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Abstract—This paper investigates the implementation of Fed-
erated Learning (FL) in an over-the-air computation system with
volatile clients, where each client operates under a limited energy
budget and may unexpectedly drop out during local training ses-
sions. The dropout of clients not only wastes energy but also di-
minishes their participation frequency, necessitating careful client
selection by the server in each communication round. However,
the diversity of training tasks and the random nature of client
dropout present challenges such as the absence of an explicit objec-
tive function and the unavailability of client performance metrics.
To address these challenges, we first analyze the convergence of
the over-the-air federated learning system with volatile clients to
identify the key factor influencing the model’s convergence speed.
Building upon this analysis, we propose an approximation of the
objective function as the optimization goal for client selection. To
mitigate energy waste, we introduce a dynamic client selection
strategy termed DCSE, based on Exp3 with multiple plays and
energy constraints, aiming to reconcile the dilemma of unknown
local training states and limited resource constraints. Theoretical
analysis demonstrates that our proposed solution maintains a con-
stant bound on the difference from the optimal solution, affirming
its theoretical feasibility. Furthermore, experimental results val-
idate the effectiveness of the proposed strategy in enhancing FL
by accelerating convergence speed, improving test accuracy, and
reducing wasted energy.

Index Terms—Client selection, energy constraint, federated
learning, over-the-air computation, volatile client.
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I. INTRODUCTION

A. Background

A S THE number of intelligent devices equipped with ad-
vanced sensors, computing, and communication capa-

bilities continues to rise, the data they collect (e.g., photos,
videos, and locations) offers endless possibilities for intelligent
applications powered by Machine Learning (ML) [1]. However,
traditional centralized ML is inadequate as these data-driven
technologies require massive amounts of data to function ef-
fectively. To address this challenge, emerging edge learning
technologies within B5G Networks leverage distributed signal
processing [2], encompassing advancements like edge com-
puting [3], semantic communication [4], and wireless sensing
network [5]. In response to the imperative need for heightened
privacy and empowered by these technologies, Federated Learn-
ing (FL) [6] has emerged as a timely solution. As a privacy-
preserving solution, it allows training to be performed locally.
Its main idea is that multiple clients/devices train a shared
model collaboratively by conducting model training locally and
retaining their data without transmitting it. The clients only
need to upload their model updates to the central server for
collaboration.

Although FL reduces the transmission load by replacing
transmission data with transmission model updates, the network
congestion still exists if too many clients participate in the
collaborative training as the limited bandwidth. To solve this bot-
tleneck and improve the communication efficiency, some works
propose model compression [7], [8], multiple local iterations [9],
[10], and client selection [11], [12], [13], [14]. While previous
studies have focused on implementing FL based on a separated
communication-and-computation principle encounter difficulty
in accommodating the massive access under the limited radio re-
source and stringent latency constraints imposed by emergence
applications, such as auto-driving and instant messaging [15].
To tackle this challenge, some studies propose a low-latency
multi-access scheme known as over-the-air computation (Air-
Comp) [16], [17]. AirComp leverages the characteristic of the
wireless medium where multiple signals can be superimposed
simultaneously in an analog manner to enable concurrent trans-
mission. In other words, it integrates model transmission and
aggregation into a single step by using the signal superposi-
tion characteristics of multiple access channels. The illustration
“transmit-then-compute” versus Over-the-air computation FL is
shown in Fig. 1.
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Fig. 1. Traditional “transmit-then-compute” versus Over-the-air computation.

B. Motivation

Undoubtedly, some scaling approaches can allow more clients
in model training and make AirComp FL perform well in the
ideal learning environment, such as power scaling [18]. More-
over, Yang et al. [19] used experiments to prove that selecting
more clients participating in the model training can make a better
training performance. And combined with beamforming design,
they designed a client selection method to allow more clients to
participate in model training. In [20], Guo et al. proposed a
joint scheme that combines client selection and power control
strategy to reduce the performance gap with the ideal FedAvg
scheme. These works share a similar observation that covering
more clients indeed benefits the overall training performance.

However, since most of the clients participating in model
training are terminal devices connected by wireless networks,
they exhibit significant dynamics. This is particularly pro-
nounced in wireless sensing networks [21], where sensors and
users may be mobile, leading to environmental changes. Fur-
thermore, sensor failure or malfunction can occur due to envi-
ronmental factors or depletion of electrical energy [22], [23].
Thus, some limited and unstable factors in the real learning
environment need to be included in consideration. The first
and important one is the limited energy on the client. In the
training process, energy is a key metric for judging whether
a client can join FL training, and it limits the times of client
participating. Especially in the energy-limited learning scenario,
it is impossible that the client can participate in model training
for an unlimited times [24], [25], [26]. Thus, how to use the
limited energy to carry out model training is a practical problem.
The second and more practical is the client dropout, which mSay
occur during the local training process due to various unexpected
and unstable reasons (e.g., poor connection, limited resource,
and user abort (need to make phone)). For these clients that may
dropout training unexpectedly, existing works in traditional FL
framworks refer them to volatile clients [27], [28], [29].

Although existing works in the traditional FL framework
have made some contributions to this concern, there is still a
lack of consideration in AirComp FL. It is well known that
clients need to perform amplitude alignment before transmitting
information. In cases where all clients can successfully complete
local training, adjusting the transmit power based on initial

information provided by clients and selecting clients that satisfy
constraints would be a good strategy. However, if some clients
experience interruptions during local training due to unexpected
factors, the feasibility of adjusting transmit power before clients
complete local training needs to be further analyzed, as it may
result in aggregation errors. Additionally, if the server consis-
tently selects clients with a high dropout probability, the energy
on the client side will be wasted, reducing the client’s remaining
energy and participation times, thereby further slowing down
model convergence. Considering these concerns, we believe it
is important to discuss the analysis and optimization problem
of volatile clients with limited energy in over-the-air federated
learning.

Based on these analyze, this paper will focus on investigating
the selection problem of volatile clients with limited energy
in over-the-air federated learning. Specifically, we tackle the
aforementioned concerns by analyzing the impact of the volatile
clients on workflow, energy consumption, and convergence per-
formance. Based on these results, we propose a dynamic client
selection scheme for optimizing model training. Specifically,
this paper’s contributions can be listed as follows.
� We investigate an over-the-air federated learning system

with volatile clients, where each client possesses a limited
energy budget and may unexpectedly drop out during local
training. The system confronts challenges stemming from
the lack of an explicit objective function, the unavailability
of local training state information, and energy limitations
due to the diverse nature of training tasks and the stochastic
dropout of clients.

� We investigate the influence of the selected client set and
channel noise on FL training performance, establishing a
stringent upper bound on convergence speed. Our analysis
reveals that convergence speed is primarily dictated by the
total aggregation number and the power scaling factor.

� We propose DCSE, a dynamic client selection method
based on Exp3 with multiple plays and energy constraints.
We incorporate a penalty term to address the impact of
energy consumption and provide theoretical validation,
demonstrating that the upper bound of regret remains
below a finite constant, thereby establishing the theoretical
viability of our solution.
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� We assess the efficacy of our approach through
comprehensive experiments conducted on two machine
learning tasks employing various client selection schemes.
Our experimental findings demonstrate that our strategy
significantly enhances FL performance in terms of conver-
gence speed, test accuracy, and energy consumption.

II. RELATED WORKS

Diverging from conventional distributed learning and eadge
computing, the distinctive features of FL lie in constrained
transmission resources and an inherently fluctuating learning
process. Addressing the transmission bandwidth bottleneck, cer-
tain initiatives have integrated over-the-air computation with FL,
termed AirComp FL, aiming to enhance transmission efficiency.
Additionally, in response to the challenge of sluggish conver-
gence arising from an unstable learning process, other endeavors
have introduced client selection mechanisms to mitigate the
influence of volatile contributors. Consequently, the subsequent
sections will delve into relevant research endeavors focusing on
these dual aspects.

A. AirComp FL

As shown in Fig. 1(a), AirComp leverages the characteristic
of wireless medium where multiple signals can be superimposed
simultaneously in an analog manner to enable concurrent trans-
mission and solve the bottleneck of bandwidth. In related works
on AirComp FL, Yang et al. [19] earlier proposed combining
AirComp and FL to improve the transmission effectiveness of
FL. In follow-up works, some researchers proposed the joint
optimization strategy of transmit power and model training [30],
[31]. To further improve the training performance, some works
disscussed the optimization problem with IRS-assisted Air-
Comp FL [32], [33]. In addition, some works took resource con-
sumption into consideration and analyzed the impact of resource
consumption on model training. For example, Yang et al. [34]
disscussed an optimization problem of minimizing the total con-
sumption under a latency constraint, and proposed an iterative
algorithm with low complexity. In [35], Hu et al. discussed
the energy minimization problem in IRS and AirComp assisted
network and proposed a novel FL model. To minimize energy
consumption, Zeng et al. proposed energy-efficient strategies
for bandwidth allocation and scheduling. These strategy adapt
to clients’ channel states and computation capacities, aiming to
reduce their total energy consumption while ensuring learning
performance [36].

The aforementioned works share the same assumption: they
assume that all participating clients are situated in a stable envi-
ronment, where each client can successfully complete the local
training. However, many participating clients are edge devices
characterized by greater instability, there is a risk of unexpected
termination. Especially in the process of local training, prior
studies have made notable contributions to this concern in tradi-
tional FL framework [27], [28], [29]. Clearly, such unexpected
terminations also impact the training performance of AirComp
FL, and perhaps even more so. This is because AirComp FL
involves an additional step in amplitude alignment compared

to traditional FL, requiring the adjustment of the power trans-
mission factor based on all transmitted clients’ information.
Obviously, if all clients can successfully complete local train-
ing, adjusting the transmit power based on initial information
provided by clients and selecting clients that satisfy constraints
would be a good strategy. However, if some clients experience
interruptions during local training due to unexpected factors, the
feasibility of adjusting transmit power before clients complete
local training needs to be further analyzed, as it may result
in aggregation errors. Moreover, such unexpected terminations
will inevitably impact the training performance of the model
and result in wasted energy consumption on the client side.
Especially in energy-limited networks, the unknown training
state and energy consumption of clients significantly increase the
challenge of client selection. Accordingly, for the energy-limited
network, it is imperative to examine the impact of volatile clients
on AirComp FL.

B. Client Selection

Since the bandwidth limits the number of participants, client
selection as a common method has been used in traditional FL
framwork for improving training performance. The earliest doc-
umented instance of client selection dates back to [11], Nishio et
al. proposed FedCS that prioritizes faster clients for participation
in training, effectively reducing the overall training time for the
global model. In the following works, some researcher proposed
different selection strategies tailored to different application
scenarios. For example, in [27], Wang et al. casted FL with
client dropout as a special case of a larger class of FL problems.
Meanwhile, they selected local updates from clients with similar
data distributions as substitutes for dropout clients, aiming to
minimize substitution errors and enhance convergence perfor-
mance. In [37], a latency-based client scheduling scheme is
proposed to shorten the time interval for each round. In [29],
Huang et al. addressed the stochastic client selection problem in
the presence of volatile clients, and proposed a client selection
method based on Exp3 without resource constraint. Notably,
in our previous works [38], [39], we conducted an analysis on
how different factors of volatile clients affecting model training.
based on this analysis, we then proposed diverse client selection
strategies tailored to various scenarios.

In AirComp FL, although not constrained by bandwidth,
existing research has demonstrated that both the quality and
quantity of participating clients significantly influence model
training outcomes [18], [19], [20]. For instance, Yang et al.
in [19] conducted experiments highlighting that involving more
clients in model training improves overall performance. Simi-
larly, Guo et al. proposed a joint scheme in [20], combining client
selection and power control strategies to narrow the performance
gap. In [40], An et al. proposed a joint power control and data
size selection approach for AirComp FL to enhance training
performance. In [41], Sun et al. introduced an online energy-
aware dynamic client scheduling policy to maximize the average
aggregation numbers. Meanwhile, in their subsequent work [24],
they further analyzed the client’s queuing theory problem within
the energy constraint and designed an energy-aware dynamic
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TABLE I
LIST OF SYMBOLS

client selection strategy to boost FL performance. However,
these studies did not account for the impact of client dropout.
As discussed in the introduction, client dropout affects not only
transmit power adjustments but also the quality of aggregation.
Hence, we believe that analyzing the impact of client dropout
on client selection and aggregation in AirComp FL is crucial.

III. SYSTEM MODEL

A. System Overview

In this paper, we investigate an over-the-air federated learning
system with volatile clients. The FL system comprises a set of
clients K = {1, 2, . . . ,K}, each with a local dataset Dk, and
connected to the server via a wireless network. The primary aim
of federated learning is to train a global modelw that minimizes
the global loss function, which can be expressed as a specific
mathematical formula

min
w∈Rd

F (w) =
1

K

K∑
k=1

Fk(w), (1)

where the dimension of w is d, F (·) and Fk(·) represent the
global and local loss functions, respectively. The local loss of
client k at round t is typically expressed as the sum of empirical
risks over all training data, i.e.,

Fk(w) =
1

|Dk|

|Dk |∑
i=1

li(w), (2)

where |Dk| is the cardinality of Dk, the function li(·) is used to
denote the training loss of the i-th data sample, which depends
on the specific training task. For instance, in the case of linear re-
gression, li(w) for an input-output pair (xi, yi) can be expressed
as 1

2 (x
�
i w − yi)

2. Similarly, in logistic regression, li(w) can be
expressed as − log(1 + exp(−yix

�
i w)), and in support vector

machines, li(w) can be expressed as max{0, 1− x�
i w} [42]. In

more complex non-convex problems, such as neural networks,
it can be expressed as mean square and cross-entropy errors.

AirComp is a novel communication scheme that differs from
traditional orthogonal multiple access methods in that it allows
for simultaneous transmission and computation over the air,
and enables multiple transmissions via the same channel to
improve communication efficiency. Fig. 1(b) provides a detailed
illustration of this principle. In a scenario where all clients
successfully complete their local training, the server only needs
to consider the initial information provided by the clients to
adjust the transmit power and select clients that meet the energy

constraint to participate in the training. However, in case of
unexpected interruptions during local training of some clients,
the server can only adjust the transmit power when the clients
return to the trained model and trained state. Consequently, the
workflow with dropout clients differs from that of a normal
learning network. In each round, the workflow involves several
sequential steps:
� Client selection and model distribution: The server selects

a subset of clients At that meet the energy constraint, and
then disseminates the latest global model to the chosen
clients.

� Local training: Each selected client k ∈ At trains their
local models on their respective datasets Dk. However,
due to unforeseeable circumstances, some clients may
experience local training failures and drop out. Only the
clients completing the local training will update their local
models using stochastic gradient descent (SGD), denoted
by wk,t+1 = wk,t − ηtg(wk,t, ξk,t). In this equation, ηt
represents the learning rate at round t, and g(wk,t, ξk,t) =
1
b

∑
i∈ξk,t

∇li(wk,t) represents the stochastic gradient
computed on a randomly sampled mini-batch ξk,t of size
b from Dk.

� Model transmission and model aggregation: Once the
selected clients finish their local training, the server im-
mediately adjusts the transmit power according to the
returned training state and transmission information. The
simultaneous time-synchronized signals are transmitted
by the clients successfully finishing the local training.
The weighted sum received by the server is represented
by wt =

1∑
k∈At

xk,t

∑
k∈At

xk,twk,t. Here, xk,t ∈ {0, 1}
represents the completion state of local training on client k
at communication round t. If xk,t = 1, it indicates that the
local training at client k has been successfully completed,
otherwise, xk,t = 0.

B. Over-the-Air Computation for Aggregation

We make the assumption that all clients communicate their
updates over a wireless fading multiple access channel in an
analog manner for the purpose of model aggregation. To allow
for the aggregation of local updates over-the-air, the server
synchronizes the transmissions of all clients completing the local
training, and the transmit power of each client is adjusted to
match that of others. In each round t, the target function at the
server side can be formulated as:

wt =
1∑

k∈At
xk,t

∑
k∈At

xk,twk,t. (3)

To better analyze, we define A′
t to represent the set of clients

completing the local training, i.e., A′
t = {k ∈ At : xk,t = 1}.

Thus, the target function is equivalent to

wt =
1

|A′
t|

∑
k∈A′

t

wk,t. (4)

Authorized licensed use limited to: SOUTH CHINA UNIVERSITY OF TECHNOLOGY. Downloaded on February 20,2025 at 11:40:59 UTC from IEEE Xplore.  Restrictions apply. 



13148 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 23, NO. 12, DECEMBER 2024

During the transmission process, since the existence of chan-
nel noise, the server-side signal yt is [24]

yt =
∑
k∈At

Pk,thk,twk,t + nt, (5)

where hk,t represents the wireless channel gain between client
k and the server at round t, nt ∼ CN(0, σ2

0I) represents the
additive white Gaussian noise vector, Pk,t represents the trans-
mit power of client k, and it is assumed to be aligned with the
transmit power of other selected clients. Specifically,

Pk,t =

√
σt

hk,t
, (6)

where σt is the power scaling factor. Upon receiving yt, the
model received by the server side can be represented as

w̄t =
1√
σt

yt =
1√
σt

∑
k∈A′

t

hk,tPk,twk,t +
nt√
σt

. (7)

According to (4) and (6), the aggregated model can be obtained
as

w̄t =
1

|A′
t|

∑
k∈A′

t

wk,t +
nt

|A′
t|
√
σt

. (8)

From the above equation, it is evident that the quality of the
aggregation model is primarily influenced by the aggregation
number, power scaling factor, and noise. Clearly, if we set the
controllable parameter σt based solely on the clients’ initial
information, it is likely to be greater than the actual required
value, leading to an increase in the aggregation error. Therefore,
setting the value of σt appropriately is crucial.

IV. PERFORMANCE ANALYSIS AND PROBLEM FORMULATION

A. Energy Consumption

We consider an energy-limited wireless scenario where all
clients have limited energy and need it to carry out model
training. Since the energy is mainly consumed during the local
training and model transmission processes, we focus on analyz-
ing the energy consumed in computation and communication
phases.

Correspondingly, in each communication round, the energy
consumption of client k in computation phase is determined
by several factors, such as the training power P cmp

k,t , the CPU
frequency fk,t, and the time of local training τ cmp

k,t . If we use
Ecmp

k,t to represent the energy consumption of local training, its
mathematical relationship can be expressed as

Ecmp
k,t = P cmp

k,t f3
k,tτ

cmp
k,t , (9)

where τ cmp
k,t represents the time of local training, and its expres-

sion can be formulated as

τ cmp
k,t =

|Dk| ·M
fk,t

bk,t, (10)

where M = NLE ∗BPS ∗ CPB represents the size of train-
ing model, bk,t ∈ [0, 1] represents the progress bar of local
training completion on client k at round t. Factors such as low

battery and instability can cause the progress bar to be less than
one.

Once the local training is complete (bk,t = 1), the client trans-
mits the updated model to the server, and the local updates from
multiple clients are aggregated over the air. Inspired by [24], we
defineEcom

k,t to represent the energy consumed by client k during
the communication phase at round t, and its specific expression
is

Ecom
k,t = ||Pk,twk,t||2 τ comt =

dσt

Bh2
k,t

||wk,t||2 . (11)

Here, we express the transmission time as the duration re-
quired from sending the first data to sending the last data, i.e.,
τ comt = d

B , where d and B respectively represent the data size
and the bandwidth. Similarly, we define Esuc

k,t to represent the
total energy consumed by client k during the local training phase
and communication phase. For the case bk,t = 1, its formulation
can be expressed as

Esuc
k,t = Ecmp

k,t + Ecom
k,t

= P cmp
k,t f2

k,t|Dk| ·M +
dσt

Bh2
k,t

||wk,t||2 . (12)

For the case bk,t < 1, since it fails to provide updates to
the server, wasting the client’s energy, we consider this is an
ineffective participation. Further, we represent the wasted energy
on client as

Ewat
k,t = bk,tP

cmp
k,t f2

k |Dk| ·M. (13)

It is worth noting that conventional over-the-air federated
learning lacks a parameter reflecting the progress of local train-
ing, denoted as bk,t. This omission arises because it does not
account for the phenomenon of client dropout. Therefore, in this
work, we introduce bk,t to illustrate the effect of various training
cases on energy consumption. For convenience, the commonly
used symbols in this paper have been summarized in Table 1.

B. Problem Formulation

Given the initial global model vector w0 and the communi-
cation round set T = {0, . . . , T − 1}, our task is to minimize
the expected global loss after T communication rounds, denoted
as E[F (wT )], subject to an energy constraint by optimizing the
client selection set At and power scaling factor σt. The expected
global loss is calculated by taking into account the randomness of
data sampling for local stochastic gradient descent and channel
noise. In summary, we seek to solve the following optimization
problem:

P1: min
{At,σt}t∈T

E [F (wT )] (14)

s.t.
T−1∑
t=0

Ak,t

(
xk,tE

suc
k,t + (1− xk,t)E

wat
k,t

)
≤ Ek, ∀k, t

(14a)

Ak,t ∈ {0, 1}, ∀k, t (14b)

where the first constraint (14a) sets an energy limit Ek > 0 on
each client, which indicates that the total energy consumed by
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each client during the local training phase and communication
phase at any round t should be less than the remaining energy.
The second constraint (14b) restricts the range of optimization
variables.

Observing the optimization problem P1, we can find that
solving it has the following dilemmas:
� Inexplicit form of the objective function: Based on (1) and

(2), it is evident that the global loss function is explicitly
defined based on the training task, which makes it challeng-
ing to derive a closed-form expression for E[F (wT )]. A
feasible solution is to find an approximation of the objective
function and transform it into a problem that can be solved.

� Unavailability of local training state: If the server always
selects all clients satisfying the energy constraint, it will
lead to a waste of energy for the clients that failed in
the local training, and further reduce their opportunities to
participate in future rounds. On the contrary, if the server
just selects the clients that can successfully finish the local
training, the energy utilization rate of the client will be
maximized. However, the main challenge is that the local
training state xk,t can only be determined once the local
training is completed, and the server cannot know this value
beforehand. Therefore, a client selection strategy needs to
be designed to minimize the wasted energy under the case
that the local training state is unknown.

� Limitation and unavailability of energy: Referring to (11),
we understand that the communication energy is primarily
influenced by the computation result to be transmitted, i.e.,
the l2-norm of the local model. Nevertheless, as this value
can only be obtained after completing the local training,
we cannot know the communication energy in advance.
Recall the AirComp workflow that the client selection must
be determined before local training due to the energy con-
straint, it makes the client selection a challenging problem
to tackle.

V. CONVERGENCE ANALYSIS AND PROBLEM

TRANSFORMATION

A. Convergence Analysis

To facilitate convergence analysis, we introduce a virtual
sequence denoted as w̄, which is updated at the server after
each communication round. The detailed update is carried out
using the following rule:

w̄t+1 = w̄t − ηt (ḡt − n̄t) , (15)

where ḡt � 1
|A′

t|
∑

k∈A′
t
g(wk,t, ξk,t) is the average gradient

of clients that successfully finished local training, and n̄t �
nt

ηt
√
σt|A′

t|
is the noise received at the server. To facilitate a more

thorough analysis, we define w∗ to represent the vector that
minimizes F (w), with F (w∗) denoting the minimum value of
F (w). In addition, we make the following assumptions for the
model’s convergence analysis:

Assumption 1: The local loss function for any client k is
L-smooth, i.e., for all v and v0, Fk(v) ≤ Fk(v0) + 〈∇Fk(v0),

v − v0〉+ L
2 ||v − v0||2 and 1

L ||∇Fk(v)−∇Fk(v0)||2 ≤
〈∇Fk(v)−∇Fk(v0),v − v0〉.

Assumption 2: The local loss function for any client k is
μ-strongly convex, i.e., for all v and v0, Fk(v) ≥ Fk(v0) +
〈∇Fk(v0),v − v0〉+ μ

2 ||v − v0||2.
Assumption 3: The stochastic gradient for the mini-batch ξk,t

randomly sampled from Dk, is assumed to be unbiased, i.e.,
E[g(wk,t, ξk,t)] = ∇Fk(wk,t).

Assumption 4: The expected norm of the stochastic gradient
is bounded uniformly, i.e., E[||g(wk,t, ξk,t)||2] ≤ G2.

Building on the aforementioned assumptions, we proceed to
investigate the impact of local training at the clients on the
convergence performance. The related results are summarized in
the following theorem, which provides the convergence result.

Theorem 1: Under Assumption 1 to 4, given the set of selected
clientsAt, t ∈ T , we can bound the error incurred afterT rounds
of over-the-air federated learning with volatile clients as follows:

E [F (w̄T )− F (w∗)] ≤ 4η30 G
2 L2∑

t∈T |A′
t|
+

â∑
t∈T |A′

t|2
+ C (16)

where the learning rate satisfies ηt = η0(1− t2

tT+1 ), η0 is the ini-
tial learning rate at t = 0, â = max{at}t∈T , at = (σ2

0dηtL
2 +

σ2
0 d
2ηt

+
σ2
0dL
2 )/σt, and C = F (w̄0)− F (w∗) + 1

2Lη
2
0 G

2 T .
Proof: Complete proof is presented in the supplement

file. �

B. Problem Transformation

It’s evident that P1 falls under the category of combined non-
linear programming problems. Consequently, directly solving
P1 presents challenges. Fortunately, prior research indicates that
the convergence speed of federated learning via over-the-air
computing remains relatively insensitive to the power scaling
factor σt as long as the signal-to-noise ratio at the receiving end
exceeds a certain threshold [24], [43]. Based on this, we set σt

as a hyperparameter and express it as:

σt =
γ0σ

2
0 d

mink∈A′
t
||wk,t||2

, (17)

where || · || represents the l2-norm of vector, and γ0 represents
the received SNR threshold.

However, as previously discussed, solving problem P1 is
also challenging due to the implicit nature of the objective
function E[F (wT )]. To make the problem tractable, a feasible
method is finding an approximation of the objective function.
And fortunately, Theorem 1 presents a strict upper bound of
the convergence speed and shows the convergence speed is
mainly determined by the total aggregation number

∑
k∈T |A′

t|.
Consequently, by leveraging the convergence analysis, we can
replace the objective function with its convergence bound, and
by eliminating the fixed terms, P1 can be reformulated as fol-
lows:

P2: max
{At}t∈T

∑
t∈T

∑
k∈K

Ak,txk,t (18)

s.t. constraints (14a) and (14b). (19)
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In the classical over-the-air FL framework, at each commu-
nication round, all clients satisfying constraints are selected
into At to maximize the total aggregation number. However,
in the energy-limited network, selecting all clients satisfying
constraints into At may not be the best choice, especially for the
case that At includes many dropout clients. The reason is that
the dropout clients will waste the energy, reduce the number of
participation, and slow down the convergence speed. Intuitively,
a better choice is to select the clients that can successfully
finish the local training to increase the total aggregation times.
However, it is a thorny problem due to the unavailability of local
training xk,t. Moreover, since xk,t has a lot of uncertainty, we
can not make any statistical assumption on it.

At first glance, it may seem impossible to solve the problem
under this informal setting. However, there exists an adaptive
learning solution called adversarial bandit that can provide a
well-defined theoretical performance bound. In adversarial ban-
dit problems, the clients can be considered as base arms, while
the selected set At is commonly referred to as a super arm, and
the aggregation state xk,t corresponds to the reward of each arm.
The reward in this context can be considered as a value that is
predetermined before selecting, but it remains unknown to the
server until the corresponding client is selected. The goal of
the adversarial bandit problem is to maximize the cumulative
reward, which can be formulated as an optimization problem as
follows,

P3: max
{At}t∈T

E

[
T−1∑
t=0

∑
k∈K

Ak,txk,t

]
(20)

s.t. constraints (14a) and (14b). (21)

To better analyze, we further let E[Ak,t] = pk,t represent the
expected probability of selecting client k at round t. Accord-
ingly, the client selection problem can be further transformed
into the probability assignment problem. Namely, P3 can be
further formulated as

P4: max
{pt}t∈T

T−1∑
t=0

∑
k∈K

pk,txk,t

s.t.
T−1∑
t=0

Ak,t

(
xk,tE

suc
k,t + (1− xk,t)E

wat
k,t

)
≤ Ek, ∀k, t

Ak,t ∈ {0, 1}, ∀k, t
pk,t ∈ [0, 1], ∀k, t (22)

where pt = {pk,t}k∈K. Observing P4, it is clear that the com-
munication energy is still unknown to the server. Thus, it is
necessary to evaluate the client’s energy required for completing
local training and model transmission. In this paper, we simplify
the problem by using the average energy consumption to eval-
uate the energy required by clients for local training and model
transmission. Hence, in the following sections, our focus will be
on assigning probabilities to clients.

VI. SOLUTION AND ALGORITHM

A. Exp3 With Multiple Plays and Energy Constraint

The Exp3 algorithm is a well-known method for solving the
adversarial bandit problem, and it follows a three-step process
in each round. First, it selects an arm k by sampling from the
previously calculated selection weight. Then, it estimates the
reward based on the observed outcome after selection. Lastly,
the estimated reward is utilized to update the selection weight.
The most crucial step in this process is the accurate estimation of
the reward from the observed data. To ensure that each historical
data point accurately reflects the true state of the arm and is
not influenced by stochastic selection, Exp3 uses an unbiased
estimate of the real reward, denoted by x̂k,t, which is expressed
as follows:

x̂k,t =
Ak,t

pk,t
xk,t. (23)

From the above equality, it is easy to see that E[x̂k,t] = xk,t,
which effectively illustrates that x̂k,t is an unbiased estimate of
xk,t. Exp3 utilizes an unbiased estimator to estimate the potential
reward of each arm, and then applies exponential weight to
reflect this estimation. The exponential weight is expressed as:

wk,t+1 = wk,t exp(λ0x̂k,t), (24)

where the selection weightwk,t in the Exp3 algorithm represents
the importance of selecting arm k at round t, and it is computed
based on the previous reward estimates. The parameter λ0 ∈
(0, 1] is a tuning parameter balancing exploration and exploita-
tion. When λ0 is small, the algorithm tends to explore more,
while a larger value of λ0 leads to a more exploitation-oriented
strategy. According to the selection weight, the selection prob-
ability can be updated as

pk,t =
wk,t∑
k∈K wk,t

. (25)

Note that in the canonical Exp3 algorithm, only one arm is
selected in each round, which makes it important to ensure that
the probability distribution of arm selection sums up to 1.

In the canonical Exp3, since it just select an arm in each
round, we need to make some modifications to the canonical
Exp3 algorithm to make it suitable for our context. Thus, for the
weight update, we modify it as,

wk,t+1=

⎧⎪⎨
⎪⎩
wk,t exp

(
λ0mt

|Actr,t| (x̂k,t−ek,t)
)
, k /∈ St ∪Anctr,t

wk,t, k ∈ St and k /∈ Anctr,t

0, k ∈ Anctr,t

(26)

where mt represents the selection number at communication
round t; ek,t = Ek,t − Ek

T servers as a penalty term to rep-
resent the energy consumption, with Ek,t = xk,iE

suc
k,i + (1−

xk,i)E
wat
k,i ; Actr and Anctr respectively represent the set of

clients satisfying and not satisfying the energy constraint; andSt

represents the set of clients whose selection probability exceeds
the pre-defined upper bound during the probability allocation
stage in communication round t.
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Given the selection weight, we modify the probability alloca-
tion into a form that can be applied to multiple plays. Formally,
we denote it as

pk,t =
mtwk,t∑
k∈K wk,t

, (27)

where mt represents the number of selected clients. From the
equations above, it is evident how the client’s training state and
energy exert influence. Specifically, when the local training state
xk,t remains consistently equal to 1, it amplifies the selection
weight, consequently raising the probability of being chosen.
Similarly, a relatively high remaining energy ratio enhances both
the selection weight and probability.

B. Algorithm

To provide a clear presentation for our proposed solution for
client selection in problem P4, we present a detailed solution
in Algorithm 1. For the probability allocation, the detailed
procedures have been presented in Algorithm 2. In Algorithm 2,
it should be noted that the allocated probability pk,t may exceed
1 due to an excessively large exponential weight, resulting in
probability overflow. To address this issue, we use a capping-
based technique, whereby pk,t is capped to min{pk,t, 1} to limit
the selection probability of “overflowed” clients to 1 (line 7-8 in
Algorithm 2). Moreover, for the number of client selection, we
define it as a dynamic value and set it as mt = �|Actr,t| ∗ rs�,
where rs represents the selection ratio. To ensure the quality of
model aggregation, we further set mt = len(Actr,t) when mt is
less than the selection threshold m0.

For the client selection, we apply a stochastic selection
method similar to [44] to select the clients based on the allo-
cated probability. The detailed procedure has been presented in
Algorithm 3. Specifically, we continuously update the clients’
probability based on (28) and select the clients based on this
probability. It is worth noting that although we use (28) to
update the client’s selection probability, its expected probability
remains unchanged. Its proof is as follows,

(pi + α)× β

α+ β
+ (pi − β)× α

α+ β
= pi, (29)

(pj − α)× β

α+ β
+ (pj + β)× α

α+ β
= pj . (30)

Overall, these algorithms and procedures provide a compre-
hensive and effective solution for selecting clients and allocating
probabilities, while also accounting for potential probability
overflow.

C. Theoretical Analysis

To prove the effectiveness of our proposed solution, we
present a theoretical regret guarantee in this subsection. Before
the formal proof, we first introduce the following definition.

Definition 1: Let p∗k,t represent the optimal allocation prob-
ability for client k at communication round t, we define the
approximate expected cumulative reward of the optimal strategy

Algorithm 1: Dynamic Client Selection Based on Exp3
(DCSE).

Input: initialize the global model w0 and the selection
weight wk,0 = 1 for k ∈ K.

Output: the final global model wT .
1: for t = 0, . . . , T − 1 do
2: the server acquires channel gains {hk,t}k∈K and

other information.
3: the server filters clients satisfying energy constraints

into the set Actr,t based on the remained energy of
each client.

4: the server calculates selection probability vector, i.e.,
pt, St =ProbAlloc({wk,t}k∈T , Actr,t, mt).

5: the server selects clients based on the selection
probability vector, i.e., At =CleSec(pt).

6: the selected clients perform local training and return
the training states and transmission information.

7: the server adjusts the transmit power according to
returned information.

8: the clients completing the local training transmit the
updated model, and the server receives and
post-processes the aggregated signal.

9: the server updates the unbiased estimate of the
training state based on (23) and the selection weight
based on (26).

10: end for
11: Return wT .

Algorithm 2: Probability Allocation (ProbAlloc).

Input: the selection weight {wk,t}, the set of clients
satisfying constraints Actr,t and the selection number mt.

Output: the selection probability vector at round pt and
the overflowed set at round St.
1: if mt < m0 then
2: mt = len(Actr,t)
3: end if
4: wt =

∑
k∈K wk,t

5: for k ∈ Actr,t do
6: pk,t =

mtwk,t

wt

7: if pk,t > 1 then
8: pk,t = 1 and St = St ∪ k
9: end if
10: end for
11: Return pt, St.

in T communication rounds as∑
t∈T

∑
k∈K

p∗k,t
|Actr,t|

xk,t. (31)

Definition 2: Given the optimal expected cumulative reward,
the regret of DCSE can be represented as

RT =
∑
t∈T

∑
k∈K

p∗k,t
|Actr,t|

xk,t −
∑
t∈T

∑
k∈K

pk,t
|Actr,t|

xk,t. (32)
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Algorithm 3: Client Selection (CleSec).
Input: the probability vector at round pt.
Output: the select set At.

1: while len({0 < pi < 1}i∈Actr,t
) > 0 do

2: if len({0 < pi < 1}i∈Actr,t
) = 1 then

3: round pi,t to the nearest integer, i.e., if pi,t ≥ 0.5,
we let pi = 1; otherwise, pi = 0.

4: else
5: randomly select two clients i and j, and let

α = min{1− pi, pj} and β = min{pi, 1− pj}.
6: update pi and pj .

(pi, pj) =

{
(pi + α, pj − α) with probability β

α+β ,

(pi − β, pj + β) with probability α
α+β

(28)

7: end if
8: end while
9: At = {i : pi = 1}i∈Actr,t

10: Return At.

TABLE II
EXPERIMENTAL PARAMETERS SETTINGS

Intuitively, the regret measures the deviation of the proposed
algorithm’s performance from the optimal algorithm’s perfor-
mance. Therefore, it provides a useful metric for evaluating the
effectiveness of the algorithm. Based on Definition 1 and Defi-
nition 2, we can present the following theorem that establishes
an upper bound on the regret.

Theorem 2: The regret of DCSE can be bounded as

RT ≤ Kλ0rs
∑
t∈T

1

|Actr,t|
+

lnK

λ0
, (33)

and if the learning rate λ0 =

√
lnK

∑T−1
t=0 |Actr,t|
Krs

, we have

RT ≤
√

K lnKrs∑T−1
t=0 |Actr,t|

. (34)

Proof: The complete proof has been presented in the supple-
ment file. �

Theorem 2 demonstrates that the proposed solution maintains
a constant bound on performance compared to the optimal solu-
tion. It indicates that our algorithm can converge to the optimal
point within T rounds. Particularly, in favorable scenario where
clients consistently meet energy constraints, the regret can be

reduced to Rt ≤
√

lnKrs
T .

Further, upon closer analysis of the time complexity of
proposed algorithm, it is evident that the time complexity of
the proposed algorithms is less than O(KT ). Specifically, in
Algorithm 2, since it requires allocating probabilities for each
client satisfying the energy consumption constraints, it needs to
perform calculations for up to |Actr| ≤ K times. Similarly, in
Algorithm 3, as it performs a maximum of |Actr| updates for
selection, it also requires computations for up to |Actr| ≤ K
times. Therefore, the overall time complexity of the algorithm
does not exceed O(KT ).

VII. EXPERIMENTS

In this section, we verify the performance with two non-
convex models to show that the analytical results and the pro-
posed algorithm can perform well even when some assumptions
(like strong convexity) are violated.

A. Basic Setup

1) Environment and Tasks: We perform experiments in a
typical IoT network setup with K = 100 clients for federated
learning. To evaluate the proposed algorithm’s performance,
we conduct two image classification tasks on two datasets:
EMNIST-Letter [45] and CIFAR-10 [46]. For both training
tasks, their models consist of convolution layers, max-pooling
layers, fully connected layers, and a softmax output layer.
Specifically, for the EMNIST-Letter task, the sizes of different
layers are 2 * 5×5, 2×2, 2 (respectively 1280 and 256 units),
1 in sequence, resulting in a total of 339898 parameters. For the
CIFAR-10 task, the sizes of different layers are 2 * 5×5, 3×3, 2
(respectively 384 and 192 units), 1 in sequence, resulting in a to-
tal of 576778 parameters. For the learning rate at different com-
munication rounds, we set it as ηt = η0 ∗ (1− t/(T + 1/t)).

2) Simulation of Volatile Client:
� Client set: We consider there are 100 clients participating

in the training throughout the entire training process, and
the maximum energy of each client is randomly set within
the range of Elow and Eupp.

� Client data: To generate non-independent and identically
distributed data, we adopt the same approach as in [39],
where the data distribution on each client follows a Dirich-
let distribution with an extent parameter γ to control the
clients’ data distribution, where a smaller γ means a more
uneven distribution of data on the client side. In this pa-
per, we prove the performance achieved by the proposed
algorithm when γ = 0.5, γ = 1, and γ = 5.

� Local training: To model the clients’ resource differences,
we randomly set the computation power P cmp

k,t of each
client k between 0.3 to 1 Watt, and the CPU frequency fk,t
between 0.5 to 1.5 GHz. To simulate the completion status
of local training, we assume that the success rate of each
client k follows a Bernoulli distribution Bern(ρk). Here,
ρk denotes the probability of client completing the local
training. To simulate the system difference, we set ρk to be
a random value from set [0.3,0.5,0.7]. In the case of local
training failure, we randomly generate a value between
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Fig. 2. Impact of channel gain on training performance.

0 and 1 to simulate the training progress bk,t before the
dropout.

� Model transmission and aggregation: To simulate the time-
varying nature of client’s transmission environment, we
assume that the wireless channel follows Rayleigh fading
with scale parameterβt. For the bandwidth and the variance
of channel noise, we set it to B = 20 MHz and σ2

0 = 10−6,
respectively. Other training settings for different tasks have
been presented in Table II.

3) Baseline: In this paper, the following baselines for client
selection are prepared to compare performance.
� Random: Random is the most commonly employed

scheme in FL client selection. Its primary advantage lies
in its robustness, making it applicable to a wide range of
scenarios [6].

� FedCS: FedCS, proposed by Nishio et al. [11], focuses
on selecting faster clients for participation in FL training.
To tailor it to our context, we made minor revisions to the
algorithm. Specifically, in our scenario, FedCS consistently
opts for clients with the highest average success ratio in
aggregation.

� E3CS: E3CS is a client selection method based on Exp3
proposed by Huang et al. [29], but it does not consider
energy constraints. In this paper, we compare it to under-
score the significance of integrating energy constraints into
algorithm design.

� CEDB: CEDB, proposed by Chen et al. [47], is a recently
proposed client selection scheme applied in AirComp
FL. Specifically, they designed a CED coefficient qk,t =
(Ak,t|Dk|2)/(Esuc

k,t h
2
k,t) to evaluate and select clients. To

tailor it to our context, we also make some minor revisions
to algorithm. Specifically, as Esuc

k,t cannot be known in
advance, we utilize historical data to calculate the average
of Esuc

k,t as a substitute for Esuc
k,t , subsequently selecting

clients with the smallest qk,t.
� USOAC: USOAC is a user scheduling selection method

based on channel gain, as introduced by Ma et al. [48].
Given that the original scheme did not consider the dynam-
ics of training volatility, we made some minor adjustments
to align it with our context. More precisely, we enhanced
the original indicator by multiplying it with the average
probability of successful integration to evaluate clients.

Fig. 3. Impact of channel gain on energy consumption.

The selection process involves choosing clients with the
highest resulting value.

� EADS: EADS, proposed by Sun et al. [24], is a dynamic
scheduling for over-the-air federated learning with energy
constraints. Specifically, employing Lyapunov optimiza-
tion, they construct a virtual energy sequence to indicate
the current energy deficit, facilitating real-time decision-
making. Similar methodologies have been adopted in prior
works [25], [26].

B. Experimental Results

1) Impact of Channel Gain: By conducting 100 communi-
cation rounds and setting mt = 0.4 in the simulation, we assess
the impact of channel gain on test accuracy and total energy con-
sumption. As depicted in Figs. 2 and 3, the proposed algorithm
DCSE outperforms other algorithms, both when βt = 1 and
βt = 5. Although the performance of other algorithms gradually
approaches that of DCSE as the channel gain increases, it is
evident that DCSE exhibits the lowest energy consumption.
Furthermore, we observe a common trend wherein test accu-
racy increases as channel gain rises, while energy consumption
decreases. This can be attributed to the improvement in channel
gain, signifying better transmission conditions, thereby reducing
the required transmit power and energy consumption, leading to
an increase in the aggregation number.

2) Extreme Scenarios: To demonstrate the robustness of the
proposed algorithm, we evaluate its performance along with
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Fig. 4. Performance of different algorithms in two extreme scenarios.

TABLE III
PERFORMANCE EVALUATION FOR EMNIST-LETTER AND CIFAR-10

other algorithms in two extreme scenarios. In the first scenario,
termed the ”very bad scenario,” we assume each client has 10 J
of energy, a success rate of 0.5, a data distribution parameter
γ = 0.1, andmt = 0.3. Conversely, in the ”very good scenario,”
we assume each client has 10 J of energy, a success rate of 0.8, a
data distribution parameter γ = 10, and mt = 0.4. As depicted
in Fig. 4(a), we observe a decrease in performance for some
algorithms as energy consumption decreases. Moreover, while
the proposed algorithm demonstrates certain advantages in early
and mid-term training, its final performance is comparable to that
of E3CS. We attribute this to the uneven distribution of client
data and a lower probability of successful training, resulting
in increased energy consumption. Additionally, if clients have
insufficient energy, for any selection method, their energy will
be depleted, leading to a smaller performance gap.

3) Real Training on Public Datasets: In order to facilitate
a more comprehensive comparison of the training performance,
we conducted 100 and 300 communication rounds, respectively,
for Task 1 and Task 2, to investigate the effects of different selec-
tion schemes on key performance indicators, including model
accuracy, convergence speed, and energy consumption. The
corresponding results are presented in Table III and Figs. 5–6.
Based on these results, we made some interesting observations,
which are summarized as follows:

� Impact of data distribution: As depicted in Fig. 5, all
algorithms exhibit better performance when the data distri-
bution is relatively uniform. Additionally, it’s evident that
the performance gap between different algorithms widens
as γ decreases, whereas it narrows as γ increases. This
indicates that even with a fixed selection scheme, training
performance is influenced by the data distribution among
clients. Uneven data distribution, such as γ = 0.5, results
in poorer training performance.

� Effectiveness of DCSE: After examining the results pre-
sented in Fig. 5, we can observe that the proposed algorithm
DCSE achieves better performance than other algorithms.
During the initial training process, there is no signifi-
cant performance difference among the different selection
schemes since the remained energy is sufficient. However,
as the wasted energy varies over the course of the training
process, the performance gap between the different solu-
tions gradually widens. Especially in the middle and late
stages of training, the more complex the model, the more
obvious the gap.. In addition, from the results presented in
Fig. 6, we can also observe that our scheme consumes the
least amount of energy. Thus, our scheme not only achieves
improved training performance but also saves energy in a
simulated environment.
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Fig. 5. Test accuracy versus communication rounds for EMNIST-Letter ((a),(b),(c)) and CIFAR-10 ((d),(e),(f)).

Fig. 6. The wasted energy (w/h) consumed in Task 1 and Task 2 when using the different schemes.

� Comparison of model accuracy: In Fig. 5, we track the
model accuracy of different selection strategies over com-
munication rounds. As illustrated, our algorithm consis-
tently outperforms other algorithms in terms of achieved
accuracy. For instance, in task 1, the highest accuracy
attained by DCSE increases by up to 1.6% compared
to CEDB when γ = 0.5. In task 2, the best accuracy
achieved by DCSE increases by 5.41% and 1.4% respec-
tively compared to FedCS and E3CS when γ = 0.5. This
clearly demonstrates that the average successful train-
ing rate does not directly correlate with training perfor-
mance. Furthermore, while E3CS may achieve subopti-
mal performance, it fails to further enhance performance

or reduce wasted energy due to its lack of considera-
tion for the impact of energy consumption on training
performance.

� Comparison of convergence speed: We present a sum-
mary of the convergence speed and best accuracy achieved
by different algorithms in Table III. To account for the
local training instability, we use the data under Accu-
racy@number to indicate the communication round at
which a target accuracy is achieved for the first time.
Upon inspecting Table III, we can observe that the per-
formance achieved by different schemes is comparable in
the initial training phase, especially when the data dis-
tribution is relatively uniform (i.e., γ = 5). However, as
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the training process progresses and the performance im-
proves, the differences between other algorithms become
more pronounced. In particular, for the more challenging
task 2, all other algorithms failed to achieve the target
accuracy of 0.64 throughout the training process when
γ = 0.5 and γ = 1. On the other hand, our proposed DCSE
scheme achieves the target accuracy of 0.64 with a faster
convergence speed 38.71% E3CS algorithm when γ = 5.
These results illustrate the effectiveness of our scheme in
accelerating model training.

� Comparison of wasted energy: Fig. 6 illustrates the wasted
energy in task 1 and task 2. As shown, our algorithm has
the lowest waste of energy, while the wasted energy of
E3CS is slightly lower than that other algorithms. Overall,
the order of wasted energy is consistent with test accuracy.
Moreover, our findings demonstrate that DCSE is the most
energy-efficient scheme for clients compared to other al-
gorithms. Specifically, in task 1, when γ = 0.5, the wasted
energy of E3CS and EADS is respectively 81.25% and
65.62% higher than that of DCSE. These results provide
strong evidence for the energy-saving capability of our
proposed scheme.

VIII. CONCLUSION

This paper investigated an over-the-air federated learning
system with volatile clients, which have limited energy and
may unexpectedly drop out during local training. The research
focuses on the impact of such volatile clients on the model
training process and convergence performance. The study re-
vealed that maximizing the aggregation number can boost the FL
training. Building on this finding, we proposed DCSE, a dynamic
client selection strategy based on Exp3 with multiple plays and
energy constraint, to allocate the selection probability of each
client. Theoretical analysis has proven that DCSE is theoretically
feasible as its regret has a strictly upper bound. Our extensive
experiments further demonstrate that DCSE can significantly
enhance FL training by accelerating the convergence speed,
enhancing model accuracy, and reducing wasted energy.
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