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MSCNet: Multi-Scale Network With Convolutions
for Long-Term Cloud Workload Prediction
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Abstract—Accurate workload prediction is crucial for resource
allocation and management in large-scale cloud data centers. While
many approaches have been proposed, most existing methods are
based on Recurrent Neural Networks (RNNs) or their variants,
focusing on short-term cloud workload prediction without consid-
ering or identifying the long-term changes and different periodic
patterns of cloud workloads. Due to variations in user demands
or workload dynamics, cloud workloads that appear stable in
the short term often exhibit distinct patterns in the long term.
This can lead to a significant decline in prediction accuracy for
existing methods when applied to long-term cloud workload fore-
casting. To address these challenges and overcome the limitations
of current approaches, we propose a Multi-Scale Network with
Convolutions (MSCNet) for accurate long-term cloud workload
prediction. MSCNet employs multi-scale modeling of the origi-
nal cloud workload to effectively extract multi-scale features and
different periodic patterns, learning the long-term dependencies
among the cloud workload. Our core component, the Multi-Scale
Block, combines the Multi-Scale Patch Block, Transformer En-
coder, and Multi-Scale Convolutions Block for comprehensive
multi-scale learning. This enables MSCNet to adaptively learn both
short-term and long-term features and patterns of cloud workloads,
resulting in accurate long-term cloud workload predictions. Exten-
sive experiments are conducted using real-world cloud workload
data from Alibaba, Google, and Azure to validate the effectiveness
of MSCNet. The experimental results demonstrate that MSC-
Net achieves accurate long-term cloud workload prediction with
a computational complexity of O(L2?d), outperforming existing
state-of-the-art methods.

Index Terms—Cloud computing, workload prediction, multi-
scale, long-term, resource allocation.
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1. INTRODUCTION

LOUD computing has emerged as a prominent form of dis-
C tributed computing, providing dynamic resources such as
processing, storage, and bandwidth-on-demand for customers.
It utilizes virtualization techniques to ensure scalability and
reliability, meeting the Quality of Service (QoS) stipulations
outlined in Service Level Agreements (SLAs) [1]. These re-
sources, including CPU capacity, memory, and I/O, are essential
for deploying any application in the cloud, and they are provided
as services by Cloud Service Providers (CSPs). The flexibility
and affordability of cloud services have made them increasingly
popular for supporting a diverse array of applications, includ-
ing Big Data processing, machine learning, web hosting, and
more [2].

One of the key challenges in cloud computing is efficiently
managing resources to meet SLAs while minimizing resource
wastage. Over-provisioning resources is a common strategy
to ensure SLA compliance, but it leads to significant energy
and resource wastage. Conversely, under-provisioning results
in SLA violations and customer dissatisfaction [3]. Accurate
cloud workload prediction methods forecast future workloads
based on previous traces, aiding CSPs in capacity planning.
Proactive resource management, which predicts future workload
and adjusts resource allocation accordingly, can prevent SLA
violations and reduce energy consumption [1]. Therefore, CSPs
require the ability to promptly identify resource provisioning
strategies, ensuring compliance with SLA requirements while
optimizing resource utilization [4]. To achieve these goals,
cloud computing demands precise and efficient workload predic-
tion methods. By accurately predicting future workloads, CSPs
can proactively configure and allocate resources in advance,
optimizing resource provisioning for greater efficiency and
rationality [5].

Due to its significance, considerable efforts have been di-
rected toward workload prediction. These methods can mainly
be classified into two categories: regression-based methods [6],
[7] [8] and machine learning-based methods. Regression-based
methods, such as ARIMA, assume that time series are stationary,
whereas real-world cloud workload series are non-stationary.
Additionally, ARIMA struggles to learn long-term dependencies
between cloud workloads and is only suitable for short-term
prediction [9]. In contrast, most existing machine learning-based
methods use RNN or RNN-based models to learn the depen-
dencies between cloud workload series or different workload
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Fig. 1. Multi-scale observations in a real-world cloud workload trace.
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Fig. 2. Prediction accuracy of existing methods across different horizon win-
dow sizes.

features [10], demonstrating higher prediction accuracy and
learning efficiency compared to regression-based methods.

However, most existing workload prediction methods fo-
cus on short-term forecasting of cloud workloads. Compared
to short-term forecasting, long-term prediction offers greater
strategic value by enabling cloud providers to plan resources
and capacity well in advance, avoiding last-minute scaling
challenges. It supports proactive infrastructure upgrades, re-
duces operational costs through better energy management,
and aligns long-term business strategies with future demand
trends. Although recent works [5], [11] have improved long-term
prediction by encoding workload series, their generalization
remains limited in handling the complexity and variability of
cloud workloads. Meanwhile, general forecasting models like
FEDformer [12] and iTransformer [13], designed to capture
long-range dependencies using advanced Transformers, struggle
with cloud workloads’ high dimensionality, heterogeneity, and
volatility, leading to performance degradation.

In Fig. 1, we present an example of a cloud workload trace
from the Alibaba Cloud Data Center. At a smaller scale, we can
observe fluctuations in CPU usage, characterized by a decrease
followed by an increase. However, when observing the same
cloud workload trace at a larger scale, different characteristics
emerge, showing a general upward trend. Cloud workload that
exhibits short-term fluctuations shows entirely different patterns
over the long term. This uncertainty and high volatility make it
challenging for existing models to capture the long-term dy-
namics of cloud workloads, leading to significant performance
degradation in long-term cloud workload predictions as shown in
Fig. 2. As the horizon window size gradually increases, the pre-
diction accuracy of RNN-based models significantly declines.

To address these challenges and overcome the limitations
of existing methods, we propose a Multi-Scale Network with
Convolutions (MSCNet) to capture different patterns and long-
term dependencies of cloud workload. Based on our previous
observations, we delicately design a multi-scale learning module
called Multi-Scale Block (MSB). It consists of three basic mod-
ules: Multi-Scale Patch Block (MSPB), Transformer Encoder,
and Multi-Scale Convolutions Block (MSCB).

Specifically, we utilize the Multi-Scale Patch Block to seg-
ment the original cloud workload sequence into sub-series
patches at different scales, where each patch at a particular
scale contains information about certain patterns in cloud work-
loads. This allows us to decompose the original long-term cloud
workload sequence into short-term patches at different scales,
enabling the model to capture different patterns in cloud work-
load more easily. Moreover, we extract and learn dependencies
between sequences within the same scale of patches in the
MSPB. Then, the patches at the same scale are flattened to obtain
multiple scale representations of the cloud workload sequence
after modeling the patterns and correlation. The Transformer
Encoder is employed to effectively extract and learn the rela-
tionships between cloud workloads at different scales. Finally,
in the Multi-Scale Convolutions Block, we design convolutional
operations with varying sizes of kernel, including Equidistant
Convolution, Sparse Convolution, and Dense Convolution, to
learn and extract intra and inter-scale variation of the cloud
workload sequence, better capturing the long-term dependencies
and relationships between cloud workload at different scales.

The key contributions of this paper are summarized as follows:

e We propose a Multi-Scale Network with Convolutions
(MSCNet) for accurate long-term cloud workload predic-
tion. By extracting and learning features at multiple scales
of the original cloud workload, it can effectively capture
the dynamic patterns and long-term dependencies of the
cloud workload.

® We design the fundamental building block, the Multi-Scale
Block, to construct MSCNet, which integrates the Multi-
Scale Patch Block, Transformer Encoder, and Multi-Scale
Convolutions Block. It adeptly learns long-term relation-
ships within cloud workloads, encompassing both intra and
inter-scale variations.

* Extensive experiments on various real-world cloud work-
load datasets from Alibaba, Google, and Azure cloud data
centers demonstrate that our model consistently outper-
forms existing state-of-the-art approaches.

The remainder of this paper is organized as follows: Section II
reviews the related work. In Section III, we provide a detailed
description of MSCNet. Section IV evaluates the performance
of MSCNet, comparing it with existing prediction methods
through experiments on real-world workload datasets. Finally,
we conclude the paper and discuss future directions in Section V.

II. RELATED WORK

In this section, we review and summarize existing cloud
workload prediction methods and recent research in the field
of general time series prediction. The comparison between our
proposed approach and related work is presented in Table I.
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TABLE I
COMPARSION OF EXSITING WORKLOAD PEDITCITON WORKS AND GENERAL TIME SERIES PREDICTION WORKS

Prediction Scenario

Technique

Performance Metrics

Approach . Machine | Ensemble
Workload | General | Regression

Deep Learning

MSE | MAE | RMSE | MAPE | R? | CDF

Learning | Learning | ANN

GAN | MLP | CNN | RNN

Transformer

Li et al. [6]

Calheiros et al. [7]

Yang et al. [8]

ANENIENIEN

Bi et al. [14]

Barati et al. [15]

Nikravesh et al. [16]

<

<
<

Zhong et al. [17]

Singh et al. [18]

CloudInsight [19]

Li et al. [20]

L-PAW [5]

Start [21]

EQNN [22]

esDNN [11]

SG-CBA [23]

Devi et al. [1]

NN ENEN EN ENEN ENENEN EN ENEN ENIEN ENEN
N

VTGAN [24]

\

ENIENENEN
<
<

LSTNet [25]

SegRNN [26]

Witran [27]

MICN [28]

TimesNet [29]

<

SCINet [30]

DLinear [31]

TSMixer [32]

<

TiDE [33]

Informer [34]

Autoformer [35]

NIENEN AN AN EN EN AN EN ENIENIEN

FEDformer [12]

MSCNet (Our work) v

ENENIENIENIENI ENI ENI ENI ENE ENE ENE RN
ENENIENIENIENIEN ENI ENI ENS ENE ENE RN

ANENIENIEN

A. Workload Prediction

The existing workload prediction research methods can be
roughly divided into two categories: traditional regression-based
methods and the latest machine learning-based methods. Tra-
ditional methods like the Auto Regressive Integrated Moving
Average (ARIMA) model are commonly used to make work-
load predictions in earlier stages [36]. Li et al. [6] proposed
ARIMA-DEC, combining an ARIMA predictor with dynamic
error compensation and a time-based billing-aware multi-VM
provisioning (TBAMP) algorithm, reducing SLA violations and
rental costs. Calheiros et al. [7] presented a proactive ARIMA-
based workload prediction for dynamic resource provisioning,
achieving high accuracy but facing challenges with peak loads.
Yang et al. [8] developed a linear regression-based predictor with
an autoscaling mechanism, ensuring SLA compliance while
minimizing scaling costs. Bi et al. [14] proposed a hybrid
model using Savitzky-Golay filtering, wavelet decomposition,
and ARIMA, enhancing prediction accuracy through workload
smoothing and trend analysis.

In general, most traditional regression-based workload pre-
diction methods require workloads to have clear patterns or
trends to achieve accurate predictions. However, when faced
with the non-stationary and high-variance workloads typical of
cloud data centers, traditional regression methods often struggle
to deliver reasonably accurate predictions. Therefore, recent
research has focused primarily on machine learning-based ap-
proaches. Barati et al. [15] developed a Tuned Support Vector

Regression (TSVR) model using a hybrid Genetic Algorithm
and Particle Swarm Optimization (GA-PSO) for optimal param-
eter selection, enhancing accuracy with a chaotic sequence and
validated via Google Cloud simulations. Nikravesh et al. [16]
aimed to improve workload prediction accuracy with Support
Vector Machine (SVM) and Neural Network (NN) techniques,
finding SVM particularly effective for periodic workloads.
Zhong et al. [17] introduced a weighted wavelet SVM that inte-
grates wavelet functions and sample weighting, optimized with
Particle Swarm Optimization (PSO), achieving better accuracy
with Google Cloud data.

In scenarios involving highly dynamic cloud workloads,
ensemble models are effective due to their ability to com-
bine multiple predictors and adapt weights dynamically. Singh
et al. [18] proposed two ensemble algorithms for large-scale
server systems, achieving 89% accuracy for 91% of servers on
real and synthetic datasets, effectively handling non-stationary
workloads. Kim et al. [19] built on this with CloudInsight, an
ensemble framework that adjusts weights based on real-time
accuracy. Using multi-class regression with an SVM classifier,
CloudInsight outperformed other models.

With the rise of deep learning, numerous efforts have be-
gun to use deep learning-based methods to achieve accurate
cloud workload prediction. Li et al. [20] developed a power
prediction framework using recursive autoencoders (AE) with
fine-grained short-term and coarse-grained long-term forecast-
ing. Chen et al. [5] proposed L-PAW, combining a top-sparse
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autoencoder (TSA) and GRU to capture long-term dependencies
and predict workloads precisely. Tuli et al. [21] introduced
START, an Encoder-LSTM model that mitigates straggler tasks
by analyzing resource usage, improving scheduling and reduc-
ing SLA violations. Singh et al. [22] advanced this field with
EQNN, a quantum neural network using SB-ADE optimization
for superior predictions across eight datasets. Xu et al. [11] ad-
dressed gradient issues by developing esDNN, enhancing GRU-
based predictions and training stability. For edge data centers,
Chen et al. [23] proposed SG-CBA, combining Savitzky-Golay
filtering, CNN, BiLSTM, and attention mechanisms to ensure
accurate predictions with real-world data. Devi et al. [1] intro-
duced a hybrid ARIMA-ANN model to capture both linear and
nonlinear trends, refined with Savitzky-Golay filtering for better
resource management on Google and BitBrain datasets. Maiyza
et al. [24] developed VTGAN, a hybrid model that dynamically
adjusts prediction steps and sliding windows, outperforming
traditional methods in workload and trend forecasting.

Although some works, such as CloudInsight [19], L-PAW [5],
EQNN [22], and esDNN [11], attempt to predict long-term
dependencies beyond short-term periodicity through implicit
modeling, they are limited by single-scale modeling and learn-
ing, failing to effectively identify the various patterns in cloud
workloads.

B. General Time Series Prediction

Time series prediction has gained significant attention across
various fields due to its importance, leading to the development
of numerous general-purpose forecasting models. These existing
works can be broadly categorized into RNN-based, Convo-
lutional Neural Network (CNN)-based, Multilayer Perceptron
(MLP)-based, and Transformer-based approaches.

RNN-based models are widely used in time series forecasting
tasks due to their efficiency in learning sequential patterns.
However, the sequential nature of RNNs makes it challenging to
capture long-term dependencies, which limits their performance
in long-range forecasting tasks. Notable studies in this area
include LSTNet [25], SegRNN [26], and WITRAN [27].

CNN-based approaches excel in time series forecasting by
effectively capturing local patterns and extracting relevant fea-
tures. Recent models such as MICN [28], TimesNet [29], and
SCINet [30] demonstrate impressive performance in long-range
forecasting by stacking multiple convolutional layers to capture
dependencies over longer horizons [37].

MLP-based methods have recently gained popularity in time
series forecasting due to their lightweight architectures and
efficient design strategies [38]. Models such as DLinear [31],
TSMixer [32], and TiDE [33] have achieved promising results.
However, their performance may be limited in complex, dy-
namic scenarios such as cloud workload forecasting.

Inspired by the success of Transformers in natural lan-
guage processing tasks, many recent studies have adopted
Transformer-based methods for time series forecasting. The self-
attention mechanism in Transformers enables effective model-
ing of long-term dependencies within time series data. Unlike
RNN-based approaches, which rely on sequential processing,
the self-attention mechanism processes sequences in parallel,

allowing each element to attend to any other element in the se-
quence. Recent works, such as Informer [34], Autoformer [35],
and FEDformer [12], have achieved state-of-the-art performance
in long-range forecasting tasks.

Overall, most existing workload prediction methods focus
on short-term prediction of cloud workloads and face chal-
lenges in achieving accurate long-term predictions. Although
some studies in general time series prediction have focused on
long-range predictions [12], [29] [28], there is little discussion
or experimentation in the context of long-term prediction for
cloud workload. Compared to commonly explored forecasting
scenarios such as weather, traffic, and electricity, cloud work-
loads exhibit higher dimensionality and greater volatility, posing
significant challenges for general-purpose time series models in
achieving accurate long-term predictions in cloud environments.
To overcome the limitations of existing methods, by extracting
and learning features at different scales from the long-term cloud
workload series, MSCNet effectively identifies and models dif-
ferent patterns and long-term dependencies in cloud workload,
thereby achieving more accurate long-term predictions.

III. MODEL
A. Problem Formulation

Cloud workload prediction involves forecasting future cloud
workloads based on historical workloads. Specifically, the task
is to predict T future values Y = (y1, . . ., yr) from L historical
values X = (x1,...,x1), where the cloud workload has D
dimensions, each representing a resource utilization metric (e.g.,
CPU utilization, memory utilization, etc.). To better describe the
task and model details, we refer to L as the look-back window
size and T as the prediction horizon. Long-term cloud workload
prediction differs from short-term prediction by requiring a
larger look-back window and prediction horizon, making it more
challenging for the model to achieve accurate predictions.

B. Model Architecture

MSCNet is a powerful model capable of long-term cloud
workload prediction by leveraging multi-scale modeling of the
original sequences and using a vanilla Transformer encoder as
its core to enhance prediction accuracy. The overall architecture
of MSCNet is shown in Fig. 3. Overall, MSCNet can be divided
into two parts: the Trend Prediction Block and the Multi-Scale
Prediction Block.

The Trend Prediction Block is primarily used to extract and
learn trend information from highly fluctuating cloud workloads,
enabling it to predict future changes in the workload. Meanwhile,
the Multi-Scale Prediction Block performs multi-scale model-
ing of the original cloud workload to capture various patterns
and long-term dependencies, thereby extracting and learning
the overall information of the cloud workload sequences. By
integrating these two modules, we can achieve a more accurate
long-term prediction of cloud workloads.

Additionally, to reduce the impact of volatility and noise in
cloud workload data on the model’s performance and to better
capture the relationships between different cloud workloads,
we perform some data preprocessing tasks. These tasks mainly
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Fig. 3. Overall architecture of MSCNet.

include two parts: reversible instance normalization (RevIN) and
the channel independent strategy. These two modules enable the
model to better learn the different patterns and long-term de-
pendencies in the cloud workload data, thereby achieving more
accurate long-term cloud workload predictions. We provide a
more detailed explanation in the Section III-C.

The overall process of cloud workload prediction using MSC-
Net can be represented as (1). More detailed explanations will
be provided in Sections III-D and III-E respectively.

X, = RevIN(X),
Y; = Trend Prediction Block(X,.),
Y., = Multi-Scale Prediction Block(X,.),
Y =RevIN ' (V; + V3,). (1)

C. Data Preprocessing

Instance Normalization: To enhance the stability of the cloud
workload sequences, inspired by the work of Kim et al. [39],
we use reversible instance normalization (RevIN) to mitigate
the impact of data distribution drift on model performance. The
entire process of RevIN can be formulated as follows:

L

, 1 i
ElX= 2> x(,
t=1
1N,
VarlX ) = 23 (%Y~ EIXO))?,
t=1
() — X0 —E[X®)]

" VVar[X O] + ¢
y(@ = /Var[X(i)] +e- Yr(i) + E[X(i)], )

Flatten + Concat + Linear

Transformer Encoder

Multi-Scale Convolutions Block

Concat + Linear

Add & Norm

Multi-head
Attention

|
l

= -
| |

l Feed Forward
Add & Norm

[

Equidistant
Convolution

|

|

where X (V) € R'*Z represents the ith dimension of the histori-
cal cloud workload, and Y € R**T represents the ith dimen-
sion of the future cloud workload. The instance normalization
of X yields X, and the inverse instance normalization of Y,
resultsin Y.

Channel Independent Strategy: Existing cloud workload
methods typically use a channel dependent strategy in modeling,
mapping the channel dimension to hidden layer representa-
tions. This approach focuses more on learning the relationships
between different channels of the cloud workload. However,
recent studies [40], [41] have shown that adopting a channel
independent strategy in modeling can effectively improve model
prediction performance and robustness, reducing the impact
of data distribution drift. Simply put, a channel independent
strategy involves modeling each channel separately, using the
historical values of each channel to predict future values. For
models using the channel dependent strategy, the input data has
the dimension X¢op € RE*P | whereas for models using the
channel independent strategy, the input data has the dimension
Xcr € REXT as shown in Fig. 4. Therefore, unless otherwise
specified, the variables mentioned hereafter in Section III-E all
refer to a single channel of cloud workload.

D. Trend Prediction Block

The original cloud workload is characterized by strong volatil-
ity and high variance, containing noise and outliers that affect
prediction accuracy. Inspired by existing prediction studies [14],
[42] [35], we further extract the trend component of the original
cloud workload. The Trend Prediction Block is used to learn the
trend vector of the original cloud workload. By using moving
averages, we smooth out periodic fluctuations and highlight
the long-term trend of the sequence. Finally, a prediction of
future trends is achieved through a simple linear layer. The
necessity of modeling the trend component for non-stationary

Authorized licensed use limited to: SOUTH CHINA UNIVERSITY OF TECHNOLOGY. Downloaded on August 19,2025 at 00:05:19 UTC from IEEE Xplore. Restrictions apply.



974 IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 18, NO. 2, MARCH/APRIL 2025

Vaval
o~

—"d NN
/\/\’\//\/\/\/

(a) Channel Dependent (CD) Strategy

MW
| — fo—~ N

N~ — N
/\/\’\//\/\/\/

(b) Channel Independent (CI) Strategy

TN
N " "\

forecast
—_—

forecast
—

—_—
—_—
—_—
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cloud workload prediction is demonstrated in Section IV-C. This
process can be computed using the following equation:

X = AvgPool(Padding(X ) )kemels
Y; = Linear(X,), 3)

where we use the average pooling with padding to obtain the
trend component with unchanged length. Y; denotes the output
of the Trend Prediction Block, and the kernel size matches one
of the scales in the Multi-Scale Prediction Block.

E. Multi-Scale Prediction Block

As shown in Fig. 3, the Multi-Scale Prediction Block is
designed to model comprehensive cloud workload sequences. To
effectively capture various patterns and long-term dependencies,
we develop its core component—the Multi-Scale Block. Each
Multi-Scale Prediction Block contains /N Multi-Scale Blocks.
The input to the nth Multi-Scale Block is defined as Xg? ) S
RP*L_and the output as Y,y € RP*E_ where n € (1, N).

Each Multi-Scale Block comprises three sub-modules: the
Multi-Scale Patch Block, the Transformer Encoder, and the
Multi-Scale Convolutions Block. Through the seamless integra-
tion of these modules, the Multi-Scale Prediction Block enables
precise long-term forecasting of cloud workloads.

Multi-Scale Patch Block: To effectively learn different pat-
terns in cloud workloads, we design the Multi-Scale Patch Block.
Its core idea is to convert a univariate cloud workload series into
S cloud workload series at different scales.

Specifically, as shown in Fig. 5, for a given scale s, the
original univariate cloud workload series X,, € R'*F is du-
plicated S times to obtain multivariate cloud workload se-
ries X, € R9*L. Each series X,(,S) € R™L within multivariate
cloud workload series is then divided into K, subsequences

X,(,S’k> € R™Psaccording to the patch length P,, where s €
(1,95), K, = P% and k € (1, K). Ultimately, the original uni-
variate cloud workload series is converted into a multi-scale
patch time series. This process can be represented by the fol-
lowing equation:

X, = Duplicate( X, )times=5,

ng‘g’l), .. ,X}g""va) — Reshape(XéS))lenglh:ps. 4)

Furthermore, to capture the relationships between patch sub-
sequences at various scales in the multi-scale patch time series,
we use linear layer mapping to learn the intra-patch variation.
The mapped sequences are then flattened and concated to trans-
form them into multi-scale time series X.. It can be formulated
as the following equation:

X = Linear(X{*"),

X = Flatten(X [V, ..., X[#54),

X, = Concat(X (1, ..., X(9). 5)

moY

Transformer Encoder: Compared to RNNs, which process
information sequentially and have a long information path prone
to vanishing gradients, Transformers use attention to access all
positions in parallel, shortening the information path and better
capturing long-range dependencies. Therefore, to effectively
learn and extract features of cloud workloads and the relation-
ships between multi-scale series, we use a vanilla Transformer
encoder to map the multi-scale time series X, € R%*/ to hidden
layer representations. Specifically, we employ a linear projection
to transform X, € RS*L into X; € R5*4, which serves as the
input to the Transformer encoder, and d denotes the dimension
of the hidden layer. Each head h = 1, ..., H in the multi-head
attention mechanism then converts this input into query matrices
Q,=X dW,?, key matrices K;, = X dW,]f , and value matrices
Vi, = X,W), where W, WK € R4 and W) € R4,
After this, a scaled dot-product operation is used to obtain the
attention output Qj, € R9*4;

Oh = Attention(Qh, Kh, Vh)a

T
= Softmax (Q\*/L%’L ) V. (6)

In the Transformer encoder, batch norm layers and a residual
connection with a feedforward network are also included, as
shown in Fig. 3. After this, we obtain its representation denoted
as X, € RSx4,

Multi-Scale Convolutions Block: To better extract different
patterns and cycles of cloud workloads, we adopt C' multi-scale
convolution blocks with kernel sizes kernel,. where ¢ € (1, ().
These blocks mainly consist of Equidistant Convolution, Sparse
Convolution, and Dense Convolution, as shown in Fig. 3.

We use Equidistant Convolution and Sparse Convolution to
extract local information about cloud workloads, and Dense
Convolution to extract global information about cloud work-
loads. More specifically, for Equidistant Convolution, we set its
kernel size to kernel., padding to 0, and stride to 1. For Sparse
Convolution, we set its kernel size to kernel., and both padding
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Multi-scale patch time series

A univariate series

Fig. 5.

. For Dense Convolution, we set its kernel
size and stride to %, and padding to 0. The entire process
for the cth Multi-Scale Convolutions Block can be formulated

as the following equations:

and stride to %

X 5,23” = Equidistant Conv(X y)iernel, »
XS(ZC,LTSG = Sparse Conv(Concat(Xy, Xégli))kemelc,
Xéz)nse = Dense Conv(Concat(Xé;Li, ngzlmf,)) homel
X = Concat(X {5 ves X e, )

where X, éc) represents the output of the cth Multi-Scale Convo-
lutions Block.

To aggregate the outputs of different scales from the Multi-
Scale Convolutions Block, we use concatenation and a linear
layer to combine and map the outputs of each Multi-Scale
Convolutions Block. And then a batch norm layer is used to
obtain the output of the nth Multi-Scale Block as well as the input
of the (n + 1)th Multi-Scale Block, Yél") € RP*L as shown in
Fig. 3.

After extracting and learning the features of cloud workloads
through N Multi-Scale Blocks, we use a simple linear layer
to map erlN) to obtain the final output of the Multi-Scale
Prediction Block, Y;,, € RP*£. A more complete and detailed
overall process of the Multi-Scale Prediction Block is presented
in Algorithm 1.

Opverall, the combination of the Trend Prediction Block and
the Multi-Scale Prediction Block can effectively mitigate the
performance interference caused by the high volatility and noise
of cloud workloads. The design of the Multi-Scale Block en-
ables the model to effectively extract and learn the different
periodic patterns and long-term dependencies of historical cloud
workloads at different scales, achieving accurate prediction of
long-term dynamic changes in cloud workloads. The key steps
of MSCNet are shown in Algorithm 2.

IV. EXPERIMENTS

To evaluate our proposed model, we conduct extensive ex-
periments with real-world cloud workload datasets. In this
section, we will provide a detailed description of the cloud
workload datasets, baseline methods, evaluation metrics, and
experimental results, showing how MSCNet outperforms ex-
isting prediction methods. All experiments were executed
in PyTorch on an NVIDIA 4090 GPU with 24 GB of
memory.
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Intrapatch-variation Multi-scale time series

An example of a univariate series to illustrate how the Multi-Scale Patch Block operates.

A. Experimental Setup

Datasets: We utilize three real-world cloud workload datasets
from Alibaba, Google, and Azure to validate our model.

e Alibaba Cluster Traces [43]: The Alibaba Cluster Traces
dataset, designated as cluster-trace-v2018, encompasses
data from approximately 4,000 machines over 8 days.
Collected in 2018, this dataset includes both long-running
applications and batch cloud workloads, with a sampling
interval of 10 seconds. The data can be accessed on
GitHub.!

® Google Cluster Traces [44]: The Google Cluster Traces
dataset provides detailed operational data from a cluster of
around 12,500 machines, recorded over 29 days in May
2011. This dataset, referred to as cluster-2011-2, offers
insights into various cluster performance metrics, with a
sampling interval of 5 minutes. The data is available on
GitHub.?

e Azure Traces [45]: The Azure Traces dataset contains a
representative subset of the first-party Azure VM work-
load in one geographical region, denoted as Azure Public
Dataset V1. It collects data from approximately 2,000,000
VMs over thirty days (such as CPU utilization, VM infor-
mation, etc.), with a sampling interval of 5 minutes. The
data can be accessed on GitHub.?

Given the importance of CPU utilization in cloud data centers
and the cloud workload metrics collected by various datasets,
we use CPU utilization as the input to our model to evalu-
ate its prediction accuracy and performance. Additionally, we
randomly select 1,000 machines from each dataset and plot
the data distribution of CPU utilization for each dataset to
facilitate statistical analysis, as shown in Fig. 6. As observed,
there are substantial differences in data distributions across the
three datasets: the Azure dataset has a high concentration of
CPU utilization below 0.1, while the Google dataset is primarily
distributed around 0.2. In contrast, the Alibaba dataset exhibits a
more uniform distribution, with values concentrated around 0.3.
Then, we randomly select 100 machines to extract their CPU
utilization for our model evaluation dataset. All three datasets
are divided into training, testing, and validation sets in a 7:1:2
ratio.

Baselines: To validate the effectiveness of our approach, we
compare MSCNet with several existing prediction methods that
exhibit state-of-the-art performance.

Uhttps://github.com/alibaba/clusterdata
Zhttps://github.com/google/cluster-data
3https://github.com/Azure/ AzurePublicDataset
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Algorithm 1: Multi-Scale Prediction Block.

Input: preprocessed cloud workload X, € RP*E
Output: cloud workload representation Y,,, € RP*L
1 Initialize: number of Multi-Scale Blocks /N, number
of scales in Multi-Scale Patch Block .S, patch length
Ps, number of patches K = P%, number of
Multi-Scale Convolutions Blocks C'
2 for each Multi-Scale Block n € {1,2,...,N} do

3 for each dimension of cloud workload
i€{1,2,...,D} do
4 Calculate the n-th Multi-Scale Block’s input;
5 if n = 1 then
6 X e X,
7 else
8 ‘ XM <y,
9 end
10 for each scale in Multi-Scale Patch Block
sef{l,2,...,5} do
11 Calculate the multi-scale patch time series
at scale s with Eq. (4);
12 for

each patch in the multi-scale patch time series
ke{l,2,...,K:} do

13 Learn the intra-patch variation in the

patch with Eq. (5);

14 end

15 end

16 Integrate patches into multi-scale time series
with Eq. (5);

17 Calculate the Transformer encoder output
representation X, with Eq. (6);

18 for each Multi-Scale Convolutions Block
ce{l,2,...,C} do

19 Extract and learn features from cloud

workload representation with Eq. (7);

20 end

21 Calculate the n-th Multi-Scale Block’s output;

22 X, <= Linear(Concat(Xc(l), e ,X,gc)));

23 V" < Add & Norm(X\", X,);

24 end

25 end

26 Calculate the Multi-Scale Prediction Block’s output;
27 Y, < Linear(Y,%N));
28 return Y,,,;

® [-PAW [5]: This cloud workload prediction method lever-
ages top-sparse auto-encoders (TSA) and gated recurrent
units (GRU) for accurate prediction of high-dimensional
cloud workloads. TSA is designed to learn and extract rep-
resentations of high-dimensional and high-variance cloud
workloads, while the GRU module captures long-term
dependencies.

® ¢sDNN [11]: A GRU-based cloud workload prediction
method that uses a sliding window to convert multivariate

IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 18, NO. 2, MARCH/APRIL 2025

Algorithm 2: Multi-Scale Network with Convolutions
(MSCNet) for Workload Prediction.

Input: historical cloud workload X €
Output: future cloud workload Y € RT*P
1 Initialize: learning rate, learning rate decay, batch
size, dropout rate, early stopping patience, number of
training epochs N, look-back window size L,
horizon window size H, workload dimension D,
hidden units d

RLXD

2 for each training epoch n € {1,2,...,N.} do
3 Utilize reversible instance normalization to
preprocess cloud workload;
4 for each dimension of cloud workload
i€{1,2,...,D} do
(i) X @) _grx @ .
5 Xy <= 7?4)(%];’
end

Calculate the Trend Prediction Block’s output;
X, < AvgPool(Padding(X ;) )kemel;

Y: < Linear(X});

10 Call Algorithm 1 to obtain the Multi-Scale
Prediction Block’s output;

11 Y., < Multi-Scale Prediction Block(X_;);

12 Aggregate the outputs of the two above blocks;
13 Y.< Y+ Y

14 for each dimension of cloud workload
1€{1,2,...,D} do

5 | | YO < NVaXO] e v +EXO);
16 end

17 end

18 return Y,

o X 9

Alibaba
Google
70 Azure

Proportion (%)

0.4 0.6 0.8

CPU Usage

0.2 1.0

Fig. 6. Data distribution across different datasets.

data into a supervised learning time series. It employs a
modified GRU to achieve precise workload prediction.

® SG-CBA [23]: A BIiLSTM-based cloud workload predic-
tion method that integrates the Savitzky-Golay filter, CNN,
attention mechanism, and BiLSTM for accurate workload
prediction. The Savitzky-Golay filter smooths workload
data and the deep learning module combines CNN and
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TABLE II
PARAMETERS USED IN MODEL TRAINING AND TUNING

Parameter Value
Look-back window size (L) 96
Horizon window size (H) {24, 48, 72, 96}
Loss function L2
Optimizer ADAM
Initial learning rate 1x 104
Learning rate decay 0.5
Batch size 32
Dropout rate 0.2
Number of hidden units 128
Training epochs 100
Early stopping patience 3
Number of Multi-Scale Blocks (V) 3
Patch size (S) 5
Patch length (P) {16, 24, 32, 48, 96}
Number of Multi-Scale Convolution Blocks (C') 3

BiLSTM with an attention mechanism for precise work-
load forecasting.

e FEDformer [12]: This Transformer-based prediction
method combines the Transformer model with seasonal-
trend decomposition. The decomposition method captures
the global outline of the time series, while the Transformer
captures more detailed structures. By using a frequency-
enhanced Transformer, it achieves more efficient and ac-
curate time series forecasting.

e MICN [28]: A convolution-based prediction method that
combines local and global features to capture the overall
view of the time series. It uses down-sampling convolution
and equidistant convolution to effectively extract local
features and global correlations of the sequence, resulting
in more accurate and efficient time series predictions.

e TimesNet [29]: This method transforms one-dimensional
time series into a set of multi-period two-dimensional
tensors for learning and modeling. It uses TimesBlock as
its core to efficiently and adaptively discover periodicity
and extract complex temporal variations, enabling accurate
forecasting.

Metrics: To evaluate the predictive accuracy and performance
of the model, we use three commonly used evaluation metrics:
Mean Squared Error (MSE), Mean Absolute Error (MAE), and
Root Mean Square Error (RMSE). The specific metrics are
defined by the following formulas:

1 n A
MSE = Z (Vi — Git)?,
nx H i=1t=1
1 n A
MAE = nx H ZZ Yit — Uit

@,
Il
—
~
Il
-

1 noH A
RMSE = \/n 7 Qi D Wit —Bi)% (8

The MSE measures the average squared difference between
actual and predicted values, making it sensitive to large errors.
The MAE measures the average absolute difference, providing
a linear score that is more robust to outliers. The RMSE is

the square root of the average squared differences, combining
properties of both MSE and standard deviation to indicate the
spread of residuals. Lower values for these metrics signify better
performance.

Configuration: To evaluate the performance of various models
in long-term cloud workload prediction, we use a look-back
window size of L = 96 and a horizon window size H set to {24,
48,72,96}. All models are trained using the L2 loss function and
the ADAM optimizer. We initialize the learning rate at 1 x 10~4
and apply a learning rate decay factor of 0.5. The batch size is
set to 32, the dropout rate to 0.2, the number of hidden units
to 128, and the training proceeds for up to 100 epochs with
early stopping, using a patience of 3 epochs. For the model’s
hyperparameters, we employ a heuristic search algorithm to
determine optimal values. The selected configuration is shown
in Table II.

B. Experimental Results

To compare the long-term performance of MSCNet with other
methods in cloud workload forecasting, we analyze their pre-
diction accuracy using three performance metrics, as shown in
Table III, which includes data from Alibaba, Google, and Azure.
We observe that existing RNN-based workload prediction meth-
ods perform poorly in long-term cloud workload prediction
due to issues such as gradient explosion/vanishing and error
accumulation. Among them, SG-CBA performs best thanks to
its attention mechanism and the integration of CNN with the
Savitzky-Golay filter. TimesNet, MICN, and FEDformer outper-
form RNN-based methods in accuracy, demonstrating stronger
capabilities in capturing and learning long-term dependencies of
workloads. MICN excels on the Alibaba and Google datasets,
while TimesNet performs better on the Azure dataset. It is
worth noting that our proposed MSCNet surpasses both MICN
and TimesNet, significantly outperforming existing methods.
Compared to existing workload prediction methods, MSCNet
improves MAE by an average of 14.1%, 55.7%, and 43.1%
on the Alibaba, Google, and Azure datasets, respectively. It
achieves the highest accuracy across three metrics for different
prediction windows on all datasets, demonstrating its robust
ability to model long-term dependencies and periodic patterns
at multiple scales.

Next, to further compare the performance of different models
at various prediction lengths, we plot the MSE, MAE, and RMSE
performance metrics on the Google dataset, as shown in Fig. 7.
Fig. 7 displays the curves of different models’ MSE, MAE, and
RMSE on the Google dataset as the prediction length varies. It
can be seen that compared to other methods, MSCNet achieves
better performance across all three metrics. Additionally, as the
prediction length increases, the performance gap between our
model and the other models gradually widens, demonstrating
better long-term cloud workload prediction capabilities.

Fig. 8 illustrates the distribution of MAE for different models
across three cloud workload datasets using violin plots. The
shapes of the violin plots vary slightly across the different
datasets due to the unique distributions and characteristics of
each dataset. However, within the same dataset, the shapes of
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TABLE III
COMPARISON OF DIFFERENT MODELS ON THREE DATASETS ACROSS VARIOUS HORIZONS USING MSE, MAE, AND RMSE METRICS

Models ‘ MSCNet TimesNet MICN FEDformer SG-CBA esDNN L-PAW
Metric ‘ MSE MAE RMSE MSE MAE RMSE MSE MAE RMSE MSE MAE RMSE MSE MAE RMSE MSE MAE RMSE MSE MAE RMSE
s | 24 | 05687 0.4565 0.7541 0.6457 0.5029 0.8036  0.5993 0.4704 0.7741 0.6671 0.5265 0.8168 09347 0.6369 0.9668 0.9672 0.6508 0.9835 0.9669 0.6489  0.9833
§ 48 0.6274  0.4986  0.7921 0.6962 0.5332 0.8344  0.6452 0.5041 0.8032 0.6992 0.5453 0.8362 0.9570 0.6457 0.9783 1.0198 0.6753 1.0098 0.9853  0.6570  0.9926
2 72 | 0.6622 05215 0.8138 0.7134 0.5467 0.8446 0.6742 05235 0.8211 0.7241 0.5592  0.8510 0.9609 0.6466  0.9803 1.0356 0.6822 1.0176  0.9915 0.6599  0.9957
96 0.6892  0.5379 0.8302 0.7369 0.5539 0.8584 0.6973 0.5382 0.8350 0.7474 0.5722 0.8645 09705 0.6510 0.9852 1.0706 0.7019 1.0343  1.0620  0.6956  1.0305
o 24 1.0371  0.7290 1.0184 1.2894  0.8260 1.1355 1.2381  0.8174 1.1127 1.3507 0.8568 1.1622 27016  1.2866 1.6436  2.9454 1.3485 1.7162 2.8200 1.3229 1.6793
T | 48 | 12555 0.8087 1.1205 14768 0.8858 12152 13744 0.8801 1.1724 1.4706 0.8939 12127 2.8830 13352 1.6978 3.1979 14129 17883 3.0607 1.3832  1.7495
8 72 14151  0.8640 1.1896 1.6046 0.9309 1.2667 1.6842 1.0071 1.2978  1.5778  0.9293  1.2561  3.1151 1.3937  1.7647 32486 14279 1.8023 3.1647 14089  1.7790
96 1.5288 09051 1.2365 1.7195 0.9666 1.3113 18513 1.0592 1.3606 1.6595 009573 1.2882 3.1726  1.4087 1.7811 32963 14374 1.8156 3.1814 14141 1.7836
o | 24 | 40681 04400 20170 46673 05104 2.1604 4.6865 0.5528 2.1648 4.8419 0.6369 22004 92718 08958 3.0449 9.2404 0.8843 3.0398 92538 0.8950  3.0420
5 | 48 | 43165 04546 20776 4.8019 0.5206 2.1913 47784 05599 2.1859 4.8982 0.5798 2.2132 9.3934 0.8860 3.0648 93310 0.8835 3.0547 9.3454 09071  3.0570
2 72 | 44485 04725 21091 49017 0.5295 2.2140 5.1306 0.6196 22651 49955 0.5851 2.2351 94553 0.8889 3.0749 9.4170 0.8954 3.0687 9.4086 0.9104 3.0673
96 | 4.5562 0.4776 21345 49610 0.5329 2.2273 53403 0.6374 23109 5.0972 0.6010 22577 9.5279  0.8963  3.0867 9.4965 009163 3.0816 9.4901 09112  3.0806
The horizon window size H € {24, 48, 72, 96} is set for all datasets.
—— MSCNet —— MSCNet 14 —— MSCNet
—— TimesNet —— TimesNet —— TimesNet
18 — MicN 10 — MIcN — MIcN
—— FEDformer —— FEDformer 13 —— FEDformer

MAE

0.8 0.9
[ 1 2 3 4 5 0 1 2 3 4 5 0 1 2 3 4 5
Prediction Length (day) Prediction Length (day) Prediction Length (day)
(a) MSE (b) MAE (c) RMSE
Fig. 7. Deatiled MSE, MAE, and RMSE results of different models with various prediction lengths on the Google dataset.
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Fig. 8. The distribution of MAE for different models on three cloud workload datasets.

the violin plots for the various models are relatively similar.
Compared to other models, MSCNet exhibits a smaller me-
dian MAE, indicating higher predictive accuracy. Its narrower
interquartile range and more concentrated distribution suggest
better robustness. Additionally, MSCNet shows a smaller maxi-
mum MAE on the Alibaba dataset and a smaller minimum MAE
on the Google dataset, highlighting its superior performance
and stability across different datasets. In Fig. 9, we present
examples of MSCNet’s predictions on the Alibaba dataset across
different prediction lengths. For minute-level workload predic-
tions, MSCNet accurately captures trends and dynamic changes,
resulting in precise load forecasts. At the hour level, MSCNet
effectively adapts to and predicts sudden peaks and fluctuations.

For day-level predictions, MSCNet successfully learns long-
term dependencies and periodic trends in the workload.

To compare the transferability and generalization capability
of MSCNet with other baseline methods, we conduct transfer
experiments on the Google and Azure datasets. In the context of
evaluating cross-dataset transferability, the models are initially
trained on the Alibaba dataset and then directly used to predict
the Google and Azure datasets. Table IV presents the evaluation
results of our transfer learning experiments. As shown, MSCNet
achieves the best or second-best performance in all settings,
surpassing other baseline methods and highlighting its robust
generalization and transferability. This is attributed to one of
MSCNet’s key advantages: modeling the raw cloud workload
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Fig. 9. Prediction performance display of MSCNet on the Alibaba dataset with various levels of prediction length.
TABLE IV
THE EXPERIMENTAL RESULTS OF TRANSFERRING MODELS TRAINED ON THE ALIBABA DATASET TO THE GOOGLE AND AZURE DATASETS
Models ‘ MSCNet TimesNet MICN FEDformer SG-CBA esDNN L-PAW
Metric ‘ MSE MAE RMSE MSE MAE RMSE MSE MAE RMSE MSE MAE RMSE MSE MAE RMSE MSE MAE RMSE MSE MAE RMSE
P 24 1.0543  0.7372 1.0268 1.3449  0.8507 1.1597 1.0601 0.7601 1.0296 1.3646  0.8585 1.1682  2.4619 1.2327 1.5690  2.7421 1.3000 1.6559  2.6416 1.2642 1.6253
'gn 48 1.2760  0.8189  1.1296 1.5311 09084 1.2374 1.2401 0.8263 1.1136  1.5091  0.9051 1.2285  2.5414  1.2487 1.5942  2.6857  1.2905 1.6388  2.6685 1.2803 1.6336
[3 72 1.4348 0.8732  1.1978 1.6567  0.9520  1.2871 1.3620  0.8713  1.1671 1.6217 09424 1.2735  2.5545 1.2564  1.5983  3.1804  1.4133 1.7834 26754 1.2872  1.6357
96 1.5480  0.9133 1.2442 1.7998  0.9953 1.3416 14544  0.9059  1.2060 1.7063 09723 1.3062  2.6026 1.2690 1.6132  2.8458 1.3401 1.6869 29148 1.3437 1.7073
° 24 45138 0.4920  2.1246  4.8229  0.5448  2.1961  4.5344 05224  2.1294 47193  0.5558 2.1724  9.1484 1.2360  3.0246  9.2822 1.2470  3.0467 9.2074  1.1064  3.0344
5 48 4.8271 05170  2.1971 49764 0.5624 22308 4.7913  0.5444  2.1889 4.8695 0.5622 22067 9.3278 12737 3.0542 93195 1.1918  3.0528 9.2778  1.2007  3.0460
2 72 49291 05308 22202 50224 0.5552 22411 49418 05597 22230 49779 0.5695 2.2311 9.5357 1.2723  3.0880 9.3429  1.1072 3.0566 9.3290 1.2574 3.0543
96 49734 05439 22301 53687 0.5804 23170 5.0564 0.5722 2.2486 5.0786 0.5774 22536  9.5141 1.2329  3.0845 9.3144 1.2135  3.0519  9.3565 11552 3.0588
TABLE V
ALBATION STUDY OF MSCNET’S DIFFERENT MODULES ON THREE CLOUD WORKLOAD DATASETS
Models MSCNet W/O_Conv W/O_Patch W/O_Trend
Metric \ MSE MAE RMSE MSE MAE RMSE MSE MAE RMSE MSE MAE RMSE
24 | 0.56871 0.45648 0.75413 0.57039 0.45653 0.75524  0.57353 0.45881 0.75732 0.56900 0.45615 0.75432
Alibaba 48 | 0.62736  0.49863  0.79206 0.62853  0.49861  0.79280 0.63076  0.50072  0.79420 0.62785  0.49888  0.79237
72 | 0.66224  0.52154 0.81378 0.66306  0.52156  0.81429  0.66489  0.52315 0.81541 0.66234  0.52153 0.81384
96 | 0.68925 0.53789  0.83021 0.69007 0.53823  0.83071 0.69161  0.53950 0.83163 0.68946  0.53857  0.83034
24 | 1.03707 0.72902 1.01837 1.03754 0.72947 1.01860  1.03801 0.73103 1.01883  1.04263  0.73115 1.02109
Googl 48 | 1.25548 0.80868  1.12048  1.25544  0.80822 1.12046 1.26063  0.81181  1.12278  1.26050 0.81139  1.12272
008l | 75 | 141514 086402 1.18960 1.41610 0.86473 1.19000 1.41628 0.86423  1.19008 1.41639  0.86397  1.19012
96 | 1.52883  0.90505 1.23646 1.53397 0.90693  1.23853  1.53124 0.90669  1.23743  1.53745 0.90829  1.23994
24 | 4.06812 0.44001 2.01696 4.09376  0.44278  2.02330 4.10397 0.44818 2.02583  4.09127 0.44036  2.02269
Azur 48 | 431648 0.45462 2.07761 4.32701 0.45850 2.08015 4.33394 0.46245 2.08181 4.32244 0.45687  2.07905
ure 72 | 4.44845 0.47254 2.10914 445921 0.47201 2.11168 446484 0.47509 2.11302 4.46365 047288  2.11273
96 | 4.55623 0.47761 2.13453 4.57456  0.48279  2.13882 4.57301 0.48404 2.13846  4.55897 0.48027 2.13517

sequences from multiple scales, enabling it to adapt to and
effectively capture the complex working patterns present in
different datasets, thereby demonstrating superior generalization
capability and transferability.

C. Ablation Studies

To determine and evaluate the impact of different modules
within MSCNet, we conduct ablation studies focusing on the
Multi-Scale Convolutions Block, Multi-Scale Patch Block, and
Trend Prediction Block. By individually removing each cor-
responding module, we experimented with several variants of
MSCNet across all three datasets. Table V shows the influence
of each module on the model’s performance. The Multi-Scale
Patch Block has the most significant impact on performance,
as its omission leads to a decrease in predictive accuracy
across all three datasets. This underscores the importance of
multi-scale patch learning in capturing various patterns and
long-term dependencies in the original cloud workload. The
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Multi-Scale Convolutions Block and Trend Prediction Block
also have notable effects, particularly on the Azure and Google
datasets, respectively. The Multi-Scale Convolutions Block can
effectively extract local and global features from cloud load data,
while the Trend Prediction Block extracts trend information
that can help the model achieve more accurate load forecast-
ing. The inclusion of these two modules significantly enhances
MSCNet’s generalization ability and adaptability to different
datasets.

D. Model Analysis

Varing the number of Multi-Scale Block: The key component
of MSCNet, the Multi-Scale Block, enables the model to achieve
accurate long-term cloud workload forecasting. To assess the
impact of the number of Multi-Scale Blocks on prediction
accuracy, we conduct experiments with various N, as shown
in Table VI. Our findings indicate that in most cases, setting
N = 3yields better results. This is because multiple Multi-Scale
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TABLE VI
THE PREDICTION ACCURACY VARIES WITH PARAMETER N

N=3

MAE

0.4574
0.4994
0.5213
0.5375

0.7301
0.8077
0.8648
0.9051

RMSE

0.7563
0.7933
0.8145
0.8309

1.0185
1.1201
1.1898
1.2365

MSE

0.5693
0.6282
0.6627
0.6897

1.0377
1.2555
1.4148
1.5326

MAE

0.4565
0.4986
0.5228
0.5379

0.7294
0.8095
0.8629
0.9053

0.4392
0.4553
0.4724
0.4827

RMSE

0.7545
0.7926
0.8140
0.8305

1.0187
1.1205
1.1895
1.2380

MSE

0.5688
0.6279
0.6622
0.6890

1.0382
1.2569
1.4149
1.5285

4.0555
4.2964
4.4490
4.5417

MAE  RMSE

0.7542
0.7924
0.8138
0.8301

1.0189
1.1211
1.1895
1.2363

2.0138
2.0728
2.1093
2.1311

Metric | MSE

24 | 0.5720
48 | 0.6294
72 | 0.6635
96 | 0.6904

24 | 1.0373
48 | 1.2547
72 | 1.4157
96 | 1.5289

0.4560
0.4987
0.5209
0.5376

0.7306
0.8096
0.8629
0.9044

Alibaba

Google

2.0147
2.0735
2.1104
2.1362

0.4395
0.4537
0.4785
0.4773

24 | 41173
48 | 4.3304
72 | 4.4641
96 | 4.5645

0.4479
0.4618
0.4736
0.4815

2.0291
2.0810
2.1128
2.1365

4.0591
4.2994
4.4538
4.5633

Azure

TABLE VII
THE PREDICTION ACCURACY VARIES WITH PARAMETER S AND P

S = =
P € {16,48,96} P € {16,32,48, 72,96}
MSE MAE RMSE MSE MAE RMSE

0.5686  0.4563  0.7541  0.5688  0.4560  0.7542
0.6276  0.4988  0.7922  0.6279  0.4987  0.7924
0.6622  0.5216  0.8138  0.6622  0.5209  0.8138
0.6898  0.5388  0.8306  0.6890 0.5376  0.8301

0.7301
0.8088
0.8638
0.9056

0.4424
0.4588
0.4721
0.4800

S=1
P e {16}
MAE
0.4568
0.4985

0.5214
0.5375

Metric | MSE

24 | 0.5702
48 | 0.6280
72 | 0.6629
96 | 0.6894

RMSE

0.7551
0.7925
0.8142
0.8303

Alibaba

1.0192
1.1210
1.1903
1.2374

2.0180
2.0774
2.1094
2.1341

1.0382
1.2569
1.4149
1.5285

4.0555
4.2964
4.4490
4.5417

0.7306
0.8096
0.8629
0.9044

0.4395
0.4537
0.4785
0.4773

1.0189
1.1211
1.1895
1.2363

2.0138
2.0728
2.1093
2.1311

24 | 1.0374
48 | 1.2561
72 | 14242
96 | 1.5316

24 | 4.0924
48 | 4.3309
72 | 4.4586
96 | 4.5723

0.7303
0.8094
0.8683
0.9066

0.4455
0.4606
0.4734
0.4832

1.0186
1.1207
1.1934
1.2376

2.0230
2.0811
2.1115
2.1383

1.0388
1.2567
1.4168
1.5311

4.0722
4.3154
4.4495
4.5545

Google

Azure

Blocks can more effectively extract and capture the multi-scale
features and long-term dependencies of historical cloud work-
loads. When setting N = 2 and N = 1, the model’s prediction
accuracy shows an acceptable decline, highlighting the powerful
capability of our designed Multi-Scale Block. Even a single
Multi-Scale Block can achieve relatively accurate long-term
cloud workload prediction.

Impact of the number of scale in Multi-Scale Patch Block:
MSCNet employs the Multi-Scale Patch Block to extract multi-
scale features and different periodic patterns from cloud work-
loads. To evaluate the impact of different values for S and
patch length P on the model’s prediction accuracy, we con-
duct experiments with different S shown in Table VII. Our
findings indicate that settings of S = 5 and S = 3 yield better
results, underscoring the advantage of multi-scale modeling in
improving prediction accuracy. As the parameter S decreases,
we observe a noticeable decline in performance. Additionally,
selecting different patch lengths affects the efficiency of ex-
tracting information at various scales, with an appropriate patch
length more effectively capturing the different periodic patterns
of cloud workloads.

Efficiency analysis: In addition to predictive performance, we
also analyze and compare the computational cost and complex-
ity of MSCNet with other baseline methods. Specifically, we
compare the number of trainable parameters, MACs (Multiply-
Accumulate Operations), average training time per epoch, and
inference time per sample. As shown in Table VIII, MSCNet
achieves the best performance in terms of training time and
inference time benefiting from its well-designed architecture,
with MICN yielding similar results. Moreover, we present the

TABLE VIII
NUMBER OF TRAINABLE PARAMETERS, MACS, TRAINING TIME PER EPOCH,
AND INFERENCE TIME OF DIFFERENT MODELS ON THE GOOGLE DATASET

Models \ Parameters MACs Train Time  Infer Time
MSCNet 280.22 K 72.63 M 3.62 s 3.64 ms
TimesNet 18.81 M 11.31 G 13.27 s 14.08 ms

MICN 145 M 93.13 M 378 s 4.44 ms

FEDformer 17.3 M 791.24 M 33.01 s 46.29 ms

SG-CBA 280.63 K 32.55M 9.71 s 12.99 ms

esDNN 170.72 K 14.96 M 6.85 s 10.97 ms

L-PAW 19297 K 19.87 M 517 s 7.84 ms

TABLE IX

NUMBER OF TRAINABLE PARAMETERS, MACS, AND COMPLEXITY OF
DIFFERENT MSCNET MODULES

Module Parameters ~ MACs  Complexity
A Pooli 0 120K O(L
Trend Prediction Block verage Foolng @)
Linear 233K 2328 K O(LT)
Multi-Scale Patch Block 23.08 K 721 M O(L)
Transformer Encoder 7498 K 3734M  O(L2d)
N Equidistant Convolution 1.065 K 136 M O(d)
v N Multi-Scale Block
Multi-Scale Prediction Block Sparse Convolution 1.065 K 8.62 M O(d)
Dense Convolution 0.54 K 751.0 K O(d)
Linear 174.82 K 17.48 M O(dL)
Linear 233K 2328 K O(LT)

Parameters, MACs, and theoretical time complexity of differ-
ent MSCNet modules in Table IX. Overall, the complexity of
MSCNet is O(L?d) due to the use of the Transformer encoder,
where L is the length of the input sequence and d is the number
of hidden units.

Regarding the number of parameters and MACs, MSCNet is
significantly lower than TimesNet, MICN, and FEDformer, but
slightly higher than RNN-based workload prediction methods
like L-PAW. This is primarily due to MSCNet’s more complex
model structure, which, given the substantial performance im-
provement over methods like L-PAW, is an acceptable trade-off.
Among all models, TimesNet and FEDformer exhibit the high-
est computational and time costs due to their more complex
encoder-decoder architectures and introduction of frequency-
domain transformation.

In summary, MSCNet achieves the highest predictive ac-
curacy compared to other baseline models, while maintaining
lower computational cost and complexity, and offering the
fastest training and inference time.

V. CONCLUSION

Accurate long-term cloud workload prediction can signifi-
cantly enhance the efficiency of resource allocation and manage-
ment in cloud data centers. In this paper, we introduce a novel
approach called MSCNet for the long-term prediction of cloud
workloads in data centers. MSCNet leverages a Multi-Scale
Block, which integrates core modules including the Multi-Scale
Patch Block, Transformer Encoder, and Multi-Scale Convolu-
tions Block. This design allows MSCNet to extract and capture
multi-scale features, different periodic patterns, and long-term
dynamic changes in cloud workloads. MSCNet has been ex-
perimentally validated on Alibaba, Google, and Azure datasets.
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Compared to other baseline methods, MSCNet demonstrates
superior performance.

In the future, our work can be further improved and expanded.
We aim to explore more efficient and cost-effective models that
leverage adaptive strategies to accommodate the complex and
dynamic environment of cloud computing. This includes ad-
dressing scenarios such as heterogeneous environments, where
resources and workloads may vary significantly across different
platforms and architectures. By developing models that can
seamlessly integrate and adapt to various types of resources,
from traditional servers to cloud-based infrastructures, we can
enhance the accuracy and reliability of our predictions.
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