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a b s t r a c t 

A multi-objective evolutionary algorithm based on decomposition (MOEA/D) is a classic 

decomposition-based multi-objective optimization algorithm. In the standard MOEA/D al- 

gorithm, the update process of individuals is a forward search process without using the 

information of previous individuals. However, there is a lot of useful information in the 

previous iteration. Information Feedback Models (IFM) is a new strategy which can in- 

corporate the information from previous iteration into the updating process. Therefore, 

this paper proposes a MOEA/D algorithm based on information feedback model, called 

MOEA/D-IFM. According to the different information feedback models, this paper proposes 

six variants of MOEA/D, and these algorithms can be divided into two categories according 

to the way of selecting individuals whether it is random or fixed. At the same time, a new 

selection strategy has been introduced to further improve the performance of MOEA/D- 

IFM. The experiments were carried out in four aspects. MOEA/D-IFM were compared with 

other state-of-the-art multi-objective evolutionary algorithms using CEC 2018 problems in 

two aspects. The best one of the six improved algorithms was chosen to test on large-scale 

many-objective problems. In addition, we also use MOEA/D-IFM to solve multi-objective 

backpack problems. 

© 2020 Elsevier Inc. All rights reserved. 

 

 

 

 

1. Introduction 

Multi-objective problems are widely used in real life, so it is very necessary and practical to solve multi-objective prob-

lems. The tricky part of dealing with multi-objective problems is that different objectives contradict with each other. It

makes difficult for us to get the optimal solutions. Multi-objective problems need to get the minimum or maximum value

of each objective at the same time. It is very difficult to solve multi-objective problems using traditional mathematical

methods. Evolutionary algorithms can perform well on multi-objective problems. 
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Pareto dominance is one of the efficient methods to solve multi-objective problems. If x dominates y , then ∀ i ∈ {1, 2, ...,

m }, f i ( x ) ≤ f j ( y ), ∃ j ∈ {1, 2, ..., m }, f j ( x ) < f j ( y ). When there is a solution that is not subject to any other solutions, it becomes

a non-dominated solution, and these mutually non-dominated solutions are integrated into a Pareto-optimal Set (PS). The

set of objective function values corresponding to all solutions in the Pareto-optimal Set called Pareto Front (PF). One of the

most classic algorithms based on the Pareto dominance relationship is a fast and elitist multi-objective genetic algorithm

(NSGA-II), proposed by Deb et al. in 2002 [7] . NSGA-II is an improved NSGA [23] , which is layered according to the domi-

nance relationship between individuals. Each layer has a virtual fitness value. NSGA-II mainly includes fast non-dominated

sorting, combining the solution generated by cross and mutation operators with the solution of the previous generation,

and then layering with non-dominated sorting. Based on NSGA-II, Deb et al. [8] proposed an evolutionary many-objective

optimization algorithm using reference-point-based non-dominated sorting approach, called NSGA-III, and applied NSGA-III 

to a number of many-objective test problems. Then Deb et al. [13] extended NSGA-III to solve generic constrained many-

objective optimization problems. Arash et al. [19] proposed an open source C ++ genetic algorithm library called openGA,

which allows users to freely design custom solutions. 

The multi-objective artificial bee colony algorithm (MOABC) [1] , the employer bees adjusted the trajectory according to

the non-dominated relationship. Improved strength Pareto evolutionary algorithm (SPEAII) [50] used an external archive to

hold better solutions and an improved fitness allocation method. However, since the multi-objective algorithm based on

Pareto dominance has a sharp decline in performance when the number of objectives increases, many improvement strate-

gies have emerged. Zhang et al. [47] proposed a knee point-driven evolutionary algorithm (KnEA). Xiang et al. [36] proposed

a vector angle-based evolutionary algorithm for unconstrained many-objective optimization. Chen et al. [2] proposed a new

local search-based multi-objective optimization algorithm (NSLS). 

Decomposition is also a very good way to solve multi-objective problems, which is to decompose multi-objective prob-

lems into single objective problems. By simulating some biological behaviors, the whole population is continuously evolved,

and finally an approximate PF is obtained. Cheng et al. [3] proposed a reference vector guided evolutionary algorithm (RVEA)

for many-objective optimization in 2016. Wang et al. [34] proposed an adaptive replacement strategies for MOEA/D. Zhang

et al. [43] proposed a method of adjusting weight vectors in MOEA/D for bi-objective optimization problems with discon-

tinuous Pareto fronts. Zhang et al. [44] proposed a self-organizing multi-objective evolutionary algorithm. 

Although the evolutionary algorithms have performed well on many problems, they still have some defects, so many

improvement strategies have been proposed. Among them, the information feedback models (IFM) [29] are included. The

information feedback models have achieved good results in the single objective evolutionary algorithm. Because at each

iterative update of the algorithm, there may be a lot of useful information. We usually do not consider this information

when updating the current individuals, so it is possible to waste a lot of useful information. As far as we know, this model

has not been applied to solve multi-objective problems. So, we propose a multi-objective optimization algorithm based on

information feedback models, called MOEA/D-IFM. Unlike most optimization algorithms, MOEA/D-IFM takes the importance 

of this information into account and will preserve the information from previous populations. There are two ways to select

individuals: fixed and random. The individuals selected from the historical information and the individual obtained from the

basic algorithm are used for the update of the current individual. The fitness value of individual is used as determinants of

individual weight. Six different information feedback models were used in this paper. The experiments were carried out in

four aspects. On one hand, the six improved algorithms were compared with multi-population-driven evolutionary algorithm

(AMPDEA) [6] and decomposition-based algorithms using pareto adaptive scalarizing methods (MOEA/D-PaS) [32] on CEC

2018 problems. On the other hand, the best one of six improved algorithms was chosen to test on large-scale many-objective

problems. MOEA/D-IFM also made a comparison with CVEA3 [42] on CEC 2018 problems. In addition, we use MOEA/D-IFM

to solve multi-objective backpack problems. The experimental results show MOEA/D-IFM outperformed some state-of-the- 

art multi-objective algorithms. 

The rest of this paper is organized as follows. In Section 2 , we discuss the research of related work. Section 3 introduces

the basic principle of MOEA/D and two decomposition approaches in multi-objective optimization problems. Section 3 also

has an introduction to the information feedback model. In Section 4 , the proposed MOEA/D-IFM algorithm is described in

detail. The experimental results are given in Section 5 . Section 6 gives a general summary of the paper. 

2. Related work 

Most of the problems in real life are multi-objective problems. We should have a comprehensive consideration when

dealing with multi-objective problems, such as production cost, time, and technology. The multi-objective problems are

difficult to solve because it cannot get the optimal solution for each objective at the same time. When solving multi-objective

problems, we are required to weigh the pros and cons according to the actual situations. This is the famous no-free lunch

theorem [35] . Multi-objective evolutionary algorithms have been applied to solve many practical problems. Mohammadi

et al. [20] proposed a multi-objective genetic algorithm to obtain the best model predictive control (MPC) weighting in

driving simulators. This method can find the best tune of the MPC cost function weights and reduce the user burden for

weight tuning while receiving feedback from the user satisfaction. 

MOEA/D has a good performance on solving multi-objective problems, and researchers conducted a deeper exploration of

it. In MOEA/D, the choice of reference points is very important. In the standard MOEA/D, the reference point is usually the

optimal value for each sub-objective. For the study of reference points, Wang et al. [33] discussed the influence of reference
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points on the MOEA/D, and divided the effects of reference points into three categories, which were pessimistic, optimistic,

and dynamic. For bi-objective optimization problems with discontinuous Pareto fronts, Zhang et al. [43] proposed a method

to adjust the weight vector. This method was to find the weight vector that is required to be adjusted, then these weight

vectors were divided into several groups and the number of ideal points for each weight vector was calculated. Finally, the

solution set was updated by linear interpolation method. In order to improve the diversity and convergence of the solution

set, Zheng et al. [49] proposed a new hybrid decomposition method, which combined the weighted sum method with the

Tchebycheff to improve NSGA-II performance. Ke et al. [14] integrated ACO into MOEA/D. The ants were divided into several

groups, and each ant solved a sub-problem. The ants recorded the historical optimal solution of the sub-problems. Wang

et al. [34] proposed a global replacement scheme which assigned a new solution to its most suitable sub-problems, called

adaptive replacement strategies for MOEA/D. Tan et al. [25] proposed a modification to MOEA/D-DE for multi-objective

optimization problems with complicated Pareto sets. A uniform design was applied to the vector of the coefficient of ag-

gregation so that the sub-problems of the decomposition can be equally distributed. Ma et al. [17] proposed a MOEA/D

algorithm based on opposite learning that is a machine learning method. Convergence speed of MOEA/D can be improved

by adding opposite learning. For the Tchebycheff decomposition method, the weight vector and the optimal sub-problem

solution are nonlinear. Ma et al. [18] proposed a uniform decomposition method. MOEA/D performs the same processing for

all sub-problems. However, in general, the computational resources are equally allocated for each sub-problem. Wang et al.

[31] proposed a new resource allocation strategy based on the relationship between sub-problems, a probability vector is

established to guide the optimization of sub-problems. 

There are still many in-depth studies on the MOEA/D by researchers, but most of these algorithms only focus on the

reference point of the MOEA/D, the improvement of the decomposition method, or the addition of some other strategies.

None of these methods use the population information before, but this information is very likely to be very useful. 

Information feedback models have been applied to many single objective optimization algorithms, such as PSO [11] , ACO

[9] , bat algorithm (BA) [38] , biogeography-based optimization (BBO) [22] , cuckoo search (CS) [37] , differential evolution (DE)

[24] , krill herd (KH) [12, 26] , and monarch butterfly optimization (MBO) [27] . And the algorithms that have been added to the

information feedback models have been experimentally proven to improve the performance of the algorithm itself. These

optimization algorithms that were incorporated into the information feedback model have better performance than their

basic ones. As far as we know, the information feedback models have not been added to the multi-objective algorithms, so

we consider adding the information feedback model to the multi-objective algorithms. The information feedback models are

based on the fitness function. We use the information in the previous iterations to update the current individual, and the

fitness functions are used to balance the current individual and the previous information. 

In this paper, we have introduced information feedback models to MOEA/D to make up for this gap, and then MOEA/D-

IFM was proposed. MOEA/D-IFM improves the performance of MOEA/D by reusing the information before. Six different

information feedback models were added to the basic MOEA/D. The improved algorithm has better performance in all com-

parative multi-objective optimization algorithms. Specific details will be explained later in this paper. 

3. Preliminaries 

In this section, we will introduce the basic MOEA/D algorithm and the two decomposition methods of MOEA/D. In addi-

tion, we will introduce the fundamental of the information feedback models, because our work is based on the six formation

feedback models. The detailed introduction to these six models will be given before proposing the algorithm. 

3.1. MOEA/D 

Multi-objective optimization problems can be stated as: 

min f ( x ) = ( f 1 ( x ) , f 2 ( x ) , ..., f m 

( x ) ) 

subject to x ∈ �, f ∈ R 

m (1)

where x = { x 1 , x 2 , …, x n } ∈ � is a decision vector, � is the decision space, and n is the dimensions of the decision vector.

R m is the objective space, and m is the number of objectives. 

The main idea of MOEA/D is relatively simple, which is to decompose a multi-objective problem into multiple single

objective problems. After getting multiple single objective problems, we can process these single-objective problems at the

same time, which greatly reduces the computational complexity. This is also a major advantage of a multi-objective algo-

rithm based on decomposition. In this process, the decomposition method is used to decompose multi-objective problems.

There are three common decomposition methods in multi-objective optimization. They are weighted sum approach, Tcheby-

cheff approach, and Penalty-based Boundary Intersection (PBI) approach [21] . Pareto optimal vectors are not always obtained

by weighted sum approach when the PF are nonconcave [23] . In this paper, the penalty-based boundary intersection (PBI)

approach are used. 

3.1.1. Tchebycheff approach 

The method is as follows: 

min g te (x | λ, z ∗) = max 
1 ≤i ≤m 

{ λi ( f i (x ) − z ∗i ) } s.t. x ∈ � (2)
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where λ= ( λ1 , λ2 , …, λm 

) is the weight vector, z ∗ = ( z ∗1 , z 
∗
2 , ..., z 

∗
m 

) is the reference point, the reference point is the coordinate

composed of the minimum value of each objective. The goal of optimization is to find individuals on the PF. Tchebycheff

approach can continuously approach the PF by calculating the distance from the reference points. When we take a different

value for λ, we can get other solutions on PF. 

3.1.2. Penalty-based Boundary Intersection (PBI) approach 

The Boundary Intersection (BI) approach can be given as follows: 

min g bi ( x | λ, z ∗) = d s.t. z ∗ − f ( x ) = dλ, x ∈ � (3) 

where d is a scalar, indicating the distance between f ( x ) and λ. The meaning of the constraint is to ensure f ( x ) and λ located

at the same line. This limitation is not realistic [45] , so it must be improved. As an improvement to the previous algorithm,

a penalty function is introduced in the constraint. 

min g bip ( x | λ, z ∗) = d 1 + d 2 θ s.t.x ∈ �

d 1 = 

∥∥( z ∗ − f ( x ) ) 
T λ

∥∥
‖ 

λ‖ 

d 2 = ‖ 

f ( x ) − ( z ∗ − d 1 λ) ‖ 

(4) 

where θ is a pre-set parameter, and usually its value is 0.5. d 1 is a scalar, indicating the distance that is projected on the

direction λ, d 2 is a value indicating punishment, which indicates the distance that f ( x ) is projected in the vertical direction

of λ. The farther away from λ, the larger the penalty value obtained. Compared with the Tchebycheff approach, the PBI

obtains a more uniform distribution of solutions when the objective number is higher. If the generated solution and weight

vector are not in the same direction, then the solution will be punished. 

3.2. Information feedback models 

Information feedback model is a strategy for improving the performance of metaheuristic algorithms. Its central idea

is to use the information in the previous iteration to update the current generated solution. There are two ways to select

individuals in the previous iteration, which are random selection and fixed selection. The number of iterations for selecting

individuals can be any numbers k ( k < n ) before the current number of iterations. For the simple example, we set the value

of k to 3. The feedback model that selects individuals in fixed manner is called M1, and the feedback model that selects

individuals in a random manner is called M2 

3.2.1. Fixed selection 

In this model, we select individuals in a fixed way. This fixed way is to select the same position as the individual at the

current iteration to select the individual from the previous iteration. Then, the information of the individual in the previous

iteration is used to update the current individual. θ1 , θ2 , θ3 , and θ4 are the weight vectors, θi > 0 , 
∑ m 

i =1 θi = 1 . 

(1) M1-1: This is the simplest model, using the individual information from the last previous iteration. The current num-

ber of iterations is t , x t 
i 

is the i -th individual at the current iteration, and the corresponding to fitness value is f t 
i 
, y i 

is the individual obtained in the basic algorithm, and its fitness value is F t . 

x t+1 
i 

= θ1 x 
t 
i + θ2 y 

t+1 
i 

θ1 = 

f t 
i 

F t+1 + f t 
i 

, 

θ2 = 

F t+1 

F t+1 + f t 
i 

. (5) 

(2) M1-2: In this model, we select two individuals from two previous iterations which is t and t -1. We can get the

following update equation: 

x t+1 
i 

= θ1 x 
t−1 
i 

+ θ2 x 
t 
i + θ3 y 

t+1 
i 

θ1 = 

1 

2 

• f t−1 
i 

+ F t+1 

F t+1 + f t 
i 

+ f t−1 
i 

θ2 = 

1 

2 

• f t 
i 

+ F t+1 

F t+1 + f t 
i 

+ f t−1 
i 

θ3 = 

1 

2 

• f t 
i 

+ f t−1 
i 

F t+1 + f t 
i 

+ f t−1 
i 

(6) 

where x t−1 
i 

is the individual selected from t -1 iterations, the position is the same as the current individual x t 
i 
, and

t−1 t−1 
f 
i 

is the fitness value corresponding to x 
i 

. 
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(3) M1-3: In this model, we select three individuals from three previous iterations which is t, t -1, and t -2. We can get the

following update equation: 

x t+1 
i 

= θ1 x 
t−2 
i 

+ θ2 x 
t−1 
i 

+ θ3 x 
t 
i + θ4 y 

t+1 
i 

θ1 = 

1 

3 

• f t−1 
i 

+ f t 
i 

+ F t+1 

f t−2 
i 

+ f t−1 
i 

+ f t 
i 

+ F t+1 

θ2 = 

1 

3 

• f t−2 
i 

+ f t 
i 

+ F t+1 

f t−2 
i 

+ f t−1 
i 

+ f t 
i 

+ F t+1 

θ3 = 

1 

3 

• f t−2 
i 

+ f t−1 
i 

+ F t+1 

f t−2 
i 

+ f t−1 
i 

+ f t 
i 

+ F t+1 

θ4 = 

1 

3 

• f t−2 
i 

+ f t−1 
i 

+ f t 
i 

f t−2 
i 

+ f t−1 
i 

+ f t 
i 

+ F t+1 
(7)

Here we selected three individuals x t 
i 
, x t−1 

i 
, and x t−2 

i 
to update the current solution, and f t 

i 
, f t−1 

i 
, and f t−2 

i 
are their fitness

values, respectively. 

3.2.2. Random selection 

In this model, we use a random approach to select individuals in previous iterations. In this process, we use the method

of generating random numbers to determine the location of the selected individual. Similar to the fixed selection method,

we only list three models here. 

(1) M2-1: It is obvious that in the random selection model we use numbers randomly generated between 1 and N to

determine the location of the selected individual in the population. 

x t+1 
i 

= θ1 x 
t 
r + θ2 y 

t+1 
i 

θ1 = 

F t+1 

f t r + F t+1 

θ2 = 

f t r 

f t r + F t+1 
(8)

where r is the random number between 1 and N , x t r is the r -th individual at iteration t , and f t r is its fitness value. 

(2) M2-2: We randomly selected two individuals from the two previous iterations which is t and t -1. We can get the

following update equation. 

x t+1 
i 

= θ1 x 
t−1 
r 1 

+ θ2 x 
t 
r 2 

+ θ3 y 
t+1 
i 

θ1 = 

1 

2 

• f t r 2 
+ F t+1 

f t−1 
r 1 

+ f t r 2 
+ F t+1 

θ2 = 

1 

2 

• f t−1 
r 1 

+ F t+1 

f t−1 
r 1 

+ f t r 2 
+ F t+1 

θ3 = 

1 

2 

• f t−1 
r 1 

+ f t r 2 

f t−1 
r 1 

+ f t r 2 
+ F t+1 

(9)

where r 1 and r 2 are two random numbers between 1 and N , x t−1 
r 1 

and x t r 2 are individuals selected from iterations t -1

and t , respectively, f t−1 
r 1 

and f t r 2 
are their corresponding fitness values. 

(3) M2-3: Similar to the above two models, three individuals were selected from t, t -1, t -2 iterations. We can get the

following update equation. 

x t+1 
i 

= θ1 x 
t−2 
r 1 

+ θ2 x 
t−1 
r 2 

+ θ3 x 
t 
r 3 

+ θ4 y 
t+1 
i 

θ1 = 

1 

3 

• f t−1 
r 2 

+ f t r 3 
+ F t+1 

f t−2 
r 1 

+ f t−1 
r 2 

+ f t r 3 
+ F t+1 

θ2 = 

1 

3 

• f t−2 
r 1 

+ f t r 3 
+ F t+1 

f t−2 
r 1 

+ f t−1 
r 2 

+ f t r 3 
+ F t+1 

θ3 = 

1 

3 

• f t−2 
r 1 

+ f t−1 
r 2 

+ F t+1 

f t−2 
r 1 

+ f t−1 
r 2 

+ f t r 3 
+ F t+1 

θ4 = 

1 • f t−2 
r 1 

+ f t−1 
r 2 

+ f t r 3 
t−2 t−1 t t+1 

(10)

3 f r 1 + f r 2 + f r 3 + F 



6 Y. Zhang, G.-G. Wang and K. Li et al. / Information Sciences 522 (2020) 1–16 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

where r 1 , r 2 , and r 3 are the random numbers between 1 and N , x t−2 
r 1 

, x t−1 
r 2 

, and x t r 3 are individuals selected from t -2, t -1, and

t iterations, respectively, f t−2 
r 1 

, f t−1 
r 2 

, and f t r 3 
are their fitness values. 

4. MOEA/D-IFM 

In this section, we incorporated the information feedback model into the MOEA/D. We first give the general framework

of the proposed algorithm, and a detailed explanation of the algorithm was provided later. 

4.1. General framework of MOEA/D-IFM 

In the initialization phase, a population P is generated. The decomposition method used in the algorithm is Tchebycheff

approach. In the standard MOEA/D algorithm, the number of weight vectors is the same with the population size, then

the number of weight vectors is N . Each set of weight vectors transforms the multi-objective optimization problem into

multiple single-objective optimization problems. Each weight vector corresponds to a single-objective optimization problem. 

The solutions on adjacent weight vectors are similar. Weight vectors have neighbors. Assume that the number of neighbors

is T . The neighbors of each weight vector involves the T points around it. These T points are used to generate a new solution.

After each generation of new population is produced, it is necessary to replace the solution in the neighborhood. First, we

calculate Euclidean distance between the weight vectors and find the nearest T weight vectors for each weight vector form

the neighbor B = { i 1, i 2 , …, i T } of this weight vector. External population is used to save non-dominated solutions during the

search process. 

Step 1) Initialization: Initialize parameters, generate the weight vectors λ= ( λ1 , λ2 , …, λm 

). Calculate the neighbor B = { i 1, 

i 2 , …, i T }. Generate an initial random population P = { x 1, x 2 , …, x N }, take the minimum (maximum) value of each single

objective value as a reference point z ∗ = ( z ∗1 , z 
∗
2 , ..., z 

∗
m 

) . 

Step 2) Search: For each solution x i ( i = 1, 2, …, N ), randomly select two positions from B to generate a new solution y i . 

Step 2.1) Selecting individuals for updating from the saved information according to one of the six models. 

Step 2.2) Update reference point z ∗ = ( z ∗
1 
, z ∗

2 
, ..., z ∗m 

) and B . 

Step 3) Update EP . If the newly generated solution y is not dominated by any solution in EP , and remove solutions

dominated by y . 

Step 4) Stopping criterion: If the stopping condition is met, stop and output EP . Otherwise, go to Step 2). 

4.2. Operators 

Simulated binary crossover is a crossover operator commonly used in evolutionary algorithms. Where p 1 and p 2 are two

parents, c 1 and c 2 are two children, β is spread factor, and u is a random number in the range [0,1]. β has two calculation

equations that determine which equation will be used based on the value of the random number u . 

c 1 = 

1 

2 

× ( p 2 + p 1 ) − 1 

2 

× β( p 2 − p 1 ) 

c 2 = 

1 

2 

× ( p 2 + p 1 ) + 

1 

2 

× β( p 2 − p 1 ) 

β = 

{ 

(2 × u ) 
1 

n +1 u ≤ 0 . 5 (
1 

2 ×( 1 −u ) 

) 1 
n +1 u > 0 . 5 

(11) 

After the crossover operation, the individual undergoes a polynomial mutation to generate a new individual, u is a ran-

dom number in the range [0, 1], η is a distribution index, u k and l k are the upper and lower bounds of the k -th decision

variable. 

c = 

{ [
2 × u + ( 1 − 2 × u ) ( 1 − δ1 ) 

η+1 
] 1 

η+1 − 1 u ≤ 0 . 5 

1 −
[
2 × ( 1 − u ) + 2 × ( u − 0 . 5 ) ( 1 − δ2 ) 

η+1 
] 1 

η+1 
u > 0 . 5 

δ1 = 

( p − l k ) 

u k − l k 
, δ2 = 

u k − p 

u k − l k 
(12) 

In Section 2 , we introduced the basic MOEA/D algorithm and information feedback model. In this section, we will explain

in detail how to integrate the information feedback model into the MOEA/D. 

4.3. Selection strategy 

In this paper, the selection strategy we used was a neighbor selection strategy [42] . ME is a mutual evaluation matrix.

ME is calculated by the relationship between each solution and other solutions. The specific calculation method is given as
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follows: 

M E i = min 

j∈ I\ i m e i j , I = { 1 , 2 , ..., N 

∗} 
m e i j = max 

p 
f j p / f i p (13)

where f 
j 
p and f i p are two different solutions to the p- th subproblem, and i � = j . After calculating the ME value of each solution,

we will retain N /2 solutions with larger ME values. It should be noted that each time the solution with the smallest ME value

is removed, the ME value of the solution associated with it is recalculated. Then, a parallel distance d ij between any two

solutions is calculated, and the two solutions with the smallest distance are compared, and the one with the smaller ME

value is removed. The parallel distance is calculated as follows: 

d i j = 

⎡ 

⎣ 

m ∑ 

p=1 

(
f̄ i p − f̄ j p 

)2 −
( 

m ∑ 

p=1 

( ̄f i p − f̄ j p ) 

) 2 

/m ) 1 / 2 

⎤ 

⎦ (14)

f̄ p = 

f p − f min 
p 

f max 
p − f min 

p 

, p = 1 , 2 , ..., m. (15)

where f̄ i p and f̄ 
j 
p are the normalized values of the different solutions of the p sub-problem, d ij is calculated by Eq. (15) , the

solutions are all distributed within the range of [0, 1]. f max 
p and f min 

p are the maximum and minimum solutions of p -th

sub-problem, respectively. 

4.4. MOEA/D1-MOEA/D6 

Because the information feedback model will select individuals from the previous iteration for the current update, in-

formation feedback models can only be used when the number of iterations is greater than two. First, we initialize the

population and weight vectors. After the initialization is complete, we will calculate the Euclidean distance between the

weight vectors. For each weight vector, we select the nearest T weight vectors according to the Euclidean distance and store

the indexes of the T weight vectors in the neighbor B = { i 1 , i 2 , …, i T }. Each weight vector corresponds to a sub-objective. We

randomly selected two locations from B to generate new individuals as parents. The crossover and mutation operations we

use here are simulated binary crossover and polynomial mutation. Because the information feedback model needs to use

the information in the previous iteration, the information before the current iteration is saved to the historical population. 

We keep all the generations before the current iteration in the historical population, and then we select individuals from

the historical population according to the model we choose. We detailed the six feedback models in Section 3 . In this paper,

we add six information feedback models which were introduced in Section 3 to the MOEA/D algorithm. These three models

include M1-1, M1-2, and M1-3 with fixed selection. The improved algorithms for adding model M1-1, M1-2 and M1-3 are

called MOEA/D1, MOEA/D2, and MOEA/D3. In addition, there are M2-1, M2-2, and M2-3 with random selection. Similarly,

the three improved algorithms are called MOEA/D4, MOEA/D5, and MOEA/D6, respectively. 

5. Experimentats 

In this Section, we will test the performance of our proposed algorithm using the benchmark functions from CEC 2018

competition on many-objective optimization and test problems for large-scale many-objective optimization problems. The

experiments are carried out in four aspects. On one hand, we compare the six improved algorithms with AMPDEA [6] and

MOEA/D-PaS [32] on the many-objective benchmark functions from CEC 2018 competition. After the comparison, we choose

the best one from the six improved algorithms and further compare it with other multi-objective algorithms on large-scale

multi-objective optimization (L SMOP1-L SMOP9). MOEA/D-IFM is also compared with CVEA3 [42] on many-objective opti-

mization and test problems from CEC 2018 competition. Finally, we use MOEA/D-IFM to solve a practical problem that is a

multi-objective knapsack problem. The experimental values are the results of taking the average value after 20 independent

runs. 

5.1. Comparison of AMPDEA and MOEA/D-PaS with MOEA/D-IFM 

5.1.1. Test instances 

In this section, we used the benchmark functions from CEC 2018 competition on many-objective optimization to test the

performance of eight comparative algorithms. The test functions are MaF1-MaF15 [5] originated from CEC 2018 competition

on many-objective optimization. All test functions have 5,10, and 15 objectives, respectively. 
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Table 1 

The IGD results of the eight algorithms on test problems. 

M AMPDEA MOEAD1 MOEAD2 MOEAD3 MOEAD4 MOEAD5 MOEAD6 MOEADPaS 

5 4 3 0 0 5 0 0 3 

10 2 4 0 0 7 0 0 2 

15 2 4 0 0 6 0 0 3 

Table 2 

The HV results of the seven algorithms on test problems. 

M AMPDEA MOEAD1 MOEAD2 MOEAD3 MOEAD4 MOEAD5 MOEAD6 MOEADPaS 

5 3 1 0 0 6 0 0 3 

10 3 1 0 0 4 0 0 3 

15 5 2 0 0 3 0 0 3 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

5.1.2. Metrics 

We have two main purposes in solving multi-objective problems. One is the gap between the PF and the real PF, which

is the accuracy of the algorithm. The second is the diversity of the solution distribution. Based on the above two points, we

use IGD [46] and HV [16] as metrics of algorithm performance. 

(1) Inverted generational distance (IGD) [46] : The IGD value is the mean of the sum of the distances calculated from the

points in each PF (true) to the points in its nearest Approximation Front. 

IGD (P F , A ) = 

∑ | p | 
i =1 

d ( P F , A ) 

| P | (16) 

where PF represents the true Pareto front of the solution, A represents the approximate Pareto front value, d ( PF, A )

represents the minimum Euclidean distance between PF and A , | P | is the number of individuals distributed on true

Pareto front. If the performance is better, the distance between the value of the true Pareto front and the value of the

approximate Pareto front will be smaller, and the value of the IGD will be smaller. Therefore, the smaller the value of

the IGD, the convergence and distribution of multi-objective algorithm will be better. 

(2) HyperVolume (HV) [16] : The value of HV represents the volume of the region dominated by the obtained Pareto front.

HV can simultaneously evaluate the convergence and distribution of the solution set. The larger the value of HV, the

better the quality of the solution set. For the same solution set, the selected reference points are different, then the

value of HV is different. 

5.1.3. Parameter settings 

In this section, we compare six MOEA/D algorithms incorporated into the information feedback models with AMPDEA

[6] and MOEA/D-PaS [32] . The six information feedback models are M1-1, M1-2, M1-3, M2-1, M2-2, and M2-3. There are

many ways to generate weights for MOEA/D. In this section, we use PBI method to generate weight vectors. In order to

test the fairness of the algorithm performance, the eight algorithms have the same population size of 100 and maximum

number of iterations of 10,0 0 0. IGD and HV values are the results of taking the average value after 20 runs. The probability

of crossover rate Pc = 1, the distribution index of simulated binary crossover disC = 20, the expectation of number of bits

mutation rate proM = 1, the distribution index of polynomial mutation disM = 20. 

5.1.4. Experimental Results 

For the experimental results of five-objecti ve, ten-objecti ve, and fifteen-objecti ve problems, we only give the number

of times when each algorithm reached the optimal. The results of the IGD of the eight algorithms on the five-objecti ve,

ten-objective, and fifteen-objective problems are shown in Table 1 . The HV results of the eight algorithms are shown in

Table 2 . MOEA/D1-MOEA/D6 are six MOEA/D algorithms incorporated into models M2-1, M2-2, M2-3, M1-1, M1-2, and M1-

4, respectively. M indicates the objective number of test problems, and N indicates the size of the population. 

On the five-objecti ve test functions, AMPEAD can obtain the best average IGD value on the MaF1, MaF3, MaF4, and MaF12

test functions, and MOEA/D-PAS can obtain the best average IGD value on the test functions MaF5, MaF11, and MaF14. On

the remaining eight test functions, our proposed algorithm MOEA/D-IFM can get the smallest IGD value. This advantage is

more obvious on the ten-objective test functions. Only AMPDEA has the smallest average IGD value on the two test functions

MaF3 and MaF6. Similarly, only MOEA/D-PaS obtained the best average IGD value on the two test functions MAF1 and MAF4.

MOEA/D-IFM can get the best IGD values on 11 out of 15 test functions. For the results of the fifteen-objective test functions,

MOEA/D-IFM is also the best in all comparative algorithms, and 10 out of 15 test functions are optimal. 

From the perspective of the value of HV, the performance of our proposed MOEA/D-IFM algorithm is also excellent.

Table 2 is the results of the HV on five-objecti ve, ten-objecti ve, fifteen-objecti ve, and twenty-objecti ve problems, respec-

tively. It can be seen that HV values of MODE/D-IFM are significantly larger than AMPDEA and MOEA/D-PaS for most test

problems. On the all five-objecti ve test functions, there are two test functions where all algorithms cannot get the HV value.
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Table 3 

The IGD results of the seven algorithms on test problems. 

M MOEAD4 NSGAIII RVEA KnEA MOEADPaS MOEADD CMOPSO 

5 7 0 0 0 0 2 0 

10 6 0 0 0 0 3 0 

15 7 0 0 1 0 1 0 

20 7 0 0 1 0 0 1 

Table 4 

The HV results of the seven algorithms on test problems. 

M MOEAD4 NSGAIII RVEA KnEA MOEADPaS MOEADD CMOPSO 

5 5 0 0 1 0 1 1 

10 4 0 0 0 0 0 2 

15 5 0 0 0 0 0 2 

20 3 0 0 0 0 0 2 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

In addition, MOEA/D-IFM can get the best HV values on 7 out of 13 test functions. Both AMPDEA and MOEA/D-PaS have

3 optimal HV values. For the results of ten-objective test functions, MOEA/D-IFM can get the best HV values on five test

problems (MaF5, MaF7, MaF8, MaF10, and MaF12), and AMPDEA performs best on three test function (MaF2, MaF6, and

MaF11). However, for the fifteen-objective test functions, both AMPDEA and MOEA/D-IFM can get the optimal HV values on

5 test functions, and MPEA/D-PaS has the optimal performance on four test functions. 

From the perspective of both IGD and HV, the performance of our proposed improved algorithm is better than AMPDEA

and MOEA/D-PaS. From the final comprehensive results, MOEA/D4 performs best. The information feedback model used

in MOEA/D4 is M1-1. M1-1 selects the historical information from the previous generation at the same position with the

current individual being updated. In order to more clearly observe the comparative results, we give a comparison figure

of IGD values obtained by eight algorithms on 15 test functions, as shown in Fig. 1 . From Fig. 1 , we can observe that the

MOEA/D4 algorithm can get optimal results in most cases, and its convergence speed is the fastest. 

5.2. The best one to compare with other multi-objective algorithms 

We can see that MOEA/D4 performs best after comparing with the above eight algorithms, so we further compare

MOEA/D4 with other six multi-objective optimization algorithms, whichi are RVEA [3] , KnEA [47] , MOEA/D-PaS [32] , NSGA-

III [8] ,CMOPSO [48] , and MOEA/DD [15] . In this section, the evaluation criteria are the same with Section 5.1 . The test

function we used are large-scale multi-objective and many-objective optimization (L SMOP1-L SMOP9) problems [4] . All test

functions have 5,10,15, and 20 objectives, respectively. 

5.2.1. Comparison with six multi-objective algorithms 

Among the six algorithms used for comparing with MOEA/D4, REVA [14] is a secularization approach which can adopt

itself to balance convergence and diversity of the solutions in the high-dimensional objective space. KnEA [11] is knee

point-driven MOEA, where knee points of the non-dominated fronts in the current population are preferred in selection.

NSGA-III [8] is a reference-point-based many-objective evolutionary algorithm. NSGA-III is proposed based on the frame-

work of NSGA-II. MOEA/D-PaS [32] provides a simple yet effective method called Pareto adaptive scalarizing (PaS) approx-

imation method, and then combines this method into MOEA/D to form MOEA/D-PaS. CMOPSO [48] is a multi-objective

particle swarm optimization algorithm based on competition mechanism. The particle update in the population is related to

its competing particles. MOEAD/D [15] is an evolutionary many-objective optimization algorithm based on dominance and

decomposition. MOEAD/D can combine dominance- and decomposition-based approaches to balance the convergence and

diversity of the evolutionary process. 

5.2.2. Experimental results 

For the experimental results, we only give the statistical data. Table 3 records the results of IGD for each algorithm

on the five-objecti ve, ten-objecti ve, fifteen-objecti ve, and twenty-objecti ve test problems, respecti vely. As can be seen from

Table 3 , MOEA/D4 can get the best IGD values on most test functions. It can be seen that the performance of MOEA/D4

on large-scale multi-objective problems is significant. Table 4 records the HV values of each algorithm on the 5-objective,

10-objective, 15-objective, and 20-objective test problems. It is clear from Table 4 that MOEA/D4 is significantly better than

other algorithms. For the ten, fifteen, and twenty objectives, MOEA/D4 also showed its superiority. The best results can be

obtained on most functions in the experiment. Through the comparison of the experimental results, we can find that the

improved MOEA/D-IFM algorithm can obtain a better solution in most cases. 

In addition, Fig. 2 shows the IGD values obtained by seven multi-objective algorithms. The difference between the com-

parative algorithms can be more clearly. Experiments show that MOEA/D4 improved by the information feedback model

M-1 can perform optimally on the test problems of various objectives ( Fig. 3 ). 
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Fig. 1. Evolution of the mean of IGD values obtained by MOEA/D-PaS, AMPDEA, MOEA/D1, MOEA/D2, MOEA/D3, MOEA/D4, MOEA/D5, and MOEA/D6 for 

MaF1-15. 
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Fig. 2. Evolution of the mean IGD values obtained by MOEA/D4, KnEA, MOEA/DD, NSGA-III, RVEA, and MOEA/D-PaS for LSMOP1 on twenty-objective test 

problems. 
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Fig. 3. Evolution of the mean of PD values obtained by CVEA3, MOEA/D1, MOEA/D2, MOEA/D3, MOEA/D4, MOEA/D5, and MOEA/D6 for MaF1-15. 
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Table 5 

The Coverage results of the seven algorithms on test problems. 

M CVEA3 MOEAD1 MOEAD2 MOEAD3 MOEAD4 MOEAD5 MOEAD6 

3 5 2 0 0 6 0 1 

10 6 2 0 0 5 0 0 

15 5 1 1 0 4 1 0 

Table 6 

The PD results of the seven algorithms on test problems. 

M CVEA3 MOEAD1 MOEAD2 MOEAD3 MOEAD4 MOEAD5 MOEAD6 

3 3 1 0 1 4 5 1 

10 4 0 1 0 5 3 2 

15 7 1 0 0 4 1 2 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

5.3. Comparison of CEVA with MOEA/D-IFM 

In this section, we used the benchmark functions from CEC 2018 competition on many-objective optimization to test the

performance of seven comparative algorithms. All test functions have 3,10, and 15 objectives, respectively. 

5.3.1. Metrics 

(1) Set Coverage ( C -metric) [45] : A and B are two approximations of a MOP, C ( A, B ) is defined as the percentage of the

solutions B in which are dominated by at least one solution in A. C ( A, B ) = 0.1 means that 10% of the solutions in B

are dominated by at least one solution in A. C ( A, B ) = 0 means that no solutions in B are dominated by solutions in A.

C ( A, B ) is not necessarily equal to 1 - C ( B, A ). 

C(A, B ) = 

| { u ∈ B | ∃ v ∈ A : v dominates u } | 
| B | (17)

(2) Pure Diversity (PD) [30] : PD is a recently proposed metric to evaluate the diversity of multi-objective algorithms. X is

a solution set and s is a solution in X . ( s, X − s ) is the difference between solution s and other solutions in solution

set X . 

PD (X ) = max 
s i ∈ X 

( PD (x − s i ) + d( s i , X − s i )) 

d(s, X ) = min 

s i ∈ X 
( dsissmilarity (s, s i )) 

(18)

5.3.2. Experimental Results 

Tables 5-6 are the experimental statistical data. As we can see from Tables 5-6 , MOEA/D-IFM can obtain best results in

most of the test instances. MOEA/D-IFM obtains significantly better Coverage than CVEA3. For three-objective, ten-objective,

and fifteen-objective test problems, the proportion of MOEA/D-IFM obtains best results are 9/15, 7/15, and 7/15, respectively.

For MaF10 test problem, the performance of MOEA/D-IFM and CVEA3 are equal. For the PD metric, MOEA/D-IFM outperforms

CVEA3 on 12 out of 15 on three-objective test problems. For ten-objective test problems and fifteen-objective test problems,

MOEA/D-IFM can obtain 11 and 8 best results on all 15 test problems. It is clear from Tables 5-6 that MOEA/D-IFM shows

better performance than CVEA3 in most test instances. 

5.4. MOEA/D-IFM implementations for the multi-objective knapsack problem (MOKP) 

5.4.1. Problem Description 

For a MOKP problem with n items and m backpacks, we can mathematically express it as: 

x = ( x 1 , x 2 , ..., x m 

) ∈ { 0 , 1 } m 

m ∑ 

j=1 

w i, j � x j ≤ c i ∀ i ∈ { 1 , 2 , ..., n } 

maximize f i (x ) = 

m ∑ 

j=1 

p i, j � x j 

(19)

where p i,j is the profit of item j in backpack i, w i,j is weight of item j in knapsack i, c i is capacity of knapsack i. Our task

is to put these j items into i backpacks to maximize the profits, and the items placed in each backpack cannot exceed the

capacity of the backpack. 
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Table 7 

The IGD results of the nine algorithms on the MOKP. 

Problem M N MOEAD1 MOEAD2 MOEAD3 MOEAD4 MOEAD5 MOEAD6 MOEADD MOEAD NSGAIII 

MOKP 2 250 1.1235e + 4 

(1.83e + 2) + 

1.1065e + 4 

(1.57e + 2) + 

1.1175e + 4 

(2.74e + 2) + 

1.1063e + 4 

(1.71e + 2) + 

1.1183e + 4 

(1.55e + 2) + 

1.1097e + 4 

(2.00e + 2) + 

1.2533e + 4 

(1.43e + 2) + 

1.2815e + 4 

(6.61e + 1) - 

1.2664e + 4 

(1.03e + 2) 

MOKP 2 500 2.2328e + 4 

(2.68e + 2) + 

2.2117e + 4 

(3.24e + 2) + 

2.2323e + 4 

(3.09e + 2) + 

2.2123e + 4 

(3.24e + 2) + 

2.2212e + 4 

(3.00e + 2) + 

2.2114e + 4 

(2.22e + 2) + 

2.5220e + 4 

(3.57e + 2) + 

2.6107e + 4 

(1.73e + 2) - 

2.5576e + 4 

(1.72e + 2) 

MOKP 2 750 3.2477e + 4 

(3.21e + 2) + 

3.2111e + 4 

(3.58e + 2) + 

3.2414e + 4 

(3.57e + 2) + 

3.2176e + 4 

(2.77e + 2) + 

3.2124e + 4 

(2.99e + 2) + 

3.2092e + 4 

(4.24e + 2) + 

3.6513e + 4 

(6.76e + 2) + 

3.7940e + 4 

(2.60e + 2) - 

3.7031e + 4 

(2.23e + 2) 

MOKP 3 250 1.3133e + 4 

(2.52e + 2) + 

1.3031e + 4 

(1.37e + 2) + 

1.2974e + 4 

(1.90e + 2) + 

1.2889e + 4 

(1.73e + 2) + 

1.3053e + 4 

(2.06e + 2) + 

1.2965e + 4 

(1.49e + 2) + 

1.4691e + 4 

(1.33e + 2) = 

1.4979e + 4 

(7.96e + 1) - 

1.4648e + 4 

(1.15e + 2) 

MOKP 3 500 2.5776e + 4 

(3.29e + 2) + 

2.5349e + 4 

(3.49e + 2) + 

2.5566e + 4 

(2.98e + 2) + 

2.5387e + 4 

(2.68e + 2) + 

2.5422e + 4 

(2.92e + 2) + 

2.5437e + 4 

(2.89e + 2) + 

2.8392e + 4 

(1.96e + 2) + 

2.9512e + 4 

(1.61e + 2) - 

2.8589e + 4 

(2.46e + 2) 

MOKP 3 750 3.8291e + 4 

(3.19e + 2) + 

3.7744e + 4 

(4.24e + 2) + 

3.8172e + 4 

(4.73e + 2) + 

3.7703e + 4 

(3.16e + 2) + 

3.7949e + 4 

(4.12e + 2) + 

3.7859e + 4 

(3.52e + 2) + 

4.1845e + 4 

(2.19e + 2) + 

4.3911e + 4 

(2.72e + 2) - 

4.2353e + 4 

(1.78e + 2) 

MOKP 4 250 1.4854e + 4 

(2.30e + 2) + 

1.4697e + 4 

(1.86e + 2) + 

1.4657e + 4 

(1.94e + 2) + 

1.4617e + 4 

(1.77e + 2) + 

1.4781e + 4 

(1.75e + 2) + 

1.4564e + 4 

(2.12e + 2) + 

1.6323e + 4 

(2.97e + 2) = 

1.6913e + 4 

(1.07e + 2) - 

1.6384e + 4 

(1.60e + 2) 

MOKP 4 500 2.9240e + 4 

(3.81e + 2) + 

2.8902e + 4 

(1.98e + 2) + 

2.9033e + 4 

(3.44e + 2) + 

2.8850e + 4 

(3.12e + 2) + 

2.8929e + 4 

(3.12e + 2) + 

2.8978e + 4 

(2.51e + 2) + 

3.2255e + 4 

(3.77e + 2) = 

3.3518e + 4 

(1.66e + 2) - 

3.2284e + 4 

(2.00e + 2) 

MOKP 4 750 4.2873e + 4 

(4.07e + 2) + 

4.2513e + 4 

(5.24e + 2) + 

4.2736e + 4 

(4.30e + 2) + 

4.2388e + 4 

(3.86e + 2) + 

4.2586e + 4 

(2.87e + 2) + 

4.2484e + 4 

(3.57e + 2) + 

4.6735e + 4 

(8.74e + 2) = 

4.9185e + 4 

(1.79e + 2) - 

4.6999e + 4 

(5.79e + 2) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

5.4.2. Parameter settings 

In this section, we use nine MOKP test instances. The number of backpacks m is set to 2, 3, and 4, respectively, and

the number of items n is 250, 500, and 750, respectively. The weight and the profit are random values generated between

[ 10 ,100]. The population size is 100 and the maximum number of iterations is 10,000. The experiment was run 20 times

and the average values were taken. 

5.4.3. Experimental results 

It can be clearly seen from Table 7 that the average and standard deviation of IGD obtained by MOEA/D-IFM are superior

to other comparative multi-objective algorithms. The experimental results obtained by each algorithm can be shown in

detail. The bold font in Table 7 indicates that it is the best performer among all comparative algorithms. MOEA/D4 can get

the optimal IGD value on the test of 250 items in two backpacks, 250 items in 3 backpacks, 750 items in 3 backpacks,

500 items in 4 backpacks, and 750 items in 4 backpacks. MOEA/D6 achieves the minimum IGD value for 500 items in 2

backpacks, 750 items in 2 backpacks, and 250 items in 4 backpacks. On all 9 test instances, our proposed MOEA/D-IFM is

better than other comparative algorithms. This further proves that MOEA/D-IFM has certain advantages in solving MOKP. 

6. Conclusions 

In the previous multi-objective optimization algorithms, we rarely or even did not use the population information before

the current iteration. In the process of evolution, we were likely to abandon some useful information. This paper proposed

a new multi-objective optimization algorithm based on MOEA/D with information feedback models. The feedback model

can make up for the shortcomings that had wasted a lot of useful information. The information feedback models preserve

historical information and selects individuals in a random or fixed manner. We verified the performance of the MOEA/D-

IFM algorithm on multiple sets of multi-objective test problems. We compared the six improved MOEA/D-IFM algorithms

with AMPDEA, MOEA/D-PaS, and CVEA3 on many-objective optimization problems from CEC 2018 competition. Among six

MOEA/D-IFM algorithms, MOEA/D4 had the best performance. Then the best MOEA/D4 algorithm was further compared with

KnEA, MOEA/D-PaS, NSGA-III, RVEA, and MOEA/DD. The practical problem of a set of multi-objective backpacks is also used

to verify the performance of the algorithm. The experimental results showed that the MOEA/D-IFM algorithm incorported

into the information feedback model is superior to the comparative state-of-the-art multi-objective algorithms. 

In this paper, we have improved the MOEA/D algorithm by using only six simplest information feedback models. In

future work, we will try to incorporate other information feedback models into MOEA/D. These improved algorithms will be

used to solve engineering problems, such as test-sheet composition [10] , path planning [28] , big data optimization [40, 41] ,

fault diagnosis [39] , and other multi-objective engineering problems. In future work, we will compare MOEA/D with other

multi-objective algorithms, such as a new resource allocation strategy based on the relationship between sub-problems for

MOEA/D [31] . 
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