
Future Generation Computer Systems 51 (2015) 98–110
Contents lists available at ScienceDirect

Future Generation Computer Systems

journal homepage: www.elsevier.com/locate/fgcs

CloudFlow: A data-aware programming model for cloud workflow
applications on modern HPC systems
Fan Zhang a,∗, Qutaibah M. Malluhi b, Tamer Elsayed b, Samee U. Khan c, Keqin Li d,
Albert Y. Zomaya e

a Kavli Institute for Astrophysics and Space Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
b KINDI Center for Computing Research, Qatar University, Doha, Qatar
c Department of Electrical and Computer Engineering, North Dakota State University, Fargo, ND 58108-6050, USA
d Department of Computer Science, State University of New York, New Paltz, NY 12561, USA
e School of Information Technologies, The University of Sydney, Sydney, NSW 2006, Australia

h i g h l i g h t s

• CloudFlow programming model is designed for cloud workflow on modern HPC systems.
• CloudFlow is not only data-aware, but also shared-data-aware.
• The programming model supports multiple Map and Reduce functions.
• Theoretical analysis proves the correctness and uniqueness of each desired output.
• Results show the speedup of CloudFlow exceeds 4X compared to traditional MapReduce.

a r t i c l e i n f o

Article history:
Received 14 July 2014
Received in revised form
30 September 2014
Accepted 25 October 2014
Available online 6 November 2014

Keywords:
Concurrency
Data aware
MapReduce
HPC
Programming model

a b s t r a c t

Traditional High-Performance Computing (HPC) based big-data applications are usually constrained by
having to move large amount of data to compute facilities for real-time processing purpose. Modern HPC
systems, represented by High-Throughput Computing (HTC) andMany-Task Computing (MTC) platforms,
on the other hand, intend to achieve the long-held dream of moving compute to data instead. This kind of
data-aware scheduling, typically represented by HadoopMapReduce, has been successfully implemented
in its Map Phase, whereby eachMap Task is sent out to the compute node where the corresponding input
data chunk is located. However, HadoopMapReduce limits itself to a one-map-to-one-reduce framework,
leading to difficulties for handling complex logics, such as pipelines or workflows. Meanwhile, it lacks
built-in support and optimizationwhen the input datasets are shared amongmultiple applications and/or
jobs. The performance can be improved significantly when the knowledge of the shared and frequently
accessed data is taken into scheduling decisions.

To enhance the capability of managing workflow in modern HPC system, this paper presents
CloudFlow, a HadoopMapReduce based programmingmodel for cloudworkflow applications. CloudFlow
is built on top of MapReduce, which is proposed not only being data aware, but also shared-data
aware. It identifies the most frequently shared data, from both task-level and job-level, replicates
them to each compute node for data locality purposes. It also supports user-defined multiple Map-
and Reduce functions, allowing users to orchestrate the required data-flow logic. Mathematically, we
prove the correctness of the whole scheduling framework by performing theoretical analysis. Further
more, experimental evaluation also shows that the execution runtime speedup exceeds 4X compared to
traditional MapReduce implementation with a manageable time overhead.

© 2014 Elsevier B.V. All rights reserved.
∗ Corresponding author.
E-mail addresses: f_zhang@mit.edu (F. Zhang), qmalluhi@qu.edu.qa

(Q.M. Malluhi), telsayed@qu.edu.qa (T. Elsayed), samee.khan@ndsu.edu
(S.U. Khan), lik@newpaltz.edu (K. Li), albert.zomaya@sydney.edu.au (A.Y. Zomaya).

http://dx.doi.org/10.1016/j.future.2014.10.028
0167-739X/© 2014 Elsevier B.V. All rights reserved.
1. Introduction

1.1. Background introduction

Traditional HPC systems [1], characterized by high-frequency
processor design, efficient caching system, large input/output

http://dx.doi.org/10.1016/j.future.2014.10.028
http://www.elsevier.com/locate/fgcs
http://www.elsevier.com/locate/fgcs
http://crossmark.crossref.org/dialog/?doi=10.1016/j.future.2014.10.028&domain=pdf
mailto:f_zhang@mit.edu
mailto:qmalluhi@qu.edu.qa
mailto:telsayed@qu.edu.qa
mailto:samee.khan@ndsu.edu
mailto:lik@newpaltz.edu
mailto:albert.zomaya@sydney.edu.au
http://dx.doi.org/10.1016/j.future.2014.10.028

F. Zhang et al. / Future Generation Computer Systems 51 (2015) 98–110 99
capacity and efficient cooling techniques [2], have been exclu-
sively referred to as Supercomputing [3] or Grid Computing [4].
However, upgrading hardware to achieve high performance is not
only expensive, but also requires high-performance applications to
leverage the hardware capacity. Modern HPC systems, represented
by High-Through Computing (HTC) [1] and Many-Task Comput-
ing (MTC) [5], suggest an otherwise direction. Instead of scaling up
compute resources to meet accelerated computing demand, scal-
ing out compute resources has gainedmore attention. Scaling out is
typically represented by incorporating more commodity compute
nodes to achieve scalability purpose.

To fit in the needs of scaling compute resource out, different
programming models have been proposed to maximize the scal-
ing capacity. Among these, one of the most successful program-
ming models is MapReduce (MR) [6]. It has been widely accepted
for large-scale and data-intensive applications [7,8]. Hadoop [9],
an open source implementation of MR, gains popularity due to its
reliability and scalability in providing a parallel yet simple frame-
work [10]. Hadoop MapReduce splits input data into chunks, allo-
cating each task to a compute node where its input data resides. In
this way, it achieves data locality naturally, and the task number
can be configured to utilize all compute nodes.

However, splitting input dataset to realize parallelization is
mostly simple and straightforward. Due to the ever-increasing
complexity of execution logic in real-life applications, more and
more MR applications involve multiple correlated jobs. They are
encapsulated and executed in a predefined order. For example, a
PageRank job [11] involves two iterative MR sub-jobs; the first job
joins a rank table and a linkage table, and the second job calculates
the aggregated rank of each URL. Two non-iterative MR sub-jobs
for counting out-going URLs and assigning initial ranks are also
included in the PageRank job.

Though the formulation of each MR sub-job is easy, the overall
solution may involve many redundant MR sub-jobs. The problem
becomes even worse when the MR sub-jobs involve multiple
straightforward but time-consuming tasks. A concrete example
demonstrating such redundantMR sub-jobs is given in Section 1.1.

As a rule-of-thumb, MR has proven to be effective in processing
large amount of dividable unshared input datasets. Different and
concurrently running MR jobs may share input datasets. Linkage
table in the PageRank job is an example of the shared input dataset.
Performance of MR applications can be improved if the sharing of
input datasets is considered. Therefore, we identify two types of
data sharing: data sharing among multiple sub-jobs of the same
job, and data sharing among multiple distinct jobs.

Traditionally, one MR job involves multiple Map and Reduce
Tasks. Each Map Task executes the same Map Function and pro-
cesses its own input data splits based on the instructions defined
in the Map Function. Each Reduce Task executes the same Reduce
Function and processes its own key–value pair partitions. This one-
map-to-one-reduce framework, though simple enough, loses its
flexibility when applications require complex logic. For such com-
plex scenarios, users employ multiple jobs, such as the implemen-
tation of PageRank and Descendant Query in [11].

In this paper, we propose Concurrent MapReduce for cloud
worklow, CloudFlow; a novel programming model that supports
multiple and heterogeneousMap and Reduce Functions. Optimiza-
tions over shared data are offered at the function level and at the
job level.

1.2. Motivation example

First, we discuss a case study of increasing salary for all em-
ployees in a multi-national research company for the coming year.
Fig. 1(a) depicts a scenario that the new salary for each employee
is based on either his or her current title or evaluation score. The
left table (Employee Information or EI) has the information of each
employee including ID, name, title, current salary, and score. The
upper-right table (Title Rate or TR) depicts the titles and their cor-
responding salary increase rates. The lower-right table (Evaluation
Rate or ER) has the evaluation scores and their corresponding rates.
The company wants to compare the two methods and find out the
method that costs less.

In Fig. 1(b), the salary is raised based on which branch the
employee is working at. The two tables on the left (EI and NC)
should be joined. There are two different rate strategies as shown
in the two tables on the right (CR1 and CR2).

In traditional MR, for case 1 (in Fig. 1(a)), a total of six MR jobs
are launched. The first job processes EI and outputs<ID, Title, Cur-
rent Salary> for each employee. The second processes TR and out-
puts <Title, Rate>. The third job joins the outputs and calculates
the salary for each employee. Similarly, the other three follow-up
MR jobs are launched to process the EI and ER and join them. Based
on this, the following points can be observed:

(1) The Map stage on both TR and ER does nothing but pass the
data to the Reduce Tasks to join. This observation is not new,
e.g., in Hadoop Sort benchmark [1]. However, the launching of
the Map tasks, though it does nothing, causes extra overhead
by allocating Map slots and creating JVMs [12].

(2) There is no reason to sequentially execute the two MR jobs il-
lustrated by dashed-line arrows in Fig. 1(a). Once the output of
EI is generated, the twoMR jobs can be executed concurrently.
This is useful if there are more than one table that needs to be
joined, such as TR and ER in Fig. 1(a). This is also useful if mul-
tiple versions of one table are to be joined (such as CR1 and
CR2 in Fig. 1(b)). We hereby refer to the two concurrent join-
ing functions as Reduce Functions.

(3) In Fig. 1(b), tables EI and BC should be joined before being shuf-
fled to the twoReduce Functions. However, traditionalMR sup-
ports only one-type of map, which cannot be performed on
two different tables or datasets. In this paper, we support con-
current Map Functions performed on different input datasets,
such as EI, NC, CR1 and CR2. We hereby refer to them as Map
Functions.

(4) The shared EI table is read twice by the two Map Functions,
but in reality, it would be more efficient to read it only once
and then supply it to the two Map Functions. This significantly
reduces the I/O overhead.
In this paper, the CloudFlow programming model reduces job

execution time by launching concurrent and heterogeneous Map
and Reduce Functions. Each Map and Reduce Function, as in
traditional MR, involves a set of homogeneous Map and Reduce
Tasks.

Different from the above examples where data sharing takes
place among function level, data can be shared also among multi-
ple jobs that are submitted by different users. For example, two dif-
ferent managers who are unaware of each other’s job submit their
own jobs. The first manager submits the job of case 1 in Fig. 1(a)
and the second manager submits the job of case 2 in Fig. 1(b). The
input dataset EI is shared by the two different jobs.

Other typical examples of job-level concurrency include scien-
tific simulations [13], which normally need multiple runs on a set
of same input data but with different application configurations or
parameters. All these jobs can run concurrently.

Traditional MR offers job switching optimization mechanisms,
such as the use of fair or capacity scheduler, but no such techniques
exist for managing shared data among different jobs. In this paper,
we propose an optimization mechanism based on the access
frequency of different datasets.

100 F. Zhang et al. / Future Generation Computer Systems 51 (2015) 98–110
(a) Case 1: Two Map Functions for EI and TR. Two other Map Functions for EI and ER. Two reduce functions for
the two join operations.

(b) Case 2: Six Map Functions and two reduce functions.

Fig. 1. A concrete example to explain both function-level and job-level concurrency.
1.3. Contribution and organization of this paper

The above observation motivates the design of CloudFlow as a
new programming model to benefit applications that have shared
data on both function and job levels, while retaining the simplicity
of traditional MR. CloudFlow has the following advantages:

(1) It defines a framework that supports multiple different Map
and Reduce Functions running concurrently, where each func-
tion has either shared or unshared data. Each Map or Reduce
Function corresponds to theMap or Reduce stage of traditional
MR, which has multiple Map or Reduce Tasks running on mul-
tiple nodes. This is further explained in Section 2.

(2) It supports optimized data sharing by utilizing a Shared Func-
tion Data Handler, which supplies the shared data to different
Map Functions that need them. For the same Map Functions
that share the data, it further provides one copy of output to
reduce the shuffle overhead. This is further explained in Sec-
tion 4.2.

(3) It supports optimizeddata sharing byutilizing a Shared JobData
Handler, which identifies multiple jobs of different users, finds
out the frequently- or partially-shared data items, and copies
them to the local file system for future job use. This is further
explained in Section 4.1.

(4) We conduct theoretical analysis of implementing the Cloud-
Flow architecture, proving that the correctness and uniqueness
of each key–value output that can be generated as desired in
Section 3.
The rest of the paper is organized as follows: Section 2 intro-

duces the architecture of our CloudFlow programming model. We
conduct a theoretical analysis of the methodology in Section 3.
Optimization techniques that are applied at the function- and
job-levels to enhance this programming model are described in
Section 4. In Section 5, we introduce the experimental setting and
comparative results on two real applications. Finally, we conclude
with a review of related work and summarize our technical contri-
butions.

2. CloudFlow overview

In this section, we analyze the example in Section 1 to demon-
strate the essence of sharing data in our programming model,

F. Zhang et al. / Future Generation Computer Systems 51 (2015) 98–110 101
Table 1
Symbols, definitions and illustrations.

Symbol Definitions and illustrations

EI A table demonstrates all the employees information
TR A table demonstrates all employee’s title and the increased salary rate based on the title
ER A table demonstrates all employees’ year-end evaluation scores and the increased salary rate based on each category of the evaluation score
CR A table demonstrates all employees’ working branch and the increased salary rate based on the continent each branch locates
NC A table demonstrates all employees’ working branch city and the continent each city belongs to
MR Short for MapReduce
MF/MT Map Function and Map Task
RF/RT Reduce Function and Reduce Task
m/M Themth Map Function/The number of Map Functions in a CloudFlow job
r/R The rth Map Function/The number of Reduce Functions in a CloudFlow job
G : EG(MFm, RF r) = 1 Output of the mth Map Function connect to the rth Reduce Function
Rel(MFm, RF r) A list of Map Functions that all these Functions other thanMFm that connect to RF r
Rel(MFm) All Reduce Functions that Map FunctionMFm connects to
iRel(MFm) All Reduce Functions that Map FunctionMFm does NOT connect to
f A function that maps a key–value pair to a set ofM-tuples
CS i A Reduce Function cell set that key/value pair (kt , vt) is shuffled to
and then we introduce the architecture of CloudFlow. To help the
reader, we use Table 1 to cover all the symbols and their definitions
in order to refresh readers’ memory.

2.1. Illustration of handling shared data for CloudFlow

Different Map and Reduce Functions may share data at the
function level. The shared data can be the input for different Map
Functions, or intermediate key–value pairs for different Reduce
Functions. At the job level, the shared data are the inputs for
different jobs. The shared data can be the whole dataset, or part
of it. Before formally introducing the CloudFlow architecture, we
propose two scenarios using the cases introduced in Section 1.

Scenario 1: In Section 1.2, case 1 and case 2 are two distinct
jobs that might be submitted by two different programmers, who
are unaware of each other’s job. In this scenario, the two cases are
two concurrent jobs illustrated in Fig. 2(a) and (b).

The four Map Functions for case 1 are denoted as MF01, MF02,
MF03 and MF04, which process TR, EI, EI and ER respectively and
output key–value pairs. The first Reduce Function RF01 collects the
key–value pairs from MF01 and MF02 to output the new salaries
based on title. Similarly, the second Reduce Function RF02 collects
the key–value pairs from MF03 and MF04 to output the salaries
based on evaluation scores.

Very similar to the first job, the second job has six Map Func-
tions, MF07, MF08, . . . , MF12 for CR1, EI, NC, EI, NC and CR2 respec-
tively. As shown in Fig. 2(b), the first Reduce Function RF03 joins
data fromMF07, MF08 and MF09 to output the new salaries based
on the CR1 rates. Similar map and Reduce Functions are shown for
the CR2 rate.

Scenario 2: In this scenario, all the Map and Reduce Functions
are treated as one job. These functions can bewritten by one single
programmer, who is aware of all the tables and datasets andwrites
the source code of this job.

Thus, there are 12 Map Functions, MF01, MF02, . . . , MF12, each
one representing one input entry of Fig. 2. For the join part at the
right side of Fig. 2, there are four Reduce Functions named as RF01,
RF02, RF03 and RF04.

There is one major difference between the two scenarios. In
scenario 1, the programmers of the two jobs are unaware that
table EI is being shared. They just submit their jobs and wait for
the results. It is CloudFlow’s responsibility to discover the shared
data and provide mechanisms to optimize the concurrent access.
In scenario 2, the programmer has prior knowledge about all the
tables and datasets that are used and shared. Thus, he/she can
explicitly indicate the data sharing and the CloudFlow uses this
information to provide optimizationmechanisms for efficient data
access.
2.2. Terms of the CloudFlow programming model

To further clarify the concepts, we formally define all the terms
used in this paper.

(1) Input Data: The datasets associated with the whole job.
MapReduce can process various types of data formats, from
plain text, XML to database files. Input data is divided into
many data splits for Map tasks to process. Different from tra-
ditional Hadoop MapReduce, input data in CloudFlow serves
multiple heterogeneous Map Functions, with each Map Func-
tion launching a few homogeneous Map Tasks. Therefore, the
input data, even though located in HDFS in general, is logically
partitioned to server different Map Functions. Details of the
Map Functions are introduced below.

(2) Map Function: One Map Function (MF), or a Mapper, is com-
posed of a set of homogeneous Map Tasks (MT) that work on
different input data splits. It defines execution logics in its body
function. Each Map Function is associated with a set of input
data, or has no input data at all, such as Pi estimation. OneMap
Task is an instance and implementation of its Map Function. It
resides in Java Virtual Machine (JVM) launched by tasktracker.

Even though the definition of Map Function and Map Task
are exactly the same in CloudFlow as their definitions used in
traditional MapReduce, the only difference is that CloudFlow
supports a variety of heterogeneous Map Functions. These
Map Functions can be different from each other in the follow-
ing three aspects: (a) different input datasets (e.g. MF01 and
MF02), or (b) same input dataset but different Map Functions
(e.g. MF02 andMF03), or (c) same input dataset and sameMap
Function (e.g. MF08 and MF10). It is necessary to keep (c) here
since the reduce stage requires the intermediate key–value
pairs to be shuffled to different Reduce Functions. We will
show optimization techniques along this line later.

(3) Reduce Function: One Reduce Function (RF), or a Reducer, is a
set of Reduce Tasks that process on their own partition of data.
One Reduce Task (RT) is also an instance and implementation
of its Reduce Function. Similarly, tasktracker launches JVM to
hold Reduce Tasks.

In tradition MapReduce, a Reduce Task receives partitions
of intermediate key–value pairs from different Map Tasks of
one Map Function. In CloudFlow, however, one Reduce Func-
tion looks more like a joiner, which merges the intermediate
key–values pairs generated by differentMap Functions. For ex-
ample, RF01 calculates the new salaries based on the title of
each employee and RF02 does the same thing based on the
evaluation scores. Each Reduce Task performs the actual join
task and output the data to HDFS.

102 F. Zhang et al. / Future Generation Computer Systems 51 (2015) 98–110
(a) Illustration of scenario 1, in which four Map Functions and 2 Reduce Functions are used for calculating new salaries
based on evaluation scores and titles.

(b) Illustration of scenario 2, in which six Map Functions and two Reduce Functions are used for calculating new salaries
based on two versions of branch continent strategy.

Fig. 2. Illustration of the key–value pairs and data flow of theMap Functions and Reduce Functions in the two CloudFlow jobs. All the Map Tasks and Reduce Tasks launched
by their own Map and Reduce Functions. A follow-up job, which calculates the total salary, is also partially shown.
(4) Job: A CloudFlow job is composed of a Map phase and its
subsequent Reduce phase. As shown in Fig. 2, there are two
CloudFlow jobs. Map phase consists of multiple Map Functions
running concurrently. Multiple Reduce Functions are also ap-
plied to the Reduce phase. In traditional MapReduce, a sin-
gle job consists of one Map Function and one Reduce Function
only.

(5) Workflow: A workflow is a pipeline of CloudFlow jobs that are
executed to serve a certain purpose. For example, there are two
consecutive CloudFlow jobs in Fig. 2(a), which is a workflow.
TraditionalMapReduce can also be chained into a list of jobs by
instantiating the JobControl object. Dependencies of jobs are
specified as a Directed Acyclic Graph (DAG). The only differ-
ence, as we noted previously, is the component of each single
job makes the difference.

2.3. CloudFlow architecture

Fig. 3 illustrates the architecture of CloudFlow framework.
From top down, we can see application, CloudFlow framework
and file system tiers. A vertical line in the middle separates job
related illustrations (at the left side) from function and task related
illustrations (at the right side).

In the CloudFlow framework, the Job Analyzer module decom-
poses each job into a set ofMap andReduce Functions. Then it iden-
tifies the input data from the configuration file. For example, job 1
in Fig. 3 is decomposed into a set of Map Functions (MF11, MF12,
. . .) and Reduce Functions (RF11, RF12, . . .). The Job Schedulerman-
ages the submission, monitoring, and runtime states of all the sub-
mitted jobs. The Shared Job Data Handler manages the shared data
at the job level. In the previous example, it discovers the shared ta-
ble EI and copies the data to the local file system. This mechanism
is further discussed in Section 4.1.

The Shared Function Data Handler, on the other hand, serves
and optimizes shared data for Map and Reduce Functions. For
heterogeneous Map Functions that share the same input data, this
handler creates a daemon on each host the data locates, reads
the data and supplies them to all the Map Tasks associated with
these Map Functions. For homogeneous Map Functions that share
the same input data, this handler outputs only one copy. We will
discuss the detail mechanism in Section 4.2.

Each job tracker, similar to traditional MR, sends Map and
Reduce Tasks to all the nodes. The difference is that it has to

F. Zhang et al. / Future Generation Computer Systems 51 (2015) 98–110 103
Fig. 3. Architecture of the CloudFlow framework.

manage the tasks of the entire Map and Reduce Functions. The
job tracker has to communicate with the name node to locate the
input data and the task trackers. Each task tracker is also configured
with a bunch of slots for Map and Reduce Tasks. An individual job
scheduler manages the execution order of the tasks. For example,
EI should be firstly joined with NC and then with CR1 in job 2 of
scenario 1.

The distributed file system is built on top of the local file system.
Unlike traditional MR where the input data are read from HDFS,
CloudFlow copies the shared andmost frequently used data to local
file system to expedite data access.

In the next section, we formally introduce the CloudFlow
programming model.

2.4. CloudFlow programming model

The CloudFlow enables the definition of multiple heteroge-
neous Map and Reduce Functions. We formulate the representa-
tion as below:

Map : (km, vm) → {(k′

m, v′

m)}, m ∈ [1,M]

Reduce:

{{(k′

(i,r), [v
′

(i,r)])}, . . . , {(k
′

(j,r), [v
′

(j,r)])}} → [v′′

r]

(i, r), . . . , (j, r) ∈ [1,M], r ∈ [1, R].

This representation includes M Map Functions and R Reduce
Functions. The Reduce Functions are different from traditional MR
programming model in that they take input key/value pairs from
multiple key–value pair outputs of Map Functions. (i, r) or (j, r)
denotes a mapping from a tuple to a number between 1 and M .
Symbol r represents the index of the Reduce Function. Symbol
pairs (i, r) and (j, r) represent the first and last Map Function that
feed the rth Reduce Function.

For example, Map Functions on input key/value pairs (k(i,1),
v(i,1)), . . . , (k(j,1),v(j,1)) produce an output of the form {(k′

(i,1),
v′

(i,1))}, . . . , {(k
′

(j,1),v
′

(j,1))}. All these outputs are joined as the first
Reduce Function and the corresponding output dataset is [v′′

1].
More specifically, we use job 1 in scenario 1 as an example,

(k1, v1) and (k3, v3) represent the input dataset EI. (k2, v2) and
(k4, v4) represent the input dataset TR and ER respectively. All
the intermediate key–value pairs (k′

1, [v
′

1]), (k
′

2, [v
′

2]), (k
′

3, [v
′

3]) and
(k′

4, [v
′

4]) output by the four Map Functions are shown in the
Fig. 2(a).

In the reduce stage, (k′

1, [v
′

1]), (k′

2, [v
′

2]) are joined and the
results are outputted as [v′′

1]. These are also similarly applied to
(k′

3, [v
′

3]) and (k′

4, [v
′

4]), where the reduce output is represented
[v′′

3]. All the real key–value pairs of the reduce outputs are also
shown in Fig. 2(a).

Similar as traditionalMR, a configuration file of all the functions
and modules are as follows. A CloudFlow programmer defines this
file in the job configuration file. The CloudFlow reads this file and
initialize the job with the configuration specifications accordingly.

Class CloudFlowJob{
ClassMap_m(key, value);m ∈ [1,M]

Class Reduce_r(key, value); r ∈ [1, R]
MapFunctionList[] addMap(Map_m);
ReduceFunctionList[] addReduce(Reduce_r);
Boolean[][]maptoReduce(mapFunctionList,
reduceFunctionList);
defineJoinRules(reduceFunctionList);
addInputDataDir(Map_m);
setOutputDir(Dir);
sharedFunctionDataHandler[]
sharedFunctionDataHandler();

}

Map_m: the mth user-defined Map Function class. It imple-
ments a Map Function, which accepts a key–value pair and trans-
forms it to a set of new key–value pairs. In CloudFlow, a set of M
Map Functions is defined as a Map Function list.

Reduce_r: the rh user-defined Reduce Function class. It imple-
ments a Reduce Function, which accepts intermediate key–value
pair partitions generated by one or a set of Map Functions and out-
puts merged results. Similarly, a set of R Reduce Functions is de-
fined as a Reduce Function List.

addMap (MapClass): This function adds a set of Map Functions
to aMap Function list, and returns the list entry. EachMap Function
is defined inMap_m.

addReduce (ReduceClass): This function adds a set of Reduce
Functions to a Reduce Function list, and returns the list. Each
Reduce Function is defined in Reduce_r .

maptoReduce(): This function defines relationship between
Map and Reduce Functions. In CloudFlow, multiple Map Functions
may be followed by multiple Reduce Functions, and this function
manages the multiple-map to multiple-reduce mapping relation-
ship. It returns a M-row, R-column Boolean matrix whose (i, j) is
true if output ofMap_i feeds to the input of Reduce_j.

defineJoinRules (reduceFunctionList): There are many differ-
ent ways to perform Reduce Functions. It can be any theta join (<
, ≤, =, >,≥) type frommultiple Map Functions. DefineJoinRules is
set by the programmer to define how theMap Functions should be
joined.

addInputDataDir (mapFunctionList): This function associates
each Map Function with its input dataset. One Map Function can
also be associated to a set of input data located in different places.

sharedTaskDataHandler (SharedMapClassList): It gets a list of
Map Functions that have the same input data and returns a handler
to manage the input data for all those Map Functions. Detailed
introduction of this function is shown in the following section.

3. Theoretical analysis

Even thoughwehave identified the framework and architecture
of the CloudFlow programming model, the correctness, meaning

104 F. Zhang et al. / Future Generation Computer Systems 51 (2015) 98–110
that if it delivers desirable and possible output is still yet to
be proved. In this section, we perform a theoretical analysis to
prove that: Given the current CloudFlow design, each required
and expected output key/value pair is generated one and only
one time. From Definition and Term (1) to (10) below, we list the
major concepts that we utilize, and we follow it up by proving the
correctness and uniqueness of output key/value pair in Lemmas 1,
2 and the formal deduction.

(1) Let {MF} = {MF 0, . . . ,MFM−1} be the set of M Map Func-
tions.

(2) Let {RF} = {RF 0, . . . , RFR−1} be the set ofRReduce Functions.
(3) Let G be the bipartite graph that represents the dependency

(or links) between (the output of) theMap Functions and (the
input of) the Reduce Functions.

G : EG(MFm,RF r)

= 1 if the output ofMFm is an input to RF r .

(4) Relevant Map Functions for Map Function MFm associated
with Reduce Function RF r ,

Rel(MFm,RF r) : {MF i},

∀MF i ∈ Rel(MFm, RF r), EG(MFm, RF r)

= 1 ∧ EG(MF i, RF r) = 1
∀MF i ∉ {MF} − {MF i}, EG(MF i, RF r) = 0.

(5) All relevant Map Functions for Map FunctionMFm:

Rel(MFm) : {MF i}, ∃RF r ∈ SR, EG(MFm, RF r)

= 1 ∧ EG(MF i,MFm) = 1.

Typically, Rel(MFm) = Rel(MFm, RF 0)∪Rel(MFm, RF 1)∪· · ·∪

Rel(MFm, RFR).
(6) Irrelevant Map Functions for Map Function MFm associated

with Reduce Function RF r ,

iRel(MFm,RF r) : {MF i}, {MF} − Rel(MFm, RF r) − MFm.

(7) Irrelevant Map Functions for Map Functionm:

iRel(MFm) : {MF i}, {MF} − Rel(MFm) − MFm.

Typically, iRel(MFm) = iRel(MFm, RF 0) ∩ iRel(MFm, RF 1) ∩

· · · ∩ iRel(MFm, RFR).
(8) Let (km, vm) be a key and value pair of the output ofmap func-

tionMFm.
(9) The shuffling space isM-dimension discrete space. The length

of dimension j is uj.
(10) f is the function that maps a key–value pair to a set of M-

tuples.
f : (km, vm) → {(i1, . . . , iM)}, ij ∈ {0, 1, . . . , uj − 1}, uj
is the number of Reduce units in dimension j of the shuffling
space. {(i1, . . . , iM)} for (km, vm) is named as Cell Set CSm.

The set ofM-tuples is determined as follows:

im = h(km)%um (1)
ij = all of {0, . . . , uj − 1} if MF j ∈ Rel(MFm, RF r) (2)

ij = g(j) ifMF j ∈ iRel(MFm, RF r), (3)

g is another hash function that takes a dimension index j returns a
value in {0, . . . , uj − 1}.

We need to prove that: SupposeMFm ∈ {MFm}, ∀RF r ∈ {RF r}

Rel(MFm, RF r) = {MF 0,MF 1, . . . ,MFm′}, (4)

then |f (km, vm) ∩ f (k0, v0) ∩ f (k1, v1) ∩ · · · ∩ f (km′ , vm′)| = 1.

Lemma 1. If Rel(MFm, RF r) = {MF 0,MF 1, . . . ,MFm′}, then:

(1) for each j ∉ {m, 0, 1, 2, . . . ,m′
},MF j ∈ iRel(MFm, RF r);

(2) If MF j ∈ iRel(MFm, RF r), j ∉ {m, 0, 1, 2, . . . ,m′
}.
The proof of this lemma is straightforward, which is not
necessarily given here.

Lemma 2. If Rel(MFm, RF r) = {MF 0,MF 1, . . . ,MFm′}, then:

Rel(MF 0, RF r) = {MFm,MF 1, . . . ,MFm′},

Rel(MF 1, RF r) = {MF 0,MFm, . . . ,MFm′}, . . . ,

Rel(MFm′ , RF r) = {MF 0,MF 1, . . . ,MFm}.

Problem we need to prove:
We first prove there is at least oneM-tuple (i0, . . . , iM−1) which

satisfies

|f (km, vm) ∩ f (k0, v0) ∩ f (k1, v1) ∩ · · · ∩ f (km′ , vm′)| = 1, (5)

and then prove the uniqueness of theM-tuple.

Proof. (1) For (kt , vt), by definition of the f function, it is shuffled
to a Cell Set CSt , which is denoted by:

St = h(kt)%ut (6)
{Sj} = all of {0, . . . , uj − 1} ifMF j ∈ Rel(MF t) (7)

Sj = g(j) ifMF j ∈ iRel(MF t)

t ∈ {m, 0, 1, 2, . . . ,m′
}. (8)

Then there is one M-tuple (i0, . . . , iM−1) ∈ CSm ∩ CS0 ∩ CS1 ∩

· · · ∩ CSm′ , which is:

im = h(km)%um (9)
i0 = h(k0)%u0 (10)
i1 = h(k1)%u1 (11)
. . .

im′ = h(km′)%um′ (12)

ij = g(j) if j ∉ {m, 0, 1, 2, . . . ,m′
}. (13)

To prove (i0, . . . , iM−1) ∈ CSm ∩ CS0 ∩ CS1 ∩ · · · ∩ CSm, we
only need to prove (i0, . . . , iM−1) ∈ CSm since the relevant Map
Functions are replaceable.

(1.1) For each cell in CSm, the mth index Sm equals to h(km)%um
based on Eq. (6). Given Eq. (9), we have im = Sm.

(1.2) Since ∃RF r ,MF 0,MF 1, . . . ,MFm′ ∈ Rel(MFm, RF r) based
on Eq. (4), each element in {Sj} in Eq. (7) covers all possible values.
Thus, i0 ∈ {S0}, i1 ∈ {S1}, . . . , im′ ∈ {Sm′}.

(1.3) If j ∉ {m, 0, 1, 2, . . . ,m′
}, Then, MF j ∈ iRel(MFm, RF r),

thus ij = Sj = g(j) based on Eqs. (8) and (13).
Concluded above,wehave (i0, . . . , iM−1) ∈ CSm. Thus,weprove

Eq. (5).
(2) For the uniqueness, proof is given here.

f (k0, v0) ∩ f (k1, v1) ∩ · · · ∩ f (km′ , vm′)

= {Sm} = all of {0, . . . , um − 1} (14)
S0 = h(k0)%u0 (15)
S1 = h(k1)%u1 (16)
. . .

Sm′ = h(km′)%um′ (17)
Sj = g(j) ifMF j ∈ iRel(MF t). (18)

Based on Eq. (1), themth index of f (km, vm) is h(k0)%u0 ∈ {S0};
Based on Eq. (2), the 0th, 1th, . . .m′th index of f (km, vm) are ‘‘all

of {0, . . . , u0−1}’’, ‘‘all of {0, . . . , u1−1}’’,. . . ‘‘all of {0, . . . , um′−1}’’
respectively. Then, we have S0 ∈ all of {0, . . . , u0 − 1}, S1 ∈

all of {0, . . . , u1 − 1}, . . . , Sm′ ∈ all of {0, . . . , um′ − 1}.
Based on Eq. (3), we have the same value for index at j where

MF j ∈ iRel(MF t) in Eq. (18).
Concluded above, we have |f (km, vm) ∩ f (k0, v0) ∩ f (k1, v1) ∩

· · · ∩ f (km′ , vm′)| = 1, and it is given by Eqs. (11)–(15).

F. Zhang et al. / Future Generation Computer Systems 51 (2015) 98–110 105
Fig. 4. Illustration of two CloudFlow jobs in scenario 2. Input dataset EI, which is
shared by two different jobs, is handled by the Shared Job Data Handler.

Note: h is the function that maps the M-tuple to a processing
node.

h : (i1, . . . , iM) → n, n ∈ {1, 2, . . . ,N}, where N is the total
number of processing nodes.

4. Shared data handler

In this section, we introduce the shared data handler, which
includes both the Shared Job and Shared Function Data Handlers.

4.1. Shared job data handler

The Shared Job Data Handler processes the jobs, which share
the same input dataset. As being shown in Fig. 4, there are two
concurrent jobs that share the same table: EI. In this case, we
define a handler to orchestrate and manage the shared input data
among multiple jobs. CloudFlow finds out that EI is frequently
used. Therefore, it computes the input splits only once to feed the
Map Tasks, and copies the shared input data to local file systems
of the system nodes. Future jobs that need EI can read it from local
nodes.

This handler is implemented in the CloudFlow framework since
the programmer does not know how other jobs define their input
dataset. In Algorithm 1, we define a mechanism to discover the
frequently used data by recently submitted jobs. The steps of
handling shared data are illustrated below.

Algorithm 1. Shared Job Data Handler
Input:
CloudFlowJobList[] CloudFlowJobList // Recent submitted
jobs
Output:
SharedJobDataHandler sharedJobDataHandler
Procedure:
inputDataSetList = AnalyzeInput-
DataSet(CloudFlowJobList[i]);
Foreach inputData in inputDataSetList

If isFrequentUsedData(inputData)
sharedJobDataHandler.AddData(inputData);
Copy inputData to Local File System;

EndFor

The procedure above demonstrates the steps to handle the
shared input data among multiple MR jobs. In the first line, the
input data of a new coming job is decomposed into an input-
DataSetList. Then each input file in this list is iterated via a isFre-
quentUsedData() function. This function defines if the file is used
frequently recently.

Different solutions can be applied to define the frequently used
data. For example, the data with an accessing statistic average
value above a threshold over all the submitted jobs can be deemed
as frequently used. A shorter time window which considers the
newest submitted jobs can also be applied. In our late experiment,
Fig. 5. Illustration of the Shared Function Data Handler for heterogeneous Map
Functions in one job. Instead of the two Map Functions reading the shared data EI
separately, the handler supplies EI to both MF02 and MF03.

Fig. 6. Illustration of the Shared Function Data Handler for homogeneous Map
Functions in one job. The handler supplies the shared data EI and NC to the Map
Functions that need them. It also generate one copy of the output data.

we set the data as frequently used if the newest five submitted jobs
have at least visited the input data three times.

Other than the replication, ‘dereplication’ can also be applied.
Imagine the case in which some data has not been accessed by the
five last jobs, but was previously marked as ‘frequently used’, the
data can be deleted from local file system to save storage space of
each individual nodes. This ‘dereplication’ strategy is not tested in
this paper, which will be touched in our future work.

4.2. Shared function data handler

In Fig. 5,we illustrate the Shared FunctionDataHandler. Since EI
is shared byMF11 andMF13, it would be better to push the data to
the two Map Functions instead of pulling the data by the two Map
Functions themselves. In this case, the handler creates one copy of
its implementation at each slave nodewhere data EI is located, and
supplies the data to the local Map Tasks of MF11 and MF12.

For a Map Task, the jobtracker takes into account the task-
tracker’s location and assigns a Map Task on the nodes where its
input dataset is located. The Map Tasks of MF02 and MF03 that
process the same split of data of EI can be co-located at the same
node. Thus, the implementation of the Shared Function Data Han-
dler can be located at the same host and serves the shared data for
both MF02 and MF03.

In Fig. 6, we illustrate an optimization of the Shared Function
Data Handler. Notice this handler is currently used for the same
Map Function on the same input datasets. For example, two pairs
of Map Functions (MF08&MF10 andMF09&MF11) perform exactly
the same in case 2 of scenario 1. Since the input datasets EI and
NC are shared, we still can use the method in Fig. 5 to allocate the
handler.

Furthermore, instead of generating two copies of outputs for EI
as shown in Fig. 2(b), the Shared Function Data Handler for Map
Functions generates only one output copy. This one output does
not have to include the identifier key ‘‘1’’ or ‘‘2’’ to indicate where
the data is from. This is because the Reduce Function does not have
to care about the source of the input data if the Map Functions are
exactly the same.

This handlermakes sure that the key–value pairs for EI are shuf-
fled to Reduce Functions only once. This optimization makes the
framework much more lightly weighted by reducing the overhead
of producing and shuffling the intermediate data multiple times.
The same approach applies to handling the NC table.

106 F. Zhang et al. / Future Generation Computer Systems 51 (2015) 98–110
The Shared Function Data Handler is different from the Shared
Job Data Handler. First, the latter discovers the shared data by
calculating the recently used data among different jobs while the
former does not have to. Second, the latter provides optimization
by copying the shared data to the local file system,while the former
supplies data to different Map Tasks. Algorithm 2 below illustrates
the procedure of handling shared function data among multiple
Map Functions. The time complexity is O(n∧2)when n is the length
of the Map Function list.

In the algorithm, the input data of each Map Function in
the mapFunctionList is derived. Then pairwise comparison of in-
put data between all pairs of Map Functions (Map_i and Map_j)
are carried out subsequently. If same input data is discovered,
sharedInputMapClassList[i][j] is used to store the Map_j which
shares the same input data as Map_i. Map_i and all the members
in sharedInputMapClassList[i][] will be further handled by Shared-
TaskDataHandler[i].

Algorithm 2: Shared Function Data Handler
Input:
MapFunctionList[] mapFunctionList // All Map Functions
MapFunctionList[][] sharedInputMapFunctionList
Output:
SharedFunctionDataHandler[] sharedFunctionDataHandler
Procedure:
sharedInputMapFunctionList [1].AddMap(Map_1)
ForeachMap_i inmapFunctionList

InputData_i =AnalyzeInputDataSet(Map_i);
ForeachMap_j inmapFunctionList && (j > i);

InputData_j =AnalyzeInputDataSet(Map_j);
If(InputData_i ==InputData_j)

sharedInputMapFunctionList[i].
AddMap(Map_j);

EndFor
EndFor
ForeachmapFunctionList in sharedInputMapFunctionList

If (mapFunctionList.length > 0)
sharedFunctionDataHandler[i] =

SharedFunctionDataHandler(mapFunctionList);
EndFor

5. Experimental evaluation

In this section, we introduce the settings of our experiments
and make performance comparisons between CloudFlow and the
traditional MR approachwhich does not consider data sharing.We
have not yet implemented the whole CloudFlow until now but we
are evaluating the data sharing and optimization part. Here we are
evaluating the efficiency of the data handler parts, which we have
done.

5.1. Experimental settings

The experiments are carried out using 1, 2, 4 and 8 standard
instances on Amazon EC2 cloud. Each instance is an m1.small with
1.7 GB of memory, 1 EC2 Compute Unit (1 virtual core with 1 EC2
Compute Unit), 160 GB of local instance storage, 32-bit platform on
deployed Ubuntu AMI, EBS boot, 32-bit architecture with Amazon
EC2 AMI Tools.

We use two benchmark applications to demonstrate the effec-
tiveness of the data sharing mechanism mentioned in CloudFlow
programming model. For each application, we use small, moder-
ate and large input dataset as testing cases to show the scalability
against the input data size. We measure up to four jobs for each
application.

Single Source Shortest Path (SSSP) is an iterative MR applica-
tion that involves multiple runs of a Hadoop job. We use the tuple
(number of graph nodes—nodes connectivity degree) to mea-
sure the graph size. For example, we use 10000–0.01 to demon-
strate the input graph with 10,000 nodes, and each node has
10,000× 0.01 = 100 adjacent neighbors. Input data size is defined
as small, moderate and large graphs with sizes of 10000–0.01,
100000–0.001, 1000000–0.0001 respectively.

In this SSSP benchmark, we test the job-level concurrency,
which runs multiple jobs over shared graph, we copy the shared
data among multiple jobs to local file system to ensure data
locality.

String Matching is the other benchmark we use. A very big
size string (typically a few GB) is located in HDFS. This string is
called a reference string. Multiple MR jobs with different users’
strings, which are far shorter than the reference string, are used
to match the reference string in order to find the number of
occurrences of this substring in the reference string. This string
matching benchmark is important in genome sequence alignment,
where the string is a typical genome sequence.

For the string matching benchmark, we use both the shared
data at job-level and function-level to test the efficiency of this
framework.

5.2. Experimental results

In Figs. 7 and 8, we show the effectiveness of the Shared
Data Handlers for the two benchmark applications under varied
input data size. Fig. 7((a)–(c)) demonstrates the execution time
in milliseconds for small, moderate and large input data size for
SSSP benchmark. Fig. 8((a)–(c)) shows the execution time for String
Matching benchmark. The execution time shown excludes the
shared data copy time for CloudFlow.

In both applications, the results demonstrate clear advantage
of the CloudFlow data sharing approach as compared to the MR
solution. Moreover, this advantage is much greater as the number
of jobs increases.

In the one-job case, no matter how large the cluster size is, the
execution times of the two methods are similar. This is because no
concurrency can be utilized for the CloudFlow to take advantage
of.

In the multiple job cases as shown below, we can see a
performance speedup of up to 4X for the case of a cluster of size
eight (VM = 8) and job number equals to 4 (see Fig. 7(a)). The
traditional MR performs the job one by one, which delays the
whole execution time of the four jobs. With 210 s in CloudFlow
for running four concurrent jobs, the execution time is 816 s for
running the four jobs in a standardMRmanner. Similar results also
apply to the same configuration in Fig. 7(b). Non-Concurrent MR
takes 5709 s on moderate data size for the four jobs on eight VMs,
while CloudFlow takes 1468 s instead.

Another parameter that affects the performance is the cluster
size. Using larger cluster size normally shows better performance
than using a smaller one. This benefit is better illustrated for larger
input data size. In Fig. 7(a) and (b), the execution time of MR for
the four-jobs case is very close across different cluster sizes. In the
large input data size case, as shown in Fig. 7(c), the advantage of
using varied cluster size appears.

In CloudFlow, the large cluster size benefits over MR in SSSP
cases. Except in using large input data size as in Fig. 7(c), the
cluster size has very limited effect on MR as shown for the 2-job
and 4-job cases. This does not apply to CloudFlow. This is easy

F. Zhang et al. / Future Generation Computer Systems 51 (2015) 98–110 107
(a) Small input data size (10000–0.01). (b) Moderate input data size (100000–0.001).

(c) Large input data size (1000000–0.0001).

Fig. 7. Execution time (seconds) of CloudFlow running on SSSP benchmark.
(a) Small input data size (1 GB). (b) Moderate input data size (2 GB).

(c) Large input data size (4 GB).

Fig. 8. Execution time (seconds) of CloudFlow running on string matching benchmark.

108 F. Zhang et al. / Future Generation Computer Systems 51 (2015) 98–110
Fig. 9. Overhead time of copying the shared input data from HDFS to each
individual VM instance.

to explain. CloudFlow explores more parallelism when running
multiple jobs. Large cluster size would benefit more from this
mechanism coupled with large input data size.

In short, CloudFlow performs better than its counterpart. It fa-
vors large number of jobs running on large cluster size. Parallelism
in job-level and function-level data sharing are better exploited
and utilized in this case.

In Fig. 9, wemeasure the overhead time used to copy the shared
input dataset fromHDFS to individual VMs. As we can see, copying
4 GB shared data to 8VMs in parallel takes around 140 s. This is a
one-time overhead, whichmeans the shared data would be copied
only once. It benefits all the following concurrent jobs. As shown
in Fig. 8, the more jobs we run, the more benefit we get from this
data copying. For example in a 4 job case, CloudFlow has reduced
the execution timemore than 600 s at the cost of only 125 s for the
shared data copying.

5.3. Discussion on scalability on big-data

The analysis above has proven the one-time overhead should
have limited impact on the performance with multiple job runs.
We argue that, therefore inevitably, the proposed framework
should be scalable for larger input datasets. In other words, Cloud-
Flow has divided the execution time into two parts, one for data
moving and one for computing and shuffling. The data-moving
portion is a fixed cost, and the much lower computing and shuf-
fling portion is subject to the scaling of the big-data. Nevertheless,
performance of traditional MapReduce is subject to the data vari-
ation without any fixed portion, and that it definitely scales much
worse than the CloudFlow.

In Fig. 9, we can also learn that the overhead time in terms of
scaling the cluster size is not manageable. This is understandable
since moving a chunk of data to the HDFS of a four-VM cluster
should not be significantly slower than moving the same amount
of data to an eight-VM cluster. However, we do obverse a few slow-
downs when a larger cluster is used. This is because larger cluster
size would lead to the data spreading over more nodes. The main-
tenance, including the metadata management, data replication for
availability, etc. over a larger cluster should incur more overhead
than a small cluster size. This slightly larger overhead, compared
with the significantly improved performance over the other com-
puting and shuffling stages, still triumphs traditional MapReduce
in general.

6. Related work

In the past, many endeavors have focused on proposing
extended or new programming models for big-data problems
other than the widely accepted MR. We are targeting this problem
by exploring the data sharing at function/job level, and providing
a framework to exploit the advantages of this sharing of data.

Efficient and effective programming models for different com-
puting infrastructures have been of interest to both academia and
industry. The advent of MapReduce [1] has spawned new research
efforts on the development of programming models for big-data
processing. Dryad [14,15] is proposed as an extension ofMR. It em-
ploys Directed Acyclic Graph (DAG) to provide more flexibility to
the programmer. SCOPE [16] is introduced by Microsoft, which is
motivated by the structure of SQL, for efficient execution on very
large clusters.

MR has also been enhanced by a number of research efforts.
HaLoop [11], a revised programming model that integrates loop-
basedprocessing forMRapplications, has demonstrated significant
performance improvement when the input data is partially
shared. Map-Reduce-Merge [17] introduces a ‘‘merge’’ stage after
traditional MR to merge the outputs of multiple MR jobs.

The motivation for the two papers are similar to ours’ in
function-level concurrency. Unlike them, we explore data sharing
in job-level concurrency as well to efficiently manage concurrent
jobs submitted by different users.

Along the line of MR extensions, other research efforts ad-
dressed data streaming environments. Nova [18], due to its support
for stateful incremental processing leveraging Pig Latin [19], deals
with continuous arrival of streaming data. Incoop [20] is proposed
as an incremental computation to improve the performance of MR
framework. Deduce [21] and S4 [22] are other new programming
models for streaming data applications.

Pregel [23] is a message-based programming model to deal
with distributed large graph programs. It uses vertex, messages
and multiple iterations in order to provide a completely new
programming mechanism. GraphLab [24,25] is proposed to deal
with scalable algorithms in data mining andmachine learning that
run on multicore clusters. Goal programming [26,27] approaches
is also proposed for joint optimization of energy consumption and
response time.

In our previous work, we have also identified quite a few
interesting research merits along the MapReduce line, including
the input dataset size scaling and its impact on performance [12],
cluster size scaling and its impact on performance [38] and
performance cost analysis on both public and private cloud [28].
Moreover, we have also identified the ConMR [29], a similar
programming model but with much less theoretical proof and
formulation.

In this paper, we focus on an improvement on traditional rigid
map and Reduce Functions organized in any MR job by a more
flexible framework, while exploiting job and function level to
enhance the overall performance.

For a Reduce Function whose input datasets are produced by
two or more Map Functions, joining among different datasets is
widely applied in CloudFlow. There are a number of research
papers to address the problem of joins using MR related solutions.
Broadcast join is proposed in [30] for one dataset is relatively
small. This dataset can be copied to each computing machine
for conducting join operations at local file systems. Different
join algorithms are compared in [31]. One-phase-join mentioned
in [32] uses a filtering-join-aggregation model to deal with Map-
Join-Reduce. Research papers [33,34] optimizemultiple joins using
Lagrange relaxation method. In [35], the authors propose matrix-
based method to balance the input and output dataset size for
different Reduce Tasks. In [36], Hilbert Space Filling Curve is
proposed to deal with multi-way theta-join problem.

Restore [37] has been used to keep intermediate results for
future workflow use. Unlike this method, our data reuse is share-
aware and corresponding optimization is offered.

F. Zhang et al. / Future Generation Computer Systems 51 (2015) 98–110 109
7. Conclusions and future work

In this paper,wepropose CloudFlow, an improvedMRprogram-
ming model for modern HPC systems. CloudFlow addresses the
need to define multiple independent MR sub-jobs to provide a so-
lution to a complex problem. Besides this, CloudFlow reduces the
amount of work by taking into account data sharing at the job and
function levels. To summarizes the main contributions:

(1) We propose a concurrent MR framework CloudFlow with
multiple heterogeneous Map and Reduce Functions. The
shared data of different Map and Reduce Functions are defined
by programmers to guarantee the data sharing is implemented
in an efficient manner.

(2) CloudFlow takes into account the data sharing at the job
and function levels. For job-level data sharing, the framework
manages the data by replicating data to ensure data locality.
For function-level data sharing, it provides optimization by
supplying the shared data tomultipleMap Tasks fromdifferent
Map Functions. It also merges the output of the same Map
Functions on the shared data.

(3) We have evaluated the framework using two benchmarks;
Single Source Shortest Path and String Matching. Results have
demonstrated up to 4X performance speedup compared to
traditional MR.

Future work will focus on the following three directions.

(1) For the Shared Function Data Handler to process different Map
Functions,we can optimize it further bymerging the outputs of
the intermediate key–value pairs. For example, we can merge
the outputs of MF02 and MF03 in Fig. 2(a). The intermediate
key–value pairs can be like <EI00, PS, 12 000, 96> et al.

(2) Explore the effectiveness of our method using a large cluster
size on both a public cloud and a private cloud. Currently we
are using up to eight instances on Amazon EC2. The advantage
of the programming model will be further amplified given a
larger cluster size.

(3) Work on the development of ConHadoop software toolkit,
which supports the CloudFlowprogrammingmodelwith built-
in support for job- and function-level optimization.

Acknowledgments

This publication was made possible by NPRP grant # 09-1116-
1-172 from the Qatar National Research Fund (a member of Qatar
Foundation). This work was also supported in part by Ministry
of Science and Technology of China under National 973 Basic
Research Program (Grant No. 2013CB228206), National Natural
Science Foundation of China (Grant Nos. 61472200 and 61233016).
The statements made herein are solely the responsibility of the
authors.

References

[1] R. Buyya, High Performance Cluster Computing, Prentice Hall PTR, NJ, USA,
1999.

[2] H. Jin, T. Cortes, R. Buyya, High Performance Mass Storage and Parallel I/O:
Technologies and Applications, Wiley, 2001.

[3] K. Hwang, Z. Xu, Scalable Parallel Computing: Technology, Architecture,
Programming, McGraw-Hill, Inc., New York, NY, USA, 1998.

[4] I. Foster, I. Kesselman, The Grid: Blueprint for a NewComputing Infrastructure,
Morgan-Kaufmann, 2002.

[5] I. Raicu, I. Foster, Y. Zhao, Many-task computing for grids and supercomputers,
in: IEEE Workshop on Many-Task Computing on Grids and Supercomputers,
MTAGS08, 2008.
[6] J. Dean, S. Ghemawat,MapReduce: simplified data processing on large clusters,
in: Proc. of 19th ACM Symp. on Operating Systems Principles, OSDI 04,
December 2004, pp. 137–150.

[7] L. Wang, J. Tao, R. Ranjand, H. Martenc, A. Streitc, J. Chene, D. Chen, G-Hadoop:
MapReduce across distributed data centers for data-intensive computing,
Future Gener. Comput. Syst. 29 (2013) 739–750.

[8] T. Jie, H. Marten, A. Streit, S.U. Khan, J. Kolodziej, D. Chen, MapReduce
across distributed clusters for data-intensive applications, in: The 26th
IEEE International Parallel and Distributed Processing Symposium, IPDPS,
Shanghai, China, 2012.

[9] Hadoop. http://hadoop.apache.org/.
[10] R. Moraveji, J. Taheri, M.R.H. Farahabady, N.B. Rizvandi, A.Y. Zomaya, Data-

intensive workload consolidation for the Hadoop distributed file system,
in: The Proceedings of the ACM/IEEE 13th International Conference on Grid
Computing, Grid 12, September 2012, pp. 95–103.

[11] Y. Bu, B. Howe, M. Balazinska, M.D. Ernst, HaLoop: efficient iterative data
processing on large clusters, in: Proc. of the 36th International Conference on
Very Large Data Bases, VLDB 10, September 2010, pp. 11–17.

[12] F. Zhang, M.F. Sakr, Dataset scaling and MapReduce performance, in:
Workshop on Large-Scale Parallel Processing (LSPP’13) Held at the 27th IEEE
International Parallel and Distributed Processing Symposium (IPDPS), Boston,
USA, May, 2013.

[13] A. Gosavi, Simulation-Based Optimization: Parametric Optimization Tech-
niques and Reinforcement Learning, Springer, 2003.

[14] M. Isard, M. Budiu, Y. Yu, A. Birrell, D. Fetterly, Dryad: distributed data-
parallel programs from sequential building blocks, in: European Conference
on Computer Systems, EuroSys 07, March 21–23, 2007, pp. 59–72.

[15] L. Popa, M. Budiu, Y. Yu, M. Isard, DryadInc: reusing work in large-scale
computations, in: Workshop on Hot Topics in Cloud Computing, HotCloud 09,
2009.

[16] R. Chaiken, B. Jenkins, P. Larson, B. Ramsey, D. Shakib, S. Weaver, J. Zhou,
SCOPE: easy and efficient parallel processing of massive datasets, in: Proc. of
the 34th International Conference on Very Large Data Bases, VLDB 08, August
2008, pp. 24–30.

[17] H. Yang, A. Dasdan, R. Hsiao, D.S. Parker, Map-Reduce-Merge: simplified
relational data processing on large clusters, in: Proc. of the 2007 ACM SIGMOD
International Conference on Management of Data, SIGMOD 07, June 2007,
pp. 1029–1040.

[18] C. Olston, G. Chiou, L. Chitnis, F. Liu, Y. Han, M. Larsson, A. Neumann,
V.B.N. Rao, V. Sankarasubramanian, S. Seth, C. Tian, T. ZiCornell, X. Wang,
Nova: continuous Pig/Hadoop workfows, in: Proc. of the 2011 ACM SIGMOD
International Conference on Management of Data, SIGMOD 11, June 2011,
pp. 1081–1090.

[19] C. Olston, B. Reed, U. Srivastava, R. Kumar, A. Tomkins, Pig Latin: a not-so-
foreign language for data processing, in: Proc. of the 2008 ACM SIGMOD
International Conference on Management of Data, SIGMOD 08, June 2008,
pp. 1099–1110.

[20] P. Bhatotia, A. Wieder, R. Rodrigues, U.A. Acar, R. Pasquin, Incoop: MapReduce
for incremental computations, in: Proc. of the 2nd ACM Symposium on Cloud
Computing, SoCC 11, October 2011.

[21] V. Kumar, H. Andrade, B. Gedik, K.L. Wu, DEDUCE: at the intersection
of MapReduce and stream processing, in: Proc. of the 13th International
Conference on Extending Database Technology, EDBT 10, March 2010,
pp. 657–662.

[22] L. Neumeyer, B. Robbins, A. Nair, A. Kesari, S4: distributed stream computing
platform, in: Proc. of the International Workshop on Knowledge Discovery
Using Cloud and Distributed Computing Platforms, KDCloud 10, December
2010, pp. 170–177.

[23] G. Malewicz, M.H. Austern, A.J.C. Bik, J.C. Dehnert, I. Horn, N. Leiser, G.
Czajkowski, Pregel: a system for large-scale graph processing, in: Proc. of
the 2008 ACM SIGMOD International Conference on Management of Data,
SIGMOD 10, June 2010, pp. 135–146.

[24] Y. Low, J. Gonzalez, A. Kyrola, D. Bickson, C. Guestrin, J.M. Hellerstein,
GraphLab: a new framework for parallelmachine learning, in: Proc. of the 26th
Conference on Uncertainty in Artificial Intelligence, UAI 10, Catalina Island,
July 2010.

[25] Y. Low, J. Gonzalez, A. Kyrola, C. Guestrin, A. Kyrola, J.M. Hellerstein,
Distributed GraphLab: a framework for machine learning and data mining in
the cloud, J. Proc. VLDB Endow. 5 (2012) 716–727.

[26] S.U. Khan, A goal programming approach for the joint optimization of
energy consumption and response time in computational grids, in: 28th
IEEE International Performance Computing and Communications Conference,
IPCCC, Phoenix, AZ, USA, December 2009, pp. 410–417.

[27] S.U. Khan, N. Min-Allah, A goal programming based energy efficient resource
allocation in data centers, J. Supercomput. 61 (3) (2012) 502–519.

[28] F. Zhang, M.F. Sakr, Performance variations in resource scaling for MapReduce
applications on private and public clouds, in: Proceedings of The 7th IEEE
International Conference on Cloud Computing, IEEE Cloud 2014, Alaska, USA,
June 2014.

[29] F. Zhang, Q.M. Malluhi, T. Elsayed, ConMR: concurrent MapReduce program-
ming model for large scale shared-data applications, in: 42nd International
Conference on Parallel Processing, ICPP 2013, Lyon, France, October, 2013.

[30] S. Chen, Cheetah: a high performance, custom data warehouse on top of
MapReduce, J. Proc. VLDB Endow. 3 (2010) 1459–1468.

http://refhub.elsevier.com/S0167-739X(14)00222-2/sbref1
http://refhub.elsevier.com/S0167-739X(14)00222-2/sbref2
http://refhub.elsevier.com/S0167-739X(14)00222-2/sbref3
http://refhub.elsevier.com/S0167-739X(14)00222-2/sbref4
http://refhub.elsevier.com/S0167-739X(14)00222-2/sbref7
http://hadoop.apache.org/
http://refhub.elsevier.com/S0167-739X(14)00222-2/sbref13
http://refhub.elsevier.com/S0167-739X(14)00222-2/sbref25
http://refhub.elsevier.com/S0167-739X(14)00222-2/sbref27
http://refhub.elsevier.com/S0167-739X(14)00222-2/sbref30

110 F. Zhang et al. / Future Generation Computer Systems 51 (2015) 98–110
[31] S. Blanas, J.M. Patel, V. Ercegovac, J. Rao, E.J. Shekita, Y. Tian, A comparison of
join algorithms for log processing in MapReduce, in: Proc. of the 2008 ACM
SIGMOD International Conference on Management of Data, SIGMOD 10, June
2010, pp. 975–986.

[32] D. Jiang, A. Tung, G. Chen,Map-join-reduce: towards scalable and efficient data
analysis on large clusters, IEEE Trans. Knowl. Data Eng. 23 (2010) 1299–1311.

[33] F.N. Afrati, J.D. Ullman, Optimizing joins in a Map-Reduce environment, in:
Proc. of the 13th International Conference on Extending Database Technology,
EDBT 10, March 2010, pp. 99–110.

[34] F.N. Afrati, J.D. Ullman, Optimizing multiway joins in a Map-Reduce
environment, IEEE Trans. Knowl. Data Eng. 23 (2011) 1282–1298.

[35] A. Okcan, M. Riedewald, Processing theta-joins using MapReduce, in: Proc.
of the 2011 ACM SIGMOD International Conference on Management of Data,
SIGMOD 11, June 2011, pp. 949–960.

[36] X. Zhang, L. Chen, M. Wang, Efficient multi-way theta-join processing using
MapReduce, in: Proc. of the 38th International Conference on Very Large Data
Bases, VLDB 12, August 2012, pp. 1184–1195.

[37] I. Elghandour, A. Aboulnaga, ReStore: reusing results of MapReduce jobs, Proc.
VLDB Endow. 5 (6) (2012) 586–597.

[38] F. Zhang, M.F. Sakr, Cluster-size scaling and MapReduce execution times, in:
Proceedings of The International Conference on Cloud Computing and Science,
CloudCom 2013, Bristol, UK, December 2013.

Fan Zhang is currently a postdoctoral associate with the
Kavli Institute for Astrophysics and Space Research at
Massachusetts Institute of Technology. He is also a spon-
sored researcher in Tsinghua University, Beijing, China.
He has been appointed as a visiting associate professor in
the Shenzhen Institute of advanced technology, Chinese
Academyof Science since Jan 2014. He received his Ph.D. in
Department of Control Science and Engineering, Tsinghua
University in Jan. 2012. From 2011 to 2013 he was a re-
search scientist at Cloud Computing Laboratory, Carnegie
Mellon University. An IEEE Senior Member, he received an

Honorarium Research Funding Award from the University of Chicago and Argonne
National Laboratory (2013), a Meritorious Service Award (2013) from IEEE Transac-
tions on Service Computing, two IBM Ph.D. Fellowship Awards (2010 and 2011). His
research interests include big-data scientific computing applications, simulation-
based optimization approaches, cloud computing, and novel programming models
for streaming data applications on elastic cloud platforms.

Qutaibah M. Malluhi joined Qatar University in Septem-
ber 2005. He is the Director of the KINDI Lab for Comput-
ing Research. He served as the head of Computer Science
and Engineering Department at Qatar University between
2005 and 2012. Before joining Qatar University he was a
professor of Computer Science at Jackson State University
where he served as a faculty member between 1994 and
2005. During 1995 and 1996, he was a research faculty at
Lawrence Berkeley National Laboratory, Berkeley Califor-
nia. He was the co-founder and CTO of Data Reliability Inc.
between 2001 and 2005. He was a Co-founder of Qloud

(Qatar Cloud Computing Center); a collaboration between IBM, Qatar University,
Carnegie Mellon University-Qatar, and Texas A&MUniversity, Qatar (2009). He was
also the Co-Founder and Executive Advisor for the Qatar University Wireless Inno-
vation Center at the Qatar Science and Technology Park. His research area is in the
fields of parallel and distributed high performance computing, Security & privacy
and cloud computing.
Tamer M. Elsayed received the B.Sc. and M.Sc. degrees
in Computer Science from Alexandria University in Egypt,
and Ph.D. degree in Computer Science from the University
of Maryland, College Park (UMD) in the United States in
2009. Hismain research interest is in information retrieval
with an emphasis onweb search and large-scale text anal-
ysis. He spent one year as a post-doctoral researcher at the
Cloud Computing Center at UMD, where he participated
in the design, development, and evaluation of an open-
source retrieval engine called Ivory. In summer 2010, he
joined the Advanced Systems Lab at King Abdullah Univer-

sity of Science and Technology (KAUST) as a post-doctoral fellow in the Division of
Mathematics and Computer Science, where he worked on two research projects:
asynchronous iterations support for MapReduce, and real-time search in Twitter.
He joined Microsoft Advanced Technology Lab at Cairo in summer 2011 as a re-
searcher before joining Qatar University in Fall 2012 as an assistant professor.

Samee U. Khan is an associate professor at the North
Dakota State University. He received his Ph.D. from the
University of Texas at Arlington in 2007. His research
interests include optimization, robustness, and security
of: cloud, grid, cluster and big data computing, social
networks, wired and wireless networks, power systems,
smart grids, and optical networks. His work has appeared
in over 225 publications with two receiving best paper
awards. He is a Fellow of the IET and a Fellow of the BCS.

Keqin Li is a SUNY distinguished professor of Computer
Science and an Intellectual Ventures endowed visiting
chair professor at Tsinghua University, China. His research
interests are mainly in design and analysis of algorithms,
parallel and distributed computing, and computer net-
working. He has over 255 research publications and has
received several Best Paper Awards for his research work.
He is currently on the editorial boards of IEEE Transactions
on Cloud Computing and IEEE Transactions on Computers.

Albert Y. Zomaya is currently the Chair Professor of High
Performance Computing and Networking and Australian
Research Council Professorial Fellow in the School of Infor-
mation Technologies, The University of Sydney. He is also
the Director of the Centre for Distributed and High Perfor-
mance Computing, whichwas established, in late 2009. He
is the author/co-author of seven books, more than 400 pa-
pers, and the editor of nine books and 11 conference pro-
ceedings. He is the Editor-in-Chief of the IEEE Transactions
on Computers and serves as an associate editor for 19 lead-
ing journals, such as, the IEEE Transactions on Parallel and

Distributed Systems and Journal of Parallel and Distributed Computing. He is the re-
cipient of theMeritorious Service Award (in 2000) and the Golden Core Recognition
(in 2006), both from the IEEE Computer Society. Also, he received the IEEE Technical
Committee on Parallel Processing Outstanding Service Award and the IEEE Techni-
cal Committee on Scalable Computing Medal for Excellence in Scalable Computing,
both in 2011. He is a Chartered Engineer, a Fellow of AAAS, IEEE, and IET (UK).

http://refhub.elsevier.com/S0167-739X(14)00222-2/sbref32
http://refhub.elsevier.com/S0167-739X(14)00222-2/sbref34
http://refhub.elsevier.com/S0167-739X(14)00222-2/sbref37

	CloudFlow: A data-aware programming model for cloud workflow applications on modern HPC systems
	Introduction
	Background introduction
	Motivation example
	Contribution and organization of this paper

	CloudFlow overview
	Illustration of handling shared data for CloudFlow
	Terms of the CloudFlow programming model
	CloudFlow architecture
	CloudFlow programming model

	Theoretical analysis
	Shared data handler
	Shared job data handler
	Shared function data handler

	Experimental evaluation
	Experimental settings
	Experimental results
	Discussion on scalability on big-data

	Related work
	Conclusions and future work
	Acknowledgments
	References

