
11

Design and Evaluation of a New Approach to RAID-0 Scaling1

GUANGYAN ZHANG and WEIMIN ZHENG, Tsinghua University2

KEQIN LI, State University of New York and Tsinghua University3

Scaling up a RAID-0 volume with added disks can increase its storage capacity and I/O bandwidth simul-4

taneously. For preserving a round-robin data distribution, existing scaling approaches require all the data5

to be migrated. Such large data migration results in a long redistribution time as well as a negative impact6

on application performance. In this article, we present a new approach to RAID-0 scaling called FastScale.7

First, FastScale minimizes data migration, while maintaining a uniform data distribution. It moves only8

enough data blocks from old disks to fill an appropriate fraction of new disks. Second, FastScale optimizes9

data migration with access aggregation and lazy checkpoint. Access aggregation enables data migration10

to have a larger throughput due to a decrement of disk seeks. Lazy checkpoint minimizes the number of11

metadata writes without compromising data consistency. Using several real system disk traces, we evalu-12

ate the performance of FastScale through comparison with SLAS, one of the most efficient existing scaling13

approaches. The experiments show that FastScale can reduce redistribution time by up to 86.06% with14

smaller application I/O latencies. The experiments also illustrate that the performance of RAID-0 scaled15

using FastScale is almost identical to, or even better than, that of the round-robin RAID-0.16

Categories and Subject Descriptors: D.4.2 [Operating Systems]: Storage Management; H.3.2 [Informa-17

tion Storage and Retrieval]: Information Storage18

General Terms: Algorithms, Design, Experimentation, Management, Performance19

Additional Key Words and Phrases: Access aggregation, data migration, lazy checkpoint, RAID scaling20

ACM Reference Format:21

Zhang, G., Zheng, W., and Li, K. 2013. Design and evaluation of a new approach to RAID-0 scaling. ACM22

Trans. Storage 9, 4, Article 11 (November 2013), 31 pages.23

DOI:http://dx.doi.org/10.1145/249105424

1. INTRODUCTION25

1.1. Motivation26

Redundant Array of Inexpensive Disks (RAID) was proposed to achieve high perfor-27

mance, large capacity, and data reliability, while allowing a RAID volume to be man-28

aged as a single device [Patterson et al. 1988]. This goal is achieved via disk striping29

and rotated parity. RAID has been well studied and widely used in high bandwidth30

and space-demanding areas. As user data increase and computing power is enhanced,31

applications often require larger storage capacity and higher I/O throughput. The scal-32

ability issue of RAID has become a main concern. To provide the required capacity33

This work was supported by the National Natural Science Foundation of China under Grants 60903183,
61170008, and 61272055, the National High Technology Research and Development 863 Program of China
under Grant 2013AA01A210, and the National Grand Fundamental Research 973 Program of China under
Grant No. 2014CB340402.
Authors’ addresses: G. Zhang and W. Zheng, Department of Computer Science and Technology, Tsinghua
University, Beijing 100084, China; email: {gyzh, zwm-dcs}@tsinghua.edu.cn; K. Li, Department of Computer
Science, State University of New York, New Paltz, New York 12561, USA; email: lik@newpaltz.edu.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies show this notice on the first page or initial screen of a display along with the full citation. Copyrights
for components of this work owned by others than ACM must be honored. Abstracting with credit is per-
mitted. To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component
of this work in other works requires prior specific permission and/or a fee. Permissions may be requested
from Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212)
869-0481, or permissions@acm.org.
c© 2013 ACM 1553-3077/2013/11-ART11 $15.00
DOI:http://dx.doi.org/10.1145/2491054

ACM Transactions on Storage, Vol. 9, No. 4, Article 11, Publication date: November 2013.

11:2 G. Zhang et al.

Fig. 1. RAID scaling from 2 disks to 3 using traditional approaches. All data blocks except blocks 0 and 1
have to be migrated.

and/or bandwidth, one solution is to add new disks to a RAID volume. Such disk addi-34

tion is termed RAID scaling.35

To regain uniform data distribution in all disks including the old and the new ones,36

RAID scaling requires certain blocks to be moved onto added disks. Furthermore, in37

today’s server environments, many applications (e.g., e-business, scientific computa-38

tion, and Web servers) access data constantly. The cost of downtime is extremely high39

[Patterson 2002], giving rise to the necessity of online and real-time scaling.40

Traditional approaches to RAID scaling [Brown 2006; Gonzalez and Cortes 2004;41

Zhang et al. 2007] are restricted by preserving the round-robin order after adding42

disks. Let N be the set of nonnegative integers. The addressing algorithm fi(x) : N →43

N × N can be expressed as follows for the ith scaling operation:44

fi(x) = (d, b) = (x mod Ni, x/Ni), (1)45

where block b = x/Ni of disk d = x mod Ni, is the location of logical block x, and46

Ni gives the total number of disks. As far as RAID scaling from Ni−1 disks to Ni is47

concerned, since Ni �= Ni−1, we have fi(x) �= fi−1(x) for almost every block x. Supposing48

fi(x) = fi−1(x), we have x = b × Ni−1 + d and x = b × Ni + d, which implies that49

b × (Ni − Ni−1) = 0. Since Ni �= Ni−1, we have b = 0. In other words, only the data50

blocks in the first stripe (b = 0) are not moved. As an example, Figure 1 illustrates the51

data distributions before and after RAID scaling from 2 disks to 3. We can see that all52

data blocks except blocks 0 and 1 are moved during this scaling.53

Suppose each disk consists of s data blocks. Let r1 be the fraction of data blocks to54

be migrated. We have55

r1 = Ni−1 × s − Ni−1

Ni−1 × s
= 1 − 1

s
. (2)56

Since s is very large, we have r1 ≈ 100%. This indicates that almost 100 percent of data57

blocks have to be migrated no matter what the numbers of old disks and new disks58

are. There have been some efforts concentrating on optimization of data migration59

[Gonzalez and Cortes 2004; Zhang et al. 2007]. They improve the performance of RAID60

scaling to a certain extent, but do not completely overcome the limitation of large data61

migration.62

The most intuitive method to reduce data migration is the semi-RR algorithm [Goel63

et al. 2002]. It requires a block to be moved only if the resulting disk number is one of64

the new disks. The algorithm can be expressed as follows for the ith scaling operation:65

gi(x) =
{

gi−1(x), if (x mod Ni) < Ni−1;
fi(x), otherwise.

(3)66

ACM Transactions on Storage, Vol. 9, No. 4, Article 11, Publication date: November 2013.

Design and Evaluation of a New Approach to RAID-0 Scaling 11:3

Fig. 2. Data migration using FastScale. A minimum amount of data blocks are moved from old disks to new
disks to regain a uniform distribution, while no datum is migrated among old disks.

Semi-RR reduces data migration significantly. Unfortunately, it does not guarantee67

uniform distribution of data blocks after successive scaling operations (see Section 2.6).68

This will deteriorate the initial evenly distributed load.69

It is clear that it is still an open problem as to whether there exists a RAID scaling70

method that is able to maintain a uniform and balanced load distribution by perform-71

ing the minimum amount of data migration.72

1.2. Our Contributions73

In this article, we propose a novel approach called FastScale to redistribute data for74

RAID-0 scaling. We have made three significant contributions in developing FastScale.75

The first contribution is that FastScale accelerates RAID-0 scaling by minimizing76

data migration. As shown in Figure 2, FastScale moves data blocks from old disks to77

new disks just enough for preserving the uniformity of data distribution, while not78

migrating data among old disks. Before performing RAID scaling from m disks to79

m + n, the old disks hold m × s data blocks and the new disks hold no data. After80

RAID scaling, each disk, either old or new, holds 1/(m + n) of the total data to meet81

the uniform distribution requirement. Without loss of generality, let r2 be the fraction82

of data blocks to be migrated. We have83

r2 =
(Ni−1 × s) × 1

Ni
× (Ni − Ni−1)

Ni−1 × s
= Ni − Ni−1

Ni
. (4)84

For instance, for RAID scaling from 3 disks to 4, we have r2 = (4 − 3)/4 = 25%. To85

regain a uniform distribution, data migration from old disks to new ones is necessary.86

Consequently, the migration fraction r2 of FastScale reaches the lower bound r∗ of the87

migration fraction, where r∗ = 1 − Ni−1/Ni. In other words, FastScale succeeds in88

minimizing data migration for RAID-0 scaling.89

We design an elastic addressing function through which the location of one block can90

be easily computed without any lookup operation. By using this function, FastScale91

changes only a fraction of the data layout while preserving the uniformity of data92

distribution. FastScale has several unique features, which are listed as follows.93

— FastScale maintains a uniform data distribution after each RAID scaling.94

— FastScale minimizes the amount of data to be migrated during each RAID scaling.95

ACM Transactions on Storage, Vol. 9, No. 4, Article 11, Publication date: November 2013.

11:4 G. Zhang et al.

— FastScale preserves simple management of data due to deterministic placement.96

— FastScale can sustain the three preceding features after multiple disk additions.97

The second contribution is that FastScale exploits special physical properties to opti-98

mize online data migration. First, it uses aggregated accesses to improve the efficiency99

of data migration. Second, it records data migration lazily to minimize the number of100

metadata updates while ensuring data consistency.101

The third contribution is that FastScale has significant performance improvement.102

We implement a detailed simulator that uses DiskSim as a worker module to simulate103

disk accesses. Under several real system workloads, we evaluate the performance of104

traditional approaches and the FastScale approach. The experimental results demon-105

strate the following results.106

— Compared with SLAS, one of the most efficient traditional approaches, FastScale107

shortens redistribution time by up to 86.06% with smaller maximum response time108

of user I/Os.109

— The performance of RAID scaled using FastScale is almost identical to, or even bet-110

ter than, that of the round-robin RAID.111

In this article, we only describe our solution for RAID-0, i.e., striping without par-112

ity. The solution can also work for RAID-10 and RAID-01. Therefore, FastScale can113

be used in disk arrays, logical volume managers, and file systems. Although we do114

not handle RAID-4 and RAID-5, we believe that our method provides a good starting115

point for efficient scaling of RAID-4 and RAID-5 arrays. We will report this part of our116

investigation in a future paper.117

1.3. Differences from Our Prior Work118

This article is based on our prior work presented at the 9th USENIX Conference on119

File and Storage Technologies (FAST’11) [Zheng and Zhang 2011]. In this article, the120

following new and important materials beyond the earlier version are provided.121

— We improve the addressing algorithm of FastScale, especially change the way that122

a block newly added after the last scaling is placed. The addressing algorithm de-123

scribes how FastScale maps a logical address of a RAID-0 array to a physical address124

of a member disk. Furthermore, the presentation of the two examples is also revised125

accordingly.126

— We design the demapping algorithm of FastScale. In many cases, it is also required127

to map a physical address to a logical address. The demapping algorithm can be128

used to provide such a mapping. The goal of improving the addressing algorithm is129

to enable designing the demapping algorithm and to make it simple.130

— We formally prove that FastScale satisfies all three requirements for an ideal ap-131

proach to RAID-0 scaling.132

— We also perform more experiments in different cases to make the performance eval-133

uation of FastScale more adequate and more convincing.134

— Finally, we add some new materials to make the motivation of our work clearer and135

to help the reader better understand how FastScale works.136

1.4. Article Organization137

The rest of the article is organized as follows. In Section 2, we formally define the prob-138

lem to be addressed in the article, give illustrative and motivating examples, develop139

our addressing and demapping algorithms, and prove the properties of FastScale. In140

Section 3, we present the optimization techniques used in FastScale, i.e., access aggre-141

gation and lazy checkpoint. In Section 4, we demonstrate our experimental results to142

compare the performance of FastScale with that of the existing solutions. In Section 5,143

ACM Transactions on Storage, Vol. 9, No. 4, Article 11, Publication date: November 2013.

Design and Evaluation of a New Approach to RAID-0 Scaling 11:5

we review related work in scaling deterministic and randomized RAID. We conclude144

the article in Section 6.145

2. MINIMIZING DATA MIGRATION146

2.1. Problem Statement147

For disk addition into a RAID-0 array, it is desirable to ensure an even load distribution148

on all the disks and minimal block movement. Since the location of a block may be149

changed during a scaling operation, another objective is to quickly compute the current150

location of a block.151

As far as the ith RAID scaling operation from Ni−1 disks to Ni is concerned, sup-152

pose that each disk consists of s data blocks. Before this scaling operation, there are153

Ni−1 × s blocks stored on Ni−1 disks. To achieve these objectives, the following three154

requirements should be satisfied for RAID scaling.155

— Requirement 1 (Uniform Data Distribution). After this scaling operation, the ex-156

pected number of data blocks on each one of the Ni disks is (Ni−1 × s)/Ni, so as to157

maintain an even load distribution.158

— Requirement 2 (Minimal Data Migration). During this scaling operation, the ex-159

pected number of data blocks to be moved is (Ni−1 × s) × (Ni − Ni−1)/Ni.160

— Requirement 3 (Fast Data Addressing). After this scaling operation, the location of161

a block is computed by an algorithm with low space and time complexities for all162

original and unmoved data, original and migrated data, and new data.163

2.2. Examples of RAID Scaling Using FastScale164

Example 1. To understand how the FastScale algorithm works and how it satisfies165

all three requirements, we take RAID scaling from 3 disks to 5 as an example. As166

shown in Figure 3, one RAID scaling process can be divided into two stages logically,167

i.e., data migration and data filling. In the first stage, a fraction of existing data blocks168

are migrated to new disks. In the second stage, new data are filled into the RAID con-169

tinuously. Actually, the two stages, data migration and data filling, can be overlapped170

in time.171

For the RAID scaling, each 5 consecutive locations in one disk are grouped into one172

segment. For the 5 disks, 5 segments with the same physical address are grouped into173

one region. Locations on all disks with the same block number form a column or a174

stripe. In Figure 3, different regions are separated by wavy lines. For different regions,175

the ways for data migration and data filling are completely identical. Therefore, we176

will focus on one region, and let s = 5 be the number of data blocks in one segment.177

In a region, all data blocks within a parallelogram will be moved. The base of the178

parallelogram is 2, and the height is 3. In other words, 2 data blocks are selected from179

each old disk and migrated to new disks. The 2 blocks are sequential—the start ad-180

dress is the disk number disk no. Figure 3 depicts the moving trace of each migrating181

block. For one moving data block, its physical disk number is changed while its phys-182

ical block number is unchanged. As a result, the five columns of two new disks will183

contain 1, 2, 2, 1, and 0 migrated data blocks, respectively. Here, the data block in the184

first column will be placed on disk 3, while the data block in the fourth column will185

be placed on disk 4. The first blocks in columns 2 and 3 are placed on disk 3, and the186

second blocks in columns 2 and 3 are placed on disk 4. Thus, each new disk has 3 data187

blocks.188

After data migration, each disk, either old or new, has 3 data blocks. That is to say,189

FastScale regains a uniform data distribution. The total number of data blocks to be190

moved is 2 × 3 = 6. This reaches the minimal number of moved blocks in each region,191

ACM Transactions on Storage, Vol. 9, No. 4, Article 11, Publication date: November 2013.

11:6 G. Zhang et al.

Fig. 3. RAID scaling from 3 disks to 5 using FastScale, where m ≥ n.

i.e., (Ni−1 × s) × (Ni − Ni−1)/Ni = (3 × 5) × (5 − 3)/5 = 6. We can claim that the RAID192

scaling using FastScale can satisfy Requirement 1 and Requirement 2.193

Let us examine whether FastScale can satisfy Requirement 3, i.e., fast data address-194

ing. To consider how one logical data block is addressed, we divide the data space in195

the RAID into three categories: original and unmoved data, original and migrated196

data, and new data. The conclusion can be drawn from the following description that197

the calculation overhead for the data addressing is very low.198

— The original and unmoved data can be addressed with the original addressing199

method. In this example, the ordinal number of the disk that holds one block x can200

be calculated as d = x mod 3. Its physical block number can be calculated as b = x/3.201

— The addressing method for original and migrated data can be obtained easily from202

the description about the trace of the data migration. First, we have b = x/3. Next,203

for those blocks in the first triangle, i.e., blocks 0, 3, and 4, we have d = d0 + 3. For204

those blocks in the last triangle, i.e., blocks 7, 8, and 11, we have d = d0 + 2. Here,205

d0 is the original disk number of a block.206

— Each region can hold 5 × 2 = 10 new blocks. In one region, how those new data207

blocks are placed is shown in Figure 3. If block x is a new block, it is the yth new208

block, where y = x − 3 × 11. Each stripe holds 2 new blocks. So, we have b = y/2. For209

each new data block, we have d = (((b − 1) mod 5) + (y mod 2)) mod 5.210

Example 2. In the preceding example, the number of old disks m and the number of211

new disks n satisfy the condition m ≥ n. In the following, we examine the case when212

m < n. Take RAID scaling from 2 disks to 5 as an example, where, m = 2 and n = 3.213

Likewise, in a region, all data blocks within a parallelogram will be moved. The214

base of the parallelogram is 3, and the height is 2. 3 consecutive data blocks are se-215

lected from each old disk and migrated to new disks. Figure 4 depicts the trace of each216

ACM Transactions on Storage, Vol. 9, No. 4, Article 11, Publication date: November 2013.

Design and Evaluation of a New Approach to RAID-0 Scaling 11:7

Fig. 4. RAID scaling from 2 disks to 5 using FastScale, where m < n.

migrating block. Similarly, for one moving data block, only its physical disk number217

is changed, while its physical block number is unchanged. As a result, five columns of218

three new disks will have different numbers of existing data blocks: 1, 2, 2, 1, 0. Here,219

the data block in the first column will be placed on disk 2, while the data block in the220

fourth column will be placed on disk 4. Unlike the first example, the first blocks in221

columns 2 and 3 are placed on disks 2 and 3, respectively. Thus, each new disk has 2222

data blocks.223

After data migration, each disk, either old or new, has 2 data blocks. That is to224

say, FastScale regains a uniform data distribution. The total number of data blocks225

to be moved is 3 × 2 = 6. This reaches the minimal number of moved blocks, (2 ×226

5) × (5 − 2)/5 = 6. We can claim that the RAID scaling using FastScale can satisfy227

Requirement 1 and Requirement 2.228

Let us examine whether FastScale can satisfy Requirement 3, i.e., fast data address-229

ing. To consider how one logical data block is addressed, we divide the data space in230

the RAID into three categories: original and unmoved data, original and migrated231

data, and new data. The conclusion can be drawn from the following description that232

the calculation overhead for the data addressing is very low.233

— The original and unmoved data can be addressed with the original addressing234

method. In this example, the ordinal number of the disk holds that one block x can235

be calculated as d = x mod 2. Its physical block number can be calculated as b = x/2.236

— The addressing method for original and migrated data can be easily obtained from237

the description about the trace of the data migration. First, we have b = x/2. Next,238

for those blocks in the first triangle, i.e., blocks 0, 2, and 3, we have d = d0 + 2. For239

those blocks in the last triangle, i.e., blocks 4, 5, and 7, we have d = d0 + 3. Here, d0240

is the original disk number of a block.241

ACM Transactions on Storage, Vol. 9, No. 4, Article 11, Publication date: November 2013.

11:8 G. Zhang et al.

— Each region can hold 5 × 3 = 15 new blocks. In one region, how those new data242

blocks are placed is shown in Figure 4. If block x is a new block, it is the yth new243

block, where y = x − 2 × 11. Each stripe holds 3 new blocks. So, we have b = y/3. For244

each new data block, we have d = (((b − 2) mod 5) + (y mod 3)) mod 5.245

Similar to the first example, we can again claim that the RAID scaling using246

FastScale can satisfy the three requirements.247

2.3. The Addressing Algorithm of FastScale248

2.3.1. The Addressing Algorithm. Figure 5 shows the addressing algorithm for minimiz-249

ing the data migration required by RAID scaling. An array N is used to record the250

history of RAID scaling. N[0] is the initial number of disks in the RAID. After the ith251

scaling operation, the RAID consists of N[i] disks.252

When a RAID is constructed from scratch (t = 0), it is actually a round-robin RAID.253

The address of block x can be calculated via one division and one modular operations254

(lines 3–4).255

Let us examine the tth scaling, where n disks are added into a RAID made up of m256

disks (lines 7–8).257

(1) If block x is an original block (line 9), FastScale calculates its old address (d0, b0)258

before the tth scaling (line 10).259

— If the block (d0, b0) needs to be moved (line 12), FastScale changes the disk260

ordinal number via the Moving() function (line 13), while it keeps the block261

ordinal number unchanged (line 14).262

— If the block (d0, b0) does not need to be moved (line 15), FastScale keeps the263

disk ordinal number and the block ordinal number unchanged (lines 16–17).264

(2) If block x is a new block (line 19), FastScale places it via the Placing() procedure265

(line 20).266

2.3.2. The Moving Function. The code of line 12 in Figure 5 is used to decide whether a267

data block (d0, b0) will be moved during a RAID scaling. As shown in Figures 3 and268

4, there is a parallelogram in each region. The base of the parallelogram is n, and the269

height is m. If and only if the data block is within a parallelogram, it will be moved.270

One parallelogram mapped to disk d0 is a line segment. Its beginning and ending271

columns are d0 and d0 + n − 1, respectively. If b1 is within the line segment, block x is272

within the parallelogram, and therefore it will be moved.273

Once a data block is determined to be moved, FastScale changes its disk ordinal274

number with the Moving() function given in Figure 6. As shown in Figure 7, a migrat-275

ing parallelogram is divided into three parts: a head triangle, a body parallelogram,276

and a tail triangle. How a block moves depends on which part it lies in. No matter277

which is bigger between m and n, the head triangle and the tail triangle keep their278

shapes unchanged. The head triangle will be moved by m disks (lines 3, 9), while the279

tail triangle will be moved by n disks (lines 5, 11). However, the body is sensitive to the280

relationship between m and n. The body is twisted from a parallelogram to a rectangle281

when m ≥ n (line 6), and from a rectangle to a parallelogram when m < n (line 12).282

FastScale keeps the relative locations of all blocks in the same column.283

2.3.3. The Placing Procedure. When block x is at a location newly added after the last284

scaling, it is addressed via the Placing() procedure given in Figure 8. If block x is285

a new block, it is the yth new block (line 1). Each stripe holds n new blocks. So we286

have b = y/n (line 2). In stripe b, the first new block is on disk e (line 3). Block x is287

the rth new data block in stripe b (line 4). Therefore, the disk number of block x is288

ACM Transactions on Storage, Vol. 9, No. 4, Article 11, Publication date: November 2013.

Design and Evaluation of a New Approach to RAID-0 Scaling 11:9

Algorithm 1: Addressing(t, N, s, x, d, b).

Input: The input parameters are t, N, s, and x, where
t: the number of scaling times;
N: the scaling history (N[0] , N[1], ..., N[t]);
s: the number of data blocks in one disk;
x: a logical block number.

Output: The output data are d and b, where
d: the disk holding block x;
b: the physical block number on disk d.

if (t = 0) then (1)
m ← N[0]; //the number of initial disks (2)
d ← x mod m; (3)
b ← x/m; (4)
return; (5)

end if; (6)
m ← N[t − 1]; //the number of old disks (7)
n ← N[t] −m; //the number of new disks (8)
if (0 ≤ x ≤ m × s − 1) then //an old data block (9)

Addressing(t − 1, N, s, x, d0, b0); //find the address (d0, b0) before the tth scaling (10)
b1 ← b0 mod (m + n); (11)
if (d0 ≤ b1 ≤ d0 + n − 1) then //an original block to be moved (12)

d ← Moving(d0, b1, m, n); (13)
b ← b0; (14)

else //an original block not to be moved (15)
d ← d0; (16)
b ← b0; (17)

end if; (18)
else //a new data block (19)

Placing(x, m, n, s, d, b); (20)
end if. (21)

Fig. 5. The Addressing algorithm used in FastScale.

(e + r) mod (m + n) (line 5). The order of placing new blocks is shown in Figures 3289

and 4.290

The addressing algorithm of FastScale is very simple and elegant. It requires fewer291

than 50 lines of C code, reducing the likelihood that a bug will cause a data block to be292

mapped to a wrong location.293

2.4. The Demapping Algorithm of FastScale294

2.4.1. The Demapping Algorithm. The Addressing algorithm describes how FastScale295

maps a logical address of a RAID-0 array to a physical address of a member disk. In296

many cases, it is also required to map a physical address to a logical address. FastScale297

uses the Demapping algorithm, shown in Figure 9, to provide a mapping from physical298

addresses to logical addresses. The array N records the history of RAID scaling. N[0]299

is the initial number of disks in the RAID. After the ith scaling operation, the RAID300

consists of N[i] disks.301

When a RAID is constructed from scratch (t = 0), it is actually a round-robin RAID.302

The logical address of the block at (d, b) can be calculated via one multiplication and303

one addition operation (line 3).304

ACM Transactions on Storage, Vol. 9, No. 4, Article 11, Publication date: November 2013.

11:10 G. Zhang et al.

Algorithm 2: Moving(d0, b1, m, n).

Input: The input parameters are d0, b1, m, and n, where
d0: the disk number before a block is moved;
b1: the location in a region before a block is moved;
m: the number of old disks;
n: the number of new disks.

Output: The disk number after a block is moved.

if (m ≥ n) then (1)
if (b1 ≤ n − 1) then //head (2)

return d0 + m; (3)
if (b1 ≥ m − 1) then //tail (4)

return d0 + n; (5)
return m + n − 1 − (b1 − d0); //body (6)

else (7)
if (b1 ≤ m − 1) then //head (8)

return d0 + m; (9)
if (b1 ≥ n − 1) then //tail (10)

return d0 + n; (11)
return d0 + b1 + 1; //body (12)

end if. (13)

Fig. 6. The Moving function used in the Addressing algorithm.

Fig. 7. The variation of data layout involved in migration.

Let us examine the tth scaling, where n disks are added into a RAID made up of305

m disks (lines 6–7). The logical address of block (d, b) can be calculated in a recursive306

manner.307

— If block (d, b) is an original block and is not moved (line 9), the logical address of308

block (d, b) remains unchanged across the tth scaling (line 10).309

ACM Transactions on Storage, Vol. 9, No. 4, Article 11, Publication date: November 2013.

Design and Evaluation of a New Approach to RAID-0 Scaling 11:11

Algorithm 3: Placing(x, m, n, s, d, b).

Input: The input parameters are x, m, n, and s, where
x: a logical block number;
m: the number of old disks;
n: the number of new disks;
s: the number of data blocks in one disk.

Output: The output data are d and b, where
d: the disk holding block x;
b: the physical block number on disk d.

y ← x − m × s; (1)
b ← y/n; (2)
e ← (b − (n − 1)) mod (m + n); (3)
r ← y mod n; (4)
d ← (e + r) mod (m + n). (5)

Fig. 8. The Placing procedure used in the Addressing algorithm.

Algorithm 4: Demapping(t, N, s, d, b).

Input: The input parameters are t, N, s, d and b, where
t: the number of scaling times;
N: the scaling history (N[0] , N[1], ..., N[t]);
s: the number of data blocks in one disk;
d: the disk holding block x;
b: the physical block number on disk d.

Output: The output datum is data block x at location b of disk d.

if (t = 0) then (1)
m ← N[0]; //the number of initial disks (2)
x ← b × m + d; (3)
return x; (4)

end if; (5)
m ← N[t − 1]; //the number of old disks (6)
n ← N[t] −m; //the number of new disks (7)
b1 ← b mod (m + n); (8)
if (0 ≤ d < m) and (b1 < d or b1 > d + n − 1) then //an old and unmoved data block (9)

return Demapping(t − 1, N, s, d, b); (10)
end if; (11)
if (d ≥ m) and (d − m ≤ b1 ≤ d − 1) then //an old and moved data block (12)

d0 ← Demoving(d, b1, m, n); //(d0, b) is its location before the tth scaling (13)
return Demapping(t − 1, N, s, d0, b); (14)

end if; (15)
return Deplacing(m, n, s, d, b). //a new data block (16)

Fig. 9. The Demapping algorithm used in FastScale.

— If block (d, b) is an original block and is moved (line 12), FastScale gets its original310

location (d0, b) before the tth scaling via the Demoving() function (line 13). It should311

be remembered that FastScale changes the disk ordinal number while keeping the312

block ordinal number unchanged. Then, FastScale calculates the logical address of313

block (d0, b) before the tth scaling (line 14).314

ACM Transactions on Storage, Vol. 9, No. 4, Article 11, Publication date: November 2013.

11:12 G. Zhang et al.

Algorithm 5: Demoving(d, b1, m, n).

Input: The input parameters are d, b1, m, and n, where
d: the disk number after a block is moved;
b1: the location in a region of the block;
m: the number of old disks;
n: the number of new disks.

Output: The disk number before a block is moved.

if (m ≥ n) then (1)
if (b1 ≤ n − 1) then //head (2)

return d − m; (3)
if (b1 ≥ m − 1) then //tail (4)

return d − n; (5)
return d + b1 + 1 − m − n; //body (6)

else (7)
if (b1 ≤ m − 1) then //head (8)

return d − m; (9)
if (b1 ≥ n − 1) then //tail (10)

return d − n; (11)
return d − b1 − 1; //body (12)

end if. (13)

Fig. 10. The Demoving function used in the Demapping algorithm.

— If block (d, b) is a new block, FastScale gets its logical address via the Deplacing()315

function (line 16).316

The code of line 9 is used to decide whether a data block (d, b) is an old block and is317

not moved during this scaling. As shown in Figures 3 and 4, there is a source parallel-318

ogram in each region. The base of the parallelogram is n, and the height is m. A data319

block is moved if and only if it is within a parallelogram. One parallelogram mapped320

to disk d is a line segment. Its beginning and ending columns are d and d + n − 1,321

respectively. If b1 is outside the line segment, block (d, b) is outside the parallelogram,322

and therefore it is not moved.323

2.4.2. The Demoving Function. Likewise, the code of line 12 in Figure 9 is used to de-324

termine whether a data block (d, b) is an old block and has been moved during this325

scaling. As shown in Figures 3 and 4, there is a destination parallelogram in each re-326

gion. The base of the parallelogram is m, and the height is n. A data block is moved if327

and only if it is within a destination parallelogram. One parallelogram mapped to disk328

d is a line segment. Its beginning and ending columns are d−m and d−1, respectively.329

If b1 is within the line segment, block (d, b) is within the parallelogram, and therefore330

it has been moved.331

Once it is determined that a data block has been moved, FastScale gets its original332

disk number via the Demoving() function given in Figure 10. As shown in Figure 7,333

a migrating parallelogram is divided into three parts: a head triangle, a body paral-334

lelogram, and a tail triangle. How a block moves depends on which part it lies in. No335

matter which is bigger between m and n, the head triangle and the tail triangle keep336

their shapes unchanged. The head triangle will be moved by m disks (lines 3, 9), while337

the tail triangle will be moved by n disks (lines 5, 11). However, the body is sensitive338

to the relationship between m and n. The body is twisted from a parallelogram to a339

rectangle when m ≥ n (line 6), while from a rectangle to a parallelogram when m < n340

(line 12). FastScale keeps the relative locations of all blocks in the same column.341

ACM Transactions on Storage, Vol. 9, No. 4, Article 11, Publication date: November 2013.

Design and Evaluation of a New Approach to RAID-0 Scaling 11:13

Algorithm 6: Deplacing(m, n, s, d, b).

Input: The input parameters are m, n, s, d, and b, where
m: the number of old disks;
n: the number of new disks;
s: the number of data blocks in one disk.
d: the disk holding block x;
b: the physical block number on disk d.

Output: The output datum are the logical block number x.

e ← (b − (n − 1)) mod (m + n); (1)
r ← (d − e) mod (m + n); (2)
y ← b × n + r; (3)
x ← m × s + y; (4)
return x. (5)

Fig. 11. The Deplacing function used in the Demapping algorithm.

2.4.3. The Deplacing Function. If block (d, b) is at a location newly added after the tth342

scaling, it is addressed via the Deplacing() function given in Figure 11. Each stripe343

holds n new blocks. In stripe b, the first new block is on disk e (line 1). Therefore, block344

(d, b) is the rth new block in stripe b (line 2). Since each stripe holds n new blocks,345

block (d, b) is the yth new data block (line 3). Furthermore, there are m × s old data346

blocks, and therefore, the logical address of block (d, b) is the x (line 4).347

2.5. Properties of FastScale348

In this section, we formally prove that FastScale satisfies all three requirements given349

in Section 2.1.350

THEOREM 2.1. FastScale maintains a uniform data distribution after each RAID351

scaling.352

PROOF. Assume that there are Ni−1 old disks and Ni − Ni−1 new disks during a353

RAID scaling. Since each disk is divided into segments of length Ni, and a RAID vol-354

ume is divided into regions with the size of Ni × Ni locations, it suffices to show that355

FastScale maintains a uniform data distribution in each region after each RAID scal-356

ing. Before a RAID scaling, there are Ni × Ni−1 blocks of data on the Ni−1 old disks. It357

is clear from Figure 7 that after the scaling, each new disk holds Ni−1 blocks of data.358

Since each old disk contributes Ni − Ni−1 blocks to the new disks, each old disk also359

holds Ni−1 blocks of data after the scaling. Hence, the Ni × Ni−1 data blocks in a re-360

gion are evenly distributed over the Ni disks, such that each disk has Ni−1 blocks in a361

region.362

THEOREM 2.2. FastScale performs the minimum number of data migrations during363

each RAID scaling.364

PROOF. Again, it suffices to show that FastScale performs the minimum number of365

data migrations in each region during each RAID scaling. According to Requirement366

2, the minimum number of blocks to be moved is (Ni−1 × s) × (Ni − Ni−1)/Ni, where367

each old disk has s data blocks. For one region, each segment on an old disk has Ni368

data blocks. Therefore, the minimum number of blocks to be moved for one region is369

(Ni−1 ×Ni)×(Ni −Ni−1)/Ni = Ni−1 ×(Ni −Ni−1), which is exactly the number of blocks370

in one moving parallelogram.371

ACM Transactions on Storage, Vol. 9, No. 4, Article 11, Publication date: November 2013.

11:14 G. Zhang et al.

Fig. 12. Comparison of uniformity of data distributions.

THEOREM 2.3. The Addressing algorithm of FastScale has time complexity O(t)372

after t RAID scalings.373

PROOF. Let T(t) denote the time complexity of the Addressing algorithm. Since374

Addressing is a recursive algorithm, we can represent T(t) by using a recurrence re-375

lation. First, it is clear that T(0) = c1 for some constant c1. Next, we notice that both376

the Moving function and the Placing procedure take constant time. Thus, we have377

T(t) ≤ T(t − 1) + c2, for all t ≥ 1, where c2 is some constant. Solving the recurrence378

relation, we get T(t) ≤ c1 + c2t = O(t).379

2.6. Property Examination380

The purpose of this experiment is to quantitatively characterize whether the FastScale381

algorithm satisfies the three requirements described in Section 2.1. For this purpose,382

we compare FastScale with the round-robin algorithm and the semi-RR algorithm.383

From a 4-disk array, we add one disk repeatedly for 10 times using the three algo-384

rithms respectively. Each disk has a capacity of 128 GB, and the size of a data block is385

64 KB. In other words, each disk holds 2 × 10242 blocks.386

2.6.1. Uniform Data Distribution. We use the coefficient of variation of the numbers of387

blocks on the disks as a metric to evaluate the uniformity of data distribution across388

all the disks. The coefficient of variation expresses the standard deviation as a per-389

centage of the average. The smaller the coefficient of variation, the more uniform the390

data distribution. Figure 12 plots the coefficient of variation versus the number of scal-391

ing operations. For the round-robin and FastScale algorithms, both the coefficients of392

variation remain at 0 percent as the times of disk additions increase.393

Conversely, the semi-RR algorithm causes excessive oscillation in the coefficient of394

variation. The maximum is even 13.06 percent. The reason for this nonuniformity is395

given as follows. An initial group of 4 disks causes the blocks to be placed in a round-396

robin fashion. When the first scaling operation adds one disk, 1/5 of all blocks, where397

(x mod 5) = 4, are moved onto the new disk, i.e., disk 4. However, with another oper-398

ation of adding one more disk using the same approach, 1/6 of all the blocks are not399

ACM Transactions on Storage, Vol. 9, No. 4, Article 11, Publication date: November 2013.

Design and Evaluation of a New Approach to RAID-0 Scaling 11:15

Fig. 13. Comparison of data migration ratios.

Table I. The Storage Overheads of
Different Algorithms

Algorithm Storage Overhead
Round-Robin 1

Semi-RR t
FastScale t

evenly picked from the 5 old disks and moved onto the new disk, i.e., disk 5. Only400

certain blocks from disks 1, 3, and 4 are moved onto disk 5 while disk 0 and disk 2401

are ignored. This is because disk 5 will contain blocks with logical numbers that sat-402

isfy (x mod 6) = 5, which are all odd numbers. The logical numbers of those blocks on403

disks 0 and 2, resulting from (x mod 4) = 0 and (x mod 4) = 2 respectively, are all even404

numbers. Therefore, blocks from disks 0 and 2 do not qualify and are not moved.405

2.6.2. Minimal Data Migration. Figure 13 plots the migration fraction (the fraction of data406

blocks to be migrated) versus the number of scaling operations. Using the round-robin407

algorithm, the migration fraction is constantly 100%. This will incur a very large mi-408

gration cost.409

The migration fractions using the semi-RR algorithm and using FastScale are identi-410

cal. They are significantly smaller than the migration fraction of using the round-robin411

algorithm. Another obvious phenomenon is that they decrease with the increase of the412

number of scaling operations. The reason for this phenomenon is described as follows.413

To make each new disk hold 1/Ni of total data, the semi-RR algorithm and FastScale414

move (Ni − Ni−1)/Ni of total data. Ni increases with the number of scaling operations,415

i.e., i. As a result, the percentage of new disks ((Ni − Ni−1)/Ni) decreases. Therefore,416

the migration fractions using the semi-RR algorithm and FastScale decrease.417

2.6.3. Storage and Calculation Overheads. When a disk array boots, it needs to obtain the418

RAID topology from disks. Table I shows the storage overheads of the three algorithms.419

The round-robin algorithm depends only on the total number of member disks. So its420

storage overhead is one integer. The semi-RR and FastScale algorithms depend on421

how many disks are added during each scaling operation. If we scale RAID t times,422

ACM Transactions on Storage, Vol. 9, No. 4, Article 11, Publication date: November 2013.

11:16 G. Zhang et al.

Fig. 14. Comparison of addressing times.

their storage overheads are t integers. Actually, the RAID scaling operation is not too423

frequent. It may be performed once every half a year, or even less often. Consequently,424

the storage overheads are very small.425

To quantitatively characterize the calculation overheads, we run different algo-426

rithms to calculate the physical addresses for all data blocks on a scaled RAID. The427

whole addressing process is timed and then the average addressing time for each block428

is calculated. The testbed used in the experiment is an Intel Dual Core T9400 2.53 GHz429

machine with 4 GB of memory. A Windows 7 Enterprise Edition is installed. Figure 14430

plots the addressing time versus the number of scaling operations.431

The round-robin algorithm has a low calculation overhead of 0.014 μs or so. The432

calculation overheads using the semi-RR and FastScale algorithms are close, and both433

take on an upward trend. Among the three algorithms, FastScale has the largest over-434

head. Fortunately, the largest addressing time using FastScale is 0.24 μs which is435

negligible compared to milliseconds of disk I/O time.436

3. OPTIMIZING DATA MIGRATION437

The FastScale algorithm succeeds in minimizing data migration for RAID scaling. In438

this section, we describe FastScale’s optimizations for the process of data migration.439

To better understand how these optimizations work, we first give an overview of the440

data migration process.441

3.1. Overview of the Scaling Process442

Before the ith scaling operation, an addressing equation, hi−1(x), describes the original443

geometry where Ni−1 disks serve user requests.444

Figure 15 illustrates an overview of the migration process. FastScale uses a sliding445

window to describe the mapping information of a continuous segment in a RAID un-446

der scaling. During scaling, only data that lie within the sliding window is copied to447

new locations. The addressing information of the sliding window is maintained with a448

bitmap table, where a bit indicates whether a data block has been migrated. The size449

of a sliding window is exactly that of a region.450

ACM Transactions on Storage, Vol. 9, No. 4, Article 11, Publication date: November 2013.

Design and Evaluation of a New Approach to RAID-0 Scaling 11:17

Fig. 15. An overview of the data redistribution process. As the sliding window slides ahead, the newly
added disks are gradually available to serve user requests.

Fig. 16. Aggregate reads for RAID scaling from 3 disks to 5. Multiple successive blocks are read via a
single I/O.

An incoming user request is mapped in one of three ways according to its logical451

address.452

— If its logical address is above the sliding window, it is mapped through the equation453

hi−1(x), where Ni−1 disks serve user requests.454

— If its logical address is below the sliding window, it is mapped through the new455

equation hi(x), where Ni disks serve user requests.456

— If its logical address is in the range of the sliding window, it is mapped through the457

sliding window.458

When all the data in a sliding window are moved, the sliding window moves ahead459

by one region size. In this way, the newly added disks are gradually available to serve460

user requests. When data redistribution is completed, the new addressing equation,461

hi(x), is used to describe the new geometry.462

3.2. Access Aggregation463

FastScale only moves data blocks from old disks to new disks, while not migrating464

data among old disks. The data migration will not overwrite any valid data. As a re-465

sult, data blocks may be moved in an arbitrary order. Since disk I/O performs much466

better for large sequential accesses, FastScale accesses multiple successive blocks via a467

single I/O.468

Take a RAID scaling from 3 disks to 5 as an example (see Figure 16). Let us focus469

on the first region. FastScale issues the first I/O request to read blocks 0 and 3, the470

second request to read blocks 4 and 7, and the third request for blocks 8 and 11, simul-471

taneously. By this means, to read all these blocks, FastScale requires only three I/Os,472

instead of six. Furthermore, all of these 3 large-size data reads are on three disks.473

They can be done in parallel, further increasing I/O rate.474

ACM Transactions on Storage, Vol. 9, No. 4, Article 11, Publication date: November 2013.

11:18 G. Zhang et al.

Fig. 17. Aggregate writes for RAID scaling from 3 disks to 5. Multiple successive blocks are written via a
single I/O.

When all six blocks have been read into a memory buffer, FastScale issues the first475

I/O request to write blocks 0, 3, and 7, and the second I/O to write blocks 4, 8, and 11,476

simultaneously (see Figure 17). In this way, only two large sequential write requests477

are issued, as opposed to six small writes.478

For RAID scaling from Ni−1 disks to Ni disks, Ni−1 reads and Ni − Ni−1 writes are479

required to migrate all the data in a region, i.e., Ni−1 × (Ni − Ni−1) data blocks.480

Access aggregation converts sequences of small requests into fewer, larger requests.481

As a result, seek cost is mitigated over multiple blocks. Moreover, a typical choice of the482

optimal block size for RAID is 32KB or 64KB [Brown 2006; Hennessy and Patterson483

2003; Kim et al. 2001; Wilkes et al. 1996]. Thus, accessing multiple successive blocks484

via a single I/O enables FastScale to have a larger throughput. Since data densities in485

disks increase at a much faster rate than improvements in seek times and rotational486

speeds, access aggregation benefits more as technology advances.487

3.3. Lazy Checkpoint488

While data migration is in progress, the RAID storage serves user requests. Further-489

more, the coming user I/Os may be write requests to migrated data. As a result, if490

mapping metadata does not get updated until all blocks have been moved, data consis-491

tency may be destroyed. Ordered operations [Kim et al. 2001] of copying a data block492

and updating the mapping metadata (a.k.a., checkpoint) can ensure data consistency.493

But ordered operations cause each block movement to require one metadata write,494

which results in a large cost for data migration. Because metadata is usually stored495

at the beginning of all member disks, each metadata update causes one long seek per496

disk. FastScale uses lazy checkpoint to minimize the number of metadata writes with-497

out compromising data consistency.498

The foundation of lazy checkpoint is described as follows. Since block copying does499

not overwrite any valid data, both its new replica and the original are valid after a500

data block is copied. In the preceding example, we suppose that blocks 0, 3, 4, 7, 8, and501

11 have been copied to their new locations and the mapping metadata has not been502

updated (see Figure 18), when the system fails. The original replicas of the six blocks503

will be used after the system reboots. As long as blocks 0, 3, 4, 7, 8, and 11 have not504

been written since being copied, the data remain consistent. Generally speaking, when505

the mapping information is not updated immediately after a data block is copied, an506

unexpected system failure only wastes some data accesses, but does not sacrifice data507

reliability. The only threat is the incoming of write operations to migrated data.508

The key idea behind lazy checkpoint is that data blocks are copied to new locations509

continuously, while the mapping metadata is not updated onto the disks (a.k.a., check-510

point) until a threat to data consistency appears. We use hi(x) to describe the geometry511

after the ith scaling operation, where Ni disks serve user requests. Figure 19 illus-512

trates an overview of the migration process. Data in the moving region is copied to513

new locations. When a user request arrives, if its physical block address is above the514

ACM Transactions on Storage, Vol. 9, No. 4, Article 11, Publication date: November 2013.

Design and Evaluation of a New Approach to RAID-0 Scaling 11:19

Fig. 18. If data blocks are copied to their new locations and metadata is not yet updated when the system
fails, data consistency is still maintained because the data in their original locations are valid and available.

Fig. 19. Lazy updates of mapping metadata. “C”: migrated and checkpointed; “M”: migrated but not check-
pointed; “U”:not migrated. Data redistribution is checkpointed only when a user write request arrives in
area “M”.

moving region, it is mapped with hi−1(x); If its physical block address is below the515

moving region, it is mapped with hi(x). When all of the data in the current moving516

region are moved, the next region becomes the moving region. In this way, the newly517

added disks are gradually available to serve user requests. Only when a user write518

request arrives in the area where data have been moved and the movement has not519

been checkpointed, are mapping metadata updated.520

Since one write of metadata can store multiple map changes of data blocks, lazy521

updates can significantly decrease the number of metadata updates, reducing the cost522

of data migration. Furthermore, lazy checkpoint can guarantee data consistency. Even523

if the system fails unexpectedly, only some data accesses are wasted. It should also be524

noted that the probability of a system failure is very low.525

4. EXPERIMENTAL EVALUATION526

The experimental results in Section 2.6 show that the semi-RR algorithm causes ex-527

tremely nonuniform data distribution. This will result in low I/O performance due528

to load imbalance. In this section, we compare FastScale with the SLAS approach529

[Zhang et al. 2007] through detailed experiments. SLAS, proposed in 2007, preserves530

the round-robin order after adding disks.531

4.1. Simulation System532

We use detailed simulations with several disk traces collected in real systems. The533

simulator is made up of a workload generator and a disk array (Figure 20). According534

to trace files, the workload generator initiates an I/O request at the appropriate time,535

so that a particular workload is induced on the disk array.536

ACM Transactions on Storage, Vol. 9, No. 4, Article 11, Publication date: November 2013.

11:20 G. Zhang et al.

Fig. 20. A simulation system block diagram. The workload generator and the array controller were imple-
mented in SimPy. DiskSim was used as a worker module to simulate disk accesses.

The disk array consists of an array controller and storage components. The array537

controller is logically divided into two parts: an I/O processor and a data mover. The538

I/O processor, according to the address mapping, forwards incoming I/O requests to539

the corresponding disks. The data mover reorganizes the data on the array. The mover540

uses on/off logic to adjust the redistribution rate. Data redistribution is throttled on541

detection of high application workload. Otherwise, it performs continuously. An IOPS542

(I/Os per second) threshold is used to determine whether an application workload543

is high.544

The simulator is implemented in SimPy [Muller and Vignaux 2009] and DiskSim545

[Bucy et al. 2008]. SimPy is an object-oriented, process-based discrete-event simula-546

tion language based on standard Python. DiskSim is an efficient and accurate disk547

system simulator from Carnegie Mellon University and has been extensively used in548

various research projects studying storage subsystem architectures. The workload gen-549

erator and the array controller are implemented in SimPy. Storage components are550

implemented in DiskSim. In other words, DiskSim is used as a worker module to sim-551

ulate disk accesses. The simulated disk specification is that of the 15,000-RPM IBM552

Ultrastar 36Z15 [Hitachi 2001].553

4.2. Workloads554

Our experiments use the following three real system disk I/O traces with different555

characteristics.556

— TPC-C traced disk accesses of the TPC-C database benchmark with 20 ware-557

houses [Brigham Young University, 2010.]. It was collected with one client running558

20 iterations.559

— Fin is obtained from the Storage Performance Council (SPC) [UMass Trace Repos-560

itory 2007, Storage Performance Council 2010], a vendor-neutral standards body.561

The Fin trace was collected from OLTP applications running at a large financial562

institution. The write ratio is high.563

ACM Transactions on Storage, Vol. 9, No. 4, Article 11, Publication date: November 2013.

Design and Evaluation of a New Approach to RAID-0 Scaling 11:21

Fig. 21. Performance comparison between FastScale and SLAS under the Fin workload.

— Web is also from SPC. It was collected from a system running a Web search engine.564

The read-dominated Web trace exhibits strong locality in its access pattern.565

4.3. Experiment Results566

4.3.1. The Scaling Efficiency. Each experiment lasts from the beginning to the end of567

data redistribution for RAID scaling. We focus on comparing redistribution times and568

user I/O latencies when different scaling programs are running in the background.569

In all experiments, the sliding window size for SLAS is set to 1024. Access aggre-570

gation in SLAS can improve the redistribution efficiency. However, a too-large size of571

redistribution I/Os will compromise the I/O performance of applications. In our exper-572

iments, SLAS reads 8 data blocks via an I/O request.573

The purpose of our first experiment is to quantitatively characterize the advan-574

tages of FastScale through a comparison with SLAS. We conduct a scaling operation575

of adding 2 disks to a 4-disk RAID, where each disk has a capacity of 4 GB. Each ap-576

proach performs with the 32KB stripe unit size under a Fin workload. The threshold577

of rate control is set to 100 IOPS. This parameter setup acts as the baseline for the578

latter experiments, from which any change will be stated explicitly.579

We collect the latencies of all user I/Os. We divide the I/O latency sequence into580

multiple sections according to I/O issuing time. The time period of each section is581

100 seconds. Furthermore, we get a local maximum latency from each section. A lo-582

cal maximum latency is the maximum of I/O latency in a section. Figure 21 plots local583

maximum latencies using the two approaches as the time increases along the x-axis.584

It illustrates that FastScale demonstrates a noticeable improvement over SLAS in two585

metrics.586

— First, the redistribution time using FastScale is significantly shorter than that us-587

ing SLAS: 952 seconds and 6830 seconds, respectively. In other words, FastScale588

has an 86.06% shorter redistribution time than SLAS. The main factor in589

FastScale’s reduction of the redistribution time is the significant decline of the590

amount of the data to be moved. When SLAS is used, almost 100% of the data591

blocks have to be migrated. However, when FastScale is used, only 33.3% of the592

ACM Transactions on Storage, Vol. 9, No. 4, Article 11, Publication date: November 2013.

11:22 G. Zhang et al.

Fig. 22. Cumulative distribution of I/O latencies during data redistributions by the two approaches under
the Fin workload.

data blocks have to be migrated. Another factor is the effective exploitation of two593

optimization technologies: access aggregation reduces the number of redistribution594

I/Os and lazy checkpoint minimizes metadata writes.595

— Second, local maximum latencies of SLAS are obviously longer than those of596

FastScale. The global maximum latency using SLAS reaches 83.12 ms while that597

using FastScale is 55.60 ms. This is because the redistribution I/O size using SLAS598

is larger than that using FastScale. For SLAS, the read size is 256 KB (8 blocks),599

and the write size is 192 KB (6 blocks). For FastScale, the read size is 64 KB (2600

blocks), and the write size is 128 KB (4 blocks). Of course, local maximum laten-601

cies of SLAS will be lower with a decrease in the redistribution I/O size. But the602

decrease in the I/O size will necessarily enlarge the redistribution time.603

Figure 22 shows the cumulative distribution of user response times during data604

redistribution. To provide a fair comparison, I/Os involved in statistics for SLAS are605

only those issued before 952 seconds. When I/O latencies are longer than 18.65 ms,606

the CDF value of FastScale is greater than that of SLAS. This indicates again that607

FastScale has a smaller maximum response time for user I/Os than SLAS. The average608

latency of FastScale is close to that of SLAS: 8.01 ms and 7.53 ms respectively. It is609

noteworthy that due to significantly shorter data redistribution time, FastScale has a610

markedly smaller impact on user I/O latencies than does SLAS.611

A factor that might affect the benefits of FastScale is the workload under which data612

redistribution performs. Under the TPC-C workload, we also measure the performance613

of FastScale and SLAS to perform the “4+2” scaling operation.614

For the TPC-C workload, Figure 23 shows local maximum latencies versus the615

redistribution times for SLAS and FastScale. It once again shows the efficiency of616

FastScale in improving the redistribution time. The redistribution times using SLAS617

and FastScale are 6820 seconds and 964 seconds, respectively. That is to say, FastScale618

causes an improvement of 85.87% in the redistribution time. Likewise, local maximum619

latencies of FastScale are also obviously shorter than those of SLAS. The global maxi-620

mum latency using FastScale is 114.76 ms while that using SLAS reaches 147.82 ms.621

ACM Transactions on Storage, Vol. 9, No. 4, Article 11, Publication date: November 2013.

Design and Evaluation of a New Approach to RAID-0 Scaling 11:23

Fig. 23. Performance comparison between FastScale and SLAS under the TPC-C workload.

Fig. 24. Comparison of redistribution times of FastScale and SLAS under different workloads. The label
“unloaded” means scaling a RAID volume offline.

To compare the performance of FastScale under different workloads, Figure 24622

shows a comparison in the redistribution time between FastScale and SLAS. For com-623

pleteness, we also conducted a comparison experiment on the redistribution time with624

no loaded workload. To scale a RAID volume offline, SLAS uses 6802 seconds whereas625

FastScale consumes only 901 seconds. FastScale provides an improvement of 86.75%626

in the redistribution time.627

We can draw one conclusion from Figure 24. Under various workloads, FastScale628

consistently outperforms SLAS by 85.87–86.75% in the redistribution time, with629

shorter maximum response time for user I/Os.630

ACM Transactions on Storage, Vol. 9, No. 4, Article 11, Publication date: November 2013.

11:24 G. Zhang et al.

Fig. 25. Impact of RAID-0 scaling on application I/O performance under the Fin workload.

Fig. 26. Impact of RAID-0 scaling on application I/O performance under the TPC-C workload.

To quantitatively demonstrate how data migration affects the existing workload dur-631

ing RAID scaling using FastScale, we measure the performance of RAID-0 without632

scaling operations. The measured array is made up of four disks. Figure 25 plots local633

average latencies with and without RAID scaling under the Fin workload, as the time634

increases along the x-axis. The average latency without scaling is 1.43 ms, while the635

average latency during RAID scaling is 8.01 ms. Figure 26 plots local average laten-636

cies with and without RAID scaling under the TPC-C workload. The average latency637

without scaling is 1.38 ms, while the average latency during RAID scaling is 10.39 ms.638

Obviously, application I/O latencies during RAID scaling are higher than those with-639

out scaling. The reason behind this phenomenon is that application I/Os are continuous640

ACM Transactions on Storage, Vol. 9, No. 4, Article 11, Publication date: November 2013.

Design and Evaluation of a New Approach to RAID-0 Scaling 11:25

Table II. Comparison of the Improvement of Redistribution Times
with Different Disk Sizes

Disk Size 4 GB 8 GB 16 GB
SLAS 6, 802s 13, 603s 27, 206s

FastScale 901s 1, 801s 3, 598s
Improvement Percentage 86.75% 86.76% 86.77%

without long idle periods, either under the Fin workload or under the TPC-C workload.641

Interleaving of redistribution I/Os will increase the time of application I/Os waiting642

for processing, and the time of disk seeks. The rate-control parameter can be used to643

trade off between the redistribution time objective and the response time objective.644

In order to obtain acceptable application I/O latencies, one can adjust the rate-control645

parameter—the IOPS threshold. In other words, FastScale can accelerate RAID-0 scal-646

ing, and at the same time, have an acceptable impact on the existing workload.647

Running a simulation experiment is time consuming. We set the disk capacity to648

4 GB for the online scaling, so as to conduct an experiment in an acceptable time.649

We also perform some experiments of offline scaling, where the disk capacity is set650

8 GB and 16 GB. As shown in Table II, the redistribution time increases linearly with651

the disk size used, no matter which approach is used. However, the percentages of652

improvement are consistent with those with the 4 GB capacity.653

4.3.2. The Performance after Scaling. The preceding experiments show that FastScale654

improves the scaling efficiency of RAID significantly. One of our concerns is whether655

there is a penalty in the performance of the data layout after scaling using FastScale,656

compared with the round-robin layout preserved by SLAS.657

We use the Web workload to measure the performance of the two RAIDs, scaled658

from the same RAID using SLAS and FastScale. Each experiment lasts 500 seconds,659

and records the latency of each I/O. Based on the issue time, the I/O latency sequence660

is evenly divided into 20 sections. Furthermore, we get a local average latency from661

each section.662

First, we compare the performance of the two RAIDs, after one scaling operation663

“4+1” using the two scaling approaches. Figure 27 plots local average latencies for the664

two RAIDs as the time increases along the x-axis. We find that the performance of the665

two RAIDs are very close. With regard to the round-robin RAID, the average latency666

is 11.36 ms. For the FastScale RAID, the average latency is 11.37 ms.667

Second, we compare the performance of the two RAIDs, after two scaling operations668

“4+1+1” using the two approaches. Figure 28 plots local average latencies of the two669

RAIDs as the time increases along the x-axis. It again reveals approximate equality in670

the performance of the two RAIDs. With regard to the round-robin RAID, the average671

latency is 11.21 ms. For the FastScale RAID, the average latency is 11.03 ms.672

Third, we compare the performance of the two RAIDs, after three scaling opera-673

tions “4+1+1+1” using the two approaches. Figure 29 plots local average latencies674

of the two RAIDs as time increases along the x-axis. It again reveals the approxi-675

mate equality in the performance of the two RAIDs. With regard to the round-robin676

RAID, the average latency is 11.01 ms. For the FastScale RAID, the average latency is677

10.79 ms.678

Finally, we compare the performance of the two RAIDs, after four scaling opera-679

tions “4+1+1+1+1” using the two approaches. Figure 30 plots local average latencies680

of the two RAIDs as time increases along the x-axis. It again reveals the approxi-681

mate equality in the performance of the two RAIDs. With regard to the round-robin682

RAID, the average latency is 10.75 ms. For the FastScale RAID, the average latency is683

10.63 ms.684

ACM Transactions on Storage, Vol. 9, No. 4, Article 11, Publication date: November 2013.

11:26 G. Zhang et al.

Fig. 27. Performance comparison between FastScale’s layout and round-robin layout under the Web work-
load after one scaling operation, i.e., “4+1”.

Fig. 28. Performance comparison between FastScale’s layout and round-robin layout under the Web work-
load after two scaling operations, i.e., “4+1+1”.

To summarize, Figure 31 shows a comparison in the response times of the two685

RAIDs, scaled from the same RAID using SLAS and FastScale, as the number of scal-686

ing times increases along the x-axis. We can see that the response time of each RAID687

decreases as scaling times increase. This is due to an increase of the number of disks688

in a RAID, which serve user I/Os simultaneously. The other conclusion that can be689

reached is that the two RAIDs, scaled from the same RAID using SLAS and FastScale,690

have almost identical performance. In three of the four cases, the FastScale RAID even691

performs better than the round-robin RAID.692

ACM Transactions on Storage, Vol. 9, No. 4, Article 11, Publication date: November 2013.

Design and Evaluation of a New Approach to RAID-0 Scaling 11:27

Fig. 29. Performance comparison between FastScale’s layout and round-robin layout under the Web work-
load after three scaling operations, i.e., “4+1+1+1”.

Fig. 30. Performance comparison between FastScale’s layout and round-robin layout under the Web work-
load after four scaling operations, i.e., “4+1+1+1+1”.

5. RELATED WORK693

In this section, we first examine the existing approaches to scaling deterministic RAID.694

Then, we analyze some approaches to scaling randomized RAID.695

5.1. Scaling Deterministic RAID696

HP AutoRAID [Wilkes et al. 1996] allows an online capacity expansion. Newly cre-697

ated RAID-5 volumes use all of the disks in the system, but previously created RAID-5698

volumes continue to use only the original disks. This expansion does not require data699

ACM Transactions on Storage, Vol. 9, No. 4, Article 11, Publication date: November 2013.

11:28 G. Zhang et al.

Fig. 31. Comparison of response times of the two RAIDs, scaled from the same RAID using SLAS and
FastScale.

migration. However, the system cannot add new disks into an existing RAID-5 vol-700

ume. The conventional approaches to RAID scaling redistribute data and preserve the701

round-robin order after adding disks.702

Gonzalez and Cortes [2004] proposed a gradual assimilation algorithm (GA) to con-703

trol the overhead of scaling a RAID-5 volume. However, GA accesses only one block704

via an I/O. Moreover, it writes mapping metadata onto disks immediately after redis-705

tributing each stripe. As a result, GA has a large redistribution cost.706

The reshape toolkit in the Linux MD driver (MD-Reshape) [Brown 2006] writes map-707

ping metadata for each fixed-sized data window. However, user requests to the data708

window have to queue up until all data blocks within the window are moved. On the709

other hand, MD-Reshape issues very small (4KB) I/O operations for data redistribu-710

tion. This limits the redistribution performance due to more disk seeks.711

Zhang et al. [2007] discovered that there is always a reordering window during data712

redistribution for round-robin RAID scaling. The data inside the reordering window713

can migrate in any order without overwriting any valid data. By leveraging this in-714

sight, they proposed the SLAS approach, improving the efficiency of data redistribu-715

tion. However, SLAS still requires migrating all data. Therefore, RAID scaling remains716

costly.717

D-GRAID [Sivathanu et al. 2004] restores only live file system data to a hot spare so718

as to recover from failures quickly. Likewise, it can accelerate the redistribution pro-719

cess if only the live data blocks from the perspective of file systems are redistributed.720

However, this requires semantically-smart storage systems. On the contrary, FastScale721

is independent of file systems, and it can work with any ordinary disk storage.722

A patent [Legg 1999] presented a method to eliminate the need to rewrite the orig-723

inal data blocks and parity blocks on original disks. However, the method makes all724

the parity blocks be either only on original disks or only on new disks. The obvious725

distribution nonuniformity of parity blocks will bring a penalty to write performance.726

Franklin and Wong [2006] presented a RAID scaling method using spare space with727

immediate access to new space. First, old data are distributed among the set of data728

disk drives and at least one new disk drive while, at the same time, new data are729

ACM Transactions on Storage, Vol. 9, No. 4, Article 11, Publication date: November 2013.

Design and Evaluation of a New Approach to RAID-0 Scaling 11:29

mapped to the spare space. Upon completion of the distribution, new data are copied730

from the spare space to the set of data disk drives. This is similar to the key idea of731

WorkOut [Wu et al. 2009]. This kind of method requires spare disks to be available in732

the RAID.733

In another patent, Hetzler [2008] presented a method of RAID-5 scaling, called734

MDM. MDM exchanges some data blocks between original disks and new disks. MDM735

can perform RAID scaling with reduced data movement. However, it does not increase736

(just maintains) the data storage efficiency after scaling. The RAID scaling process737

exploited by FastScale is favored in this regard, because the data storage efficiency is738

maximized, which many practitioners consider desirable.739

AdaptiveZ [Gonzalez and Cortes 2007] divides the space of RAID into several adap-740

tive zones, whose stripe patterns can be customized separately. When new disks are741

added, AdaptiveZ adds a new zone and redistributes a part of the data at the end of742

the RAID in the zone. This results in more blocks allocated on old disks than new743

ones, while redistributing the minimum amount of blocks that the AdaptiveZ algo-744

rithm requires. Therefore, AdaptiveZ has to increase the size of the migrated zone. In745

other words, AdaptiveZ is faced with a dilemma between minimal data migration and746

even data distribution. On the contrary, FastScale combines minimal data migration747

and uniform data distribution. On the other hand, all the data migrated by AdaptiveZ748

are logically sequential. On account of spatial locality in I/O workloads, this will still749

comprise a balanced load.750

5.2. Scaling Randomized RAID751

Randomized RAID [Alemany and Thathachar 1997; Brinkmann et al. 2000; Goel et al.752

2002; Santos et al. 2000] appears to have better scalability. It is now gaining the753

spotlight in the data placement area. Brinkmann et al. [2000] proposed the cut-and-754

paste placement strategy that uses randomized allocation strategy to place data across755

disks. For a disk addition, it cuts off the range [1/(n + 1), 1/n] from given n disks, and756

pastes them to the newly added (n + 1)th disk. For a disk removal, it uses a reversing757

operation to move all the blocks in disks that will be removed to the other disks. Also758

based on random data placement, Seo and Zimmermann [2005] proposed an approach759

to finding a sequence of disk additions and removals for the disk replacement problem.760

The goal is to minimize the data migration cost. Both of these approaches assume the761

existence of a high-quality hash function that assigns all the data blocks in the system762

to uniformly distributed real numbers with high probability. However, they did not763

present such a hash function.764

The SCADDAR algorithm [Goel et al. 2002] uses a pseudo-random function to dis-765

tribute data blocks randomly across all disks. It keeps track of the locations of data766

blocks after multiple disk reorganizations and minimizes the amount of data to be767

moved. Unfortunately, the pseudo-hash function does not preserve the randomness of768

the data layout after several disk additions or deletions [Seo and Zimmermann 2005].769

So far, a truly randomized hash function that preserves its randomness after several770

disk additions or deletions has not been found.771

The simulation report in Alemany and Thathachar [1997] shows that a single copy772

of data in random striping may result in some hiccups of the continuous display. To773

address this issue, one can use data replication [Santos et al. 2000], where a fraction of774

the data blocks randomly selected are replicated on randomly selected disks. However,775

this will incur a large overhead.776

RUSH [Honicky and Miller 2003, 2004] and CRUSH [Weil et al. 2006] are two al-777

gorithms for online placement and reorganization of replicated data. They are proba-778

bilistically optimal in distributing data evenly and minimizing data movement when779

new storage is added to the system. There are three differences between them and780

ACM Transactions on Storage, Vol. 9, No. 4, Article 11, Publication date: November 2013.

11:30 G. Zhang et al.

FastScale. First, they depend on the existence of a high-quality random function, which781

is difficult to generate. Second, they are designed for object-based storage systems.782

They focus on how a data object is mapped to a disk, without considering the data783

layout of each individual disk. Third, our mapping function needs to be 1-1 and on, but784

hash functions have collisions and count on some amount of sparseness.785

6. CONCLUSIONS AND FUTURE WORK786

This article presents the design of a new approach called FastScale, which accelerates787

RAID-0 scaling by minimizing data migration. First, with a new and elastic address-788

ing function, FastScale minimizes the number of data blocks to be migrated without789

compromising the uniformity of data distribution. Second, FastScale uses access ag-790

gregation and lazy checkpoint to optimize data migration.791

Replaying real-system disk I/O traces, we evaluated the performance of FastScale792

through comparison with an efficient scaling approach called SLAS. The results from793

detailed experiments show that FastScale can reduce redistribution time by up to794

86.06% with smaller maximum response time of user I/Os. The experiments also il-795

lustrate that the performance of the RAID scaled using FastScale is almost identical796

to, or even better than, that of round-robin RAID.797

In this article, the factor of data parity is not taken into account. We believe that798

FastScale provides a good starting point for efficient scaling of RAID-4 and RAID-5799

arrays. In the future, we will focus on the scaling issues of RAID-4 and RAID-5.800

ACKNOWLEDGMENTS801

We would like to thank the three anonymous reviewers for their constructive comments which have helped802

to improve the quality and presentation of this article.803

REFERENCES804

Alemany, J. and Thathachar, J. S. 1997. Random striping news on demand servers. Tech. rep. TR-97-02-02,805

University of Washington.806

Brigham Young University. 2010. TPC-C Postgres 20 iterations. DTB v1.1. Performance Evaluation Labora-807

tory, Trace distribution center. http://tds.cs.byu.edu/tds/.808

Brinkmann, A., Salzwedel, K., and Scheideler, C. 2000. Efficient, distributed data placement strategies for809

storage area networks. In Proceedings of the ACM Symposium on Parallel Algorithms and Architectures.810

119–128.811

Brown, N. 2006. Online RAID-5 resizing. drivers/md/ raid5.c in the source code of Linux Kernel 2.6.18.812

http://www.kernel.org/.813

Bucy, J., Schindler, J., Schlosser, S., and Ganger, G. 2008. The DiskSim Simulation Environment Version 4.0814

Reference Manual. Tech. rep. CMU-PDL-08-101, Carnegie Mellon University.815

Franklin, C. R. and Wong, J. T. 2006. Expansion of RAID subsystems using spare space with immediate816

access to new space. US Patent 10/033,997.817

Goel, A., Shahabi, C., Yao, S., and Zimmermann, R. 2002. SCADDAR: An efficient randomized technique818

to reorganize continuous media blocks. In Proceedings of the 18th International Conference on Data819

Engineering (ICDE). 473–482.820

Gonzalez, J. L. and Cortes, T. 2004. Increasing the capacity of RAID5 by online gradual assimilation. In821

Proceedings of the International Workshop on Storage Network Architecture and Parallel I/Os (SNAPI).822

17–24.823

Gonzalez, J. L. and Cortes, T. 2007. Adaptive data block placement based on deterministic zones (AdaptiveZ).824

In Lecture Notes in Computer Science, vol. 4804, 1214–1232.825

Hennessy, J. and Patterson, D. 2003. Computer Architecture: A Quantitative Approach, 3rd Ed. Morgan826

Kaufmann Publishers, Inc., San Francisco, CA.827

Hetzler, S. R. 2008. Data storage array scaling method and system with minimal data movement. US Patent828

20080276057.829

ACM Transactions on Storage, Vol. 9, No. 4, Article 11, Publication date: November 2013.

Design and Evaluation of a New Approach to RAID-0 Scaling 11:31

Hitachi. 2001. Hard disk drive specifications Ultrastar 36Z15.830

http://www.hitachigst.com/tech/techlib.nsf/techdocs/85256AB8006A31E587256A7800739FEB/$file/831

U36Z15 sp10.PDF. Revision 1.0, April.832

Honicky, R. J. and Miller, E. L. 2003. A fast algorithm for online placement and reorganization of replicated833

data. In Proceedings of the 17th International Parallel and Distributed Processing Symposium.834

Honicky, R. J. and Miller, E. L. 2004. Replication under scalable hashing: A family of algorithms for scal-835

able decentralized data distribution. In Proceedings of the 18th International Parallel and Distributed836

Processing Symposium.837

Kim, C., Kim, G., and Shin, B. 2001. Volume management in SAN environment. In Proceedings of the 8th838

International Conference on Parallel and Distributed Systems (ICPADS). 500–505.839

Legg, C. B. 1999. Method of increasing the storage capacity of a level five RAID disk array by adding, in840

a single step, a new parity block and N-1 new data blocks which respectively reside in new columns,841

where N is at least two. US Patent: 6000010, December 1999.842

Muller, K. and Vignaux, T. 2009. SimPy 2.0.1 documentation.843

http://simpy.sourceforge.net/SimPyDocs/index.html.844

Patterson, D. A. 2002. A simple way to estimate the cost of down-time. In Proceedings of the 16th Large845

Installation Systems Administration Conference (LISA). 185–188.846

Patterson, D. A., Gibson, G. A., and Katz, R. H. 1988. A case for redundant arrays of inexpensive disks847

(RAID). In Proceedings of the International Conference on Management of Date (SIGMOD). 109–116.848

Santos, J. R., Muntz, R. R., and Ribeiro-Neto, B. A. 2000. Comparing random data allocation and data849

striping in multimedia servers. ACM SIGMETRICS Perform. Eval. Rev. 28, 1, 44–55.850

Seo, B. and Zimmermann, R. 2005. Efficient disk replacement and data migration algorithms for large disk851

subsystems. ACM Trans. Storage 1, 3, 316–345.852

Sivathanu, M., Prabhakaran, V., Arpaci-Dusseau, A. C., and Arpaci-Dusseau, R. H. 2004. Improving storage853

system availability with D-GRAID. In Proceedings of the 3rd USENIX Conference on File and Storage854

Technologies (FAST).855

Storage Performance Council. 2010. http://www.storageperformance.org/home.856

UMass Trace Repository. 2007. OLTP Application I/O and Search Engine I/O.857

http://traces.cs.umass.edu/index.php/Storage/Storage.858

Weil, S. A., Brandt, S. A., Miller, E. L., and Maltzahn, C. 2006. CRUSH: Controlled, scalable, decentralized859

placement of replicated data. In Proceedings of the International Conference on Supercomputing (SC).860

Wilkes, J., Golding, R., Staelin, C., and Sullivan, T. 1996. The HP AutoRAID hierarchical storage system.861

ACM Trans. Comput. Syst. 14, 1, 108–136.862

Wu, S. J., Jiang, H., Feng, D., Tian, L., and Mao, B. 2009. WorkOut: I/O workload outsourcing for boosting the863

RAID reconstruction performance. In Proceedings of the 7th USENIX Conference on File and Storage864

Technologies (FAST). 239–252.865

Zhang, G. Y., Shu, J. W., Xue, W., and Zheng, W. M. 2007. SLAS: An efficient approach to scaling round-robin866

striped volumes. ACM Trans. Storage 3, 1, 1–39.867

Zheng, W. M. and Zhang, G. Y. 2011. FastScale: Accelerate RAID scaling by minimizing data migration. In868

Proceedings of the 9th USENIX Conference on File and Storage Technologies (FAST).869

Received March 2012; revised August 2012; accepted May 2013870

ACM Transactions on Storage, Vol. 9, No. 4, Article 11, Publication date: November 2013.

