as a region during a RAID-5 scaling from disks to
is concerned, the numbers of stripes in the four catego-

ries are respectively 1, , , and 1. By consideration of
updating parity,

additional reads are required, and
addi-

tional writes are required. A region includes stripes
in total. Assume that each disk consists of data blocks. On
account of updating parity, addi-
tional blocks are read, and additional
blocks are written, so as to complete all the data migration for
a RAID-5 scaling. Supposing a three disk RAID-5 is scaled to
five disks, we have and . On account of updating
parity, no additional block is read, and additional
blocks are written.

We can see that MiPiL updates parity data without delay.
When a disk failure happens during a RAID-5 scaling, lost

data can be recovered from surviving disks. See Section 3.2 for
more details about how the system knows which disks to
include in parity calculations to make this possible.

3.2 Lazy Metadata Updates
While data migration is in progress, the RAID storage serves
user requests. Furthermore, the incoming user I/Os may be
write requests to migrated data. If mapping metadata do not
get updated until all of the blocks have been moved, data
consistency may be destroyed. Ordered operations [12] of
copying a data block and updating the mapping metadata
(a.k.a., checkpoint) can ensure data consistency. However,
ordered operations require frequentmetadatawrites. Because
metadata are usually stored at the beginning of all member
disks, each metadata update causes one long seek per disk,
which increases the cost of datamigration significantly.MiPiL
uses lazy metadata updates to minimize the number of
metadata writes without compromising data reliability.

The key idea behind lazy metadata updates is that data
blocks are copied to new locations and parity blocks are
updated continuously, while mapping metadata are not up-
dated onto the disks until a threat to data consistency appears.
We use to describe the geometry after the th scaling
operation, where disks serve user requests. Fig. 11 illus-
trates an overview of the migration process. Data in the
moving region are copied to new locations. When a user
request arrives, if its physical block address is above the
moving region, it is mappedwith . If its physical block
address is below the moving region, it is mapped with .
When data migration within the moving region is finished,
the next region becomes the moving region. In this way, the
newly added disks are gradually available to serve user
requests. Only when a user write request arrives in the area
where data have beenmoved and themovement has not been
checkpointed, are mapping metadata updated.

The foundation of lazy metadata updates is described as
follows. MiPiL only moves data blocks from old disks to new
disks, which will not overwrite any valid data. After a data
block is copied, both its newandoriginal replicas are valid. As
shown in Fig. 12, we suppose that blocks 1, 2, 3, 6, , and
have been copied to their new locations and the mapping
metadata have not been updated, when the system fails. The
original replicas of blocks 1, 2, 3, and 6 will be used after the
system reboots. As long as the four data blocks have not been
written since they are copied, the data remain consistent.
Generally speaking, when the mapping information is not
updated immediately after a data block is copied, a crash or

Fig. 10. Parity changes across data migration. Copying some blocks
within a stripe changes the total content of the stripe, and therefore
requires a parity update.

Fig. 11. Lazy updates of mapping metadata. “C”: migrated and check-
pointed; “M”: migrated but not checkpointed; “U”: not migrated. Data
redistribution is checkpointed only when a user write request arrives in
the area “M”.
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power outage does not result in data loss. The only threat
to data consistency is the incoming of write operations to
migrated data.

One important concern is whether data will be lost if a
member disk in a RAID-5 array fails after a power failure. As
far as a stripe group in the “M” or “U” area in Fig. 11 is
concerned, MiPiL recovers lost data in the following manner.

If there is no block to be moved, MiPiL recovers lost data
in the old stripe group with disks. In this case, the
original parity is the XOR sum of original data
blocks.
If there are blocks to be moved and these blocks do not
include a parity block,MiPiL recovers lost data in the new
stripe groupwith disks. If datamigration is performed,
the parity block is updated into the XOR sum of
data blocks. Otherwise, since the content of newly added
disks is 0, the parity block can also be considered as the
XOR sum of data blocks.
If there are blocks to bemoved and these blocks include a
parity block, MiPiL recovers lost data in the old stripe
group with disks. In this case, the original parity is
not updated. Therefore, it is theXOR sumof data
blocks.

Since one write of metadata can store multiple map
changes of data blocks, lazy updates can minimize the num-
ber of metadata writes and reduce the cost of data migration
significantly. Furthermore, lazy metadata updates can guar-
antee data consistency and keep the competence of protection
against a single disk failure. Even if the system fails unexpect-
edly, only some data migrations are wasted. It should also be
noted that the probability of a system failure is very low.

4 IMPLEMENTATION

We implement MiPiL in the MD driver shipped with Linux
Kernel 2.6.32.9. MD is a software RAID system, which uses
MD-Reshape to scale RAID-5 volumes [10]. Implementing
MiPiL in MD makes it convenient to make a performance
comparison between MiPiL and MD-Reshape. About 700
lines of code, counted by the number of semicolons and
braces, are modified or added to the MD driver.

According to the addressing algorithm, MD forwards
incoming I/O requests to corresponding disks. When a
RAID-5 scaling begins,MD creates a kernel thread to perform
data redistribution. MiPiL cannot redistribute a new region
until all the I/O requests already issued to this region are
completed.

MiPiL uses three variants to track how the expansion is
progressing and determine the movement stage that the
target part of the volume involves (see Fig. 11).While a region
is being redistributed, any I/O attempt into the region is
blocked until the redistribution of this region is finished.

When a user I/O arrives, MiPiL detects whether this is a
write request, and it arrives in the area where data have been
moved and the movement has not been checkpointed. If so,
mapping metadata are updated before the write request is
served.

5 EXPERIMENTAL EVALUATION

This section presents results of a comprehensive experimen-
tal evaluation comparing MiPiL with MD-Reshape. MD-
Reshape preserves a round-robin data distribution after
adding disks. Therefore, it moves 100 percent of data blocks.

5.1 Evaluation Methodology
We evaluate our design by running trace-driven experiments
over a real system. The testbed used in these experiments is
described as follows. Linux kernel 2.6.32.9 is installed on a
machine with Intel Xeon 5606 2.13 GHz quad-core processor
and8GBofmemory. Thefile systemused is EXT4.Via a 6GB/
s SATA expansion card, 12 Seagate ST500DM002 SATA disks
are connected to this machine.

Our experiments use the following three real-system disk
I/O traces with different characteristics.

Financial1 is obtained from the Storage Performance
Council (SPC) [13], [14], a vendor-neutral standards
body. The Financial1 trace was collected from OLTP
applications running at a large financial institution. The
write ratio is high.
TPC-C traced disk accesses of the TPC-C database bench-
mark with 20 warehouses [15]. It was collected with one
client running 20 iterations.
WebSearch2 is also from SPC. It was collected from a
systemrunningaweb search engine. The read-dominated
WebSearch2 trace exhibits the strong locality in its access
pattern.

To replay I/O traces, we implement a block-level replay
tool using Linux kernel asynchronous I/O. It opens a block
devicewith the option, and issues an I/O request
when appropriate according to trace files. When an I/O
request is completed, it gathers the corresponding response
time.

5.2 Experiment Results
We evaluate the MiPiL approach in terms of its performance
during scaling and its performance after scaling.

5.2.1 Performance During Scaling
Each experiment lasts from the beginning to the end of data
redistribution for RAID scaling. We focus on comparing
redistribution times and user I/O latencies when different
scaling programs are running in background.

The purpose of our first experiment is to quantitatively
characterize the advantages of MiPiL through a comparison
with MD-Reshape. We conduct a scaling operation of adding
one disk to a four-disk RAID, where each disk has a capacity

Fig. 12. Data blocks are copied to their new locations and metadata are
not yet updatedwhen the system fails. In this case, data consistency is still
maintained because the data in their original locations are valid and
available.
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of 100GB. Each approach performswith the 256KB chunk size
under a Financial1 workload.

During a RAID-5 scaling, data redistribution and fore-
ground applications share and even contend for I/O re-
sources in the system. Generally speaking, the faster the
redistribution performs, the worse the applications perfor-
mance is. A group of rate-control parameters means a trade-
off between the redistribution time objective and the response
time objective. Furthermore, unless both redistribution time
and user response time using one approach are respectively
smaller than those using the other approach, we do not know
if we can predict that the former approach outperforms the
latter. Therefore, for ease of comparison, we chose control
parameters for different experiments. The parameters of
“ ”and “ ” in MD-Reshape are
set as 200,000 and 2,000 respectively. In MiPiL, they are set as
200,000 and 10,000 respectively. This parameter setup acts as
the baseline for the latter experiments fromwhich any change
will be stated explicitly.

We collect the latencies of all application I/Os. We divide
the I/O latency sequence into multiple sections according to
I/O issuing time. The time period of each section is 1000 sec-
onds. Furthermore, we get a local average latency from each
section.A local average latency is the averageof I/O latency in
a section. Fig. 13 plots local average latencies using the two
approaches as the time increases along the -axis. It illustrates
thatMiPiL demonstrates a noticeable improvement overMD-
Reshape in two metrics.

First, the redistribution time using MiPiL is significantly
shorter than that usingMD-Reshape. They are 10,527 seconds
and 40,591 seconds, respectively. In other words, MiPiL has a
74.07% shorter redistribution time than MD-Reshape.

Themain factor inMiPiL’s reducing the redistribution time
is the significant decline of the amount of the data to be
moved.WhenMD-Reshape is used, 100% of data blocks have
to be migrated. However, when MiPiL is used, only 20% of
data blocks need to bemigrated.Another factor is the effective
exploitation of two optimization techniques, i.e., piggyback
parity updates to reduce additional XOR computations and
disk I/Os, and lazy metadata updates to minimize meta-
data writes.

Second, local average latencies of MD-Reshape are obvi-
ously longer than those of MiPiL. The global average latency
usingMD-Reshape reaches 10.26mswhile that usingMiPiL is
7.62 ms. In other words, MiPiL brings an improvement of
25.78% in user response time. Fig. 14 shows the cumulative
distribution (CD) of user response time during data redistri-
bution. To provide a fair comparison, I/Os involved in
statistics for MD-Reshape are only those issued before
10,527 seconds. For any I/O latency smaller than 78.83 ms,
the CD value of MiPiL is greater than that of MD-Reshape
noticeably and consistently. This indicates again that MiPiL
has smaller response time of user I/Os than MD-Reshape.

The reason for the improvement in user response time is
explained as follows. During a RAID-5 scaling, data redistri-
bution and foreground applications share and even contend
for I/O resources in the system. MiPiL decreases the amount
of the data to be moved significantly. Moreover, MiPiL
minimizes metadata writes via lazy metadata updates. As
a result, the RAID systemhasmore time to serve applications.
It is also noteworthy to mention that due to significantly
shorter data redistribution time,MiPiL has amarkedly lighter
impact on the user I/O latencies than MD-Reshape does.

A factor thatmight affect the benefits ofMiPiL is the type of
workload under which data redistribution performs. Under
the TPC-C workload, we also measure the performance of
MiPiL and MD-Reshape in performing the “ ” scaling
operation.

For the TPC-C workload, Fig. 15 shows local average
latency versus the redistribution time for MD-Reshape and
MiPiL. It shows once again the efficiency of MiPiL in improv-
ing the redistribution time. The redistribution times using
MD-Reshape and MiPiL are 13.02 hours and 2.92 hours,
respectively. That is to say, MiPiL has an improvement of
77.57% in the redistribution time. Likewise, local average
latencies of MiPiL are also obviously shorter than those of
MD-Reshape. The global average latency using MiPiL is
0.41 ms while using MD-Reshape reaches 1.39 ms. In other
words, MiPiL has an improvement of 70.50% in user
response time.

Fig. 13. Performance comparison between MiPiL and MD-Reshape for
the Financial1 workload. Fig. 14. Cumulative distribution of I/O latency during data redistribution by

the two approaches for the Financial1 workload.
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We can draw one conclusion from the above two experi-
ments. Under various workloads, MiPiL can consistently
outperform MD-Reshape by 74.07-77.57% in redistribution
time and by 25.78-70.50% in user response time.

5.2.2 Performance after Scaling
The above experiments show thatMiPiL improves the scaling
efficiency of RAID-5 significantly. One of our concerns is
whether there is a penalty in the performance of the data
layout after scaling using MiPiL, compared with the round-
robin layout preserved by MD-Reshape.

We use the WebSearch2 and Financial1 workloads to
measure the performance of the two RAIDs, scaled from the
same RAID using MiPiL and MD-Reshape. Each experiment
lasts 30minutes, and records the latency of each I/O. Based on
the issue time, the I/O latency sequence is divided into 20
sections evenly. Furthermore, we get a local average latency
from each section.

First, we compare the performance of twoRAIDs, after one
scaling operation “ ” using the two scaling approaches.
Fig. 16 plots the local average latency of the two RAIDs under
the WebSearch2 workload as the time increases along the
-axis.We can find that the performance of theMiPiL RAID is

better than that of the round-robin RAID. With regard to the
round-robin RAID, the average latency is 1.05 ms. For the
MiPiL RAID, the average latency is 0.86 ms. That is to say,
MiPiL improves the RAID-5 performance by 18.10%. Fig. 17
plots the local average latency of the two RAIDs under the
Financial1 workload. With regard to the round-robin RAID,
the average latency is 3.18 ms. For the MiPiL RAID, the
average latency is 3.07 ms. MiPiL improves the RAID-5
performance by 3.5%.

Second, we compare the performance of two RAIDs, after
two scaling operations “ ” using the two approaches.
Fig. 18 plots local average latencies of the two RAIDs under
the WebSearch2 workload as the time increases along the
-axis. It again reveals the difference in the performance of the

two RAIDs. With regard to the round-robin RAID, the aver-
age latency is 1.01 ms. For the MiPiL RAID, the average
latency is 0.86 ms. Fig. 19 plots the local average latency of
the twoRAIDs under the Financial1workload.With regard to

Fig. 16. Performance comparison between MiPiL layout and round-robin
layout for the WebSearch2 workload after one scaling operation “ ”.

Fig. 15. Performance comparison between MiPiL and MD-Reshape for
the TPC-C workload.

Fig. 17. Performance comparison between MiPiL layout and round-robin
layout for the Financial1 workload after one scaling operation “ ”.

Fig. 18. Performance comparison between MiPiL layout and round-robin
layout for the WebSearch2 workload after two scaling operations
“ ”.
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the round-robin RAID, the average latency is 3.06 ms. For the
MiPiL RAID, the average latency is 3.08ms. MiPiL lowers the
RAID-5 performance by 0.7%.

Table 1 summarizes these performance differences be-
tween the MiPiL RAID and the round-robin RAID-5 after
different scaling cases. We can reach the conclusion that
under the WebSearch2 and Financial1 workloads, the per-
formance of the RAID scaled using MiPiL is almost identical
to that of the round-robin RAID-5.

6 RELATED WORK

In this section, we first review related work that addresses
block-based disk scaling. There are many efforts on random-
ized data distribution, which has the ability of disk scaling.
Somepeople insist that it is unnecessary to address block-level
disk scaling. To argue against this viewpoint, we then review
this category of work, and claim that these randomized
strategies are designed for object-based storage systems,
instead of block-level storage devices. There is also a concern
that the scaling problem can be solved more easily at a higher
level (e.g., file system). Consequently, we finally discuss
RAID scaling with the support of file systems.

6.1 RAID Scaling for Block-Based Disks
The HP AutoRAID [16] allows an online capacity expansion
without requiring data migration. Newly created RAID-5
volumesuse all the disks in the system, but previously created
RAID-5 volumes continue to use only the original disks.

The conventional approaches to RAID-5 scaling redistrib-
ute data and preserve the round-robin order after adding
disks. Gonzalez and Cortes [9] proposed a gradual assimila-
tion approach (GA) to control the speed of a RAID-5 scaling.
Brown designed a reshape toolkit in a LinuxMD driver (MD-
Reshape) [10]. It writes mapping metadata with a fixed-sized
data window. User requests to the data window have to
queue up until all data blocks within the window are moved.
Therefore, the window size cannot be too large. Metadata
updates are frequent.

Zhang et al. [11], [17] discovered that there is always a
reordering window during data redistribution for round-
robin RAID scaling. By leveraging this insight, they proposed
the ALV approach to improving the efficiency of RAID-5
scaling.However, ALV still suffers from large datamigration.

A patent [18] presented a method to eliminate the need to
rewrite the original data blocks and parity blocks on original
disks. However, the obvious uneven distribution of parity
blocks will bring a penalty to write performance.

The MDM method [19] eliminates the parity modification
cost of a RAID-5 scaling by exchanging some data blocks
between original disks and new disks. However, it does not
guarantee an even data and parity distribution. It does also
not increase (just maintains) the data storage efficiency after
adding more disks.

Zheng et al. [20] proposed the FastScale approach to
RAID-0 scaling. FastScale minimizes data migration while
maintaining a uniform data distribution. FastScale does not
handle RAID-5 scaling. In RAID-5, a parity block sustains a
different load from what a regular block does. As a result,
RAID-5 scaling is more challenging.

Zhao et al. [8] proposed an approach generating the
encoding matrices for distributed storage systems based on
E-MSR codes. This approach minimizes the changes of
encoded blocks when scaling.

Wu et al. [21] proposed the GSR approach to accelerate
RAID-5 scaling. GSR divides data on the original array into
two consecutive sections. During RAID-5 scaling, GSRmoves
the second section of data onto the new disks, while keeping
the first section of data unmoved. In this way, GSRminimizes
data migration and parity modification. The main limitation
ofGSR is the performance of RAID systems after scaling.Only
the original disks serve accesses to the first section of data.
Only the new disks serve accesses to the second section of
data. Especially, there is a large performance penalty when
the workload exhibits a strong locality in its access pattern.

Franklin et al. [22] proposed to use spare disks to provide
immediate access to new space. During data redistribution,
new data are mapped to spare disks. Upon completion of the
redistribution, new data are copied to the set of data disk
drives. Similar to WorkOut [23], this kind of method requires
spare disks to be available.

6.2 RAID Scaling for Object-Based Storage
With the development of object-based storage, randomized
RAID [24]-[27] is now gaining the spotlight in the data
placement area. The cut-and-paste placement strategy [27]
uses randomized allocation strategy to place data across
disks. For a disk addition, it cuts off some data from old

Fig. 19. Performance comparison between MiPiL layout and round-robin
layout for the Financial1 workload after two scaling operations “ ”.

TABLE 1
The Percentages by Which MiPiL Improves or Degrades the
Performance after Different Scaling Cases (An Up Arrow

Indicates an Performance Improvement, While a Down Arrow
Indicates a Performance Degradation)
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disks, and pastes them to the newly added disk. Seo and
Zimmermann [28] proposed an approach finding a sequence
of disk additions and removals for the disk replacement
problem. The goal is to minimize the data migration cost.
Both of these two approaches assume the existence of a high-
quality hash function. However, they did not present such a
hash function.

The SCADDAR algorithm [24] uses a pseudo-random
function to minimize the amount of data to be moved.
Unfortunately, the pseudo-random function does not pre-
serve the randomness of the data layout after several disk
additions or deletions [28].

RUSH [29], [30] and CRUSH [31] are two algorithms for
online placement and reorganization of replicated data. They
are probabilistically optimal in distributing data evenly and
minimizingdatamovementwhen new storage is added to the
system. The Random Slicing strategy [32] keeps a small table
with information about previous insert and remove opera-
tions, significantly reducing the required amount of random-
ness while delivering a uniform load distribution.

These randomized strategies are designed for object-based
storage systems. They only provide mapping from logical
addresses to a set of storage devices, while the data placement
on a storage device is resolved by additional software running
on the device itself.

6.3 RAID Scaling with Filesystem Support
With the support of the ZFS file system, RAID-Z [33] achieves
acceptable scalability in distributed storage systems. RAID-Z
is a data/parity scheme like RAID-5, but it uses dynamic
stripe width. There is no simple formula to identify a stripe.
Traversing the filesystem metadata is required to determine
the RAID-Z geometry. HDFS RAID [34] is another instance
that depends on afile system to achieve acceptable scalability.

Different from these solutions, MiPiL provides a block-
level solution for RAID-5 scaling without need of any file
system semantics.

7 CONCLUSIONS AND FUTURE WORK

This paper proposes a new approach to RAID-5 scaling called
MiPiL by rethinking RAID-5 data layout. First, with a new
and elastic addressing algorithm, MiPiL minimizes the num-
ber of data blocks to be migrated without compromising the
uniformity of data distribution. Second, MiPiL optimizes
online data migration with piggyback parity updates and
lazy metadata updates.

Our results from detailed experiments using real-system
workloads show that, compared with MD-Reshape, a scaling
toolkit released in 2010, MiPiL can reduce redistribution time
byup to 74.07-77.57%and reduce user response time by 25.78-
70.50%. The experiments also illustrate that under the Web-
Search2 and Financial1 workloads, the performance of the
RAID-5 scaled using MiPiL is almost identical to that of the
round-robin RAID-5. We believe that this paper has made
new contribution to modern storage management and will
inspire more and general research interest in the area of
operating systems.

MiPiL does not handle RAID-6 scaling. With higher pos-
sibility ofmultiple disk failures [35], [36], RAID-6 has received

more attention than ever. We believe that MiPiL provides a
good starting point for efficient scaling of RAID-6 arrays. In
the future, we will focus on RAID-6 scaling.
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