
 

TREAT: Facial Depression Recognition by Learning Joint
Depression Score and Level Distribution
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Abstract: Automatic depression recognition is  essential  to depression diagnosis.  In this paper,  we investigate

the problem of depression recognition from facial images, each of which is labeled with one Beck Depression

Inventory  (BDI-II)  score.  Because  of  the  ambiguity  between  one  facial  image  and  the  depression  score,  the

annotators may not present the accurate score but tend to give those around the ground-truth one. To solve the

problem,  this  paper  adopts  label  distribution  to  annotate  each  image,  in  which  each  (score)  label  has  a

relevance degree.  First,  we apply the Gaussian distribution to generate the depression score distributions,  in

which the ground-truth score attains the highest degree, while the neighborhood scores also have degrees to

some extent. Thus, each image can contribute to not only its ground-truth score but also neighborhood scores.

Second,  we generate  the  depression  severity  level  distributions  from the  score  distributions  according  to  the

mapping relationship between BDI-II score and severity level. Finally, we propose a novel method to learn joinT

depression  scoRE  And  level  distribuTion,  termed  as  TREAT.  In  the  experiments,  we  compare  TREAT  with

several state-of-the-art methods on three publicly released datasets AVEC 2013, AVEC 2014, and AVEC 2019,

and the experimental results justified that TREAT achieves the best performance.

Key words:  depression  recognition; Beck  Depression  Inventory  (BDI-II)  score; depression  severity; label

distribution; deep learning

1　Introduction

Major  depressive  disorder[1],  or  known  as  depression,
is  the  mental  disorder  of  human  beings,  which  may

result  in  severe  harm to  one’s  health  and  life,  such  as

persistent  sadness,  loss  of  interest  or  pleasure,  self-

denial,  poor  appetite,  and  even  suicide.  The  diagnosis 
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of  depression  involves  the  subjective  evaluations  of
psychologists,  which  makes  this  process  labor-
intensive  and  complicated[2].  As  a  result,  automatic
depression diagnosis  has recently attracted widespread
attention from the clinical research[3−5].

Among  these  automatic  depression  diagnosis
methods,  facial  depression  recognition[6] has  emerged
as  one  of  the  most  promising  methods[7−9].  In
particular,  human  faces  serve  as  a  rich  source  of
emotional  cues,  with  facial  expressions  known  to
reflect  the  underlying  affective  states[10].  As  a  result,
leveraging  deep  learning  methods  to  analyze  facial
images  holds  the  potential  to  uncover  the  subtle
patterns  of  depressive  symptoms,  which  helps  enable
more objective and efficient diagnosis of depression.

Overall,  existing  deep  learning  methods[8, 11−13]

rough  treat  depression  recognition  as  a  single-label
prediction task of the Beck Depression Inventory (BDI-
II) score[14]. The BDI-II score describes the depression
severity.  It  is  assessed  based  on  the  BDI-II
questionnaire[14],  in  which  a  total  of  21  standardized
questions are asked with each one scored from 0 to 3.
Therefore,  the  BDI-II  score  ranges  from  0  to  63.  As
demonstrated  in Fig.  1,  the  facial  image  has  a
depression  score  of  43.  Deep  learning  methods
combine  the  representation  learning  ability  of  Deep
Neural Network (DNN), such as Convolutional Neural
Network  (CNN)[15−17] and  Transformer[18],  in  the
process of learning BDI-II scores. For example, Zhu et
al.[8] employed  GoogleNet  to  learn  the  BDI-II  scores
from  facial  videosi,  while  Li  et  al.[13] applied
Transformer to learn BDI-II scores.

However,  as  disclosed  by  Zhou  et  al.[12],  these
methods  may  face  two  challenges.  The  first  is  the
ambiguity[19] between  the  BDI-II  scores  and  facial
images,  which  could  lead  to  the  fact  that  similar
depression  scores  may  undergo  large  variations  in

facial expression, while those with subtle differences in
facial  expression  can  imply  significantly  different
depression scores[12]. The second one is lacking enough
training  data  as  facial  depression  data  is  expensive  to
collect,  which  could  deteriorate  the  performance  of
deep learning methods.

To  solve  the  above  challenges,  Zhou  et  al.[12] first
proposed  to  introduce  Label  Distribution  Learning
(LDL)[20] to depression recognition from facial images.
For  each  image,  they  generated  a  label  distribution
according to the ground-truth depression score. A label
distribution spans the whole space of depression scores
(i.e.,  0−63),  and  each  element  indicates  the  relevance
degree  of  the  corresponding  score  label.  For  example,
as  demonstrated  in Fig.  1,  the  ground-truth  score  has
the  highest  relevance  degree,  while  the  neighborhood
scores  (i.e.,  those  score  values  around  43)  also  have
some lower description degrees. On one hand, the label
distribution  can  efficiently  capture  the  ambiguity
between BDI-II scores and facial images. On the other
hand,  by  learning  from  such  label  distributions,  each
image can contribute to not only the ground-truth score
but also neighborhood scores, which helps enhance the
training data and solve scarcity of enough training data.

Following  Ref.  [12],  for  each  image,  we  first
generate  a  label  distribution  from  its  ground-truth
depression score, and then treat depression recognition
as  an  LDL  problem,  that  is,  learning  the  depression
Score Distributions (SDs) of the training instances and
predicting unknown ones. In addition, we also consider
depression  severity  level  by  considering  the  mapping
relationship  between  depression  scores  and  severity
levels.  The categories of severity regarding the cut-off
scores[14] are  shown  in Table  1.  For  example,  those
with depression scores falling in the interval of [0, 13]
are  considered  to  have  minimal  depression  severity,
while  those  in  the  interval  of  [29,  63]  have  severe
depression.  Similarly,  we  believe  depression  severity
also faces the same challenges as the depression score.
First, there exists ambiguity between severity level and
facial  images.  For  example,  a  facial  image  with  a
depression  score  of  13  (should  be  considered  with
minimal depression according to Table 1) may also be
considered  as  mildly  depressed.  Second,  collecting
enough  training  data  with  severity  annotations  are
challenging.

Our  key  idea  is  to  convert  a  depression  SD  into  a
severity  Level  Distribution  (LD)  according  to  the
mapping  relationship  between  BDI-II  scores  and
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Fig. 1    An explanation of  depression SD for a facial  image.
The  ground-truth  BDI-II  score  is  43.  In  the  depression  SD,
the  ground-truth score  43  has  the  highest  relevance  degree,
and  neighborhood  score  labels  attains  higher  degrees  than
the distant ones.
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severity  levels.  Then,  we  put  forward  a  multi-task
framework to learn joinT depression scoRE And level
distribuTion,  called  TREAT.  In  summary,  TREAT
introduces two label distributions, i.e., depression score
and  severity  distributions,  which  can  efficiently
leverage  the  ambiguity  between  depression  score  (and
severity level) and facial images and solve the scarcity
of enough training data. Since depression severity level
is  related  to  score,  joint  learning  of  these  two
distributions may help promote each other.

We  conduct  experiments  on  three  public  facial
depression  datasets,  AVEC  2013[21],  AVEC  2014[22],
and AVEC 2019[23]. The comparison study justifies the
advantages  of  TREAT  against  state-of-the-art  deep
learning methods. Furthermore, more analyses validate
the superiority of learning joint distributions.

To  summarize,  our  major  contributions  are  as
follows:

(1)  We  adopt  label  distribution  to  represent  the
depression  annotations  of  each  image.  For  depression
score,  we  propose  to  apply  Gaussian  distribution  to
generate  depression  SD.  For  depression  severity,  we
propose  to  generate  depression  severity  LD  via  the
mapping  relationship  between  BDI-II  score  and
severity.

(2)  We  put  forward  a  novel  method  called  TREAT
to  learn  from  these  two  distributions.  TREAT  also
introduces  two  loss  functions,  i.e.,  absolute  loss  and
margin  loss  to  highlight  the  ground-truth  score  and
severity level in the predictions.

(3) We conduct extensive evaluations of TREAT on
two public datasets AVEC 2013 and AVEC 2014. The
experimental  results  well  justify  the  superiority  of
TREAT for depression recognition.

We organize  the  rest  of  this  paper  as  follows.  First,
Section  2  briefly  reviews  the  related  works.  Second,
Section  3  introduces  the  details  of  the  proposed
TREAT  method.  Third,  Section  4  reports  the
experimental  results.  Finally,  Section  5  concludes  this
paper.

2　Related Work

In this section, we briefly introduce two lines of related
studies,  i.e.,  machine-learning-based  depression
recognition and LDL.

2.1　Depression  recognition  based  on  machine
learning

Recently, automatic depression recognition by machine
learning  has  attracted  widespread  attention  within  the
research  community.  Among  these  works,  facial
depression  recognition[6] is  extremely  popular  because
of  the  accessibility  and  richness  of  facial  expression
data.  Overall,  these  methods  can  be  categorized  into
hand-crafted methods and deep learning methods.

Earlier methods first applied hand-crafted features to
represent facial images and then learned the depression
scores[21].  To  name  just  a  few,  Ojansivu  and
Heikkila[24] first  used  the  Local  Phase  Quantization
(LPQ)  features  as  the  representations  of  images  and
then  learned  the  BDI-II  scores.  Cummins  et  al.[25]

proposed  to  leverage  the  Pyramid  of  Histogram  Of
Gradient  (PHOG)  features[26] for  depression  score
prediction.  In  addition,  Valstar  et  al.[22] extracted  the
Local  Gabor  Binary  Pattern  (LGBP)  descriptors[27]

from  facial  videos  for  prediction  of  BDI-II  scores.
Dhall  and  Goecke[28] leveraged  the  Local  Binary
Pattern (LBP) features[29] to learn BDI-II scores.

Recently,  deep  learning  methods  can  extract  more
expressive  features  and  run  in  an  end-to-end  way,
which  have  achieved  significantly  better  performance
than hand-crafted methods. To name just a few, Zhu et
al.[8] fine-tuned  pre-trained  GoogleNet[15] models  to
learn  the  BDI-II  scores  from  facial  videos,  which
significantly  advanced  the  state-of-the-art  depression
recognition results. Zhou et al.[9] borrowed the ResNet-
50[16] and put forward DepressNet that blends different
facial regions for predicting BDI-II scores. In addition,
Li  et  al.[13] applied  Transformer  and  put  forward
Hybrid  Multi-Head  cross  attention  Network  (HMHN)
to  learn  BDI-II  scores.  However,  these  works  treated
depression  recognition  simply  as  a  problem  of
predicting  the  BDI-II  scores,  which  ignore  the
ambiguity between facial images and BDI-II scores. To
solve  this  challenge,  Zhou  et  al.[12] first  introduced
label  distribution  to  depression  recognition.  They
converted BDI-II  scores to depression distribution and
employed  DepressionNet  to  learning  from  such
distribution.  Our work further  improves Zhou et  al.[12]

 

Table 1    Mapping  relation  between  the  BDI-II  scores  and
depression severity levels[14].

BDI-II score Depression severity level
0–13 Minimal
14–19 Mild
20–28 Moderate
29–63 Severe
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by  considering  joint  depression  score  and  severity
distributions,  which  leads  to  better  performance.  Our
method  is  agnostic  of  the  backbone  networks  and  can
be  integrated  into  any  DNN,  such  as  CNN  and
Transformer.

2.2　LDL

Due to the smooth changes of facial appearance in the
aging process, label distribution was first introduced by
Geng  et  al.[30] to  represent  the  age  information  of  a
facial  image.  Gaussian  distribution  was  employed  to
generate  a  label  distribution for  one image by treating
the chronological age label as the mean. Then, a novel
method  was  designed  to  learn  the  age  label
distributions. Latter, Geng[20] formally defined LDL as
a  novel  learning  paradigm,  which  aims  to  learn  the
label  distributions  of  the  training  instances  and  make
prediction for unknown instances.

Researchers  have  proposed  various  LDL  methods.
To  name  just  a  few,  Shen  et  al.[31] leveraged  the
differentiable  random  forests  to  learn  label
distributions. Wang et al.[32] considered the problem of
classification in the setting of LDL. They introduced a
novel  re-weighting  scheme  and  large  margin  to  the
process of LDL. In addition, Jia et al.[33] exploited the
ranking information of  labels  in  LDL. Jia  et  al.[34] put
forward  the  description-degree  percentile  average,
which  can  combine  the  ranking  information  and
description degrees of labels. Huang et al.[35] employed
the  polynomial-based  fuzzy  broad  learning  systems  to
LDL,  while  Wen et  al.[36] considered the  ordinal  LDL
problem.

LDL has  already seen  extensive  applications  among
various fields. In depression recognition, Zhou et al.[12]

generated  a  label  distribution  via  the  Gaussian
distribution  with  the  ground-truth  depression  score  as
the  mean.  Then,  they  designed  a  novel  LDL  method
based  on  metric  learning  to  efficiently  learn  such
depression distributions. In addition, in the application
of  emotion  recognition,  Li  and  Deng[37] leveraged  a
label distribution to denote the emotions of each image.
Then,  they  proposed  a  deep  model  to  learn  the
emotional  label  distributions.  Shu  et  al.[38] formalized
the  problem  of  emotion  recognition  as  emotion
distribution  learning.  In  age  estimation,  Shen  et  al.[31]

generated  label  distributions  from  the  chronological
age and proposed a differential random forests to learn
the age label distributions.

This  paper  applies  LDL  to  depression  recognition.

Different  from Ref.  [12],  we consider  both  depression
scores  distribution  and  depression  severity  LD  and
propose to learn joint distribution, which helps improve
each other.

3　TREAT Method

X T = {(x1,

s1, c1), (x2, s2, c2), . . . , (xn, sn, cn)}
xi ∈ X i

si ∈ [0, 63]
ci ∈ [1, 4]

Specifically,  let  be  the  input  space.  Let 
 denotes  a  training

set,  where  is  the -th  instance  (e.g.,  a  facial
image),  is its corresponding real-value BDI-
II  score,  and  is  the  assigned  depression
severity  level  according  to  the  mapping  relationship
between  BDI-II  scores  and  depression  severity,  as
shown in Table 1.

In this paper,  we put forward a novel method called
TREAT  for  facial  depression  recognition.  First,  it
generates depression score and severity distributions to
represent  the  depression  scores  and  severity  levels,
respectively.  Next,  it  jointly  learns  the  generated
depression score and severity distributions.  The whole
framework of TREAT is illustrated in Fig. 2.

3.1　Generating  depression  score  and  severity
distributions

Because  of  the  ambiguity  between  facial  images  and
depression  scores,  it  is  prohibitive  to  obtain  the
absolutely accurate annotations. For example, a doctor
is  highly  likely  to  label  an  image  with  a  ground-truth
depression score of 12 to 13. On the other hand, due to
the  continuity  of  depression  score,  the  neighborhood
score  labels  around  the  ground-truth  label  may  also
contribute  to  one  specific  image  to  some  extent.  In
light  of  the  above  two  observations,  in  this  paper,  we
employ  the  Gaussian  function  to  generate  a  label
distribution  to  represent  the  depression  score  for  each
image,  in  which  each  label  attains  a  relevance  degree
to that image.

Y = {y1, y2, . . . , y64}

xi si

y j xi

We denote by  the label space of
the  ordinal  BDI-II  scores  ranging  from  0  to  63.
Concretely,  for  with  the  ground-truth  score ,  the
relevance degree of  to  is calculated by 

d
y j
xi =

1
√

2πσZ
exp
− (y j− si)2

2σ2

 (1)

σ Zwhere  is the standard deviation parameter. Here,  is
normalization factor that equals 

Z =
1
√

2πσ

64∑
j=1

exp
− (y j− si)2

2σ2

 (2)
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xi

dY
i =
[
dy1

xi , dy2
xi , . . . , dy64

xi

]
d

y j
xi ⩾ 0

∑
j
d

y j
xi = 1

The  relevance  degrees  of  all  scores  to  form  a
depression  SD  that  satisfies

 and .
It  is  noteworthy  that  for  each  image,  the  depression

SD  can  sufficiently  describe  its  ground-truth
depression  score  because  that  score  has  the  highest
degree  in  the  SD.  Compared  with  the  original  score
label,  the  depression  SD  associates  to  each  label  a
degree, with higher values for neighborhood labels and
lower  values  for  distant  labels.  As  a  result,  it  can
efficiently  represent  the  continuity  of  depression
scores. On the other hand, since each score label has a
degree, in the training process an image contributes to
not  only  its  ground-truth  label  but  also  neighborhood
labels,  which  also  help  solves  the  scarcity  of  enough
training samples.

The  depression  severity  is  categorized  according  to
the  BDI-II  score,  and  as  a  result,  it  also  has  some
continuity and ambiguity.  For example,  a facial  image
with  a  ground-truth  depression  score  of  12  can  be
considered  to  be  minimally  depressed  and  mildly
depressed  as  well.  Likewise,  we  generate  a  label
distribution to represent the depression severity of one
specific image, in which each label (i.e., severity level)
has a relevance degree to that image.

Next,  we  generate  the  depression  severity  LD
according to  the  mapping relationship between BDI-II
scores  and severity  levels.  As  illustrated  in Fig.  3,  the
degree  of  a  depression  severity  equals  the  sum  of
degrees  for  all  score  labels  in  the  corresponding

L = {l1, l2, l3, l4}
xi

di l j

interval.  For  example,  the  degree  of “minimal”
depression equals the sum of degrees of all score labels
ranging from 0 to 13. Specifically, let 
be the label space for depression severity. For  with a
depression SD , the degree of  is calculated by 

d
l j
xi =

∑
y∈I(l j)

dy
xi (3)

I(l j)
l j

dL
i =
[
dl1

xi , dl2
xi , dl3

xi , dl4
xi

]where  contains  all  score  labels  in  the  interval  of
.  The  degrees  of  all  levels  define  a  depression

severity LD (LD) .

< < <

In the single-label depression severity level, only the
ground-truth  label  has  a  degree  of  one,  while  other
labels  have  degrees  of  zeros,  which  ignores  the
ambiguity between depression severity level and facial
images.  In  comparison,  LD  assigns  a  degree  to  each
labels,  which  can  effectively  represent  the  ambiguity.
Moreover,  the  depression  level  is  also  ordinal  (i.e.,
“minimal”  “mild”  “moderate”  “severe”).  Since
the neighborhood score labels around the ground-truth
label  have  higher  degrees,  the  corresponding
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Fig. 2    Framework of  the  proposed method.  First,  we  generate  the  depression SDs from the  BDI-II  scores  via  the  Gaussian
distribution. Then, we generate the depression severity distributions via the mapping relationship between BDI-II scores and
depression severity. Finally, we train a neural network to jointly learn the depression score distribution and severity LDs.

 

Severity distribution

BDI-II score 
Fig. 3    An illustration of generating depression severity LD.
The degree of one depression severity equals the sum of the
degrees of scores belonging to it.
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neighborhood  level  labels  around  the  ground-truth
level label also have higher degrees. As a result, in the
training process an image can contribute to not only the
ground-truth  depression  severity  label  but  also  other
labels, which can enlarge the training set.

After  generating  the  depression  SD  and  LD,  we
transform  the  depression  recognition  problem  into
learning these two distributions. We train a DNN with
68-dimension  outputs  to  learn  from  these  two
distributions,  where  the  first  64-dimension  outputs
learn  the  depression  SD,  and  the  remaining  four-
dimension outputs learn the depression LD.

O(n)

O(n)

O(n)

O(n/n0) n0

Note  that  the  computational  cost  to  generate  the
depression SD for  one image scales  linearly regarding
the depression score size (i.e., 64). As a result, the total
computational  cost  to  generate  the  depression  SDs for
all  training  images  need  complexity .  Similarly,
the  computational  cost  to  generate  the  depression
severity  distribution  for  all  training  images  need
complexity .  As  a  result,  compared  with
traditional  methods,  TREAT  needs  additional
complexity  to  generate  the  depression  score  and
severity distributions. However, these processes can be
easily paralleled. The computational cost would reduce
to  if  processes  are  available,  which  can
significantly reduce the computational cost.

3.2　Learning depression SD

xi y j

First,  we  add  the  softmax  function  to  the  first  64-
dimension outputs of our DNN to learn the depression
SD. Specifically, for , the predicted probability of 
is calculated as 

p
y j
xi =

exp
(

fYj
)

64∑
k=1

exp
(

fYk
) (4)

fYj jwhere  is  the -th  output  of  the  first  64-dimension
outputs  of  our  DNN  model.  As  widely  used  in  the
related  LDL  literature,  Kullback-Leibler  (KL)
divergence  is  employed  to  minimize  the  distance
between  the  ground-truth  depression  SD  and  the
prediction  of  our  DNN.  We  design  the  following  loss
to learn the depression SD, 

ℓSD = −
64∑
j=1

d
y j
xi ln p

y j
xi (5)

3.3　Learning depression severity LD

In  this  subsection,  we  learn  the  depression  LD  from

xi l j

two  perspectives.  First,  we  can  obtain  the  predicted
depression  LD  from  the  predicted  SD  according  to
their mapping relationship. The predicted probability of

 belonging to  equals 

p̂
l j
xi =

∑
y∈I(l j)

py
xi (6)

py
xi xi

y
where  is  the  predicted  probability  of  with  the
score ,  as  introduced  in  Eq.  (4).  We  apply  KL
divergence and design the following mapping loss: 

ℓmapping = −
4∑

j=1

d
l j
xi ln p̂

l j
xi (7)

xi

l j

Besides, we also add the softmax function to the last
four-dimension  outputs  of  our  DNN  to  learn  the
depression  LD.  The  predicted  probability  of 
belonging to  equals 

p
l j
xi =

exp
(

fLj
)

4∑
k=1

exp
(

fLk
) (8)

fLj jwhere  is the -th output of the last four-dimension
outputs  of  our  DNN  model.  Similarly,  we  use  KL
divergence  to  learn  the  depression  LD  and  design  the
following loss: 

ℓLD = −
4∑

j=1

d
l j
xi ln p

l j
xi (9)

Finally,  we  combine  loss  functions  described  by
Eqs. (7) and (9) to learn the depression LD.

3.4　Multi-task learning model

Since  depression  severity  level  is  highly  correlated
with  depression  score,  as  shown  in Table  1,  the
learning  task  of  these  two  may  help  each  other.
Therefore,  in  this  paper,  we  use  a  unified  multi-task
learning  model  to  jointly  learn  the  depression  SD and
LD.  To  train  our  DNN,  a  combined  multi-task  loss  is
designed as 

ℓi = ℓSD+ ℓmapping+ ℓLD (10)

s j

l j

However, Eq. (10) only learns the whole SD and LD
but  ignores  the  ground-truth  depression  score  and
level . As disclosed in Refs. [19, 32], it may produce
a DNN model with a high accuracy to learn the SD and
LD but fail to learn the scores and severity levels.

First, we encourage the predicted depression score to
approach the ground-truth one. The predicted score can
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be  calculated  as  the  expectation  of  the  predicted  SD,
i.e., 

ŝ j =
∑
y∈Y

y · py
xi (11)

We add an absolute loss to minimize their difference, 

ℓabsolute = |si− ŝi| (12)

xi

ρ > 0
ci

ci

ρ

Second,  we  encourage  the  predicted  depression
severity  level  to  be  the  ground-truth  one.  To  achieve
that,  we  introduce  a  margin  loss  to  the  DNN,  which
highlights  the  ground-truth  depression  level  in  the
predicted  LD.  Specifically,  for ,  we  introduce  an
extra margin  between the ground-truth depression
level  and  other  level  labels—the  predicted
probability of  is larger than that of other level labels
by a margin . The margin loss is designed as 

ℓρ =
1
ρ

∑
j:l j,ci

max
(
0, pci

xi − p
l j
xi +ρ

)
(13)

ci

ρ

Notice  that  the  margin  loss  equals  0  if  the  predicted
probability of  is larger than that of other labels by a
margin ; otherwise, it results in a positive penalty.

Finally,  we  combine  loss  functions  described  by
Eqs.  (10),  (12),  and  (13)  to  learn  the  SD,  LD,  and
ground-truth  depression  scores  and  levels,  and  design
the following loss to train a DNN: 

ℓi = ℓSD+ ℓmapping+ ℓLD+λ1ℓabsolute+λ2ℓρ (14)

λ1 λ2where  and  are  the  trade-off  parameters.  The
setting  of  these  parameters  is  discussed  in  the
experiments.

3.5　Explainability of learning depression SD

TREAT transforms  the  single-learning  problem of  the
BDI-II scores into an LDL problem. Next, we analyze
the explainability of doing that.

i xi

dY
i =
{
dy1

xi , dy2
xi , . . . , dy64

xi

}
pYi =

{
py1

xi , py2
xi , . . . , py64

xi

}
si

xi dY
i

ŝi

pYi

Concretely,  for  the -th  training  instance ,  let
 be  the  generated  depression

score  and  the  predicted
depression  SD.  Let  be  the  ground-truth  depression
scores  of ,  which  has  the  highest  relevance  in .
Define  as  the  score  with  the  highest  predicted
relevance in , i.e.,
 

ŝi = argmax
y∈Y

py
xi (15)

Then,  we  can  prove  the  following  theorem  to  show
the explainability of LD SD.

dY
iTheorem  1　 Suppose  is  the  conditional

yprobability.  Let  be  the  random  variable.  Then,  the
following inequality holds: 

P(y , ŝi|xi)−P(y , si|xi) ⩽
∑

j

∣∣∣py j
xi −d

y j
xi

∣∣∣ (16)

Proof　First, we have 

P(y , si | xi) = 1−P(y = si | xi) = 1−dsi
xi ,

which yields 

P(y , si | xi)−P(y , ŝi | xi) = dsi
xi −d ŝi

xi .

Then, according to Ref. [32], we can show 

dsi
xi −d ŝi

xi ⩽
∑

j

∣∣∣py j
xi −d

y j
xi

∣∣∣ ,
which completes the proof the theorem. ■

In the above equation,  the left-hand-side is  the error
probability,  while  the  right-hand-side  is  the  absolute
loss  between  the  two  distributions.  The  error
probability is bounded by the absolute loss between the
distributions.  According  to  Theorem  1,  the  predicted
score  is  expected  to  converge  to  the  ground-truth  one
as long as the learned SD converges to the ground-truth
distribution.  It  explains  why  learning  the  depression
SDs helps learn the depression scores.

4　Experiment

In this section, we conduct experiments to validate the
performance  of  TREAT.  We  elaborate  on  the
experimental  setting,  results  and  analysis,  ablation
study, and parameter analysis.

4.1　Methodology

4.1.1　Datasets
We  evaluate  the  performance  of  our  method  on  two
publicly available datasets, AVEC 2013[21] and AVEC
2014[22],  which  are  two  most  widely  used  depression
datasets for facial depression recognition.

×

AVEC  2013  depression  dataset[21]: AVEC  2013
was  created  to  facilitate  research  in  the  automatic
analysis of depression from multimodal data, including
audio and video. There are totally 150 videos from 82
German-speaking  subjects.  Valstar  et  al.[21] used  a
webcam and a microphone over a period of two weeks
to  collect  the  data,  whose  ages  range  from  18  to  63
with an average age of 31.5 and a standard deviation of
12.3. They recorded the video for 30 frames per second
(fps)  with  a  resolution  of  640  480  pixels.  In
Ref.  [21],  this  dataset  is  evenly  spitted  into  three
subsets, i.e.,  the training set,  development set,  and test
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set. For each subset, there are 50 videos, and each one
is  labeled  with  a  depression  severity  level  assessed
based on the BDI-II questionnaire.

AVEC 2014 depression dataset[22]: AVEC 2014 is
a  subset  of  AVEC  2013.  It  has  the  same  subjects  as
AVEC  2013  but  introduces  two  additional  tasks,
FreeForm  and  Northwind.  The  FreeForm  task  asked
the  subjects  to  respond  to  several  questions  such  as
discussing  a  sad  childhood  memory;  the  Northwind
task  required  the  subjects  to  read  an  excerpt  audibly
from  a  fable[22].  For  each  task,  there  are  150  videos,
which are partitioned evenly into three subsets, i.e., the
training,  development,  and  test  sets,  labeled  with  the
ground-truth severity level.

The  distribution  of  the  depression  scores  of  the
samples  from  these  two  datasets  is  summarized  in
Fig. 4. For both datasets,  we combine the training and
development  sets  as  the  training  set  of  our  model  and
test its performance on the test set.
4.1.2　Implementation details
The proposed TREAT does not depend on any specific
structures  of  neural  networks,  and it  can  be  integrated
into  any  deep  models.  Here,  we  implement  TREAT
with  a  state-of-the-art  network,  called  HMHN[13] that
includes two stages. The first stage consists of the grid-
wise attention block and deep feature fusion block for
the  low-level  visual  depression  feature  learning.  The
second  stage  encodes  high-order  interactions  among
local features with multi-head cross attention block and
attention  fusion block[13].  For  more  details  of  HMHN,
refer to Ref. [13].

σ λ1

λ2

Following  Ref.  [12],  the  standard  deviation
parameter  is  set  to  1.  Besides,  we set  to  0.1 and

 to 0.1.
4.1.3　Evaluation metrics
We apply two widely used metrics, i.e., Mean Absolute
Error (MAE) and Root Mean Square Error (RMSE) to
assess the performance of the comparing algorithms on
AVEC  2013  and  AVEC  2014.  MAE  is  defined  as

follows: 

MAE =
1
n

n∑
i=1

|si− ŝi| (17)

and RMSE is defined as follows: 

RMSE =

√√
1
n

n∑
i=1

(si− ŝi)2 (18)

si ŝi

i
where  and  are  the  ground-truth  and  predicted
depression score of the -th test instances, respectively.

4.2　Results and analysis

First,  we  present  two  examples  with  their  predicted
depression  SD by  TREAT in Fig.  5.  From Fig.  5,  the
predicted  scores  for  these  three  typical  examples  are
close  to  the  ground-truth  ones,  which  justifies  the
advantages of TREAT.

λ λ1 λ2

Second,  to  validate  the  performance  of  TREAT,  we
compare  it  with  several  state-of-the-art  algorithms  for
facial  depression  recognition.  First,  for  AVEC  2013,
we  compare  TREAT  against  ten  state-of-the-art
proposals[7−9, 12, 13, 21, 39−41].  For  AVEC  2014,  we
compare  TREAT  against  nine  state-of-the-art
comparing  algorithms[8, 9, 12, 13, 22, 40−43].  For  TREAT,
we  set  to  1,  to  0.1  and  to  0.001.  For  other
comparing  algorithms,  we  set  their  parameters  as
suggested in the literature. Tables 2 and 3 tabulate the
results  of  these  comparing  methods  on  AVEC  2013
and AVEC 2014, respectively.

Among  the  comparing  methods,  DJ-LDML[12] also
first  transformed  the  BDI-II  scores  into  label
distributions  and  then  learns  such  label  distributions
with  a  novel  metric  learning  methods.  Besides  Deep
Joint  Lable  Distribution  and  Metric  Learning  (DJ-
LDML), the other comparing methods all directly learn
the  BDI-II  scores,  which  are  regarded  as  a  regression
problem.

According  to Tables  2 and 3,  TREAT  achieves  the
best  performance  on  both  AVEC  2013  and  AVEC
2014.  The  reasons  are  two-fold.  First,  compared  with
those  that  directly  fit  the  BDI-II  scores,  TREAT
leverages label  distribution to represent the depression
score,  which  not  only  captures  ambiguity  between
facial  images  and BDI-II  scores  but  also  enhances  the
training  data.  Second,  although  DJ-LDML  introduces
an  extra  metric  learning  process  to  learn  the  label
distributions, it fails to consider the depression severity
level. Instead, TREAT takes into account the ambiguity
between  facial  images  and  severity  level  and  further
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Fig. 4    Distribution  of  the  depression  scores  of  the  samples
from AVEC 2013 and AVEC 2014.

  Tsinghua Science and Technology

 



transforms  depression  level  into  LD  by  the  mapping
relation  between  BDI-II  score  and  severity  level.
TREAT jointly learns the depression SD and LD into a
multi-task  framework,  which  significantly  boosts  its
performance.

To  summarize,  the  experimental  results  well  justify
the  superior  performance  of  TREAT,  which  can  be
credited  to  introduction  of  joint  depression  SD  and
LD.

4.3　More results on AVEC 2019

Next,  to  further  show  the  generalizability  of  TREAT,
we  evaluate  it  on  AVEC  2019  dataset[23].  Different
from  AVEC  2013  and  AVEC  2014,  each  image  of
AVEC  2019  is  labeled  with  a  Patient  Health

Questionnaire (PHQ-8) score[44], ranging from 0 to 24,
with  higher  value  indicating  more  severe  depression.
According  to  Ref.  [44],  the  cut-off  points  for  PHQ-8
scores are shown in Table 4. For this dataset, there are
clips  of  163  subjects  for  training,  56  subjects  for
validation, and 56 subjects for testing.

TREAT  can  simply  adapt  to  PHQ-8  scores  by
changing  the  dimensions  of  depression  scores  and
severity level to 24 and 5, respectively. As a result, we
can  also  evaluate  its  performance  on  AVEC  2019.
We  compare  TREAT  with  three  state-of-the-art
methods[12, 45, 46]. Figure  6 visualizes  the  comparison
results  on  AVEC  2019.  According  to Fig.  6,  TREAT
performs  best  and  outperforms  the  other  three
comparing methods by a margin. The results justify the
superior performance and generalizability of TREAT.

 

 
Fig. 5    Three example images and their predicted depression SDs by TREAT and the ground-truth BDI-II scores.

 

Table 2    Comparison  results  of  TREAT  with  state-of-the-
art methods on AVEC 2013. The best results are highlighted
in bold.

Method MAE RMSE
Valstar et al.[21] 10.88 13.61

Wen et al.[7] 8.22 10.27
Kaya and Salah[39] 7.86 9.72

Zhu et al.[8] 7.58 9.82
Uddin et al.[40] 7.04 8.93

DepressionNet[9] 6.77 9.02
DJ-LDML[12] 6.63 8.37
He et al.[42] 6.83 8.46
Liu et al.[41] 6.08 7.59
HMHN[13] 6.05 7.38
TREAT 6.01 7.22

 

Table 3    Comparison  results  of  TREAT  with  state-of-the-
art methods on AVEC 2014. The best results are highlighted
in bold.

Method MAE RMSE
Valstar et al.[21] 10.88 13.61

Zhu et al.[8] 7.47 9.55
Uddin et al.[40] 6.86 8.78

DepressionNet[9] 6.60 8.88
DJ-LDML[12] 6.59 8.30
He et al.[42] 6.78 8.42
Liu et al.[41] 6.04 7.98

De Melo et al.[43] 6.01 7.60
HMHN[13] 6.01 7.60
TREAT 5.91 7.43
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4.4　Ablation study

Next,  we  conduct  ablation  study  to  investigate  the
advantages  of  several  loss  functions  of  TREAT,
including  LD  loss  (i.e.,  Eq.  (9)),  mapping  loss  (i.e.,
Eq.  (7)),  absolute loss (i.e.,  Eq.  (12)),  and margin loss
(i.e.,  Eq.  (13)).  We  run  four  degenerated  versions  of
TREAT.  Especially,  TREAT  without  LD  excludes
learning the LD and margin loss.

We  report  the  results  of  TREAT  and  its  four
degenerated versions in Tables 5 and 6. From Tables 5
and 6, TREAT all achieves higher performance than its
degenerated  versions.  Especially,  we  find  that
excluding the absolute loss will significantly reduce the
performance  of  TREAT.  The  reason  may  lie  in  that
TREAT without the absolute loss focuses on the whole
depression SD but ignores the ground-truth depression
score.

4.5　Parameter sensitivity

λ1 λ2TREAT introduces two hyper-parameters  and . In

this  subsection,  we  investigate  the  sensitivity  of  these
two parameters.

λ1

{0.001, 0.01, 0.1, 0, 1, 10, 100, 1000}

λ1

λ1 = 0.1 λ1

First,  we  run  TREAT  with  varying  from  the
candidate  set  and
report  its  achieved  MAE and  RMSE in Figs.  7 and 8,
respectively.  According  to Figs.  7 and 8,  TREAT  is
sensitive  to  and  achieves  the  best  results  with

. In the experiments, the default value of  is
0.1.

λ2

{0.001, 0.01, 0.1, 0, 1, 10, 100, 1000}

λ2

Second,  we  run  TREAT  by  varying  from  the
candidate  set  and
report its achieved MAE and RMSE in Figs. 9 and 10,
respectively. From the results, we find that TREAT has
robust performance when  is within [0.01, 10]. In the
experiments, we set it to 0.1.

 

Table 4    PHQ-8  cut-off  points[44] to  indicate  differently
severe depression.

BDI-II score Depression severity
0–4 Minimal
5–9 Mild

10–14 Moderate
15–19 Moderately severe
20–24 Severe
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Fig. 6    Comparison  results  of  TREAT  with  three  state-of-
the-art comparing methods on AVEC 2019.
 

Table 5    Results  of  ablation  study  on  AVEC  2013  by
comparing  TREAT  against  the  degenerated  versions.  W/o:
without. The best results are highlighted in bold.

Method MAE RMSE
TREAT w/o LD 6.10 7.45

TREAT w/o mapping loss 6.08 7.30
TREAT w/o absolute loss 6.20 7.56
TREAT w/o margin loss 6.02 7.25

TREAT 6.01 7.22

 

Table 6    Results  of  ablation  study  on  AVEC  2014  by
comparing  TREAT  against  the  degenerated  versions.  The
best results are highlighted in bold.

Method MAE RMSE
TREAT w/o LD 6.01 7.62

TREAT w/o mapping loss 6.00 7.55
TREAT w/o absolute loss 6.10 7.76
TREAT w/o margin loss 5.95 7.49

TREAT 5.91 7.43
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5　Conclusion

In  this  paper,  we  propose  a  novel  method  called
TREAT for  facial  depression recognition.  Considering
the  ambiguity  between  facial  images  and  BDI-II
scores,  we  first  transforms  a  score  number  into
depression SD, in which the ground-truth score attains
the  highest  degree  and  neighborhood  scores  also  have
degrees  to  some  extent.  A  depression  SD  not  only
helps solve the ambiguity but also enhance the training
set.  Second,  we  transform  a  severity  level  into  a
depression  severity  distribution.  Finally,  we  jointly
learn  these  two distributions.  The experimental  results
demonstrate  that  TREAT  achieves  the  best
performance  on  three  commonly-used  datasets,  which
can  be  credited  to  the  introduction  of  joint  depression
score  and  severity  distributions.  Overall,  TREAT
achieves competitive performance for facial depression
recognition.

σ

However,  there  are  still  some  limitations  of  our
work.  In  Eq.  (1),  the  Gaussian  distribution  applies  the
same  standard  deviation  parameter  for  all  training
samples,  which  ignores  the  different  distributions  of
ambiguity  across  the  ordinal  BDI-II  scores.  For
example, the training samples falling in the interval of

“mild” and “moderate” should  have  higher  ambiguity
than those falling into the other two intervals and as a
result,  may  attain  larger  standard  deviations.  Besides,
TREAT  borrows  an  existing  network  structure  called
HMHN[13] without further considering the structures of
depression score and severity distributions, which may
deteriorate  its  performance.  In  the  future,  we  will
mainly  investigate  how  to  design  varying  standard
deviations  for  different  training  samples  (e.g.,  by
considering  different  training  samples  falling  in
different  severity  intervals)  and  how  to  design  an
effective  network  structure  to  consider  the
characteristics  of  the  depression  score  and  severity
distributions.  Moreover,  we  will  consider  fusion
multimodality[47] to further improve the performance in
the future work.
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