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Abstract—The scheduling of multitask jobs on clouds is an NP-hard problem. The problem becomes even worse when complex

workflows are executed on elastic clouds, such as Amazon EC2 or IBM RC2. The main difficulty lies in the large search space and high

overhead of generating optimal schedules, especially for real-time applications with dynamic workloads. In this work, a new iterative

ordinal optimization (IOO) method is proposed. The ordinal optimizationmethod is applied in each iteration to achieve sub-optimal

schedules. IOO aims at generating more efficient schedules from a global perspective over a long period. We prove through overhead

analysis the advantages in time and space efficiency in using the IOO method. The IOO method is designed to adapt to system

dynamism to yield suboptimal performance. In cloud experiments on IBM RC2 cloud, we execute 20,000 tasks in LIGO (Laser

Interferometer Gravitational-wave Observatory) verification workflow on 128 virtual machines. The IOO schedule is generated in less

than 1,000 seconds, while using the Monte Carlo simulation takes 27.6 hours, 100 times longer to yield an optimal schedule. The

IOO-optimized schedule results in a throughput of 1,100 tasks/sec with 7 GB memory demand, compared with 60 percent decrease

in throughput and 70 percent increase in memory demand in using the Monte Carlo method. Our LIGO experimental results clearly

demonstrate the advantage of using the IOO-based workflow scheduling over the traditional blind-pick, ordinal optimization, or Monte

Carlo methods. These numerical results are also validated by the theoretical complexity and overhead analysis provided.

Index Terms—Autonomic provisioning, big data, cloud computing, iterative ordinal optimization, and workflow scheduling

Ç

1 INTRODUCTION

SCIENTIFIC workflows demand massive resources from
various computing infrastructures to process massive

amount of big data. Automatic provisioning of such big
data applications on the cloud platform is challenging
since current resource management and scheduling
approaches may not be able to scale well, especial under
highly dynamic conditions.

For example, the Laser Interferometer Gravitational-
wave Observatory (LIGO) experiments digest terabytes of
data per day [1]. The LIGO workload demands data-inten-
sive analysis over workflow pipelines with millions of tasks
to be scheduled on a computational grid or a cloud [8].

A typical LIGO workload shows the volume, velocity, and
variety characteristics of big data.

To process the LIGO workload, parallel virtual machines
(VMs) are provided as virtual clusters (VCs) from large-
scale data centers [16]. Virtual clusters are elastic resources
that can dynamically scale in or out.

The workload usually fluctuates, leading to period- or
stage-based scheduling necessary. During each stage, a
schedule is applied for the current workload, and the sched-
ule may or may not change depending on the similarity of
the workloads of consecutive periods. Therefore, iterative
scheduling, which applies optimal schedules in a multi-
stage manner becomes significant.

In general, scheduling multitask workflows on any dis-
tributed computing resources (including clouds) is an NP-
hard problem [38]. The main challenge of dynamic work-
flow scheduling on virtual clusters lies in how to reduce the
scheduling overhead to adapt to the workload dynamics
with heavy fluctuations. In other words, the iterative sched-
uling also needs to be provided in real time.

In a real cloud platform, however, resource profiling and
stage-based simulation on thousands or millions of feasible
schedules are often performed, if an optimal solution is
demanded. An optimal workflow schedule on a cloud may
take weeks to generate [16].

Ho et al. [14] proposed the ordinal optimization (OO)
method for dealing with complex problems with a very
large schedule space. Subsequently, the authors demon-
strated that the OO method is effective to generate a soft
or suboptimal schedule for most of the NP-hard problems.
As an example, optimal power flow [25] is an NP-hard
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problem that was handled by the OO method with some
success.

The low overhead in the OO-based scheduling is attrac-
tive in real-time cloud computing applications [15], [30]. In
our previous work [40], the OO is also applied to the multi-
objective scheduling (MOS) of many tasks in cloud plat-
forms. The inner core of the approach is to generate a rough
model resembling the workflow problem. The discrepancy
between the rough and precise search model is minimized.
We reduce the search space significantly to lower the sched-
uling overhead.

In this paper, a new iterative ordinal optimization (IOO)
algorithm is proposed. The IOO applies the OOmethod iter-
atively, in search of adaptive schedules to execute scientific
workflows on elastic cloud compute nodes with dynamic
workloads. During each iteration, the OO is applied to
search for a suboptimal or good-enough schedule with very
low overhead. From a global point of view, IOO can process
more successive iterations fast enough to absorb the dyna-
mism of the workload variations. A synopsis of our contri-
butions of this work is summarized below.

� We present an analytical model of an autonomic
resource provisioning scheme for multitasking big-
data scientific application on a cloud platform. A fol-
low-up novel simulation based approach is intro-
duced to tailor for the need of tackling such a
scheduling problem.

� We systematically extend the OO method to a multi-
stage scheduling scenario. Benefiting from the low
overhead and efficiency of OO, the IOO is able to
apply the OO in an iterative fashion so that the IOO
has much better adaptability to the dynamic work-
load. During each period of scheduling, the OO can
only achieve sub-optimal schedules; the purpose of
the IOO is to generate better schedules from a global
perspective over a sequence of workload periods.

� Thereafter, we demonstrate the effectiveness of the
proposed IOO approach with an extensive bench-
marking with the LIGO experimental data. We apply
the LIGO workflow [6] using hundreds of VMs. Both
theoretical and experimental results show that the

IOO scheduling method achieves higher throughput
with lower memory demand, compared to the other
two simulation-based approaches, Monte Carlo [28]
and Blind-Pick [14].

The rest of the paper is organized as follows. Section 2
characterizes the workflow scheduling problem on the VCs
in a cloudwith existing optimizationmethods introduced. In
Section 3, we provide details on the proposed IOO method
with theoretical overhead analysis. In Section 4, the experi-
mental settings and design of LIGO experiments are pro-
vided. We also elaborative on the experimental results and
discuss the various aspects pertaining to the IOO perfor-
mance compared with Monte Carlo and Blind-Pick. Related
works are reviewed in Section 5. Finally, we summarize our
contributions and discuss future research in Section 6.

2 WORKFLOW SCHEDULING ON CLOUDS

In this section, we first introduce a unique workflow-sched-
uling model for our cloud platform as a start. A simulation-
based optimization method, which distinguishes itself from
most of its existing literature, is followed.

2.1 Workflow Scheduling Model

The provisioning of VMs to a virtual cluster is dynamically
performed upon user demand. For clarity, an example job
dispatching queuing model for mapping subdivided work-
flow tasks is given in Fig. 1. In this scheduling model, we
define a task class as a set of computing jobs of the same
type, which can be executed concurrently on VMs within
the same virtual cluster.

For the sake of simplicity during the analysis, we assume
that all of the VMs within the same cluster take equal
amount of time to execute the assigned tasks. In other
words, the task execution time in a VM is the basic time unit
in the performance analysis. For the easy of the reader, a
summary of the most frequently used notations and defini-
tions in this paper are listed in Table 1.

All of the VCs are distinguished by the index i. Let pi be
the expected execution time of a single task within the ith
virtual cluster, VCi. Let vi be the number of VMs in VCi. We

Fig. 1. The multitasking workload scheduler dispatches multiple tasks to
VCs for parallel execution in a cloud platform. Each VC is responsible
for one task class.

TABLE 1
Basic Notations and Definitions

Notation Definition

U Candidate set of all u possible schedules
S Selection set of s schedules to simulate
G Acceptance set of g good-enough schedules
N Number of simulation runs per schedule candidate

by Monte Carlo or Blind-Pick scheduling methods
n The number of OO simulations per schedule
l The number of layers needed to select for OO
u A working schedule in the schedule space U
P Average task execution time on a single VM
D Average task memory demand on a single VM
h Time to simulate a schedule by Monte Carlo

method
M Makespan to execute all tasks in a workflow
T Total workflow throughput in a cloud platform
D Total memory demand in using virtual clusters
H Overhead time of a particular scheduling method
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have bi ¼ vi=pi as the task processing rate of cluster VCi. Let
di be the number of tasks of the corresponding queue.

In light of the above model, we obtain the execution time
of a task as ti ¼ di=bi ¼ pidi=vi. We define the makespan of all
n tasks in a scientific workflow by:

M ¼ maxft1; t2; . . . ; tcg; (1)

where c virtual clusters are used. The makespan is the total
execution time between the start and finish of all tasks
within a multitask workflow. We denote di as the memory
used by one of the VMs within a cluster. Based on the
above, the total memory demand by all VMs is calculated by:

D ¼
Xc

i¼1

di � vi: (2)

A resource-reservation schedule specifies the sets of VMs
provisioned at successive time slots, called periods. For
example, the jth schedule uj is represented by a set of VMs
allocated in c clusters in a schedule space U. Therefore, such
a schedule can be represented by a c-dimensional vector:

uj ¼ ½v1; v2; . . . ; vc�: (3)

At different time periods, different schedules may be
applied. All of the candidate schedules at one time period
formU. The cardinality ofU can be calculated by the follow-
ing expression:

u ¼ ðv� 1Þ!=½ðv� cÞ!ðc� 1Þ!�; (4)

where v is the total number of VMs used in c clusters. The
parameter u counts the number of ways to partition a set of
v VMs into c nonempty clusters.

For example, if we use v ¼ 20 VMs in c ¼ 7 clusters for
seven task classes, then we need to assess u ¼ 27,132 possi-
ble schedules to search for the best schedule to allocate the
VMs. In a special case where c ¼ 2 gives u ¼ v� 1. It can be
seen that only the task count that has been assigned to each
VC matters. Therefore, we would make a simplified
assumption that all the tasks within one VC have the same
execution time and memory demand as if they were a set of
homogeneous and embarrassingly parallel tasks.

Using simulation to determine the best schedule, such a
number is deemed too high, leading to excessive simulation
overhead time. Therefore, we must significantly reduce the
schedule search space.

The following objective function is used to search for the
suboptimal schedules for the workflow scheduling. In gen-
eral, we must conduct an exhaustive search to minimize a
pair of objective functions on all possible makespan
MðujÞ and memory demands DðujÞ, jointly and simulta-
neously, i.e.,

MinfMðujÞg and MinfDðujÞg (5)

for all possible schedules uj in the search space U.
Eq. (5) attempts to optimize both the makespan and the

demanded memory simultaneously. Such an optimization
attempt, however, is not always possible due to a potential
conflict resource demand. Therefore, we optimize the objec-
tives in a skyline manner, or mathematically defined as par-
eto-front, as shown in Fig. 5 in the next section. Instead of
finding one u to optimize two objectives, we relax the target

down to a set of satisfactory schedules, that is, no other
schedule in the search space beats any satisfactory schedule
in both the two objectives.

The formulae for the makespan and memory demand are
given in Eqs. (1)-(5). The time/space complexity defies the
traditional heuristic approach. In a resource-sharing cloud
platform, the values of pi and di cannot be easily determined
before runtime. For example, if some of the VCs were under
provisioned with VM resource, these VCs would contend
physical compute resources, such as CPU and memory.
Unavoidably this leads to a very large variation of task execu-
tion time and significant extra memory usage due tomemory
ballooning effect. All these result in pi and di very unpredict-
able. A good example illustrating this scenario is a large num-
ber of Map tasks competing for resources in a small-size VM
cluster in a Hadoop MapReduce job, where the resource
demand is unpredictable due to such resource contention.

If the VMs are allocated in different geographical regions,
where the workload of each region is highly diversified, then
the problem becomes worse. Therefore, in simulating each
schedule uj, we must also profile the resource usage of the
VMs, generate pi, and di before we calculate M and D. We
use the average over all of the simulations runs on uj to
obtain theMðujÞ andDðujÞ in Eq. (5).

Problem clarification. Based on the workflow-scheduling
model defined above, we need to calculate a time-series of
intermediate schedules uj in order to optimize the make-
span and memory demand over a given time-series work-
loads. Therefore, the input is such kind of workloads, or
number of tasks arrives for each VC at arbitrary time points.
The output is the time points when new schedules are
applied and the schedules themselves.

2.2 Simulation-Based Scheduling Optimization

2.2.1 The OO Method: Single Objective Scenario

The basic concept of the OO is illustrated in Fig. 2.
Let U be a candidate set of all u ¼ jUj possible schedules.

The set U is used in the exhaustive search of the best sched-
ule. It is noteworthy to mention that the Monte Carlo applies
to U, very slowly. In practice, we must define an acceptance
set G of g ¼ jGj schedules. The schedules in G are acceptable
or good-enough choices that are the top g schedules in U. In
the OO, a rough and computationally fast model is applied
toU. Then, a promising but smaller schedule set S is derived.

One can test only a reduced selection set S of s promising
or good-enough schedules. The OO method slowly searches
from S to generate at least k good-enough schedules in G.
The success rate of such a search is set at a ¼ 98%. Note that
u � s � g � k ¼ jG \ Sj. For example, if in Eq. (4), the
value of u is equal to 27,132, then we will have s ¼ 190,

Fig. 2. The concept of OO using a set S intersecting with the set G to
yield a set G \ S of k acceptable (good-enough) schedules.
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g ¼ 10, and k ¼ 1 for a single best schedule. These simula-
tion parameters could be defined in the simulated optimiza-
tion process, based on the requirements of a particular
workflow application. In general, we must satisfy the fol-
lowing condition in the OO process:

ProbabilityfjG \ Sj � kg � a: (6)

In Fig. 3, a simple single-objective example is provided to
illustrate the main idea behind the OO method. Consider a
candidate setU ¼ fu1; u2; . . . ; u8g of eight schedules. Suppose
that the given optimization problem is to find the minimum
value among M(u). Using the Monte Carlo method [28] to
simulate M(u) is a very time consuming process due to the

exhaustive search in N simulations per schedule. Using a
roughmodel with an approximated objective functionM’(u),
one can reduce the simulation to n times, where n � N . The
rough model can be seen as the Monte Carlo simulation plus
a random noise defined by:

M 0ðuÞ ¼MðuÞ þNoice Value: (7)

In Figs. 3a 3c), the value inside each circle represents the
performance of that schedule. In Fig. 3a, the values are the
Real Performance (RP), or M(u), of applying those schedules,
which are achieved by large number of repeated Monte
Carlo simulation runs. In Figs. 3b and 3c), the values, or
what we call as Measured Performance (MP), or M’(u), are
approximately assessed by the fast approaches. The
approach used in Fig. 3c is faster than that used in Fig. 3b
due to the reduced simulation runs for each schedule. The
approach can be simply interpreted as estimating the area
of an irregular shape inside a square. The more sampling
points we toss, the better estimation we achieve, however,
we have to tolerate higher computing overhead.

Noise Value (NV) is calculated by subtracting the value of
the real and measured performances. Because we only care
about the significance, the value of noise is always chosen
positive. For example, the noise value equaling to seven in
Fig. 3b is calculated by subtracting 18 and 11. There are two
noise levels, or what is called Real Noise Level (RNL) and
Estimated Noise Level (ENL). They are calculated by the fol-
lowing expressions separately:

RNLðuiÞ ¼ RNLðuiÞ=ðMaxðMðUÞÞ �MinðMðUÞÞ (8a)

ENLðuiÞ ¼ RNLðuiÞ=ðMaxðM 0ðUÞÞ �MinðM 0ðUÞÞ (8b)

NLðUÞ ¼ MaxðRNLðUÞÞ 	 MaxðENLðUÞÞ: (8c)

MaxðMðUÞÞ ¼ MaxfMðuiÞ; ui 2 Ug. Similar definition
applies to MinðMðUÞÞ, MaxðM’ðUÞÞ, MinðM’ðUÞÞ, NLðUÞ,
RNLðUÞ, ENLðUÞ. Because calculating the real performance
M(U) is time consuming, M’(U) is used instead to estimate
the noise level. The noise level is derived as the maximum
among all the schedules as shown in Equation (8c). There-
fore, the noise levels are 0.13 and 0.76 for Figs. 3b and 3c
cases, respectively.

In Fig. 3d, we order the schedules based on the cases
from Figs. 3b and 3c). Suppose that g is equal to 4 and k is
equal to 3. In the small noise case, we need to get s to be
equal to 3. In the moderate noise case, the value should be 6
as shown in the black rectangular box.

The affectiveness of OO, as we can see from the case
study, is in the reduction of the evaluation set from U,
which has eight schedules, to a set of three schedules S in
the small noise level case. The value becomes 6 in the mod-
erate noise case. Eventually, it reduces the computing over-
head and promises to deliver good schedules. The OO
method avoids the precise but slow search among millions
of schedules to be simulated in real-life applications.

2.2.2 Monte Carlo, Blind-Pick and OO Method

Monte Carlo and Blind-Pick methods are used to compare
with the OO method. In Fig. 4, Search spaces for the three
known methods are illustrated.

Fig. 3. A demonstration of how OO works in a single-objective schedul-
ing problem. At least three schedules are required from the good-enough
schedule set G ¼ {u1, u2, u3, u4}. OO reduces the computing overhead
from having to assess eight schedules to three or six schedules contin-
gent upon noise level.
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Fig. 4a shows that the Monte Carlo method simulates
each schedule in schedule set U for a long time (N runs for
each). The selection set Smc equals to the schedule set U. It
can select the entire good-enough schedules, denoted by the
dark circles in the set G, at the cost of intolerable runtime.
However, the Blind-Pick method selects a random set Sbp.
There is no guarantee that the good-enough schedules
would be in its selection set. On the other hand, the OO
takes a “sneak peek” at all of the schedules (n runs for each
schedule in U), selects the most promising set Soo, and
applies the longer simulation (N runs for each schedule) to
the schedules of Soo. This results in good-enough schedules
with significantly reduced overhead.

2.2.3 The OO Method: Bi-Objective Scenario

The OO method can also be applied to high dimensional
space optimization problem. Fig. 5 illustrates a bi-objective
optimization scenario, in which both the makespan and
memory demands must be optimized within the two-
dimensional optimization space. Each dot within the space
corresponds to a working schedule that has been simulated.

Through exhaustive simulation, the Monte Carlo method
produces a set of “optimal” schedules along the skyline
layer in Fig. 5a. These optimal choices are marked by the
dark dots. Mathematically, there is no schedule within the
2-D space that is better or less than those dark schedules
along the skyline, in terms of M and/or D. In other words,
with a fixed memory demand, all of the skyline M are lower
than those above the skyline. Similarly, with a fixedM, all D
along the skyline are lower than those above the skyline.
The above mentioned phenomenon of skyline schedules is
known as a Pareto front that corresponds to the acceptance

set G. If {L1} is removed, then {L2} can be achieved in the
same way. By processing all of the schedules in such a way,
the searching space can be divided into a series of Pareto
fronts denoted by fL1g; fL2g; . . . ; fLg.

As shown in Figs. 5b and 5c with noises introduced, the
good-enough schedules G are now spread in multiple layers
of the skyline. With a small noise, two layers of the sched-
ules cover the set G while a moderate noise requires four
lays. Based on the discussion, the OO method determines
the cardinality of layer l ¼ jLj to cover the required number,
denoted by k, of the schedules in set G. Section 4 introduces
using a rough model in evaluating the schedules along mul-
tiple layers of the skyline.

The rough model used in Fig. 5c results in much lower
scheduling overhead. The acceptable schedules are scat-
tered sparsely within the space. This may demand a larger

Fig. 4. The variation in the search space in three workflow scheduling
methods.

Fig. 5. Part (a) shows the exhaustive Monte Carlo method with optimal
schedule produced. Part (b) applies a rough model to solve a bi-objec-
tive optimization problem with acceptable (suboptimal) schedules scat-
tered over the entire search space. However, we still get two optimal
schedules at the bottom skyline layer.
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set S to cover the good-enough schedules. A smaller S is
enough, but may demand heavier scheduling overhead,
such as depicted in Fig. 5b. Therefore, tradeoff does exist
between S and the scheduling overhead that a user can tol-
erate. In Monte Carlo, we simulate N ¼ 1;000 times for each
value of pi and di to yield the expected M and D. Using our
proposed IOO method, we significantly reduce the number
of simulation runs. In fact, we have n ¼ 10 runs using the
rough model described in Fig. 5b.

Other than the noise level that determines the selection
set S, the distribution of the schedules in the measured per-
formance plane also matters. An example is given in Fig. 6.
Suppose it is required to find at least two shading sched-
ules, at least one layer is required in both cases. In Fig. 6a,
we need to assess eight schedules compared to three sched-
ules in Fig. 6b. Such a schedule distribution is technically
called the Ordered Performance Curve (OPC).

The OPC combined with the noise level, can be used to
calculate the number of layers to compose the set S, which
contains the required two shading schedules. The detailed
expression for composing the set S can be found in [41] and
due to the constricted space, it will not be repeated here. A
well-established OPC with a satisfactory noise level leads to
the advantage of the proposed IOO approach in the LIGO
gravitational wave data analysis.

3 ITERATIVE ORDINAL OPTIMIZATION

The proposed IOO method is specified below to generate
the optimal workflow schedules in the VCs with dynamic
workload. The scheduling solutions are generated in an

iterative fashion. During each of the iteration, suboptimal or
good-enough schedules are obtained via OO-based bi-objec-
tive scheduling. The IOO method adapts to the system
dynamism pertaining to the fluctuations in the workload
and resource provisioning in VCs.

3.1 The IOO Flowchart

The procedure of applying IOO in real-time multi-period
multi-tasking workflow scheduling is reported in Fig. 7.

Since IOO is essentially based on OO for each scheduling
period, we use the word OO in the flowchart. The input of
IOO is an known workload with its time length being WL.
The outputs of IOO are a set of time-series schedules, each
schedule being in a form of Equation (3). The time interval
between two such schedules is the execution time needed to
use OO to generate a schedule. We also call this time inter-
val as the overhead of applying OO method. Suppose the
overhead is H, then the total number of schedules can be
calculated asWL=H.

Therefore, IOO estimates the OO overhead in each of its
scheduling period as a start. Then IOO partitions the whole
scheduling period WL into such equal-length sub-periods,
with each sub-period being the length of H. For each period,
e.g. the ith period in the flowchart, IOO primarily works on
two steps in parallel as follows.

1) IOO applies the schedule generated from its period
(i-1)th to execute the workload at the current period.

2) IOO takes the workload of its next period (iþ1)th,
and performs the simulation process over all the pos-
sible schedules, to generate an optimized schedule
by using the OO method.

Notice that the above steps (1) and (2) are executed in
parallel, instead of all the time-series schedules are gener-
ated in advance because we need to tailor the solution to
real-time scheduling purpose. For example, we know the
new workload generated at the 10th schedule period at the
beginning, but we don’t know the runtime workload unfin-
ished from the 9th schedule period, which needs to be rolled

Fig. 6. The schedules are distributed differently in the measured perfor-
mance plane. To derive at least two schedules, a search has to access
eight schedules in (a) compared to three schedules in (b).

Fig. 7. Flow chart of the new iterative ordinal optimization (IOO) for sub-
optimal schedule generation.
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over to the 10th period. Therefore, we have to wait until the
9th period in order to get fair workload estimation. How-
ever, if we assume all the workload in a schedule period
can be finished, then we can calculate all the time-series
schedules in advance and apply them one by one in real
scheduling scenario.

In Fig. 7, we illustrate the IOO process being divided into
two layers of simulation. During each iteration, IOO applies
the schedule generated during the last iteration for execu-
tion of the workload. Meanwhile, the OO method is applied
at the inner loop for fast generation of sub-optimal sched-
ules for the next iteration.

Monte Carlo and Blind-Pick are also processed in such an
iterative way. Therefore, the overhead becomes either
Monte Carlo or Blind-pick method in the second and third
step in Fig. 7 above, and the schedule method is also accord-
ingly replaced.

3.2 Complexity Analysis

We use two metrics in our performance analysis. The first
metric is the throughput T defined as

T ¼ Nt=ðt1 � t0Þ; (9)

where Nt is the total number of tasks completed within the
time interval [t0; t1]. The second metric is scheduling overhead
H that is defined as the simulation time used to schedule
VM resources for mapping a scientific workflow to a vir-
tualized cloud platform. The scheduling overhead H is com-
posed of two components, namely:

H ¼ H1 þH2; (10)

where H1 is the time to select the set U or S of candidate
schedules to simulate its performance (n-time evaluation
phase), and H2 is the time to apply the precise but slow sim-
ulation to evaluate all of the selected schedules (N-time
evaluation phase).

We assess below the overhead to simulate any schedule
uj in using the Monte Carlo method. Based on the flow chart
in Fig. 7, the Monte Carlo process contains the following
five steps:

1) Generate the values of di and pi with time h1.
2) Simulate uj using (di; pi) with time h2.
3) Compute the throughput and memory demands

with time h3.
4) Go to Step (1) for N or n loops with time h4.
5) Calculate the average throughput and memory

demand for all N simulations with time h5.
In Table 1, we defined h as the time to perform one slow

simulation on a given schedule. The variable N is the num-
ber of repeated simulation performed per schedule and n is
the reduced simulation number used in the IOO method.
The parameters are u ¼ jU j, g ¼ jGj, and sbp ¼ jSbpj for the
Blind-Pick method, and s ¼ jSj for the IOO method, respec-
tively. The parameter k ¼ jG \ Sj. In the following theorem,
we analyze the time complexities of the three workflow
scheduling methods considered in this paper.

Theorem 1. The overhead time H to simulate all of the selected
schedules within the three workflow scheduling schemes can be
represented as

Hmc ¼ Nuh; (11a)

Hbp ¼ Nkuh=g; (11b)

Hioo ¼ nuhþNhs; (11c)

where all of the input parameters are defined in Table 1.

Proof. We have Hmc ¼ u½Nðh1 þ h2 þ h3 þ h4Þ þ h5�. The
variables h1; h3; h4, and h5 terms are negligible, when
compared with the much greater magnitude of h2. In Eq.
(11a), we simply denote h ¼ h2. We have H1 ¼ 0 for the
Blind-Pick method. By using the results described in [17],
we have the probability distribution for the intersection

set P jG \ Sbpj ¼ k
� � ¼ Ck

gC
sbp�i
u�g =C

sbp
u . Therefore, we have

Exp½jG \ Sbpj� ¼ gsbp=u. To simulate sbp ¼ ku=g sched-
ules, it takes Hbp ¼ H2 ¼ Nkuh=g time. For the IOO
method, we have H1 ¼ unh, and H2 ¼ Nhs, leading to
the expression for Hioo. tu
The following theorem proves the speedup of the pro-

posed IOO method, compared with the other two known
methods.

Theorem 2: Using simulation to generate the suboptimal sched-
ules, the IOO scheduling method is

R1 ¼ Hmc=Hioo ¼ 1=ðn=N þ s=uÞ; (12a)

R2 ¼ Hbp=Hioo ¼ ðk=gÞ=ðn=N þ s=uÞ; (12b)

times faster than the Monte Carlo method and the Blind-Pick
method, respectively.

Proof. Consider the speedup ratio R1 ¼ Hmc=Hioo ¼ Nuh=
ðnuhþNhsÞ ¼ 1=ðn=N þ s=uÞ and the speedup ratio
R2 ¼ Hbp=Hioo ¼ ðNkuh=gÞ=ðnuhþNhsÞ ¼ ðk=gÞ=ðn=N þ
s=uÞ. R1 and R2 are thus proven. tu
The following corollary gives the speedup of our pro-

posed IOO method when u > s.

Corollary 1.When u > s, the second term in both of the denomi-
nators of R1 and R2 tends to become zero, and we have the
speedup values R1 	 N=n and R2 	 Nk=ng.

Because a user must define the magnitude of g and k
under the constraint u > s, in our simulation experiments,
we had u ¼ 27;132, N ¼ 1;000, s ¼ 190, n ¼ 10, g ¼ 10, and
k ¼ 1 for the LIGO workload. Therefore, the overhead
reduction ratios of the IOO method are R1 	 100 and
R2 	 10 times over the Monte Carlo and Blind-Pick, respec-
tively. We will verify these analytical results with the simu-
lation results to be reported in Sections 4.3.1.

Fig. 8. IOO adaptability to dynamic workload variations.

162 IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. 3, NO. 2, APRIL/JUNE 2015



3.3 IOO Advantages

We illustrate the rationale behind the IOO method in Fig. 8.
Let T be the scheduling overhead using the Monte Carlo
method, and t be that of the IOO method. For example, at
time t0, Monte Carlo is used for simulation. It is not until t1
that the Monte Carlo can generate its optimal schedule.
While the solution is optimized at t1, it is not possible to
generate such an optimized schedule between t1 and t2. As
for the proposed IOO method, at time t1, the predicted
workload is used to generate a suboptimal schedule at time
t1 þ t, and then at t1 þ 2t; . . . :; and so on.

This process is continued at each of the period to capture
the variation in the workload in a much finer granularity to
improve the performance. The IOO is carried out dynami-
cally to iteratively upgrade the performance. During each
iteration, the workflow scheduling follows the OO method
to reduce the overhead and generate a good-enough solu-
tion. From a global point of view, the successive iterations
are processed fast enough to absorb the dynamism of the
system, and the overall performance is improved.

A further simplified example is given in Fig. 9 to show
how IOO can be advantageous when being applied to such
a multi-period scheduling problem.

Suppose a scheduling platform use 15 VMs to process
five different task classes. Four batches of workloads arrive
during the scheduling period of the Monte Carlo method.
For example, NVC1 ¼ 10 at the start point means there are 10
independent tasks of task class one arrive at VC1. We can
see that the workload is very fluctuating due to the big vari-
ance between two consecutive workloads.

Monte Carlo, Blind-Pick and the IOO methods use
their selected schedule. Take the first batch of workload
as an example, Blind-Pick chooses a schedule [3, 1, 2, 5,
4] that indicates that the VC1 has three VMs, VC2 has
one VM, etc. Monte Carlo applies a same schedule over
all of the four periods.

For simplicity, we assume that each of the VM processes
each task at a fixed rate that equals to one task per second.
The performance metric used here is the aggregated
makespan of the all the scheduling periods. For each period,
the period-makespan is calculated by the time to finish the
slowest task class. For example, the makespan of using
Blind-Pick method at the first batch of workload is calcu-
lated by Max{10/3, 20/1, 30/2, 40/5, 50/4} ¼ 20.

Aggregating the four scheduling periods, the total make-
span of using the Blind-Pick method comes to 97 seconds.

Similarly, the aggregated makespan of using the Monte
Carlo and the IOO methods are 67 and 60 seconds, respec-
tively. The IOO shows its advantage in this case.

As we can deduce from the workload characteristics, the
best schedule for all the four periods should be [1, 2, 3, 4, 5],
[5, 4, 3, 2, 1], [1, 2, 3, 4, 5], [5, 4, 3, 2, 1] respectively. The IOO
probably cannot achieve all of the best schedules due to the
reduced simulation time t. However, the IOO still selects
the schedules very similar to the sequence and leads to an
overall best performance.

4 LIGOWORKFLOW EXPERIMENTS

In this section, we design the LIGO experiments used to
test the effectiveness of the proposed IOO method for scien-
tific workflow. First, we introduce the experimental settings.
Thereafter, we examine the LIGO task classes and task
parallelism.

4.1 Experimental Settings

The cloud simulations/experiments were carried out using
10 servers of IBM RC2 Cloud at the IBM China Develop-
ment Laboratory, Beijing (see Fig. 10) similar to the Amazon
Web Service [3].

Each sever is equipped with Intel Xeon MP 7150N pro-
cessor and 24 GB memory. The virtualized physical servers
in the IBM Beijing Center are specified in Table 2. We
installed up to fourteen VMs per physical server. A physical
server runs with the OpenSuSE11/OS. All of the LIGO tasks
were written in Java. With ten servers, we experimented
with 128 VM instances. To test the scalability of the various
scheduling techniques, we vary the VC configuration from
sixteen to 32, 64, and 128 VMs.

4.2 LIGO Verification Workflow

The LIGO project was designed for the detection of gravita-
tional waves on earth surface. This is a large-scale scientific

Fig. 9. An example showing the timing advantage of IOO.

Fig. 10. Research compute cloud (RC2) over eight IBM Research and
Development Centers.

TABLE 2
Virtualized Physical Cluster

Cluster Size 10 servers per physical cluster

Node
Architecture

IBM X3950 Server built with 16-core Xeon
MP 7150N, 24 GB memory running with the
OpenSuSE 11 OS

VM
Architecture

CPU: 1 Core with 1 GB memory running
with OS: OpenSuSE 11

VMs/server 14 VMs in each server
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experiment as predicted by Einstein’s general theory of rela-
tivity a century ago. The LIGO workflow demands an iden-
tification of the potential faults before the actual program
execution. Our analysis was performed over different verifi-
cation logic demands. Each verification logic or task class
contains many subtasks over massive data sets.

The workload involved is divided into seven task classes,
as listed in Table 3. It embodies analysis of three sensitive
detectors (L1, H1, and H2) on the earth surface. Sufficient
cloud resources (VMs) are provisioned to satisfy the LIGO
workflows. The seven independent task classes can be exe-
cuted in parallel on their own VCs.

Task Class 1 executes a template bank (TmpltBank) in two
major steps (Inspiral and TrigBank). The Class 2 matches the
expected wave of H2 (Inspiral_H2) until both data in H1 and
H2 pass two contingency tests. The Class 3 minimizes the
noise signal ratio by testing the data collected. This task has
the highest degree of parallel (DOP). Task Class 4 continues
the process of matching the expected waves to create tem-
plate banks.

The Class 5 ensures that all of the services are reachable.
This task also has a high DOP. Class 6 ensures that all of the
services are fermentable with limited DOP. Finally, the Class
7 collects the garbage of used intermediate variables that has
the lowest DOP. We want to find a range of solutions to use
uj to minimize bothM andD defined in Table 1. In our LIGO
experiments, there are seven task classes running on 20
VMs. There are 27,132 schedules in total to be evaluated.

4.3 Comparative Results and Discussions

In this section, we report the simulation/experimental
results. First, we show that the measured scheduling over-
head of applying the IOO approach. Thereafter, we report

the measured makespan and memory demands in the LIGO
workload experiments.

4.3.1 Scheduling Overhead

The Monte Carlo simulations exhaust the entire scheduling
space. For each schedule, one must implement all of the
task classes on all VCs. The time used for this exhaustive
search causes a great amount of scheduling overhead. The
proposed IOO method requires the least amount scheduling
overhead compared to the rest of the techniques, as demon-
strated in Fig. 11. The schedule is generated by averaging
over a small set of schedules.

Our proposed IOO method avoids the exhaustive search
experienced by using the Monte Carlo method. We search
in a much smaller schedule space. Good-enough schedules
are found in a few iterations of each OO process. As shown
in Fig. 11, the IOO performance for the workflow schedul-
ing is evaluated by comparing the overhead times among
three methods for variable number of VMs used. This com-
parison is made under the assumption of k=g ¼ 10% good-
enough schedules to apply the IOO method.

As the cluster size varies from sixteen to 128 VMs, we
observe that the IOO method has a scheduling overhead of
1,000 sec, compared to 100,000 sec, with the Monte Carlo
method. The scheduling overhead of Blind-Pick is slightly
lower than the Monte Carlo method, but still much higher
than the IOO method. As the number of VMs increases, the
trade-off space also increases. It is noteworthy to mention
that these results stay within the theoretical bounds set in
Theorem 1.

4.3.2 Throughput and Memory Demand

To further investigate experiment details, a truncated illus-
tration of dynamic workload is included in Fig. 12 and the
corresponding experimental results are included in Fig. 13.

The number of tasks and virtual machines are default.
The simulation time of Monte Carlo is 32 hours that is taken
as the period time. Only two periods of data are shown in
Fig. 13. Dynamically changing of workload and correspond-
ing scheduling results are illustrated. In Fig. 13, throughput
and memory demand of all the methods are calculated for
each stage. The proposed IOO method does not have better
performance in every iteration.

While at the beginning of each iteration the Monte Carlo
can generate a best schedule, within each iteration, it is
obvious that the Monte Carlo shows the worst adaptability.

TABLE 3
Task Classes in a LIGOWorkflow

Task Class Functional Characteristics Parallel Tasks

Class-1 Operations after tinplating 3,576
Class-2 Restraints of interferometers 2,755
Class-3 Integrity contingency 5,114
Class-4 Inevitability of contingency 1,026
Class-5 Service reachability 4,962
Class-6 Service Terminatability 792
Class-7 Variable garbage collection 226

Fig. 11. Simulation overhead times of three workflow scheduling meth-
ods under 10 percent good-enough schedules.

Fig. 12. Illustration of the dynamic workload in a single iteration.
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This is due to the fact that it cannot generate new schedules
fast enough to adapt to new workload. On the other hand,
the proposed IOO method maintains the exact same perfor-
mance level during all stages of an iteration. The IOO meth-
od’s performance gain can be better illustrated from a
global perspective, detailed below.

We present in Fig. 14, the average throughput and
memory demands during the whole experiment period.
The experiments were carried out in eight simulation
periods. Each period lasts a time length of h of a single
Monte Carlo simulation. During each period, the OO
method is applied iteratively, as the IOO scheduling time
is much shorter. The default workload contains 20,000
LIGO tasks and 128 VMs.

In Fig. 14a, we demonstrate the effect of the increase in
the number of tasks in the LIGO application on the system
performance. The proposed IOO method demonstrates
approximately three times higher throughput than the
Monte Carlo method with the variation in the number of
tasks. The proposed IOO method offers 20 to 40 percent
times higher throughput than that of Blind-Pick as the task
number varies.

Fig. 14b shows the effects of the VC size on the throughput
performance of the three schedulingmethods.We observed a
2.2 to 3.5 times throughput gain by the IOO overMonte Carlo
as the VC size increases from sixteen to 128 VMs. The IOO
method exhibited approximately 15 to 30 percent throughput
gain over Blind-Pick as the VC size increases.

Fig. 15 shows the relative memory demands of the three
workflow scheduling methods. The results are plotted as a
function of the task number and cluster size. From the
results we can observe that the Monte Carlo has the highest

memory demand, the IOO method requires the least mem-
ory. The Blind-Pick method sits in the middle. In Fig. 15a,
the IOO method saved about 45 percent memory from that
demanded by the Monte Carlo method. The Blind-Pick
method required about 20 percent higher memory than the
IOO method as the task number increases.

In Fig. 15b for 20,000 tasks, the memory demands were
11.5 GB, 8 GB, and 7 GB on 128 VMs for the Monte Carlo,
Blind-Pick, and IOO methods, respectively. The reported
results indicate that the IOO outperforms the two other
competing methods by providing a low-overhead schedul-
ing solution. The reduced overhead leads to less simulation
and profiling time that plays a key role in offering shorter
and finer granularity schedule periods in real runs. These
cater to the need for scheduling fluctuating workflow.

5 RELATED WORK

In this section, we review related work on cloud resource
provisioning and task scheduling, compared to our pro-
posed IOO approach to solving the same problem. Schedul-
ing large-scale scientific tasks on supercomputers or grid
systems has been studied by many researchers in the past.
In particular, we see a growing interest in [2], [10], [11], [12],
[13], [18], [22], [23], [26], [29], [30],[31], [35], [37], [38]. There
is an escalating interest on resource allocation for scientific
workflows on computing clouds [9], [15], [27], [32].

Many classical optimization methods, such as opportu-
nistic load balance, minimum execution time, and mini-
mum completion time, are described in [11]. Several
heuristics, such as sufferage, min-min, max-min, and auc-
tion have been proposed in the past [31].

Fig. 13. Throughput and memory results running the LIGO verification
workflow on the RC2 cloud platform.

Fig. 14. Relative performance of three workflow scheduling methods
plotted against task and cluster sizes.
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Yu and Buyya [38] proposed economy-based methods to
handle large-scale grid workflow scheduling under dead-
line constraints, budget allocation, and QoS. Benoit et al. [5]
designed resource-aware allocation strategies for divisible
loads. Li and Buyya [23] proposed model-driven simulation
of grid scheduling strategies. Lu and Zomaya [26] proposed
a hybrid scheduling method for job scheduling in heteroge-
neous computational grids.

These scheduling approaches in computational grids [12]
serve different purpose than the methods proposed in the
autonomic big-data cloud platform. The cloud scheduling
methods, such as IOO, partition and allocate computing
resource in an elastic manner to improve the throughput of
multitasking workloads.

In 1992, Ho et al. [14] proposed the OO method for dis-
crete-event dynamic systems. In their work, they demon-
strated that the OO method is effective to generate a soft or
suboptimal solution to most NP-hard problems. The OO
technique has been applied in advanced automation and
industrial manufacturing [18], [19], [33].

Wieczorek et al. [36] analyzed the five facets that may
have a major impact on the selection of an appropriate
scheduling strategy. They proposed taxonomies to classify
multi-objective workflow scheduling schemes. Prodan and
Wieczorek [29] proposed a dynamic algorithm, which
outperforms the SOLOS and BDLS methods to optimize
bi-criteria problems.

In the past, Cao et al. [7], [39] have studied the LIGO
problems on the grid environments. Duan et al. [12] sug-
gested a game-theoretic optimization method. Dogan and
€Ozg€uner [11] developed a matching and scheduling algo-
rithm. Smith et al. [31] have proposed robust static resource
allocation for distributed computing systems operating
under imposed QoS constraints. None of these methods
investigated the profiles and runtime system performance.
Our proposed IOO method fills the gap.

Runtime uncertainty is handled in Batista’s work [4]. Our
work inherits the idea of OO, which reduces scheduling
overhead by narrowing down the search space. Along the
OO line, many other heuristic methods have been proposed
[21], [34], [41]. These methods quickly reduce the subset of
“good enough” solutions with manageable overhead.

The OO is specifically designed to solve large problems
in automated manufacturing, communication, power sys-
tems, and distributed computing systems [39]. The simula-
tion based optimization tenet in our IOO is directly inspired
by these real-life applications.

Different the selection rules for the OO are compared in
[17] to discuss the relative performance. The consesus is
that no selection rule is absolutely better than the others in
all applications. We apply the OO method in an iterative
way to dynamically optimize cloud scheduling or provi-
sioning scenario to meet special requirements of scientific
workflows, such as LIGO.

6 CONCLUSIONS

This paper offers a first attempt to an iterative application of
the OO method for fast dynamic multitask workload sched-
uling in a cloud computing platform. The major advantage
of the IOO method resides in its adaptability to a scenario
with fluctuating workloads. The IOO method is compared
with Monte Carlo and Blind-Pick. The conclusions of our
findings are summarized in Table 4.

Fig. 15. Memory demands of three workflow scheduling methods plotted
over variable tasks and cluster sizes.

TABLE 4
Summary of Three Workflow Scheduling Methods

Method Strength and Advantages Weakness and Limitations

Monte
Carlo

High accuracy to obtain
optimal schedule. Monte
Carlo results in high sys-
tem throughput with
reduced memory demand
for a fixed and long sched-
uling period

High simulation overhead
due to exhaustive search for
optimality, The method does
not adapt to fast variation in
workload. The performance
will degrade with extended
scheduling periods.

Blind-Pick With moderate overhead,
this method applies to a
reduced search space and
can adapt to the fast varia-
tion in workload to some
extent.

Moderate accuracy due to
lower overhead. With a poor
selection set, the perfor-
mance will degrade to that
of Monte Carlo.

IOO With low overhead, the
IOO can adapt to the fast
variation in workload to
obtain suboptimal sched-
ules that run with high
multitasking throughput
and reduced memory
demand

The suboptimal schedules
generated at each period
may not be as optimal as
that generated by Monte
Carlo. Under a high noise
level, the IOO-generated
schedule may degrade.
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The major contributions of this paper are summarized
below in four technical aspects.

1) The IOO method worked very well on a cloud plat-
form under dynamically changing workload. We
reduced the search space from a very large space of
27,132 candidate schedules to a much smaller search
space of 190 schedules. The low-overhead IOO
method adapted to the workload variations. This
method captured the workload dynamics to make
fast scheduling decisions.

2) Compared with what we had reported in the Cloud-
Com 2011 conference paper [39], we performed a
thorough theoretical time/space complexity analysis
for the three comparative scheduling methods. We
also quantitatively proved the adaptability of our
IOO method. Simulation/experimental results also
echoed the theoretical claims.

3) Large-scale LIGO gravitational wave data analysis
pipelines are used to effectively test the new IOO
method. The verification workflow of LIGO data
analysis offered a typical multitask application that
required real-time dynamic task scheduling support
on cloud platforms.

4 We provided an efficient and effective profiling and
simulation method for multitask workload schedul-
ing in a virtualized cloud platform. The cloud service
environments contained many uncertainty factors
that were dealt with appropriately by the proposed
IOO method. Our IOO method applied well in EC2-
like cloud services to increase the throughput and in
S3-like services to reduce the memory demands.
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