
Received 15 October 2013; revised 18 May 2014; accepted 22 July 2014. Date of publication 17 August 2014;
date of current version 30 October 2014.

Digital Object Identifier 10.1109/TETC.2014.2348196

Evolutionary Scheduling of Dynamic
Multitasking Workloads for Big-Data

Analytics in Elastic Cloud
FAN ZHANG1,7, (Senior Member, IEEE), JUNWEI CAO2, (Senior Member, IEEE),
WEI TAN3, (Senior Member, IEEE), SAMEE U. KHAN4, (Senior Member, IEEE),
KEQIN LI5, (Senior Member, IEEE), AND ALBERT Y. ZOMAYA6, (Fellow, IEEE)

1Kavli Institute for Astrophysics and Space Research, Massachusetts Institute of Technology, Cambridge, MA 02139 USA
2Research Institute of Information Technology, Tsinghua University, Beijing 100084, China

3IBM T. J. Watson Research Center, Yorktown Heights, NY 10598 USA
4North Dakota State University, Fargo, ND 58102 USA

5Department of Computer Science, Tsinghua University, Beijing 100084, China
6School of Information Technologies, The University of Sydney, Sydney, NSW 2006, Australia

7Shenzhen Institute of Advanced Technology, Chinese Academy of Science, Guangdong 51800, China

CORRESPONDING AUTHOR: F. ZHANG and J. CAO (zf19830622@gmail.com; jcao@mail.tsinghua.edu.cn)

This work was supported in part by Ministry of Science and Technology of China under National 973 Basic Research Program
(grants No. 2013CB228206 and No. 2011CB302505), National Natural Science Foundation of China (grant No. 61472200 and

No. 61233016) and National Science Foundation under grant CCF-1016966.

ABSTRACT Scheduling of dynamic and multitasking workloads for big-data analytics is a challenging
issue, as it requires a significant amount of parameter sweeping and iterations. Therefore, real-time scheduling
becomes essential to increase the throughput of many-task computing. The difficulty lies in obtaining a series
of optimal yet responsive schedules. In dynamic scenarios, such as virtual clusters in cloud, scheduling must
be processed fast enough to keep pace with the unpredictable fluctuations in the workloads to optimize the
overall system performance. In this paper, ordinal optimization using rough models and fast simulation is
introduced to obtain suboptimal solutions in a much shorter timeframe. While the scheduling solution for
each period may not be the best, ordinal optimization can be processed fast in an iterative and evolutionary
way to capture the details of big-data workload dynamism. Experimental results show that our evolutionary
approach compared with existing methods, such as Monte Carlo and Blind Pick, can achieve higher overall
average scheduling performance, such as throughput, in real-world applications with dynamic workloads.
Furthermore, performance improvement is seen by implementing an optimal computing budget allocating
method that smartly allocates computing cycles to the most promising schedules.

INDEX TERMS Big-data, cloud computing, evolutionary ordinal optimization, multitasking workload,
virtual clusters.

I. INTRODUCTION
Large-scale business and scientific applications are usually
composed of big-data, multitasking, time-variant, and
fluctuating workloads [5], [35]. Cloud computing [2], with
virtualization [3] as the key enabling technology, provides an
elastic scaling-up and scaling-down provisioningmechanism.
Agile and appropriate computational resource provisioning
that keeps pace with the fluctuations of big-data multitasking
workloads is very important in the scheduling paradigm [41].

For example, there are unprecedented amounts of requests
from the customers of Amazon and eBay during the
holiday seasons. Thereafter, the website traffic drops
down dramatically. Over-provisioning of computing resource
to constantly satisfy the requirements at the peak level leads
to high and unnecessary cost, while under-provisioning leads
to user churn [28].
In general, scheduling big-data multitasking workloads

onto distributed computing resources is an NP-complete

338

2168-6750
 2014 IEEE. Translations and content mining are permitted for academic research only.
Personal use is also permitted, but republication/redistribution requires IEEE permission.

See http://www.ieee.org/publications_standards/publications/rights/index.html for more information. VOLUME 2, NO. 3, SEPTEMBER 2014

ZHANG et al.: Evolutionary Scheduling of Dynamic Multitasking Workloads

problem [13]. The main challenge is to maintain a reasonable
tradeoff between the scheduling overhead and scheduling
accuracy.

Consider a continuous scheduling scenario with multiple
scheduling periods, and within each period the scheduling
scheme is being repeatedly updated. If the scheduling period
is too long, while a seemingly more descent solution can
be achieved through elaborate workload analysis, the overall
system performance may degrade. This is due to the fact
that the workloads might have changed considerably during
such a long time. Therefore, it is necessary that scheduling
solutions are provided in an evolving fashion, so that dur-
ing each iteration, a ‘‘good-enough’’, suboptimal, but fast-
paced solution can be obtained. In the meanwhile, evolving
iterations of optimization can adapt to the nature/details of
system dynamism, such as dynamic workload fluctuation
and resource provisioning in virtual clusters to achieve better
performance.

In our previous work [40]–[43], for the purpose of fast
scheduling, we have explored the possibility of applying
simulation-based optimization methods. Ordinal Optimiza-
tion (OO) [15] has been applied for suboptimal but fast
searching. The OO is utilized for searching suboptimal solu-
tions in much shorter time and with reduced runs and analysis
of the workloads. Targeting at a sequence of suboptimal
schedules instead of an optimal one results in much lower
scheduling overhead by reducing the exhaustive searching
time [40]. Experiments show that the methods capture work-
load characteristics and lead to an overall improved perfor-
mance. However, the scheduling overhead of applying those
methods still refrains its applicability in highly fluctuated
workloads.

In this paper, we propose an iterative and evolutionary
usage of ordinal optimization to further reduce the scheduling
overhead. Our major contribution consists of the following:
• The iterative OO (iOO) method published in our earlier
paper [40], is applied in the new and real multitasking-
scheduling model in this paper. As expected, the iOO
method shows up to 20% performance speedup than
competing methods.

• In a series of rapidly fluctuating workload periods, we
contribute a procedure of using short-phase scheduling
for fine-grained workload analysis. In stable workload
phases, long-term scheduling is accordingly contributed
which intends to save time to analyze the workloads for
accurate scheduling.

• A step further, as an extension of iOO, the evolutionary
OO (eOO) analyzes the workload patterns among con-
secutive phases and adjusts the scheduling based on the
patterns. We develop a series of algorithms to partition
and merge workload for efficient scheduling.

• We use a dynamic scenario of scheduling multitask
scientific workloads to a group of virtual clusters on
Amazon EC2 cloud. The experiment results show that
the eOO approach achieves up to 30% performance
speedup regarding task throughput, compared with

Monte Carlo [23] and Blind Pick. As far as we know,
this is the first time an OO is applied in an evolutionary
way for dynamic optimization scenarios to meet special
requirements of cloud workload scheduling.

The rest of the paper is organized as follows. Section II
provides a brief description of the dynamic multitasking
workload scheduling problem and existing methods.
In Section III, we describe our proposed eOO technique
that iteratively applies the OO for scheduling workloads on
virtual clusters of a cloud. The experimental results, perfor-
mance evaluation, and comparative analysis are presented
in Section IV that also includes detailed information on the
applications and system configurations. The related work is
reviewed in Section V, and we provide concluding remarks
in Section VI.

II. DYNAMIC WORKLOAD SCHEDULING
In this section, first, we introduce our dynamic multitasking-
scheduling model. Thereafter, the necessity of using simu-
lations to is presented. To follow, three existing approaches,
Monte Carlo, Blind Pick, and iterative Ordinal Optimization,
are introduced. To each readership, Table 1 summarizes the
most frequently used symbols, notations, and definitions.

TABLE 1. Notations of workload scheduling.

A. DYNAMIC MULTITASKING WORKLOAD
SCHEDULING MODEL
In this model, we define the task class as a set of tasks that are
of the same type and can be executed concurrently. Suppose
there are C task classes in all, and the index is denoted as c,
c ∈ [1, C]. Tasks within one task class can be either interde-
pendent, such as scientific workflow, or independent of each
other, such as scientific simulations with multiple parameters.
Tasks across different task classes are independent.
Virtual Machines (VMs) are the scheduling and computing

units built on top of the physical machines. Given a fixed
number of VMs, our scheduling method organizes them into
C groups, each group serves for one task class. Each group

VOLUME 2, NO. 3, SEPTEMBER 2014 339

ZHANG et al.: Evolutionary Scheduling of Dynamic Multitasking Workloads

FIGURE 1. Virtual cluster resource allocation model for workload
execution in a virtualized cloud platform. Three physical
clusters with each cluster having tweleve VMs are shown. The
36 VMs are topologically partitioned into four VCs. The workload
dispatcher assigns the class-c task to to the c-th VC to execute.

is called a Virtual Cluster (VC). All of the tasks in the c-th
task class are assigned to the c-th VC. In this way, we must
partition all of the VMs intoC VCs to serve theC task classes.
Consider a virtualized cloud platform with C = 4 VCs

as illustrated in Fig. 1. The workload dispatcher directs the
tasks to the related VC for execution. A resource-reservation
schedule specifies the sets of VMs to be provisioned at con-
tinuous time periods. For example, the i-th schedule θ (ti)
is represented by a set of VMs allocated in C clusters in a
schedule space U . A C-dimensional vector represents this
schedule:

θ (ti) = [θ1(ti), θ2(ti), . . . , θc(ti), . . . , θC (ti)], (1)

where θc(ti) is the number of VMs assigned in VC c, and θ is
the total number of VMs that can be allocated. Therefore, we
have 6C

c=1θc(ti) = θ .
In Fig. 2, we show stacked workloads that are dispatched

to the C VCs in a timeline. From ti−1 (or also named ti−1,0),
schedule θ (ti−1) is applied until ti (or ti,0), where a new
schedule θ (ti) is used. The new schedule θ (ti) is generated
during the previous simulation stage from ti−1 to ti. This
stage is named Si−1 as shown in the figure. Between ti
and ti+1, new workloads (at time points ti,1, ti,2,. . .) arrive
that are also shown in the figure. Therefore, the dynamic
workload scheduling model is built on such a sequentially
overlapped simulation-execution phases. In each phase, one
schedule is applied and in the meanwhile, the workloads of
the subsequent stage are analyzed to simulate and generate
the schedule of the following stages.

We use 1δc(t) to denote the newly produced workload of
the i-th task class at any time t . The 1δc(t) is an incremental
value, which represents the accumulated unfinished work-
loads from the previous stages. As shown in Fig. 2,1δc(ti+1)
denotes the workload generated at ti+1 for the i-th VC.

The real workload at t is the sum of the remainingworkload
of the previous stages and the newly generated workload at
time t . We use δc(t) and δc(t) to denote the real and remaining
workload at time t for the c-th VC, which gives us:

δc(t) = δc(t)+1δc(t) c ∈ [1,C].

The aforementioned results are δ(t) = [δ1(t), δ2(t),. . .
δc(t), . . .δC (t)]T.
The tasks arriving at different VCs are time-variant. Our

target is to look for a time series of schedules:

θ (t) = [θ (t1), θ(t2), . . . , θ (ti), . . . ,θ(tI)], (2)

to maximize the throughput of the whole workload. The
throughput is defined as the ratio of the total number of tasks
finished and the time spent by the VCs to process the tasks.
To calculate throughput, we need to find out the schedule time
points, as well as the corresponding schedules for each time
point.
From time point ti to ti+1, the phrasal optimal throughput

given the workload and phase can be represented by the
following:

Ti∗ = maxT (θ (ti)|δ(t), Si−1)

= maxT (θ (ti)|δ(t), ti, ti−1)t ∈ [ti, ti−1), θ(ti) ∈ U

We first introduce the concepts of Class Execution Time
(CET) and Effective Execution Time (EET). Suppose that ti,0
and ti,1 are the time points of two consecutive workload
stages, as shown in Fig. 2. CETc(ti,0, ti,1) is the runtime from
the starting point ti,0 to the finishing time when all the tasks
in task class c are finished. We show CETc(ti,0, ti,1), c =
{1, 2, C}in Fig. 2 by the three double end-arrow dashed lines.
If CETc(ti,0, ti,1) is larger than the scheduling period length
ti,1 − ti,0 which means all the tasks in this task class cannot
be finished within [ti,0, ti,1], then ti,1 − ti,0 is used as CET
and the rest tasks are rolled over to 1δc(ti,1). EET(ti,0, ti,1),
on the other hand, means the longest execution time across all

FIGURE 2. Demonstration of the stacked workload of different
VC, given in a timeline. Each rectangular box represents the
workload generated for the corresponding virtual cluster.
Between schedule periods [ti , ti+1], there are time points at
which new workloads are generated (or arrive). The time points
are represented as ti,1, ti,2,. . . ti,Ni .

340 VOLUME 2, NO. 3, SEPTEMBER 2014

ZHANG et al.: Evolutionary Scheduling of Dynamic Multitasking Workloads

of the task classes within [ti,0, ti,1]. It can be formally defined
as follows.

EEF(ti,ni , ti,ni)

=

maxCETc(ti,ni , ti,ni+1)

∀CETc(ti,ni , ti,ni+1) < ti,ni+1 − ti,ni
ti,ni+1 − ti,ni

∃CEFc(ti,ni , ti,ni+1) ≥ ti,ni+1 − ti,ni

As shown in Fig. 2, EET (ti,1, ti,0) equals
to CET1 (ti,1, ti,0). Therefore, the period throughput from
ti to ti+1 is calculated by:

T ∗i =

∑Ni−1
j=1

∑C
c=1

(
δc
(
tj−1

)
− δc

(
tj
))

∑Ni−1
j=0 EET

(
ti,j, ti,j+1

)
Let δc(ti) be the number of tasks in the c-thVC at time ti,

pc(ti) be the expected execution time for each VM in the c-th
VC at time ti. Consequently, βc(ti) = θc(ti)/pc(ti) represent
the corresponding job processing rate, where θc(ti) is the
number of VMs inVCc that are allocated at time ti and rc(ti) =
δc(ti)/βc(ti) is the remaining execution time in the c-thVC at
time ti.

The task throughput is used as the performance met-
ric for the schedules. Given a schedule θ (t) = [θ (t1),
θ (t2),. . . ,θ (ti),. . . ,θ (tI)], the task throughput is calculated as
the total number of finished tasks divided by the total task
execution time (or the makespan). At different time periods,
different schedules may be applied. All of the candidate
schedules at each successive time period form a schedule
space U . The cardinality of U is calculated by the following
expression:

u = (θ − 1)!/[(θ − C)!(C − 1)!], (3)

where θ is the total number of VMs used in C virtual clusters.
The parameter u counts the number of ways to partition a set
of θ VMs into C nonempty clusters.
For example, if we use θ = 20 VMs in C = 7 VCs for

seven task classes, then we need to assess u = 27,132 possible
schedules to search for the best schedule at each time ti.
Each schedule θ (ti) takes the form of seven dimensional tuple,
having a sum equal to 20, such as [2, 3, 3, 5, 2, 3, 2] or
[6, 2, 1, 3, 2, 4, 2]. The search space U is very large given the
large number of VMs θ , which leads to the ineffectiveness
of the scheduling method. Therefore, the schedule search
space must be reduced significantly, especially in a dynamic
environment.

B. SIMULATION-BASED OPTIMIZATION METHODS
In this section, we introduce a series of existing simulation-
based optimization solutions for this problem, namely
Monte Carlo Simulation, Blind Pick, and iOO.

Simulations are needed due to the fact that the expected
execution time pc(ti) is unknown in real-time. The value is
stochastic and may be subjected to unknown runtime con-
ditions, such as the contention of other virtual resources.

Algorithm 1Monte Carlo Simulation Method

Moreover, the random runtime workload distribution in the
c-thVC also has a huge impact on its value.
For a given number of cloud VM instances, configuration

(2ECU in Amazon EC2, 1.7GB Memory), VM utilization
value, and failure rate, we evaluate the execution time dis-
tribution of a particular task class with a number of tasks, and
correspondingly create a table.
For example, the table tells that the execution time is a nor-

mal distribution (X~N (20, 52)) when running [100, 110] tasks
of task class twowith 10VMs, each being small Amazon EC2
instance, failure rate being 0 and utilization being in a range
of [70%, 80%]. Then, before each experiment runs, if we
have profiled the average VMutilization is 75%, and there are
105 tasks and 10VMs, then wemust sample the normal distri-
bution above to estimate pc(ti), and apply this sample value to
estimate the throughput of each schedule, and finally choose
the best schedule for use. Algorithm 1 below introduces the
process.
To yield such an estimation, however, multiple sim-

ulation runs must be conducted and an observed aver-
age is to be used for pc(ti). This is a typical Monte
Carlo simulation method that is known to be time
consuming.

VOLUME 2, NO. 3, SEPTEMBER 2014 341

ZHANG et al.: Evolutionary Scheduling of Dynamic Multitasking Workloads

1) Monte Carlo Method: Suppose that the overhead of
using the Monte Carlo method is denoted by OM , which is
the length of thet scheduling period. Thereafter, we search
through all of the time points between ti and ti+1, when
new workloads are generated, to calculate the CET for each
VC as shown in Line 14 and 18. This step is followed by
calculating the EET during the scheduling period, as shown
in Line 20. Following this, the Makespan and throughput are
calculated.
2) Blind Pick Method: Instead of searching through the

whole schedule space Uas done in the Monte Carlo method,
the Blind Pick (BP) method, randomly selects a portion of
the schedules only within U for evaluation. The ratio to be
selected is defined by a value α (0 ≤ α ≤ 1). The algorithm
of applying BP is exactly the same as Monte Carlo, except for
the scheduling sample spaceU and scheduling overhead. The
length of the scheduling period is α × OM .
3) Iterative Ordinal Optimization Method: The OO, a sub-

optimal low overhead scheduling method is thoroughly intro-
duced in [15]. Different from the aforementioned methods,
the OO uses a rough model (n repeated runs) to generate
a rough order of all of the schedules in U , and uses the
accurate model (N repeated runs, n� N) to evaluate the top-
sschedules in the rough order list. For the values of s, the
readers are referred to Section III.B.

The OO method contains two steps. The rough evaluation
step evaluates u schedules, each one being repeated n times,
and the overhead becomes u×O× n. SupposeO denotes the
time needed to evaluate one schedule, then the second stage
will take s × O × N amounts of time.

We have proven in our previous paper [40] that the OO
simulation time is shorter than other two methods that enable
us to develop an iterative OO (iOO) method. In other words,
the iOO applies the OO method iteratively in a multi-stage
scheduling manner, with each stage being a new OO routine.

The iOO approach exhibited superior performance in the
research paper, especially in the highly fluctuated work-
load cases due to the reduced overhead, resulting in shorter
scheduling periods and fine-grained scheduling. The length
of the iOO scheduling period can be determined as u × O ×
n+ s × O × N .
However, the iOO does not consider the characteristics

of workloads, namely the similarity of the workloads in
consequent stages of a multi-stage scheduling problem. In the
next section, we introduce the evolutionaryOrdinal Optimiza-
tion (eOO) that extends the iOO method along those lines.

III. EVOLUTIONARY ORDINAL OPTIMIZATION
An intuitive interpretation of the eOO is the assumption that
the simulation runs must be allocated based on the charac-
teristics of the workloads. For example, fluctuating workload
requires more intermediate scheduling time points. Because
each of the short scheduling phases satisfies small periods of
the workload, the eOO delivers better overall performance.

However, one disadvantage of the eOO method is that
the short simulation phase leads to less simulation runs of

the pc(ti), which on the contrary, might decrease the perfor-
mance of each of the single schedule period. In this section,
we demonstrate the methodologies and effectiveness of the
eOO method, and propose a solution to partition and merge
the scheduling periods based on the fluctuations within the
workload.

A. EVOLUTIONARY ORDINAL OPTIMIZATION
Before we step into any further detail, we define the concept
of workload pattern. At time t0 in Fig. 3, one batch of work-
load for the seven VCs arrives. This workload pattern is very
similar to the workload patterns at t1 and t2. To give a formal
definition, suppose that there are two batches of workloads at
time t ′, t ′′ ∈ [ti, ti+1], i.e., δ(t ′) = [δ1(t ′),. . . ,δc(t ′),. . . ,δC (t ′)]
and δ(t ′′) = [δ1(t ′′),. . . ,δc(t ′′),. . . ,δC (t ′′)], respectively, where
δc(t ′) denotes the tasks for VC c at time t ′. The similarity
pattern between δ (t ′) and δ (t ′′) can be defined as:

Sim(δ t ′, δ(t ′′)) =

∑c
c=1(δc(t

′)× δc(t ′′))√∑c
c=1 δc(t ′)2 ×

∑c
c=1 δc(t ′′)2

. (4)

Intuitively, a high similarity pattern leads to the merger of
two scheduling periods, while a low similarity pattern leads
to a scheduling period partition. In Fig. 3, we would merge
[t0, t1], [t1, t2], and [t2, t3] as a single scheduling period,
when supposing that t is the scheduling period of any method
proposed in the previous section. However, such a merge does
not apply to the period [t3, t3 + t], where the two batches of
workloads are dramatically different from each other. There-
fore, we must divide the scheduling period adaptively into
smaller periods for separate scheduling.

FIGURE 3. Demonstration of various workload characteristics.
The dashed-line rectangular box with seven solid lines are the
seven workloads for the C = 7 VCs. There are five batches of
workloads arrive at time t0, t1, t2, t3 and t4 for each of the virtual
clusters.

The major tenets of the eOO lies in the automatic schedul-
ing period partitioning and merging as introduced below.
(1) A pairwise comparison of the workload pattern must

be made between each of the pairs of the workload in each
scheduling period, such as [ti, ti+1]. If the maximum simi-
larity across all the workload patterns is sufficiently small,
then the interval must be sliced into two, or more, consecutive
scheduling periods. Otherwise the period is just kept as it is.
(2) Consider two workload patterns, δ(t ′) and δ(t ′′) that are

extracted from two consecutive scheduling periods [ti, ti+1]

342 VOLUME 2, NO. 3, SEPTEMBER 2014

ZHANG et al.: Evolutionary Scheduling of Dynamic Multitasking Workloads

Algorithm 2 Scheduling Period Partition

and [ti+1, ti+2], respectively, where t ′ ∈ [ti, ti+1] and t ′′ ∈
[ti+1, ti+2]. We make similarity analysis among all of the
possible pairs as mentioned above. If the least similarity value
is sufficiently large, then the two scheduling periods must
be merged. Such a merge operation leads to a sufficiently
large simulation period of [ti, ti+2] that promises a longer
simulation period for the subsequent period.

In Algorithm 2 and Algorithm 3, we show the details of the
scheduling period merge and partition based on the workload
similarities. In general, for Algorithm 2, if the maximum sim-
ilarity value between any two pairs of workloads in [ti, ti+1] is
less than α, then the interval will be partitioned into two parts.
For the aforementioned case, we use a recursive algorithm,
as shown in Line 9 and Line 10, to further analyze the two
sub-intervals. The analysis stops when either the sub-interval
is smaller than a threshold value w, or all of the workload
patterns are similar in the interval that is being checked. The
algorithm outputs all of the decision time points DP.

B. PARAMETER CONFIGURATION
Unknown parameters must be finalized before the experi-
mental runs. These are the simulation runs N and n, size of
selected set si in iOO, size of the selected set se using eOO,
size of the selected set sBP using BP, α and β in Algorithm 3
and Algorithm 4.

The BF Monte Carlo repeats itself N times to estimate
the average value of each pc(ti). As a common practice to
achieve reliable simulation accuracy, Monte Carlo usually
applies a large simulation runs, say N = 1000, for each
single individual schedule for large-scale scientific workflow
scheduling problems [42].

The rough model n of the iOO is also determined by the
statistic theory. Based on the central tendency theory, it takes
two orders of magnitudes more runs to improve one order of

Algorithm 3 Scheduling Period Merge

magnitude of the estimation accuracy. When applying n = 10
runs in the rough model, which is two orders of magnitude
less simulation runs thanN , would lead to one order of higher
estimation error. For example, suppose the estimation error
of BF Monte Carlo stays in a range from 0.1 to 0.9, the
estimation error of iOO would be in a range from 1 to 9.
Details analysis of and a formal proof of the relationship
between the simulation time and simulation accuracy can also
be referred to the work [42].
Selection set size of each method, BP, iOO and eOO is

different. The BPmethod picks a fixed ratio α that is normally
larger than 80%. As we mentioned earlier, the iOO and eOO
are two-stage scheduling algorithms. Their selection sets are
determined by the time left for the second scheduling period.
For example, if each scheduling period of iOO equals to
t = 100 seconds and the rough evaluation of all schedules
takes 10 seconds. Suppose a precise evaluation of one sched-
ule takes 3 seconds, the maximum selection set size for iOO
would be 30.
Around ten thousand groups of simulated data were gen-

erated randomly based on the distribution of the workloads.
We plot the histogram of the statistic analysis of these work-
loads as shown in Fig. 4. Six consecutive ranges of pair-wise
similarity degree values are used as the x-axis and the total
number of workload pairs that shows the similarity degree is
plotted as the y-axis. This method classifies the similarities
among all the workloads in a few categories, and identifies
quantitatively the similar value threshed we use to determine

VOLUME 2, NO. 3, SEPTEMBER 2014 343

ZHANG et al.: Evolutionary Scheduling of Dynamic Multitasking Workloads

whether one pair of workload being similar or not. We set the
upper third quantile of the distribution as α and the lower third
quantile as β. The results are reported in Fig. 4.

FIGURE 4. The cumulative number of workloads and the
similarities between all of the workload pairs over the similarity
degree values.

C. THE eOO FOR DYNAMIC WORKLOAD SCHEDULING
If the scheduling overhead is too high and the scheduling itself
takes longer than the period of workload and resource chang-
ing, then the dynamic workload in the multitasking schedul-
ing problem is difficult to capture. However, applying the
OO in an evolutionary manner, leads to the full investigation
of the workload patterns. For the highly dynamic and fluc-
tuating workloads, the eOO adaptively partitions into small
pieces, to generate the fine-grained schedules. Although the
short-period scheduling means less accuracy, the gain in the
adaptivity to such kinds of workloads, outweighs the minor
inaccuracies in the solutions.

On the contrary, the eOO produces course-grained sched-
ules for stable workloads. In this way, the merged stages lead
to more simulation time for a subsequent stage that improves
the accuracy. We illustrate the method graphically in Fig. 5.

FIGURE 5. Illustration of OO adaption to dynamic workloads.

Let T be the time overhead of scheduling, using the BF
or Monte Carlo, and let t be the time overhead of that of the
iOO. For example, if at time t0, the BF is used for simulations,
then it is not until t1 that the BF can generate the optimal
schedule for [t1, t2]. While the solution is optimal at time t1,
no further and consecutive solutions can be generated again
during t1 and t2. As for the iOO at time t1, workload is used
to generate an acceptable schedule at time t1 + t , and then

t1+2t ,. . . . The aforementioned process is conducted repeat-
edly to capture a finer granularity variation of the workload
to improve the overall performance.
As an improvement of iOO, the eOO takes the workload

pattern into account. In [t1 + t , t1+2t], workload patterns
evolve significantly. In eOO, this interval is partitioned into
two parts shown in the solid-rectangular box of Fig. 5. In
[t0+2t , t0+4t] or [t2, t2+2t], the inter-workload patterns are
similar; and as a result two intervals are merged into one.
The eOO scheduling is performed with a finer granularity,

namely with 0.5t per scheduling period when partitioned.
In case of a merge, the eOO scheduling is performed with
a coarse granularity period, namely with 2t per scheduling
period. This adaptability makes the scheduling method more
accuracy with better performance.

D. OPTIMAL COMPUTING BUDGET ALLOCATION
BASED SCHEDULING
All of the scheduling methods, namely Monte Carlo,
Blind Pick, iOO, eOO can be further improved by combin-
ing them with the Optimal Computing Budget Allocation
(OCBA) [7].
The OCBA is a simulation-based optimization approach

that allocates computing resources effectively among all of
the candidate schedules. Simply speaking, rather than equally
allocate simulation time among all of the schedules, the
OCBA allocates more simulation time to the schedules that
show better overall performances in their early simulation
stages. Such an exercise removes the potentially poor sched-
ules at an early stage, and gives more observations to the
promising schedules. In our experimental evaluations, we
apply theOCBAmethod on each of the schedule stage derived
by the eOO, and compare the performances of all of the
methods.

IV. EVALUATIONS, RESULTS, AND DISCUSSIONS
In this section, detailed experimental design and results are
presented for the virtual cluster allocation in multitasking
workload scheduling applications.

A. EXPERIMENTAL SETTINGS
The cloud experiments are carried out using 16, 32, 64,
and up to 128 standard VM instances on the Amazon EC2
platform. Each instance is by default, a small one with 1.7
GB of memory, one EC2 Compute Unit (one virtual core with
one EC2 Compute Unit), 160 GB of local instance storage,
a 32-bit platform on deployed Linux Base with EBS boot,
and a 32-bit architecture with Amazon EC2 Tools shown in
Fig. 6.
The benchmarking applications used are similar to [8].

The authors report a benchmark application suite includes
bit-reversals, merge-sort, matrixmultiplication, a trace-driven
simulation, partitioning meshes, k-nearest neighbor classifi-
cation, and AdaBoost algorithm. These seven applications
correspond to our seven tasks classes, which need seven
virtual clusters to host and execute.

344 VOLUME 2, NO. 3, SEPTEMBER 2014

ZHANG et al.: Evolutionary Scheduling of Dynamic Multitasking Workloads

Up to 10,000 tasks were concurrently executed. Each task
corresponding to one benchmark application has a variable
amount of input dataset size. The total amount of data used in
the 128-VM scenarios approximately exceeds 1.6 TB.

We define four typical workload types by using, say, LFLD
to represent Low Frequency Low Difference (LFLD) work-
load. This means the workload comes slowly while most of
the workload patterns are alike. Similarly, the three other
workload types are LFHD, HFLD and HFHD. In the HFHD
case, the average arrival rate of the workload comes up to
500 tasks/second. The high velocity and volume of data used
justifies a testing-scale big data analytic in these experiments.

Even though the data amount tested here is not extremely
large, we argue that the method can still be extrapolated to
a larger scale of hundred TB or even PB of data due to the
loosely-coupled multitasking property.

FIGURE 6. Snapshot of multitasking applications on Amazon
EC2.

The hierarchical structure of our experiments is shown in
Fig. 7. Each server notation is an Amazon EC2 instance.
There are 7 VCs denoted by the dashed-rectangular boxes.
There is one level-2 seed sever in each of the VC to ensure at
least one VM is running to process the requests from level-1
seed server. It is also used to balance the workloads into the
internal VMs. This is a dedicated VM that resides in each of
the VC.

FIGURE 7. Architecture of the organized instances on Amazon
EC2.

B. APPLICATION SCENARIOS
Two major application scenarios are depicted in Fig. 8 below.
We describe both of them in detail.

FIGURE 8. Two application scenarios for the benchmark.

Scenario 1: Simulation before execution. In the upper
part of Fig. 8, one simulation stage is conducted before
each experimental run. Before execution stage 1, there is
sufficient time for a simulation to find a good allocation
schedule from t0 to t1, and the schedule is applied at t1.
No simulation is carried out during execution stage 1 until t2.
This scenario is commonly seen in the job scheduling of
traditional parallel and distributed computing systems and
spot instances in Amazon EC2. For example, in using spot
instances, there is sufficient time for simulation before the
price reaches an acceptable level, and execution stage can
follow the simulation.
Scenario 2: Simulation while execution. In the lower part

of Fig. 8, simulation and execution stages overlap. At time t0,
a random schedule is used for the time being, while the work-
load information between [t1, t2] is used to generate a better
quality schedule to be used at time t1. Similar scheduling is
conducted repeatedly until the end of experiment. Most of the
real-time multitasking scheduling applications are carried out
based on Scenario 2.

C. COMPARATIVE STUDIES ON SCENARIO 1
We compare the case studies of Scenario 1, on the above-
mentioned four types of workloads. The results are reported
in Fig. 9 (a)-(d).
It can be observed that the workload variation has a very

limited impact on the three methods. The BF Monte Carlo
is always the best while the Blind Pick is always the worst
among all. The OO method lies in between. In Table 2, we

TABLE 2. Performance comparison of scenario 1.

VOLUME 2, NO. 3, SEPTEMBER 2014 345

ZHANG et al.: Evolutionary Scheduling of Dynamic Multitasking Workloads

FIGURE 9. Comparative studies of application scenario 1.
(a) LFLD. (b) LFHD. (c) HFLD. (d) HFHD.

demonstrate the performance difference of using OO com-
pared with the other two methods. Positive values mean the
method outperforms OO.

The aforementioned behavior is straightforward. Given
sufficient simulation time, the BF Monte Carlo simulates
longer than any other methods to evaluate pc(ti), which

undoubtedly achieves the best performance because of its
precise evaluation. Random selection of the Blind Pick
method leads to the worst performance. This Method takes
the least of the simulation time; however, the performance is
mediocre at best. The OO method cannot take advantage of
the long simulation time allowed and has improvement over
Blind Pick, but not as good as BF Monte Carlo.

D. COMPARATIVE STUDIES ON SCENARIO 2
The simulation time budget in Scenario 2 is limited. Conse-
quently, continuous simulation and scheduling are performed
simultaneously.
In this scenario, the BFMonte Carlo method with extended

simulation is no longer the best, with lower throughput com-
pared with the iOO and eOO methods. From Fig. 10(a)-(d),
we compare the throughput of the methods using a variable
size of cluster. The corresponding performance comparison
using eOO compared with other methods are summarized
in Table 3.

TABLE 3. Performance comparison of scenario 2.

The performance of all the four methods is similar when a
small number of VMs is used. For example, the four methods
perform similarly in the case of 16 VMs. However, the dif-
ference grows substantially as the number of VMs increase.
In the case of 128 VMs, the eOO performs 32.62% and
29.06% better than the BP and the BF.
The relative performance of the BF Monte Carlo and BP

varies given different types of workloads. In the LFHD and
HFHD cases, the BP performs better; while in the LFLD
and HFLD ones, the BF Monte Carlo slightly outperforms
the BP. This is caused by the low overhead of BP. The BF
Monte Carlo with long simulation time and high overhead, is
inapplicable in Scenario 2.
The advantage of the eOO over the iOO resides in its

adaptability in mutating the scheduling periods. In Fig. 10(b)
and Fig. 10(d), where the workloads exhibit high difference

346 VOLUME 2, NO. 3, SEPTEMBER 2014

ZHANG et al.: Evolutionary Scheduling of Dynamic Multitasking Workloads

FIGURE 10. Comparative studies of application scenario 2.
(a) LFLD. (b) LFHD. (c) HFLD. (d) HFHD.

over time, the eOO performs much better with its capability
to partition one period into two or merge two neighboring
periods into one. This is a workload pattern-aware method;
therefore, it performs much better in highly dynamic work-
load cases.

E. SIMULATED COMPARATIVE STUDIES WITH OCBA
As mentioned previously (Section III.D), the OCBA attempts
to judicially allocate the computing budget among all the
multiple schedules, which breaks the equal budget alloca-
tion assumption implemented in the iOO and eOO methods.
In simple words, the more a schedule shows better perfor-
mance in a set of simulation runs, the more follow-up simula-
tion runs the schedule tends to receive. By employing such a
methodology, the potentially better schedules are evaluated
more frequently and accurately, which translates into bet-
ter system performance. Without explicitly mentioned, the
OCBA used in this section is referred to using the eOO
method by replacing its equal schedule simulation allocation
time with the OCBA algorithm.
Unlike other methods, the OCBA calculates the simulation

time for each schedule and adjusts it in runtime. In a real
cloud-computing environment, this solution faces a difficulty
by not being able to effectively predict the simulation cycles.
Instead, we use simulations only to prove the effectiveness of
this method. In our future works, we will explore by studying
more scenarios to justify the applicability of this method in
real cloud computing environments. The comparative results
are shown in Fig. 11 by simulating a cluster of using 32 VMs.
The performance metric is the makespan which aggregates all
of the effective compute resource usage time, denoted by the
EET (as detailed in Section II.A).
In Table 4, similar performance comparison of using

OCBA compared with other methods is given. OCBA
improves up to 29.69% performance than other methods. This
improvement is observed mainly in HFHD workload. This
validates our assumption again that, our methods are appeal-
ing to highly fluctuating workloads. We also demonstrate
the effectiveness of using the OCBA method over all other
methodologies.

TABLE 4. Performance comparison of using OCBA.

Overall, there is a 2% to 7% speedup using the eOO
with OCBA compared to the eOO method only. Compared
to other methods, such as the Monte Carlo and the Blind
Pick in the HFHD workload scenario, the speedup can be as
much as 29%. In other less dynamic workload scenarios, the
speedup value varied between 12.6% and 18.3%.

V. RELATED WORK
We have witnessed an escalating interest in resource allo-
cation for multi-task scheduling [21], [32]. Many classical
optimization methods, such as opportunistic load balance,
minimum execution time, and minimum completion time, are

VOLUME 2, NO. 3, SEPTEMBER 2014 347

ZHANG et al.: Evolutionary Scheduling of Dynamic Multitasking Workloads

FIGURE 11. Comparative studies of application Scenario 2 with
OCBA. (a) LFLD. (b) LFHD. (c) HFLD. (d) HFHD.

described in [12]. Suffrage, min-min, max-min, and auction
based optimization procedures are discussed in [6] and [25].
Yu and Buyya [39] proposed economy-based methods to
handle large-scale grid workflow scheduling under deadline
constraints, budget allocation, and Quality of Service (QoS).

Benoit et al. [4] designed resource-aware allocation strategies
for divisible loads. Li and Buyya [18] proposed a model-
driven simulation grid scheduling strategies. Zomaya et al.
[20], [33] have proposed a hybrid schedule and a cooper-
ative game framework. There are also studies on making
various tradeoffs under various constraints and objectives
for the workflow scheduling. Wieczorek [37] analyzed five
facets that may have a major impact on the selection of an
appropriate scheduling strategy, and proposed taxonomies for
the multi-objective workflow scheduling. Prodan et al. [29]
proposed a novel dynamic constraint algorithm, which out-
performs many existing methods, such as SOLOS and BDLS,
to optimize bi-criteria problems.
Duan et al. [11] suggested a low complexity game-theoretic

optimization method. Dogan et al. [10] developed a matching
and scheduling algorithm for both the execution time and
the failure probability. Moretti [24] suggested the All-Pairs
to improve usability, performance, and efficiency of a cam-
pus grid. Smith et al. [30] proposed a robust static resource
allocation for distributed computing systems operating under
imposed QoS constraints.
Ozisikyilmaz et al. [26] suggested an efficient machine

learning method for system space exploration. Similar to
the work described in [19], our work is also carried out by
using the search size based reduction. In [28], [33], and [34],
petri-net and data-driven based methods are shown to com-
pose services via the mediator, which motivates us to design
the architectural cloud-scheduling platform for multitasking
workloads.
A few control-based strategies are also proposed [9], [27],

[45] to manipulate the VM count for delivering optimal per-
formance. Other related work, such as [22] and [44], focus
on finding optimal price strategy for renting spot instances.
The similarity of these works lies to relying on their indi-
vidual statistic models. Our work, however, is a simulation-
based strategy, which is applied to multi-stage scheduling
problems.
Based on the theory of the OO, we proposed the eOO

that has advantage in handling large-scale search space to
solve the multitask scheduling problem for dynamic work-
loads. Ever since the introduction of OO in [14], one can
search for a small subset of solutions that are sufficiently
good and computationally tractable. Along the OO line, many
OO based heuristic methods have been proposed [17], [36].
It quickly narrows down the solution to a subset of ‘‘good
enough’’ solutions with manageable overhead. Typical and
original applications of the OO include automated manufac-
turing [31], communications [38], power systems [1], and dis-
tributed computing systems [43]. Different selection rules of
OO are compared in [16] to discuss the relative performance.
Conclusion were made that no selection rule is absolutely
better than the others under all circumstances. To the best of
our knowledge, this paper reports the first successful attempt
to apply theOO in an iterative and evolutionary fashion for the
dynamic optimization scenarios to meet special requirements
of the cloud workload scheduling.

348 VOLUME 2, NO. 3, SEPTEMBER 2014

ZHANG et al.: Evolutionary Scheduling of Dynamic Multitasking Workloads

VI. CONCLUSIONS
A low-overhead method for dynamic multitasking workload
scheduling in elastic virtual clusters is introduced in this
work. The advantage of the proposed low-overhead schedul-
ing scheme is summarized below.

1) Modeling of multitasking workload scheduling in wide-
area elastic virtualized clusters. Cloud computing allocates
virtual cluster resources on demand. This model serves the
cloud computing environments and proposes simulation-
based method for optimization.

2) The OO methodology is enhanced to deal with dynam-
ically evolving workloads. iOO, with lower scheduling over-
head and eOO, with adaptivity in terms of variable scheduling
interval to turbulent workloads, are introduced, respectively.
These two enhancements to OO are agile enough to capture
system dynamism and conduct real-time scheduling. The
two methods improve the overall performance in fluctuating
workload scenarios evidenced by the experimental studies.

3) Proposed methods are validated by real benchmark
applications with large search space, VM resource con-
straints, and uncertainties. Very few previous works utilizes
simulation-based method for dynamic multitasking workload
scheduling. Our approach is simulation based which takes
consideration of these factors and is more realistic to be
applied in real-world cloud systems.

Ongoing work includes the establishment of new cloud
infrastructure for enabling real-time large-scale data analysis
using a variety of more benchmark applications with varying
workloads. We also intend to release the simulation-based
optimization approaches as profiling tools to enhance perfor-
mance of scheduling multitasking workload on Amazon EC2
platform.
Acknowledgment
This work was supported in part by the Ministry of Sci-
ence and Technology of China through the National 973
Basic Research Program under Grant 2013CB228206 and
Grant 2011CB302505, in part by the National Natural Sci-
ence Foundation of China under Grant 61472200 and Grant
61233016, and in part by the National Science Foundation
under Grant CCF-1016966.
REFERENCES
[1] E. H. Allen, ‘‘Stochastic unit commitment in a deregulated electric utility

industry,’’ Ph.D. dissertation, Dept. Elect. Eng. Comput. Sci., MIT, Cam-
bridge, MA, USA, 1998.

[2] M. Armbrust et al., ‘‘Above the clouds: A Berkeley view of cloud
computing,’’ Univ. California, Berkerley, Berkerley, CA, USA,
Tech. Rep. UCB/EECS-2009-28, 2009.

[3] P. Barham et al., ‘‘Xen and the art of virtualization,’’ in Proc. 19th
ACM Symp. Operating Syst. Principles, Bolton Landing, NY, USA, 2003,
pp. 164–177.

[4] A. Benoit, L. Marchal, J.-F. Pineau, Y. Robert, and F. Vivien, ‘‘Resource-
aware allocation strategies for divisible loads on large-scale systems,’’ in
Proc. IEEE Int. Parallel Distrib. Process. Symp. (IPDPS), Rome, Italy,
May 2009, pp. 1–4.

[5] J. Cao, S. A. Jarvis, S. Saini, and G. R. Nudd, ‘‘Gridflow: Workflow
management for grid computing,’’ in Proc. 3rd IEEE/ACM Int. Symp.
Cluster Comput. Grid, Tokyo, Japan, May 2003, pp. 198–205.

[6] H. Casanova, A. Legrand, D. Zagorodnov, and F. Berman, ‘‘Heuristics for
scheduling parameter sweep applications in grid environments,’’ in Proc.
9th Heterogenous Comput. Workshop (HCW), Cancún, Mexico, May 2000,
pp. 349–363.

[7] C.-H. Chen, ‘‘An effective approach to smartly allocate computing budget
for discrete event simulation,’’ in Proc. 34th IEEE Conf. Decision Control,
Dec. 1995, pp. 2598–2605.

[8] S. Chen, L. Xiao, and X. Zhang, ‘‘Adaptive and virtual reconfigurations
for effective dynamic job scheduling in cluster systems,’’ in Proc. 22nd Int.
Conf. Distrib. Comput. Syst. (ICDCS), Vienna, Austria, 2002, pp. 35–42.

[9] A. Demberel, J. Chase, and S. Babu, ‘‘Reflective control for an elastic
cloud application: An automated experiment workbench,’’ in Proc.
USENIX Workshop Hot Topics Cloud Comput. (HotCloud), San Diego,
CA, USA, 2009, p. 8.

[10] A. Doǧan and F. Özgüner, ‘‘Biobjective scheduling algorithms for
execution time–reliability trade-off in heterogeneous computing systems,’’
Comput. J., vol. 48, no. 3, pp. 300–314, 2005.

[11] R. Duan, R. Prodan, and T. Fahringer, ‘‘Performance and cost optimization
for multiple large-scale grid workflow applications,’’ in Proc. IEEE/ACM
Int. Conf. Supercomput. (SC), Reno, NV, USA, 2007, p. 12.

[12] R. F. Freund et al., ‘‘Scheduling resources in multi-user, heterogeneous,
computing environments with smartnet,’’ in Proc. 7th Heterogenous Com-
put. Workshop (HCW), Washington, DC, USA, Mar. 1998, pp. 184–199.

[13] M. R. Garey and D. S. Johnson, Computers and Intractability: A Guide to
the Theory of NP-Completeness. San Francisco, CA, USA: Freeman, 1979.

[14] Y.-C. Ho, R. Sreenivas, and P. Vaklili, ‘‘Ordinal optimization of discrete
event dynamic systems,’’ J. Discrete Event Dyn. Syst., vol. 2, no. 2,
pp. 61–88, 1992.

[15] Y.-C. Ho, Q.-C. Zhao, and Q.-S. Jia, Ordinal Optimization, Soft Optimiza-
tion for Hard Problems. New York, NY, USA: Springer-Verlag, 2007.

[16] Q.-S. Jia, Y.-C. Ho, and Q.-C. Zhao, ‘‘Comparison of selection rules
for ordinal optimization,’’ Math. Comput. Model., vol. 43, nos. 9–10,
pp. 1150–1171, 2006.

[17] D. Li, L. H. Lee, and Y.-C. Ho, ‘‘Constraint ordinal optimization,’’ Inf.
Sci., vol. 148, nos. 1–4, pp. 201–220, 2002.

[18] H. Li and R. Buyya, ‘‘Model-driven simulation of grid scheduling
strategies,’’ in Proc. 3rd IEEE Int. Conf. e-Sci. Grid Comput., Dec. 2007,
pp. 287–294.

[19] D. Lu, H. Sheng, and P. Dinda, ‘‘Size-based scheduling policies with
inaccurate scheduling information,’’ in Proc. IEEE Comput. Soc. 12th
Annu. Int. Symp. Model., Anal., Simul. Comput. Telecommun. Syst.,
Oct. 2004, pp. 31–38.

[20] K. Lu and A. Y. Zomaya, ‘‘A hybrid schedule for job scheduling and
load balancing in heterogeneous computational grids,’’ in Proc. 6th IEEE
Int. Parallel Distrib. Process. Symp., Hagenberg, Austria, Jul. 2007,
pp. 121–128.

[21] M. Maheswaran, S. Ali, H. J. Siegel, D. Haensgen, and R. F. Freud,
‘‘Dynamic mapping of a class of independent tasks onto heterogeneous
computing systems,’’ J. Parallel Distrib. Comput., vol. 59, no. 2,
pp. 107–131, Feb. 1999.

[22] M. Mattess, C. Vecchiola, and R. Buyya, ‘‘Managing peak loads by leasing
cloud infrastructure services from a spot market,’’ in Proc. 12th IEEE Int.
Conf. High Perform. Comput. Commun. (HPCC), Melbourne, Australia,
Sep. 2010, pp. 180–188.

[23] N. Metropolis and S. Ulam, ‘‘The Monte Carlo method,’’ J. Amer. Statist.
Assoc., vol. 44, no. 247, pp. 335–341, 1949.

[24] C. Moretti, H. Bui, K. Hollingsworth, B. Rich, P. Flynn, and D. Thain,
‘‘All-pairs: An abstraction for data-intensive computing on campus grids,’’
IEEE Trans. Parallel Distrib. Syst., vol. 21, no. 1, pp. 33–46, Jan. 2010.

[25] A. Mutz and R. Wolski, ‘‘Efficient auction-based grid reservations using
dynamic programming,’’ in Proc. IEEE/ACM Int. Conf. Supercomput.,
Austin, TX, USA, Nov. 2007, p. 16.

[26] B. Ozisikyilmaz, G. Memik, and A. Choudhary, ‘‘Efficient system design
space exploration using machine learning techniques,’’ in Proc. 45th
ACM/IEEE Design Autom. Conf., Jun. 2008, pp. 966–969.

[27] P. Padala et al., ‘‘Adaptive control of virtualized resources in utility
computing environments,’’ in Proc. 2nd ACM SIGOPS/EuroSys Eur. Conf.
Comput. Syst. (EuroSys), Lisbon, Portugal, 2007, pp. 289–302.

[28] S. Pal, S. K. Das, andM. Chatterjee, ‘‘User-satisfaction based differentiated
services for wireless data networks,’’ in Proc. IEEE Int. Conf. Commun.
(ICC), Seoul, Korea, May 2005, pp. 1174–1178.

[29] R. Prodan and M. Wieczorek, ‘‘Bi-criteria scheduling of scientific grid
workflows,’’ IEEE Trans. Autom. Sci. Eng., vol. 7, no. 2, pp. 364–376,
Apr. 2010.

[30] J. Smith, H. J. Siegel, and A. A. Maciejewski, ‘‘A stochastic model
for robust resource allocation in heterogeneous parallel and distributed
computing systems,’’ in Proc. IEEE Int. Parallel Distrib. Process.
Symp. (IPDPS), Miami, FL, USA, Apr. 2008, pp. 1–5.

[31] C. Song, X. Guan, Q. Zhao, and Y.-C. Ho, ‘‘Machine learning approach
for determining feasible plans of a remanufacturing system,’’ IEEE Trans.
Autom. Sci. Eng., vol. 2, no. 3, pp. 262–275, Jul. 2005.

VOLUME 2, NO. 3, SEPTEMBER 2014 349

ZHANG et al.: Evolutionary Scheduling of Dynamic Multitasking Workloads

[32] D. P. Spooner, J. Cao, S. A. Jarvis, L. He, and G. R. Nudd, ‘‘Performance-
aware workflow management for grid computing,’’ Computer J., vol. 48,
no. 3, pp. 347–357, 2005.

[33] R. Subrata, A. Y. Zomaya, and B. Landfeldt, ‘‘A cooperative game
framework for QoS guided job allocation schemes in grids,’’ IEEE Trans.
Comput., vol. 57, no. 10, pp. 1413–1422, Oct. 2008.

[34] W. Tan, Y. Fan, M. Zhou, and Z. Tian, ‘‘Data-driven service composition
in enterprise SOA solutions: A Petri net approach,’’ IEEE Trans. Autom.
Sci. Eng., vol. 7, no. 3, pp. 686–694, Jul. 2010.

[35] W. Tan, Y. Fan, and M. Zhou, ‘‘A Petri net-based method for
compatibility analysis and composition of web services in business
process execution language,’’ IEEE Trans. Autom. Sci. Eng., vol. 6, no. 1,
pp. 94–106, Jan. 2009.

[36] S. Teng, L. H. Lee, and E. P. Chew, ‘‘Multi-objective ordinal optimization
for simulation optimization problems,’’ Automatica, vol. 43, no. 11,
pp. 1884–1895, 2007.

[37] M. Wieczorek, R. Prodan, and A. Hoheisel, ‘‘Taxonomies of the multi-
criteria gridworkflow scheduling problem,’’ CoreGRID, Barcelona, Spain,
Tech. Rep. TR6-0106, 2007.

[38] J. E. Wieselthier, C. M. Barnhart, and A. Ephremides, ‘‘Standard clock
simulation and ordinal optimization applied to admission control in
integrated communication networks,’’ Discrete Event Dyn. Syst., vol. 5,
nos. 2–3, pp. 243–280, 1995.

[39] J. Yu and R. Buyya, ‘‘Scheduling scientific workflow applications
with deadline and budget constraints using genetic algorithms,’’ Sci.
Programming, vol. 14, nos. 3–4, pp. 217–230, Dec. 2006.

[40] F. Zhang, J. Cao, K. Hwang, and C. Wu, ‘‘Ordinal optimized scheduling
of scientific workflows in elastic compute clouds,’’ in Proc. 3rd IEEE Int.
Conf. Cloud Comput. Technol. Sci., Athens, Greece, Dec. 2011, pp. 9–17.

[41] F. Zhang, J. Cao, H. Cai, and C. Wu, ‘‘Provisioning virtual resources
adaptively in elastic compute cloud platforms,’’ Int. J. Web Services Res.,
vol. 8, no. 3, pp. 54–69, 2011.

[42] F. Zhang, J. Cao, K. Li, S. U. Khan, and K. Hwang, ‘‘Multi-objective
scheduling of many tasks in cloud platforms,’’ Future Generat. Comput.
Syst., vol. 37, pp. 309–320, Jul. 2014.

[43] F. Zhang, J. Cao, L. Liu, and C. Wu, ‘‘Performance improvement of
distributed systems by autotuning of the configuration parameters,’’
Tsinghua Sci. Technol., vol. 16, no. 4, pp. 440–448, 2011.

[44] Q. Zhang, Q. Zhu, and R. Boutaba, ‘‘Dynamic resource allocation
for spot markets in cloud computing environments,’’ in Proc. 4th
IEEE/ACM Int. Conf. Utility Cloud Comput. (UCC), Melbourne,
Australia, Dec. 2011, pp. 178–185.

[45] H. Zhao, M. Pany, X. Liu, X. Liy, and Y. Fangy, ‘‘Optimal resource rental
planning for elastic applications in cloud market,’’ in Proc. 28th IEEE Int.
Parallel Distrib. Process. Symp. (IPDPS), Phoenix, AZ, USA, May 2012,
pp. 808–819.

FAN ZHANG (S’08–M’12–SM’13) is cur-
rently a Post-Doctoral Associate with the Kavli
Institute for Astrophysics and Space Research,
Massachusetts Institute of Technology, Cam-
bridge, MA, USA. He has been a Visiting Asso-
ciate Professor with the Shenzhen Institute of
Advanced Technology, Chinese Academy of Sci-
ence, Shenzhen, China, since 2014. He received
the Ph.D. degree from the Department of Control
Science and Engineering, Tsinghua University,

Beijing, China, in 2012, the B.S. degree in computer science from the Hubei
University of Technology, Wuhan, China, and the M.S. degree in control
science and engineering from the Huazhong University of Science and
Technology, Wuhan. From 2011 to 2013, he was a Research Scientist with
the Cloud Computing Laboratory, Carnegie Mellon University, Pittsburgh,
PA, USA. He was a recipient of an Honorarium Research Funding Award
from the University of Chicago and the Argonne National Laboratory
(2013), the Meritorious Service Award from the IEEE Transactions on
Service Computing (2013), and two IBM Ph.D. Fellowship Awards (2010
and 2011). His research interests include big-data scientific computing
applications, simulation-based optimization approaches, cloud computing,
and novel programming models for streaming data applications on elastic
cloud platforms.

JUNWEI CAO (M’99–SM’05) received the Ph.D.
degree in computer science from the University
of Warwick, Coventry, U.K., in 2001, and the
bachelor’s and master’s degrees in control theories
and engineering from Tsinghua University, Bei-
jing, China, in 1996 and 1998, respectively. He
is currently a Professor and the Deputy Director
of the Research Institute of Information Technol-
ogy, Tsinghua University. He is also the Director
of the Open Platform and Technology Division,

Tsinghua National Laboratory for Information Science and Technology, Bei-
jing. He is an Adjunct Faculty of Electrical and Computer Engineering with
North Dakota State University, Fargo, ND, USA. Before joining Tsinghua
University in 2006, he was a Research Scientist with the Laser Interferome-
ter Gravitational-Wave Observatory Laboratory, Massachusetts Institute of
Technology, Cambridge, MA, USA, and NEC Laboratories Europe, Hei-
delberg, Germany, for about five years. He has authored over 160 papers
and cited by international scholars for over 7 000 times according to Google
Scholar. He has authored or edited six books or conference proceedings. He
is an Associate Editor of the IEEE TRACTIONS ON CLOUD COMPUTING and an
Editor of Journal of Computational Science. He is the General Co-Chair
of the International Conference on Networking and Distributed Comput-
ing. His research is focused on distributed computing and networking, and
energy/power applications. He is a Senior Member of the IEEE Computer
Society, and a member of the Association for Computing Machinery and the
Civil Contractors Federation.

WEI TAN (M’12–SM’13) received the B.S. and
Ph.D. degrees from the Department of Automa-
tion, Tsinghua University, Beijing, China, in 2002
and 2008, respectively. He is currently a Research
Staff Member with the IBM T. J. Watson Research
Center, Yorktown Heights, NY, USA. From 2008
to 2010, he was a researcher with the Compu-
tation Institute, University of Chicago, Chicago,
IL, USA, and the Argonne National Laboratory,
Lemont, IL, USA. At that time, he was the tech-

nical lead of the caBIG workflow system. His research interests include
NoSQL, big data, cloud computing, service-oriented architecture, business
and scientific workflows, and Petri nets. He has authored over 50 journal and
conference papers, and a monograph entitled Business and Scientific Work-
flows: A Web Service-Oriented Approach (272 pages, Wiley-IEEE Press).
He is an Associate Editor of IEEE Tractions on Automation Science and
Engineering. He served on the Program Committee of many conferences and
co-chaired several workshops. He was a recipient of the Best Paper Award
from the IEEE International Conference on Services Computing (2011), the
Pacesetter Award from the Argonne National Laboratory (2010), and the
caBIG Teamwork Award from the National Institute of Health (2008). He
is a member of the Association for Computing Machinery.

SAMEE U. KHAN (S’02–M’07–SM’12) is cur-
rently an Associate Professor with North Dakota
State University, Fargo, ND, USA. He received
the Ph.D. degree from the University of Texas
at Arlington, Arlington, TX, USA, in 2007. His
research interests include optimization, robustness,
and security of: cloud, grid, cluster, and big data
computing, social networks, wired and wireless
networks, power systems, smart grids, and optical
networks. Hiswork has appeared in over 225 publi-

cations with two receiving best paper awards. He is a fellow of the Institution
of Engineering and Technology and the British Computer Society.

350 VOLUME 2, NO. 3, SEPTEMBER 2014

ZHANG et al.: Evolutionary Scheduling of Dynamic Multitasking Workloads

KEQIN LI (M’90–SM’96) is currently a SUNY
Distinguished Professor of Computer Science
and an Intellectual Ventures Endowed Visiting
Chair Professor with Tsinghua University, Beijing,
China. His research interests are mainly in design
and analysis of algorithms, parallel and distributed
computing, and computer networking. He has over
300 research publications, and has received several
best paper awards for his research work. He is
currently on the Editorial Boards of IEEE Trans-

actions on Cloud Computing and the IEEE Transactions on Computers.

ALBERT Y. ZOMAYA (M’90–SM’97–F’04) is
currently the Chair Professor of High Performance
Computing and Networking with the School of
Information Technologies, University of Sydney,
Sydney, NSW, Australia, where he is also the
Director of the Centre for Distributed and High
Performance Computing, which was established in
2009. He has authored over 500 scientific papers
and articles, and has authored, co-authored, or
edited over 20 books. He is an Editor-in-Chief of

the IEEE Transactions on Computers and Springer’s Scalable Computing,
and serves as an Associate Editor of 22 leading journals, such as, the ACM
Computing Surveys and Journal of Parallel and Distributed Computing.

Prof. Zomaya was a recipient of the IEEE Technical Committee on Parallel
Processing Outstanding Service Award (2011), the IEEE Technical Commit-
tee on Scalable Computing Medal for Excellence in Scalable Computing
(2011), and the IEEE Computer Society Technical Achievement Award
(2014). He is a Chartered Engineer, and a fellow of the American Association
for the Advancement of Science and the Institution of Engineering and
Technology (U.K.). His research interests are in the areas of parallel and
distributed computing and complex systems.

VOLUME 2, NO. 3, SEPTEMBER 2014 351

