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Abstract—Accurate prediction of cloud workload is crucial for
effective resource allocation in cloud computing. However, due
to the complexity and high dimensionality of workloads in the
cloud environment, achieving precise workload prediction is a
complex and challenging problem. Current approaches to cloud
workload prediction mainly rely on deep learning methods based
on the Recurrent Neural Network (RNN), which struggle to capture
the long-term dependencies inherent in workloads effectively. To
tackle these challenges and overcome the limitations of existing
methods, we propose an effective approach Time-Frequency En-
hanced Gated Recurrent Unit with Attention (TFEGRU) for cloud
workload prediction. First, we design a Time-Frequency Enhanced
Block (TFEB) to capture complex workload patterns and extract
features from both the frequency and temporal domains. Next, we
integrate channel independent strategy and channel embedding
into the model to adapt to high-dimensional workloads and enhance
predictive performance. Finally, we apply a Gated Recurrent Unit
(GRU) in conjunction with a multi-head self-attention mechanism
to achieve accurate workload prediction. To validate the effective-
ness of TFEGRU, comprehensive experiments are conducted using
real-world traces from Google and Alibaba cloud data centers. The
experimental results demonstrate that TFEGRU achieves accurate
and efficient predictions across diverse cloud workloads, outper-
forming existing state-of-the-art methods.

Index Terms—Cloud computing, gate recurrent unit, resource
allocation, workload prediction.

1. INTRODUCTION

N THE past decades, cloud computing has gradually become
one of the most popular computing paradigms and gained
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much popularity in the industry [1][2]. Many services, including
data storage, social computing, application hosting, and Big
Data computing, have been implemented on cloud infrastruc-
ture [3][4] [5]. Cloud computing, facilitated by Cloud Service
Providers (CSPs), offers users on-demand access to computing,
storage, and networking resources while maintaining compli-
ance with Service Level Agreements (SLAs) to guarantee Qual-
ity of Service (QoS). Compared to traditional local computing,
cloud computing centralizes resource management in data cen-
ters, allowing users to access resources anytime via the internet.
For instance, Infrastructure as a Service (IaaS) clouds provide
tenants with on-demand VM instances [6].

CSPs typically provision resources before the arrival of user
requests to ensure QoS. When a large number of user requests
arrive simultaneously, the occurrence of bursty workloads may
lead to insufficient available resources. Conversely, during pe-
riods of low workload, idle states can lead to resource wastage.
Imbalances in resource provisioning due to workload variations
can result in unnecessary resource expenses or SLA violations.
Therefore, CSPs need the capability to promptly identify re-
source provisioning strategies, ensuring compliance with SLA
requirements while optimizing resource utilization [7]. In order
to accomplish these goals, cloud computing necessitates pre-
cise and efficient methods for predicting workloads. Through
effective prediction of future workloads, CSPs can proactively
configure and allocate resources in advance. This not only
optimizes resource provisioning for greater efficiency and ra-
tionality but also helps in energy conservation and emission
reduction [8] [9].

Over the past few years, significant research efforts have
been directed toward predicting cloud workloads. Traditional
approaches for workload prediction predominantly depend on
regression methods, machine learning techniques, and deep
learning methods. Conventional regression methods like Au-
toregressive (AR), Moving Average (MA), and Autoregressive
Integrated Moving Average (ARIMA) typically rely on linear
assumptions, requiring time series stationarity, and struggle with
complex nonlinear relationships for high accuracy. As machine
learning advances, it’s widely applied to cloud workload pre-
diction using methods like random forests, decision trees, and
Support Vector Machines (SVM). These models offer a signif-
icant advantage over traditional methods in terms of nonlinear
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Fig. 1. The random workload in Alibaba cloud data centers.

generalization, enabling them to capture potential relationships
between inputs and outputs.
The latest research has commonly utilized deep learning
methods based on the Recurrent Neural Network (RNN) and
some of its variants [10]. Leveraging the powerful time se-
ries modeling capabilities of RNN, these methods outperform
regression and machine learning-based approaches, as they
can better learn patterns and correlations between workload
sequences, exhibiting higher prediction accuracy and learning
efficiency.
However, accurate prediction of cloud computing workloads
is a complex and challenging problem [11], primarily facing the
following two challenges:
® High Complexity of Workload Patterns. Workload pat-
terns in cloud computing exhibit varying characteristics
at different levels of time scales, as observed in realistic
workload traces. For instance, the Alibaba cloud data center
analysis report reveals that the average CPU utilization of a
cluster can fluctuate between 5% and 80% under significant
variations [12], as shown in Fig. 1. The phenomenon of
high variance and data distribution drift [13] caused by
non-stationary workload data makes accurate and efficient
prediction of cloud workloads extremely challenging. Tra-
ditional deep learning methods are often influenced by
the high complexity of workload patterns, struggling to
effectively learn relevant patterns and extract correlations
between these patterns from history workload [10].

® High Dimensionality of Workload Data. Cloud computing
often involves the construction of clusters with a large
number of servers, leading to high-dimensional workload
data challenges [14]. High-dimensional data introduces
noise and redundant information, not only impacting the
predictive performance of models but also demanding
higher capabilities for feature extraction and learning. Tra-
ditional deep learning methods typically model all channels
together to learn the correlations between them. How-
ever, due to the inherent noise present in cloud workload
high-dimensional data, this channel dependent modeling
strategy may negatively impact predictive performance.

To address the challenges, we propose a Time-Frequency
Enhanced Gated Recurrent Unit with Attention (TFEGRU) ap-
proach for accurate, efficient, and robust workload prediction.
First, to better capture highly complex cloud workload patterns,
we design a Time-Frequency Enhanced Block (TFEB), which

integrates both a Frequency Enhanced Module and a Time
Enhanced Module. In the Frequency Enhanced Module, we uti-
lize Short-Time Fourier Transform (STFT) to convert temporal
information into frequency-domain data, effectively capturing
the periodicity of the workload [15]. Meanwhile, the Time
Enhanced Module employs convolutional layers to dynamically
identify and track changes in workload behavior over time. This
allows the model to better detect subtle temporal variations,
leading to more accurate extraction of operational patterns in
rapidly fluctuating cloud environments. Second, we explore and
analyze the influence of channel correlations among different
channels of high-dimensional workloads. Our core approach
involves modeling each channel independently through channel
independent strategy and channel embedding, which eliminates
noise interference between high-dimensional data channels,
ultimately enhancing the model’s adaptability and predictive
performance. Finally, we utilize a Gated Recurrent Unit (GRU)
in conjunction with a multi-head self-attention mechanism to
make accurate workload predictions.

The main contributions of this paper are summarized as
follows:

e We propose the Time-Frequency Enhanced GRU with
Attention for workload prediction, utilizing the Time-
Frequency Enhanced Block to combine both frequency and
time-domain information, which enables more effective
identification and extraction of complex cloud workload
patterns.

e We explore and analyze the influence of channel cor-
relations in high-dimensional workloads, introducing a
channel independent strategy and channel embedding to
eliminate noise interference from high-dimensional data
and enhance predictive performance.

e Extensive experiments utilizing the real-world workload
datasets are conducted to validate our approach. The re-
sults demonstrate that the proposed method can achieve
more accurate workload prediction, outperforming existing
approaches.

The remainder of this paper is organized as follows. Sec-
tion II analyzes related work on workload prediction. Section III
provides a detailed description of the model. In Section IV,
we evaluate the proposed method through experiments on real-
world workload datasets. Finally, we summarize this paper in
Section V.

II. RELATED WORK

Workload prediction in cloud computing has garnered
widespread attention in industry and academia. Many studies
have been conducted that make notable contributions to this
issue. In this section, we first review regression-based workload
prediction methods and then introduce machine learning and
deep learning methods for workload prediction.

A. Regression Methods for Workload Prediction

Calheiros et al. [16] proposed a cloud workload prediction
method using the ARIMA model, achieving high accuracy and
optimal resource utilization. Yang et al. [17] developed an
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auto-scaling mechanism based on a linear regression model,
ensuring SLA compliance and minimizing costs. Liu et al. [18]
introduced an adaptive approach that classifies workloads and
assigns them to appropriate prediction models. Bi et al. [19]
combined Savitzky-Golay filtering, wavelet decomposition, and
ARIMA for better prediction performance than traditional mod-
els. Mazumdar et al. [20] enhanced ARMA with wavelet de-
composition and Kalman filtering, improving accuracy through
seasonal adjustments. Bi et al. [21] introduced a novel approach
combining wavelet decomposition, Savitzky-Golay filter, and
ARIMA to enhance workload prediction accuracy.

In general, traditional regression methods like AR and
ARIMA have proven effective in workload prediction, partic-
ularly for workloads with clear patterns or trends. However,
these approaches face challenges in efficiently predicting highly
variable workloads in the cloud environment [22]. To address
these issues, advanced methods such as machine learning and
deep learning techniques have been explored.

B. Machine Learning Methods for Workload Prediction

Tong et al. [23] applied a feature periodic coefficient with
various classification techniques, improving success rates and
reducing mean square error. Barati et al. [24] proposed TSVR,
combining genetic and particle swarm optimization with chaotic
sequences to train SVM, enhancing prediction accuracy and pre-
venting premature convergence. Nikravesh et al. [25] used SVM
and neural networks, showing that SVM effectively predicted
periodic workloads. Cetinski et al. [26] developed a hybrid
model integrating classification and regression, significantly
improving workload prediction. Zhong et al. [27] introduced
a weighted wavelet SVM approach, boosting accuracy by using
wavelet functions as SVM kernels and weighting samples.

Overall, these machine learning methods represent stronger
workload characteristics, learning ability, and higher perfor-
mance for workload prediction. However, the majority of ma-
chine learning methods perform workload prediction within
small-scale grid systems, displaying lower variance when con-
trasted with cloud data centers [9]. The presence of long-range
dependence on cloud workloads makes these methods hard to
predict accurately. Thus, more and more scholars are adopting
deep learning methods with competent sequence processing
ability for cloud workload prediction.

C. Deep Learning Methods for Workload Prediction

Chen et al. [9] developed a deep learning-based cloud
workload prediction method (L-PAW). It utilized sparse au-
toencoders to extract fundamental representations of workloads,
using GRU to learn long-term dependencies and enhance work-
load prediction accuracy. Bi et al. [28] proposed a workload
and resource prediction method for cloud computing, using
logarithmic transformation, noise filtering, and Min-Max scal-
ing. By integrating bi-directional and grid LSTM models, the
method improves prediction accuracy, outperforming existing
approaches on Google cluster trace data. Dogani et al. [29] pre-
sented a hybrid model combining Bidirectional Gated-Recurrent
Unit (BiGRU), Discrete Wavelet Transformation (DWT), and

an attention mechanism to enhance host workload prediction in
cloud computing. DWT extracts patterns from nonlinear data,
while BiGRU predicts future workloads, leveraging attention to
capture temporal correlations. Bietal. [30] proposed VAMBIG,
a hybrid model for predicting cloud workload and resource
usage. VAMBIG combines variational mode decomposition, an
adaptive Savitzky-Golay filter, multi-head attention, and bidi-
rectional and grid LSTM networks to handle noise, capture
nonlinear features, and improve prediction accuracy. Experi-
ments on Google and Alibaba datasets show it outperforms
existing methods. Seshadri et al. [31] introduced the Super
Markov Prediction Model (SMPM) for workload characteriza-
tion and prediction in Cloud Data Centers. SMPM adapts its
behavior to changing workload patterns over time, employing
different sequence models for future workload predictions. Li et
al. [32] proposed an Evolution Graph for Workload Prediction
(EvoGWP), a method for predicting long-term dynamic work-
load changes using a graph-based evolution learning algorithm.
EvoGWP extracts shapelets to identify fine-grained resource
usage patterns, employing a two-level extraction mechanism
and an evolution graph model to capture temporal changes and
spatial interference among workloads.

In summary, most deep learning methods are improved on the
basis of RNN or RNN variant models, which can better learn
long-term memory dependencies from the historical workload.
Some work has also attempted to use Graph Neural Network
(GNN) to predict workload changes from both temporal and spa-
tial dimensions, achieving quite good results [32][33] [34]. How-
ever, most existing deep learning methods focus on processing
and utilizing time-domain information, lacking the utilization
of frequency-domain information, which can more easily learn
the long-term dependencies and periodicity in cloud workload.
Although few methods are proposed to address the high dimen-
sionality of workload data, such as eliminating noise interfer-
ence through filters [35] or achieving dimensionality reduction
through sparse autoencoders [9], little or no methods attempt to
individually model each channel to eliminate noise and inter-
ference between different channels for high-dimensional cloud
workload prediction.

In order to address these challenges, we first design a Time-
Frequency Enhanced Block to identify and capture complex
workload patterns from both the time and frequency domains.
Next, to mitigate the negative impact of noise across various
channels in high-dimensional cloud workloads on model predic-
tion performance, we introduce a channel independent strategy
and channel embedding into our model. Finally, we combine
GRU with a multi-head self-attention mechanism to achieve
accurate predictions of future workloads.

III. MODEL
A. Model Framework

Preliminary: Cloud workload prediction task is to predict
future workload data using historical workload data. Specifi-
cally, given the historical data X € R**P with L length look-
back window and D channels, the task is to predict the future
workload data Y € RT*P where H is the horizon window.
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Fig. 2. Workload prediction model in cloud environment.

Accurate predictions of resource information aid in proactively
allocating the necessary resources, preventing runtime delays in
resource provisioning while meeting QoS constraints [10]. The
workflow of the cloud environment workload prediction model
is shown in Fig. 2. We preprocess the given historical workload
by extracting CPU usage as the primary metric, aggregating
data across machines, and normalizing it. The prediction model
is then trained and validated on pre-divided datasets until the
expected performance is reached. Finally, the trained TFEGRU
model predicts future workloads to assist in cloud data center
resource management.

TFEGRU structure: The overall architecture of TFEGRU is
shown in Fig. 4 and composed of tow phases. In the first phase,
inspired by the previous works [36][37], we explore a channel in-
dependent strategy to process the cloud workload data, modeling
each channel of the workload separately. In the second phase, we
design the Time-Frequency Enhanced Block (TFEB) to extract
features in both the frequency and temporal domains. Then, we
utilize a GRU model with a self-attention mechanism to capture
long-term dependencies between sequences. Finally, based on
the integration of channel embedding and representation learned
by GRU, we utilize a linear layer to predict future workload data.

B. Data Preprocessing

Extraction and Aggregation: The original historical workload
data sourced from cloud data centers encompasses a variety
of metrics associated with the operational state of the system,
including CPU usage, memory usage, disk usage, and I/O time,
which undoubtedly adds complexity and redundancy to the
computational process. In cloud data centers, the significant
cost implications resulting from low CPU utilization are a
major concern for CSPs [9]. Meanwhile, the high variance
exhibited by CPU utilization in workload performance makes
accurate prediction challenging. Therefore, as many previous
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Fig. 3. [Illustration of two different strategies for workload prediction.
(a) The channel dependent strategy employs the entire set of channels as input,
generating forecasts for future workload based on the combined historical
data of all channels. (b) The channel independent strategy handles each series
individually, training a unified model on these series. In this approach, the
prediction for each channel is based on its own historical values.

studies [14][38], we also regard CPU usage as the essential work-
load performance metric and extract this metric from historical
workloads. In order to make the model adapt to the workloads of
different machines in cloud data centers, we aggregate different
machines’ workloads over time to obtain the input X € RX*P.

Instance Normalization: The high variance in workload pat-
terns and the distribution drift of workload data make accurate
prediction using traditional methods challenging. To address
these issues, we employ a simple instance normalization to
alleviate these effects. We begin by subtracting the last value
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extracted from the input sequence, and finally, we add it back
during the output phase as follows:

@ _ @ (@
1

Ti.p =T — L5
(4) _ ) (4)
Yrhio+m =Yoh1Lem T 2L (D
where :c(Li) represents the ¢-th channel of workload data at
time L.

Channel Independent Strategy: In many previous studies
on workload prediction, methods often overlooked the depen-
dencies among different channels of workload. They typically
employed channel dependent approaches (Channel Dependent
Strategy, Fig. 3(a)), merging different sequences into hidden
layer representations through linear transformations. These
models focused on the dependencies among different channels
but neglected the negative impact of noise existing between
the channels and the disruption of the temporal dependencies
within each channel. Recent research [37][39] has shown that
modeling channel independence, specifically focusing on the
dependencies among different channels, can effectively improve
prediction accuracy and enhance the model’s robustness against
distribution drift. Inspired by these findings, we design and
adapt the channel independent approach (Channel Independent
Strategy, Fig. 3(b)) for workload prediction, better capturing
temporal dependencies among different channels, and improv-
ing the model’s robustness and performance. For the input series
X € R*P | we can obtain X, € RP*% adopting the channel
independent strategy.

C. Prediction Model

As shown in Fig. 4, we propose the TFEGRU for accurate
cloud workload prediction. First, we design a Time-Frequency
Enhanced Block to extract historical workload features from
both the frequency and time domains. Subsequently, we employ
a GRU with a multi-head self-attention mechanism to learn
long-term dependencies between sequences. Finally, combining
channel embedding with the representations learned by GRU,
we utilize a linear layer to predict future workload. We will
introduce more details in the following text.

Time-Frequency Enhanced Block: In order to better extract
workload features and patterns, we design the Time-Frequency
Enhanced Block as shown in Fig. 4, which is composed of
Frequency Enhanced Module and Time Enhanced Module.

Within the Frequency Enhanced Module, we employ the clas-
sical Short-time Fourier Transform (STFT) method to analyze
the temporal frequency characteristics of workload data [15].
Subsequently, we utilize a fully connected layer to capture
inherent patterns in the frequency domain and aggregate the
frequency information. For the input series X, the entire process
is:

X = STFT (X,),

7 = Feed Forward (X' ) ,

7 = STFT ! (Z) . )

Unlike the regular Fourier Transform, STFT allows us to ob-
serve how the frequency content of a signal changes over short,
overlapping time intervals. The STFT process is formulated as
follows:

Wl
X = Z Window[k] - Xy[k +m x 1] -7 L
k=0

3)

where m is the index of the sliding window, w denotes the
frequency, W represents the window length, and k ranges from
0 to W — 1 as the index of the data in the sliding window
and a uniform window with a value of 1 is assumed. Through
STFT, we can obtain the time-frequency matrix X € RP*M*N
of the input X., where M = % + 1 represents the number of
frequency samples and N =1+ % denotes the size of time
frames. [ is the stride of the moving window in the process of
STFT.

Then, we devise the Time Enhanced Module to enhance the
extraction of workload features. First, we apply a linear layer
with the ReLLU activation function to embed the input sequence
Z. Subsequently, we adopt one-dimensional convolution with
the Tanh activation function to capture intricate features of
workload. The process is defined as follows:

XMt = ReLU (Linear(Z)),
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X, = Tanh (Convld (X)), “)

where X°™b X, € RP*I*d and d is the hidden state of the
series.

GRU with Attention: Gated Recurrent Unit (GRU) is a variant
of RNN, which employs gate structures to read and update
previous information selectively. GRU can effectively address
the issue of gradient vanishing, presenting an improvement
over traditional RNN. Therefore, we adopt GRU to capture the
temporal dependencies in the series. The computing process is
as follows:

2 =0 (W, [hi1,24]),

re =0 Wy - [he-1,24]),

hi = Tanh (W - [r; @ hy 1, 24])
he=(1—2)® hyoy + 2 © hy, )

where z; is the update gate controlling the mix of the previous
hidden state h;_; and the candidate hidden state iLt, while r; is
the reset gate and h; is the final state combining h;_; and iLt,
modulated by z;.

Recent works [40][41] have demonstrated the remarkable
capability of the attention mechanism for modeling long-range
dependencies. Consequently, we integrate the GRU with multi-
head attention to capture the long-term dependencies within
time series. To elaborate, we use the GRU output as the input
for the multi-head attention, better modeling the dependency
relationships across diverse time series. The entire process is
defined as follows:

o = Multi-head Attention (H/[*, h}% 1),
HtD:OétGhﬁl, (6)

where Hf* = [nf' ;... hf ] is a matrix stacking the hidden
representation of GRU column-wisely. The multi-head attention
is a mechanism in deep learning models commonly applied to
sequence data. It divides the input sequence into multiple heads,
allowing the model to focus on different parts simultaneously.
Through the attention mechanism, each head determines the
significance of each position in the sequence, enabling the model
to capture long-range dependencies. The outputs of multi-head
attention oy are integrated with the latest hidden representation
of GRU hf', to form the final representation HP, offering
enhanced capability in capturing internal relationships within
the input sequence.

Channel Embedding: Since our model applies the channel
independent strategy, in order to make use of each channel of the
sequence with a unified model, we are supposed to inject some
information about each channel of the sequence. To this end,
we add a channel embedding X¢™* € RP*4 to the input HP €
RP*4_ Finally, based on the combination of channel embedding
and representation learned by GRU, we use a linear layer to get
the final prediction of future workload. The process is as follows:

Y; = Linear(Concat (X(fmb, HP),

Y = Instance Normalization *(Y;), @)

Algorithm 1: Time-Frequency Enhanced GRU With Atten-
tion (TFEGRU).
Input: Historical workload data X € RX>*P
Output: Future workload data Y € RH*P
1: Initialize: look-back window size L, horizon window
size H, workload dimension D, hidden units d

2: X; = Instance Normalization(X)

3: X. = Channel Independent Strategy(X)
4: X = STFT(X,)

5: Z = Feed Forward(X)

6: Z = STFT '(Z)

7: X°m = ReLU(Linear(Z2))

8: XS = Tanh(Convld(Xe”‘b)kemelzl)

9: for each look-back window size L = 1,2, ...
10:  Update the update gate 2,
11: Zt:U(Wz'[htflaxtD
12:  Update the rest gate r;
13: Tt:U(WT'[ht,1,$t]) _
14:  Calculate the candidate hidden layer /;
15: ht = Tanh(W . [T’t ® ht—17 I’f])
16:  Compute the output gate h;
17: h,t = (1—Zt)®ht,1 +Zt®ht
18: end for
19: a; = Multi-head Attention( H 2, hlt |)
20: HP = oy © Bl
21:Y; = Linear(Concat( X, HP))
22: Y = Instance Normalization *(Y;)
23: return Y

, L do

where Y € RH*D represents the final prediction. The overall
procedure of TFEGRU is shown in Algorithm 1.

IV. EXPERIMENTS

In this section, we first present the setup of our experiments,
including descriptions of datasets, baseline methods, evalua-
tion metrics, and model configuration. Next, the contrasting
experimental results of our model and baseline methods on the
datasets are discussed. Furthermore, we carry out an ablation
study and model analysis to analyze the impact of the model’s
intrinsic structures and model configuration. All experiments in
this section are implemented in PyTorch and executed on a single
NVIDIA 4090 GPU equipped with 24 GB of memory.

A. Experimental Setup

Datasets: To evaluate and analyze the performance of our
proposed approach, we conduct extensive experiments on two
real-world datasets as follows.

e Alibaba Cluster Traces [42]: The Alibaba Cluster Traces
dataset was recorded in 2018, denoted as cluster-trace-
v2018. It spans a duration of 8 days and consists of ap-
proximately 4,000 machines, with a sampling interval of
10 seconds. The data can be accessed on GitHub.!

Uhttps://github.com/alibaba/clusterdata
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® Google Cluster Traces [43]: The Google Cluster Traces
dataset captured operational data over a 29-day period in
May 2011, providing insights into the performance of a
cluster comprising approximately 12.5k machines, referred
to as cluster-2011-2. The data can be accessed on GitHub.?

Given the crucial role of CPU usage in cloud data centers,
we use CPU usage as the main performance metric and extract
it from these datasets. In both datasets, we randomly selected
100 machines as the dataset for model evaluation. Subsequently,
we aggregate data from different machines over time. Due to
some differences between the two datasets, we set the initial
prediction granularity for the Google dataset to 5 minutes and
for the Alibaba dataset to 10 seconds. In addition, we divide the
datasets into three parts, with 60% as the training set, 20% as
the validation set, and 20% as the testing set.

Baselines: To verify the effectiveness of our approach, several
methods are selected for comparison.

e GRU [44] is a type of RNN architecture designed to ad-
dress the vanishing gradient problem. It exhibits excellent
capabilities in capturing dependencies within sequential
data.

e L-PAW [9] is an RNN-based cloud workload prediction
method. It utilizes top-sparse auto-encoders (TSA) to ex-
tract the representations of workloads effectively and in-
tegrates TSA and GRU blocks into RNN for adaptive and
accurate prediction.

e esDNN [22] represents an efficient approach to cloud work-
load prediction through supervised learning-based Deep
Neural Networks. This method employs a sliding window
technique to transform data into a supervised series and
leverages a modified GRU for precise workload prediction.

e SG-CBA [41] is a BiLSTM-based deep learning model
designed for accurate cloud workload prediction. It incor-
porates the Savitzky-Golay filter to smooth workload data,
followed by the creation of a deep learning module that
integrates CNN and BiLSTM with an attention mechanism
for accurate workload prediction.

e EvoGWP [32] is an Evolution Graph method for work-
load prediction. It uses a graph-based evolution learning
algorithm to identify fine-grained resource usage patterns
by automatically extracting shapelets. EvoGWP combines
temporal and spatial dimensions through a spatio-temporal
GNN-based encoder-decoder model, enabling accurate
prediction of workload changes over time.

Metrics: In evaluating the performance of the approaches,
three conventional metrics are taken into consideration: the mean
absolute error (MAE), mean squared error (MSE), and mean
absolute percentage error (MAPE). These metrics are computed
as follows:

1
MAE:EZ
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Y, —Y;

)

MSE:%i(Yi—YZ—)Z,

i=1
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n

1
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Y- Y

i

x 100%. ®)

Among the three metrics, MAE and MSE depend on the scale,
while MAPE is scale-independent and represents the Manhattan
distance, euclidean distance, and deviation proportion between
the actual and predicted values. A lower value for each metric
signifies superior performance.

Configuration: Based on previous studies and fine-tuning, we
configure the look-back window size to 5, while the horizon
window size is set to 1. Our model is trained using the L2
loss function, employing the ADAM optimizer with an initial
learning rate of 5 x 10~2 and a learning rate decay of 0.9. The
batch size is chosen as 128, and the model undergoes training
for 100 epochs. Early stopping is applied in the training process,
halting after five epochs if there is no observed loss degradation
on the validation set.

B. Experimental Results

We compare the prediction accuracy of our proposed TFE-
GRU model with other methods across various prediction
lengths on real-world datasets. Figs. 5 and 6 demonstrate that
TFEGRU outperforms other methods consistently across differ-
ent prediction lengths. Both EvoGWP, esDNN, and SG-CBA
show advantages over the native GRU method, with slightly
higher predictive accuracy. However, the L-PAW method, which
relies on deriving workload representation through TSA, ex-
hibits lower predictive accuracy compared to GRU. Notably, on
the Alibaba dataset, TFEGRU performs significantly better at
longer prediction lengths, as shown in Fig. 6(a), highlighting its
ability to capture long-term dependencies.

Next, to further evaluate the performance of different methods
for workload prediction, we conduct experiments with multiple
prediction granularities based on the original data sampling
intervals of the datasets. For the Google dataset, prediction
granularities are chosen from {Smin, 15min, 30min, 45min,
1h}. For the Alibaba dataset, prediction granularities are selected
from {10s, 30s, 1min, Smin, 10min}. We utilize three metrics,
MSE, MAE, and MAPE to assess the performance of these
methods, and the results are presented in Table I.

Our method outperforms other methods across all prediction
granularities on both datasets, showing significant improve-
ments. For instance, on the Google dataset, TFEGRU achieves
a 45.8% reduction in MSE and a 34.9% reduction in MAE
at the S-minute prediction granularity compared to the best-
performing method. Similarly, on the Alibaba dataset, TFEGRU
reduces MSE by 9% and MAE by 8.1% at the 10-second
prediction granularity. Despite the increasing challenge of accu-
rate workload prediction with longer prediction granularity, our
approach demonstrates better performance, maintaining smaller
performance declines compared to other methods. For example,
at a 10-minute prediction granularity on the Alibaba dataset,
we achieve a 59.9% reduction in MSE and a 32.7% reduction
in MAE compared to other methods. This underscores the
effectiveness of our method in adapting to different workload
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Fig. 7. Prediction performance of different methods with the Google dataset.

patterns, learning long-term dependencies, and achieving higher
prediction accuracy and robustness.

Figs. 7 and 8 depict the prediction performance of different
methods on the Google and Alibaba datasets. Despite the already
high prediction accuracy achieved by the esDNN and EvoGWP
methods, TFEGRU exhibits superior predictive accuracy on
highly random workloads from Google and Alibaba cloud data
centers. The prediction curve provides a better fit to the actual
values.

C. Ablation Studies

To inspect the impact of main components on model per-
formance, we conduct ablation experiments by systematically
removing different components, including TFEB, multi-head

attention mechanism, channel independent strategy, and channel
embedding. Table II summarizes the ablation studies conducted
by excluding specific modules from the proposed method.
Specifically, the methods for ablation studies are summarized
as follows:

TFEGRU: The complete prediction model.

TFEGRU-T: Time-Frequency Enhanced Block is excluded
from TFEGRU.

TFEGRU-A: Multi-head attention mechanism is excluded
from TFEGRU.

TFEGRU-C: Channel independent strategy and channel
embedding are excluded from TFEGRU.

TFEGRU-AT: Time-Frequency Enhanced Block and
multi-head attention mechanism are excluded from
TFEGRU.
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TABLE I
MAE, MSE, AND MAPE COMPARISON WITH DIFFERENT PREDICTION GRANULARITY ON THE GOOGLE AND ALIBABA DATASETS

Dataset | Prediction granularity | Metric | TFEGRU EvoGWP  SG-CBA  esDNN L-PAW GRU
MSE 0.00226 0.00417 0.00510  0.00608  0.00871  0.00658
5 min MAE 0.03235 0.04966 0.05521  0.06020  0.07237  0.06304
MAPE | 0.25233 0.39116 041881 047164 0.53014 0.47874
MSE 0.00226 0.00678 0.00768  0.00784  0.01045  0.00920
10 min MAE 0.03310 0.06349 0.06677  0.06724  0.07843  0.07393
MAPE | 0.18826 0.37316 0.40454  0.40390 0.45154 0.41248
MSE 0.00243 0.00813 0.01038  0.00925 0.01051 0.01126
Google 15 min MAE 0.03399 0.06868 0.07767  0.07411  0.07797  0.08131
MAPE | 0.18212 0.37263 0.41105  0.43997 0.40734  0.41889
MSE 0.00256 0.00854 0.01105  0.00884  0.01041  0.01195
30 min MAE 0.03502 0.07021 0.08062  0.07114  0.07797  0.08382
MAPE | 0.18346 0.36791 0.40991  0.39230 0.40163  0.40789
MSE 0.00273 0.00891 0.00902  0.01120  0.01120  0.01102
1h MAE 0.03562 0.07151 0.07213  0.08280  0.08119  0.08012
MAPE | 0.18110 0.37894 0.39840  0.47291  0.39100  0.38680
MSE 0.00495 0.00544 0.00579  0.00575  0.01039  0.00890
10s MAE 0.04061 0.04417 0.04602  0.04691  0.06945  0.06505
MAPE | 0.11677 0.12940 0.13510  0.14088  0.20443  0.20372
MSE 0.00445 0.00532 0.00565  0.00689  0.01364  0.00921
30s MAE 0.04575 0.05011 0.05192  0.05914  0.08394  0.06989
MAPE | 0.13531 0.15108 0.15826  0.18244  0.23679  0.22376
MSE 0.00540 0.00812 0.00921  0.01033  0.01784  0.01185
Alibaba 1 min MAE 0.05135 0.06395 0.06849  0.07313  0.09538  0.07799
MAPE | 0.15068 0.19822 021284  0.23045  0.26540  0.24572
MSE 0.00703 0.01603 0.01786  0.01740  0.02237  0.01813
5 min MAE 0.06145 0.09045 0.09363  0.09237  0.10367  0.09384
MAPE | 0.18861 0.30489 0.32532  0.31448 0.31978  0.32312
MSE 0.00749 0.01868 0.02151  0.02082  0.02668  0.02092
10 min MAE 0.06408 0.09533 0.10133  0.09908  0.11487  0.10010
MAPE | 0.21823 0.36672 0.37756  0.37604  0.36760  0.38332

The reported results are averaged over 5 runs. The best results are highlighted in bold, and the second best is underlined.
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Fig. 8.  Prediction performance of different methods with the Alibaba dataset.

e TFEGRU-ATC: Time-Frequency Enhanced Block, multi-
head attention mechanism, channel independent strategy,
and channel embedding are excluded from TFEGRU.

From Table II, we can observe that TFEGRU exhibits supe-

rior performance across most prediction granularities on both
datasets. The various TFEGRU variants show a decrease in
performance after removing their respective modules, empha-
sizing the significance of the key modules. TFEGRU-T expe-
riences a more substantial performance drop on the Google
dataset, while TFEGRU-A exhibits a larger performance de-
crease on the Alibaba dataset. Notably, TFEGRU-C demon-
strates the most significant performance decline among all
variants, consistently yielding the lowest performance at almost
each prediction granularity. This further underscores the impact

of the channel independent strategy and channel embedding
on the high-dimensional cloud workload prediction. Addition-
ally, TFEGRU-AT and TFEGRU-ATC show larger performance
declines compared to removing individual modules, indicating
that the combination of modules within the model effectively
enhances cloud workload prediction performance.

D. Model Analysis

Impact of the look-back window and horizon window: In
workload prediction, the look-back window size determines the
historical information the model can use. A model with a strong
ability to capture long-term temporal dependencies generally
performs better as the look-back window increases. Similarly,
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TABLE II
ABLATION STUDY OF TFEGRU’S DIFFERENT MODULES ON THE GOOGLE AND ALIBABA DATASETS

Dataset | Prediction granularity | Metric | TFEGRU TFEGRU-T TFEGRU-A TFEGRU-C TFEGRU-AT TFEGRU-ATC
MSE 0.002260 0.002265 0.002266 0.002559 0.002566 0.002474
5 min MAE 0.032348 0.032376 0.032406 0.033130 0.033183 0.033533
MAPE | 0.252327 0.252144 0.251971 0.241629 0.242511 0.249408
MSE 0.002263 0.002275 0.002261 0.002401 0.002434 0.002363
10 min MAE 0.033097 0.033183 0.033064 0.033864 0.033832 0.033958
MAPE | 0.188261 0.188745 0.186158 0.189202 0.188492 0.190166
MSE 0.002434 0.002444 0.002434 0.002657 0.002658 0.002507
Google 15 min MAE 0.033985 0.033964 0.033976 0.035146 0.035144 0.034685
MAPE | 0.182121 0.182457 0.180029 0.183979 0.183033 0.182151
MSE 0.002565 0.002581 0.002559 0.002788 0.002791 0.002719
30 min MAE 0.035022 0.035049 0.034990 0.036179 0.036224 0.036030
MAPE | 0.183464 0.184530 0.182616 0.185988 0.185548 0.184915
MSE 0.002732 0.002773 0.002741 0.002891 0.002896 0.002893
l1h MAE 0.035621 0.035886 0.035745 0.036421 0.036520 0.036591
MAPE | 0.181100 0.181590 0.181814 0.182847 0.183333 0.183965
MSE 0.004953 0.004987 0.005129 0.006717 0.006752 0.005372
10's MAE 0.040607 0.040819 0.041272 0.042671 0.042836 0.041825
MAPE | 0.116774 0.117095 0.117639 0.119077 0.119888 0.120272
MSE 0.004445 0.004439 0.004504 0.005283 0.005300 0.004838
30s MAE 0.045750 0.045776 0.045940 0.047256 0.047379 0.046860
MAPE | 0.135309 0.135395 0.136102 0.139785 0.140192 0.138921
MSE 0.005405 0.005381 0.005500 0.006362 0.006377 0.005905
Alibaba 1 min MAE 0.051349 0.051354 0.051542 0.053369 0.053422 0.053377
MAPE | 0.150678 0.150531 0.151106 0.155565 0.155812 0.157014
MSE 0.007030 0.007049 0.007039 0.008064 0.008074 0.007671
5 min MAE 0.061451 0.061659 0.061414 0.064786 0.064843 0.064424
MAPE | 0.188613 0.189082 0.187750 0.190132 0.190202 0.195179
MSE 0.007489 0.007515 0.007524 0.008379 0.008383 0.007699
10 min MAE 0.064079 0.064123 0.064307 0.067177 0.067227 0.064881
MAPE | 0.218228 0.217528 0.219031 0.215642 0.216075 0.214350

The reported results are averaged over 5 runs. The best results are highlighted in bold, and the second best are underlined.
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Fig. 9. The prediction error of TFEGRU with different look-back windows  Fig. 10. Comparison of MSE across various workload data dimensions on

and horizon windows on the Google and Alibaba datasets. H represents the
horizon window size.

Google and Alibaba datasets.

window size increases. This observation indicates that TFEGRU

the horizon window size is crucial, as a longer horizon implies
forecasting further into the future, demanding the model to
generalize and maintain accuracy over an extended time span.
Therefore, we conduct experiments with different look-back
windows and horizon windows to validate our model.

As shown in Fig. 9, as the look-back window size increases,
the performance of the model improves across all look-back
window configurations. Simultaneously, it is notable that, for a
given look-back window size, the model’s prediction accuracy
decreases with an increase in the horizon window size. However,
this decreasing trend gradually diminishes as the look-back

can effectively capture long-term temporal dependencies and
extract valuable information deeply.

Impact of workload dimension: To investigate the impact
of workload dimensions on model performance, we conduct
experiments across ten different workload dimensions ranging
from 100 to 1000 on both the Google and Alibaba datasets. As
depicted in Fig. 10, each curve represents the Ratio of MSE
for different methods across various workload dimensions, with
the values at dimension 100 used as the baseline. It is evident
that, with an increase in workload dimensions, the Ratio of
MSE escalates rapidly for most methods, while our approach
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TABLE III
NUMBER OF TRAINABLE PARAMETERS, MACS, TRAINING TIME, AND
PREDICTION TIME OF DIFFERENT MODELS ON THE GOOGLE DATASET

results demonstrate that our proposed method outperforms state-
of-the-art approaches in terms of accuracy and adaptability.
Based on the promising results obtained in our current work,

Model MACs  Parameters Training Time  Prediction Time our future efforts will focus on exploring longer-term workload
TFEGRU 5.04G 189.48K 689.00ms 73.00ms prediction. This aims to provide an improved lead time for cloud
TFEGRU-T | 2.93G 123.01K 595.05ms 59.34ms computing resource allocation and offer valuable insights for
TFEGRU-A | 3.75G 123.43K 668.42ms 66.62ms proactive decision-making.
TFEGRU-C | 85.67TM 201.94K 360.78ms 35.34ms
esDNN 87.69M 151.47K 170.00ms 23.00ms
L-PAW 219.46M 1.28M 187.00ms 25.00ms REFERENCES
SG-CBA 177.53M  283.60K 207.45ms 24.92ms
GRU 54.60M 75.57K 131.30ms 19.20ms [1] F.Xu,F. Liu, H.Jin, and A. V. Vasilakos, “Managing performance overhead
EvoGWP 63.99M 244.65K 184.43ms 33.44ms of virtual machines in cloud computing: A survey, state of the art, and future

maintains stability and even exhibits a slight decrease on the
Alibaba dataset.

This observation underscores the effectiveness of our model’s
channel independent strategy and channel embedding. By in-
dividually processing each channel of workload and employ-
ing a unified model for learning, our approach demonstrates
enhanced robustness and capacity to extract information from
high-dimensional workloads.

Efficiency analysis: To compare the complexity of differ-
ent methods, we compare the number of trainable parameters,
MAGCs,? training time, and prediction time, as shown in Table III.
Compared to other methods, TFEGRU exhibits higher complex-
ity. This is because TFEGRU incorporates modules such as the
Time-Frequency Enhanced Block, multi-head attention, channel
independent strategy, and channel embedding, which inevitably
increase the complexity while improving model performance.
Therefore, to better evaluate the efficiency of our method, we
also compare several variants of the model. It can be seen
that TFEGRU-T and TFEGRU-A have fewer trainable param-
eters compared to other methods, while TFEGRU-C shows a
significant reduction in MACs, training time, and prediction
time. Additionally, the variants of TFEGRU outperform other
methods in terms of performance. Considering the performance
improvement in prediction accuracy, this is an acceptable cost.

V. CONCLUSION

Accurate and adaptive workload prediction is crucial for ef-
ficient resource allocation in cloud computing. However, work-
load prediction faces challenges arising from the workload’s
complex patterns and high-dimensional characteristics. In this
paper, we propose an accurate and adaptive cloud workload
prediction approach TFEGRU. We initially design TFEB to
extract complex workload patterns deeply from both the fre-
quency and temporal domains. Subsequently, we explore and
integrate channel independent strategy and channel embedding
into TFEGRU to enhance the model’s robustness and prediction
accuracy. Finally, we employ GRU in conjunction with a multi-
head self-attention mechanism to achieve adaptive and accurate
prediction of highly complex workloads. Extensive experiments
using real workload datasets are conducted. The experimental

3MACs (Multiply-Accumulate Operations) refers to the number of multiply
and accumulate operations in a neural network model.
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