
Future Generation Computer Systems 43–44 (2015) 149–160
Contents lists available at ScienceDirect

Future Generation Computer Systems

journal homepage: www.elsevier.com/locate/fgcs

A task-level adaptive MapReduce framework for real-time streaming
data in healthcare applications
Fan Zhang a,b,∗, Junwei Cao c, Samee U. Khan d, Keqin Li e, Kai Hwang f

a Kavli Institute for Astrophysics and Space Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
b Shenzhen Institute of Advanced Technology, Chinese Academy of Science, Shenzhen 518055, China
c Research Institute of Information Technology, Tsinghua University, Beijing, 100084, China
d Department of Electrical and Computer Engineering, North Dakota State University, Fargo, ND 58108-6050, USA
e Department of Computer Science, State University of New York, New Paltz, NY 12561, USA
f Department of Electrical Engineering and Computer Science, University of Southern California, Los Angeles, CA 90089, USA

h i g h l i g h t s

• We propose a task-level adaptive MapReduce framework for healthcare applications.
• We prove the optimal runtime Map and Reduce task count when workload changes.
• Our method extends the MapReduce programming model to process streaming data.
• Our method also includes two methods to predict streaming data workload in run time.
• We demonstrate the effectiveness of the method on real-life workload benchmark.

a r t i c l e i n f o

Article history:
Received 1 March 2014
Received in revised form
17 May 2014
Accepted 27 June 2014
Available online 5 July 2014

Keywords:
Adaptive MapReduce
Big data
Healthcare scientific applications
Kalman filter
Parallel processing

a b s t r a c t

Healthcare scientific applications, such as body area network, require of deploying hundreds of intercon-
nected sensors to monitor the health status of a host. One of the biggest challenges is the streaming data
collected by all those sensors, which needs to be processed in real time. Follow-up data analysis would
normally involve moving the collected big data to a cloud data center for status reporting and record
tracking purpose. Therefore, an efficient cloud platform with very elastic scaling capacity is needed to
support such kind of real time streaming data applications. The current cloud platform either lacks of
such a module to process streaming data, or scales in regard to coarse-grained compute nodes.

In this paper, we propose a task-level adaptive MapReduce framework. This framework extends the
generic MapReduce architecture by designing each Map and Reduce task as a consistent running loop
daemon. The beauty of this new framework is the scaling capability being designed at the Map and Task
level, rather than being scaled from the compute-node level. This strategy is capable of not only scaling
up and down in real time, but also leading to effective use of compute resources in cloud data center. As
a first step towards implementing this framework in real cloud, we developed a simulator that captures
workload strength, and provisions the amount of Map and Reduce tasks just in need and in real time.

To further enhance the framework, we applied two streaming data workload prediction methods,
smoothing and Kalman filter, to estimate the unknown workload characteristics. We see 63.1%
performance improvement by using the Kalman filter method to predict the workload. We also use real
streaming data workload trace to test the framework. Experimental results show that this framework
schedules the Map and Reduce tasks very efficiently, as the streaming data changes its arrival rate.

© 2014 Elsevier B.V. All rights reserved.
∗ Corresponding author at: Kavli Institute for Astrophysics and Space Research,
Massachusetts Institute of Technology, Cambridge, MA 02139, USA. Tel.: +1
3811264183.

E-mail addresses: zhang-fan07@mails.tsinghua.edu.cn, f_zhang@mit.edu
(F. Zhang), jcao@tsinghua.edu.cn (J. Cao), samee.khan@ndsu.edu (S.U. Khan),
lik@newpaltz.edu (K. Li), kaihwang@usc.edu (K. Hwang).
http://dx.doi.org/10.1016/j.future.2014.06.009
0167-739X/© 2014 Elsevier B.V. All rights reserved.
1. Introduction

Healthcare science has been consistently pushed forward by the
advent of big-data technology. Healthcare scientific applications
usually involve streaming input data generated by a large number
of distributed sensors. Such data are further sent to the state-of-
art big-data frameworks and platforms to process. For example,

http://dx.doi.org/10.1016/j.future.2014.06.009
http://www.elsevier.com/locate/fgcs
http://www.elsevier.com/locate/fgcs
http://crossmark.crossref.org/dialog/?doi=10.1016/j.future.2014.06.009&domain=pdf
mailto:zhang-fan07@mails.tsinghua.edu.cn
mailto:f_zhang@mit.edu
mailto:jcao@tsinghua.edu.cn
mailto:samee.khan@ndsu.edu
mailto:lik@newpaltz.edu
mailto:kaihwang@usc.edu
http://dx.doi.org/10.1016/j.future.2014.06.009


150 F. Zhang et al. / Future Generation Computer Systems 43–44 (2015) 149–160
the Body Area Network [1] that is widely recognized as a medium
to access, monitor, and evaluate the real-time health status of a
person, has long been notorious for its computing intensiveness to
process Gigabytes of data [2,3] in real-time. Such data are collected
from well-configured sensors to sample the real-time signals of
body temperature, blood pressure, respiratory and heart rate, chest
sound, and cardiovascular status, to name a few among others.

To process stream big-data in real-time, traditional parallelized
processing frameworks, such as HadoopMapReduce [4], Pregel [5],
and Graphlab [6,7], are structurally constrained and functionally
limited. The major difficulty lies in their designs are primarily
contrived to access and process the static input data. No built-
in iterative module can be used when the input data arrives in
a stream flow. Moreover, the existing frameworks are unable
to handle the scenarios when the streaming input datasets are
from various sources and have different arrival rates. Healthcare
scientific applications vary the data acquisition frequency when
the behavior of the person changes. For example, the data collected
when a person is sleeping can be far less than the data collected
when the person is running or swimming.

To process the highly dynamic, fluctuating, and varying
datasets, cloud computing, with elasticity as one of its major ad-
vantages, provides a perfect match as a potential and scalable so-
lution. One of themost successful commercial stories that leverage
the scalability of a cloud platform is the Amazon Elastic MapRe-
duce (EMR) framework [8]. The EMR scales up and scales out when
workload varies. However, amajor challenge is that the EMR scales
the compute nodes as the golden-rule principle. We have proven
in our previous study [9] that the MapReduce faces a large-scale
limitation issue, that is, MapReduce applications stop to promise
the desirable scalability when the cluster size is very large and the
Map andReduce tasks cannot utilize the compute resources. There-
fore, the scalability would find itself more tractable when one the
MapReduce application scales at a task level—increasing or reduc-
ing theMap and Reduce task numberwhen a variation of thework-
load is predicted.

To date, it is difficult to find such fine-grained scalable tools
to process stream data, even though there are many commer-
cial products that have been designed to serve the purpose. These
products will be reviewed in the next section. Different design
strategies as they are, none of them, to the best of our knowledge,
scales to process tasks in such a fined grained manner. Moreover,
most of these products lack a built-in support for processing data
on a scalable cloud data center, and lack a solid mathematical sim-
ulator to identify the optimal configuration option when varied
workload arrives.

Towards that end, we propose a full-fledgedMapReduce frame-
work that is tailored to process streaming data in healthcare sci-
entific applications. The framework goes beyond the traditional
Hadoop MapReduce design, while also providing a much generic
framework to cover a wider group of MapReduce applications.
The generic MapReduce framework is built upon the widely used
HadoopMapReduce but is also quite different. The implementation
of Hadoop MapReduce is hard coded while a generic MapReduce
framework can bemore flexible. For example, HadoopMapReduce
requires each Map and Reduce task be implemented as a separate
Java Virtual Machine (JVM) while in generic MapReduce, one task
can be specified as a JVM, a local process or a compute node among
others. In other words, generic MapReduce takes the MapReduce
design logic, that is multiple Map tasks connect to multiple re-
duce tasks, but can be implemented in a more flexible manner.
The purpose of using this generic MapReduce is to ease our stream
data modeling process, which is by no means being supported in
Hadoop MapReduce at all. The major contribution of this paper is
summarized below.
(1) We propose a task-level adaptive MapReduce framework to

process streaming data in healthcare scientific applications.
This framework extends the traditional Hadoop MapReduce
framework and specifically addresses the varied arrival rate
of big-data splits. The framework is designed to scale in
heterogeneous cloud platforms by applying four scaling
theorems and scaling corollaries. It is now fully developed and
delivered as a standalone simulator, which implements all the
theorems and corollaries.

(2) Stream data scientific applications need to estimate the real-
time data arrival rate and plan for the computing resources
accordingly. In this paper,wepropose twoworkloadprediction
methods and compared their benefits and performance in real-
life healthcare scientific applications.

(3) Real streaming data trace are used to justify the applicability of
the framework.We report the experimental results by showing
the real time Map and Reduce tasks number variation, which
matches perfectly with the variation of the streaming data
arrival rate.

This paper is organized as follows. In Section 1we introduce the
motivation, significance, and challenges of healthcare scientific ap-
plications and their direct requirement of processing stream-style
big-data. Section 2 investigates the related work, and as a sneak
peek overviewwe also give the core idea of our unique approach. A
real healthcare application case is discussed in Section 3. Following
that, we identify the methodological details of the task-level adap-
tive framework in Section 4. Two methods to predict the stream-
ing data workload are proposed in Section 4. We introduce our
experimental settings and report the results in Section 5. In the fi-
nal section, we conclude the work and summarize a few directions
to extend the work.

2. Related work and our unique approach

There is an escalating interest on leveraging the state-of-art big-
data platform to process stream data in real-time. In this section,
we investigate previous publications in this area. Thereafter, we
briefly describe our unique approach to show the advantage among
other solutions.

2.1. Related work

Health Information System [10] was originated and further ex-
tended from the hospital information system [11] that addresses
what is called the health informatics issues. The major chal-
lenge involves the shift from paper-based to computer-based, and
further to the Internet-based data storage processing. Patients,
healthcare consumers, and professionals are more involved into
a collaboration phase from a traditional in- or out-patient medi-
cation, to a widely acceptable online on-demand treatment. Such
a shift requires a significantly powerful interconnection compute
network and highly scalable compute nodes for both computing
and big-data processing.

MapReduce is a simple programming model for developing
distributed data intensive application in cloud platforms. Ever
since Google initially proposed it on a cluster of commodity
machines, there have been many follow-up projects. For instance,
Hadoop [12] is aMapReduce framework developed by Apache, and
Phoenix [13] is another framework designed for shared memory
architecture by Stanford University. Pregel [5] is a message-based
programming model to work on real-life applications that can be
distributed as an interdependent graph. It uses vertex, messages,
andmultiple iterations to provide a completely new programming
mechanism. GraphLab [6,7] is proposed to deal with scalable
algorithms in data mining and machine learning that run on
multicore clusters.



F. Zhang et al. / Future Generation Computer Systems 43–44 (2015) 149–160 151
The above-mentioned tools have a wide impact on the big-data
community and have been extensively used in real-life applica-
tions. Along those lines, other research efforts addressing stream-
ing data have been proposed. Nova [14], due to its support for
stateful incremental processing leveraging Pig Latin [15], deals
with continuous arrival of streaming data. Incoop [16] is proposed
as an incremental computation to improve the performance of the
MR framework. Simple Scalable Streaming System (S4) [17], in-
troduced by Yahoo!, is universally used, distributed, and scalable
streaming data processing system. As one of its major competi-
tor, Twitter is using Storm [18] that has also gained momentum
in real-time data analytics, online machine learning, distributed
remote procedure call, ETL (Extract, Transform and Load) process-
ing, etc. Other companies, such as Facebook, Linkedin and Cloudr-
era, are also developing tools for real-time data processing, such
as Scribe [19], Kafka [20], and Flume [21]. Even though the pro-
gramming languages are different, they all provide highly efficient
and scalable structure to collect and analyze real-time log files.
Complex Event Processing systems (CEP) are also gaining interest
recently. Popular CEP systems include StreamBase [22], HStream-
ing [23], and Esper&NEsper [24]. Essentially the CEP systems are
primary used in processing inter-arrival messages and events.

Different from these research and commercial products, our
work goes beyond a programming model framework, but also
serves as a simulator to help users identify how their compute re-
sources can be effectively used. Secondly, the framework is still
based on a generic MapReduce, but not entirely a Hadoop MapRe-
duce framework. We do not intend to design a completely new
framework, but we aim to extend a widely acceptable model to
allow it to seamlessly process streaming data. Our work may aid
the programmers to manipulate the streaming data applications
to process such kinds of flow data in a more scalable fashion.

2.2. Our unique approach

In a nutshell, our approach implements each Map and Reduce
task as a running daemon. Instead of processing static data in
HadoopDistributed File System (HDFS) as traditional Hadoop does,
the new Map tasks repeatedly fetch stream data that have been
cached in the HDFS, process the data and push the intermediate
key-value pairs to the corresponding Reduce tasks. These Reduce
tasks, similar to the Map tasks, are also implemented as running
daemons. These daemons repeatedly pull the corresponding data
partitions from the entire Map task output, digest them, and push
the output to a local cache. In thisway, each Reduce task has to save
the intermediate status of all the output key-value pairs when the
application is still running.

For example, an enhanced WordCount application requires
obtaining a real-time count of each word when the input dataset
needs to be updated and edited.Multiple users add/remove/update
words, sentences and files to HDFS as data streams. To implement
such a framework, Map tasks are stateless, meaning that they
just simply process the corresponding input data and produce
outputwithout having toworry about previous data that they have
processed. However, the Reduce tasks must be implemented in a
stateful way. This means that each of the Reduce task has to save
the real-time count of each word and adaptively add or reduce the
count whenever there is a change in the HDFS.

The essence of our approach, as we can see from the analysis,
lies in the seamless connection to theMapReduce implementation.
Users can develop data streaming applications in all the way they
developed traditionalMapReduce applications. The only difference
is that they must define such a daemon, instructing the Map
and Reduce tasks how to process the stream data. Secondly, our
approach can be implemented to scale the Map and Reduce tasks
separately. Traditional MapReduce scaling compute nodes usually
leads to lowcompute resource usagewhen the active running tasks
cannot utilize these compute nodes effectively.

An example is given below to illustrate the task-level adaptive
MapReduce application that calculates the real-time occurrence of
eachword in a set of documents. These documents are consistently
updated by multiple people, and therefore the statistics of each
word count differ from time to time.

TheMap tasks below are continuously fed by input data stream,
and enter into a loop that would not stop until the data stream
update ends. For each of the loop, all the words are extracted and
emitted key value pairs as tradition WordCount does. The Reduce
tasks, also being launched in a loop, are fed continuously by the
intermediate data produced by all of the Map tasks. The only dif-
ference here is the result, which needs to be fetched from HDFS.
Because for each result that has been calculated, it needs repeat-
edly updating. Therefore, Reduce tasks should be able to not only
write data back to the HDFS, but also retrieve data back from HDFS
for updating.

map(String key, String value):
// key: document name in a stream data
// value: document contents
While(MoreDataStream)

value = GetCachedStreamData();
for each word w in value:

EmitIntermediate(w, ‘‘1’’);

reduce(String key, Iterator values):
// key: a word
// values: a list of counts
While(MoreIntermediateData)

int result = getResultFromHDFS;
for each v in values:

result + = ParseInt(v);
Emit(AsString(result));

3. Problem formulation of a real-life healthcare application

In Fig. 1, we illustrate a case study of the body area network as
a real-life healthcare application. Health status regarding the res-
piration, breath, cardiovascular, insulin, blood, glucose and body
temperature, which are consistently collected by sensors deployed
all over the human body. This is what we call wearable computing,
which sends data repeatedly to a mobile phone via local network.
The sampling frequency is determined by the capacity of the sen-
sors as well as the processing rate of the mobile device.

Because most of the mobile devices nowadays are equipped
with advanced processing unit and large memory space, data
can be continuously transferred to the mobile devices and even
processed locally. Therefore, the various sources of input data need
to be locally analyzed beforemoving to the remote data center. The
data center has information on various disease symptoms and the
corresponding value threshold in regard to the insulin pump and
glucose level, etc. The purpose of the follow-up data transferring
is to compare the collected data with those in the database, and
quickly alert the user the potential symptom he/she is supposed to
see, and provide a smart medical suggestion in real-time.

As a typical case study of wearable computing, the data-
sampling rate can be as large as Gigabyte per minute. The higher
the sampling rate is, the better the real-timemedical treatment can
be achieved. Therefore, a strong requirement is posed on the com-
puting device as well as the backend data center. The data center
may need to serve thousands of persons with millions of sensors.
Real-time data stream needs to be processed to minimize the re-
sponse time to all users.



152 F. Zhang et al. / Future Generation Computer Systems 43–44 (2015) 149–160
Fig. 1. As a case study of the body area network, data streams collected from
various sensors are pushed to a mobile device and backend data center for real-
time medical treatment.

4. Task-level adaptive MapReduce framework

In this section, we brief an overview of the Hadoop MapReduce
framework as a start. Thereafter, the task-level provisioning
framework is introduced in the subsequent text.

4.1. Preliminary of Hadoop MapReduce framework

One skeleton of the standard Hadoop MapReduce framework
is given in Fig. 2. There are 4 parallel Map tasks and 3 parallel
Reduce tasks, respectively. Because the total number of the Map
tasks normally equals the number of the input data splits, there are
four data splits aswell. EachMap task performs a user-definedMap
function on the input data that resides in the HDFS and generates
the intermediate key-value pair data. These intermediate data are
organized on the partition basis. Each of the partition consists of
certain key-value data pairs, whose keys can be classified into one
group. The simplest classificationmethod is a hash function. Under
such a hash function, data partition belongs to the same group
are shuffled across all the compute nodes and merged together.
There are three data partitions shown in the figure. These merged
data partitions, as indicated by three different framed rectangular
boxes, are consumed by three Reduce tasks separately. The output
data generated by all the Reduce tasks arewritten back to theHDFS.

EachMap task resides in aMap slot of a computenode.Normally
each compute node has two Map slots. The slot number per
node can be adjusted in a MapReduce configuration file. The total
number of the Map slots determines the degree of parallelism that
indicates the total number of Map tasks that can be concurrently
launched. For the Reduce task and Reduce slot, it is the same
procedure. The whole Hadoop MapReduce workflow is controlled
in a JobTracker located in the main computer node, or what is
called the NameNode. The Map and Reduce tasks are launched at
the TaskNodes, and each task corresponds to one TaskTracker to
communicate with the JobTracker. The communication includes
heat-beat message to report the progress and status of the current
task. If detecting a task failure or task straggler, the JobTracker will
reschedule the TaskTracker on another Task slot.

As we can see from Fig. 2, the HadoopMapReduce is essentially
a scheduling framework that processes data that can be sliced into
different splits. Each Map task works on its own input data split
without having to interact with other Map tasks at all. The Hadoop
MapReduce framework can only be applied to process input data
that have already existed. However, real-life scenarios of the state-
of-art big-data applications that typically require the input data be
provisioned in streaming and be processed in real-time. Therefore,
an enhanced MapReduce framework is required to cater for such
a need. That is the motivation behind out design of the task-level
adaptive MapReduce framework.

4.2. Task-level adaptive MapReduce framework

An adaptive MapReduce framework is proposed to process
the streaming data in real-time. A significant challenge here
is how to address the incoming data streams with the varied
arrival rate. Real-life application scenarios include workloads of
various features. Some of the workloads show a typical pattern of
periodical and unpredictable spikes, while others are more stable
and predictable. There are four technical issues that we should
consider when designing the adaptive framework.

First, the framework should be horizontally and vertically scal-
able to process a mixture of varied workloads. In other words, the
compute nodes must be either scalable in terms of the total avail-
able number, but also in terms of a variety of the compute node
types. For some Hadoop MapReduce applications, simply increas-
ing the number of compute nodes is not necessarily sufficient. Cer-
tain kinds of workloads require large CPU-core instances while
others need large-memory instances. In a nutshell, scaling in a het-
erogeneous system is one of the primary principles. Second, scal-
ing the number of the Map and Reduce tasks should align with
the scaling of the cluster size. It is actually the concurrent Map
and Reduce task number that determines the performance of the
scheduling framework. Wemust avoid scaling cluster size without
efficiently using them. Therefore, there are lots of problems to con-
sider. For example, as the number of the Reduce task increases, the
hash function thatmaps a particularMap output partition data to a
Reduce function changes. Take modular operation as a hash func-
tion as an example. Increasing the Reduce count from r to r ′ leads
to key mod r to key mod r ′ as the corresponding new hash function.

Third, we also need to consider the heterogeneity of the pro-
cessing capabilities of different Map tasks. Some of the Map tasks
are scheduled on a slow compute node while others process data
onmuch faster counterparts. An appropriate load balancingmech-
anism can further improve the rescheduling philosophy imple-
mented in the traditional Hadoop MapReduce. The purpose is to
coordinate the progress of the entire task without leading to skew
task execution time.

Fourth, the optimal runtimeMap and Reduce task count should
be specified. Traditionally, the initial Map task count depends on
the input dataset size and the HDFS block size. The Reduce task
count is determined by the hash function. The new framework re-
quires a redesign of the Map and Reduce Task scheduling policy by
considering the input data arrival rate instead of their sizes instead.

To serve the purpose, we demonstrate the task-level adaptive
MapReduce framework as shown in Fig. 3 below. Two Map tasks
are selected as representatives to show the Map stage. Each
Map task, different from the Map task of the traditional Hadoop
MapReduce, defines a loop function as shown in the self-pointed
arrow. Map tasks are launched as special runtime daemons to
repeatedly processing the incoming data. As shown in the figure,
each of the Map produces two continual batches of output data
partitions. Similarly, the Reduce tasks are also scheduled in such



F. Zhang et al. / Future Generation Computer Systems 43–44 (2015) 149–160 153
Fig. 2. A MapReduce framework splits the input file into 4 segments, and each segment corresponds to one Map task. Map tasks output data partitions, which are further
shuffled to the corresponding Reduce tasks. There are 3 reduce tasks which generate 3 separate outputs.
Fig. 3. A demonstration of task-level adaptive MapReduce framework which processes streaming data. Each Map and Reduce task has a non-stop running daemon function
which continuously processes the input data.
a loop-like daemon that continuously process their corresponding
intermediate data produced by all the Map tasks.

In this novel task-level adaptive MapReduce framework, the
JobTrackers need to be redesigned tomaintain a pool of TaskTrack-
ers, and the TaskTracker count subject to change as the workload
changes.

There are two ways to feed data split streams to the Map tasks.
A proactive strategy caches streaming data locally first and pushes
them every fixing period of time, for example every one minute.
As an alternative option, data splits can also be pushed in a reactive
way. In otherwords, a cache size is defined inHDFSbefore the input
data starts to move in, whenever the cache usage hits a ratio, say
85%, the data splits begin to be pushed to the Map tasks.

4.3. Adaptive input data split feeding

The adaptive MapReduce framework starts from a novel run-
time scheduler that feeds different Map tasks with different num-
ber of data splits. In Fig. 4(a), we show a study case of the adaptive
input data split feeding. As a start, six splits of input data arrive.
The scheduler, without knowing the processing capability of each
Map task, distributes the data splits evenly to the two Map tasks,
which results to each Map task having three data splits. Suppose
the first Map task is executed on a faster compute node and has
processed two splits of the input data while the second Map task
has processed only one. Being aware of such a skewed processing
capability, the scheduler sends the newly arrival three data splits
adaptively to balance the workload in Fig. 4(b). This leads to Map
task one has four data splits while Map task two has two, and the
total execution time of the Map stage is minimized.

In this case, processing the three newly arrival data splits does
not result in an increase of Map task count, but trigger the sched-
uler to dispatch them fairly to all the Map tasks. Scheduler caches
the input data locally in HDFS and regularly sends them to differ-
ent Map tasks. The time interval is also adaptively determined by
the arrival rate of the data splits.

To refresh readers’memory and ease difficulty in understanding
all the mathematics below, we plot Table 1, which summarizes all
the symbols and explain their meanings.

Suppose there are m Map tasks and the task queue length of
eachMap task equalsQ . In Fig. 4, we setm equal to 2whileQ equal
to 4. Suppose a start input data includes n0 data splits. As long as
n0 be less thanm ∗ Q , each Map task gets n0/m data splits.

The scheduling period, namely the time interval between two
data feeding periods is t . In other words, every t units (seconds or
minutes) of time, scheduler feeds one batch of the cached data into



154 F. Zhang et al. / Future Generation Computer Systems 43–44 (2015) 149–160
(a) Initially six data splits arrive. Without knowing the compute capacity of each Map task, scheduler divides the workload evenly between the two queues, each
one having three data splits.

(b) After being aware of the processing capacity of each Map task, the scheduler sends three data splits to Map task one which shows twice the processing capacity
at the consecutive scheduling period.

Fig. 4. A demonstration of the adaptive input data split feeding.
Table 1
Symbols, notations and abbreviations with brief introduction.

Notation Brief definition swith representative units or probabilities

m The total number of available Map tasks
Q The total number of data splits that can be accommodated in each Map task
n0 The total number of data splits arrives at the start time
t The scheduling period, denoting the data feeding frequency from the scheduler to all Map tasks
dMapTaskN(j) The number of data splits that remained in the queue of Map task j at time ti
dMapTaskN ′(j) The number of data splits that remained in the queue of Map task j at time ti+1
eMapTaskC(j) The estimated data processing capacity for Map task j
addedDataSplit(j) The number of data splits that needs to be added to Map task j after new stream data arrives
TT Estimated finish time of all the Map tasks
α Upper bound percentage threshold used when Map task number above α ∗ Q in a queue, Map tasks are over provisioned
β Lower bound percentage threshold used when Map task number below β ∗ Q in a queue, Map tasks are under provisioned
the Map queue. Suppose at time ti, the data splits count of each
Map task queue equals [dMapTaskN(0), dMapTaskN(1), . . . ,
dMapTaskN(m − 1)] after the newly arrived data splits have been
pushed into the queues. After time t at ti+1, the remaining task
count becomes [dMapTaskN ′(0), dMapTaskN ′(1), . . . , dMapTaskN ′

(m − 1)]. The estimated processing capacity of each Map task is
estimated as [(dMapTaskN ′(0) − dMapTaskN(0))/t, (dMapTaskN ′

(1) − dMapTaskN(1))/t, . . . , (dMapTaskN ′(m − 1) − dMapTaskN
(m − 1))/t].
Suppose ni+1 data splits arrive at time ti+1, a scheduling
algorithm, which effectively distributes all these data splits to
the Map tasks, becomes our first concern (Theorem 1). Second,
a mechanism determines if the number of Map task needs to
change or not is also needed (Corollary 1). The change can be either
increasing or decreasing the number. Third, if the change is needed,
how many Map tasks need to be added or removed (Theorem 2)?
In this section, we address the scenario that the Map task number
does not need to change. Therefore, we answer the first and second



F. Zhang et al. / Future Generation Computer Systems 43–44 (2015) 149–160 155
question. In the next section where adaptive Map task number is
discussed, we explore the solution of the third question.

Theorem 1 (Condition). Suppose there are mi Map tasks being
actively used at time t + 1. As a new stage, Ni+1 new data splits
arrive. For any Map task j, dMapTaskN(j) data splits are in its queue.
Its estimated data processing capacity is eMapTaskC(j).

Conclusion: The new data split count to be added to its queue is
represented by:

addedDataSplit(j) = eMapTaskC(j) ∗ (Ni+1

+ SUM(dMapTaskN(:)))/SUM(eMapTaskC(:))

− dMapTaskN(j). (1)

SUM(dMapTaskN(:)) denotes the total number of data splits
across all the queues. SUM(eMapTaskC(:)) denotes the aggregated
processing capacity of all the Map tasks.

Proof. The scheduling target is to make sure all the tasks of the
Map queues be finished almost at the same time, and let that
task time be an unknown value TT . For any Map task j, TT =

(dMapTaskN(j)+addedDataSplit(j))/eMapTaskC(j), j ∈ [0,mi−1].
Note that ΣdMapTaskN(j) = Ni+1. Solving a total of mi − 1
equations leads to the proof of Theorem 1. �

Corollary 1. Let Q be the queue length of each Map task, namely the
total number of data splits that can be accommodated in one Map
task queue. Other conditions are the same as in Theorem 1. Then new
Map tasks need to be added if ∃j ∈ [0,mi − 1], dMapTaskN(j) +

addedDataSplit(j) > α ∗ Q . Similarly, Map task number needs to be
reduced if ∀j ∈ [0,mi − 1], dMapTaskN(:) + addedDataSplit(j) <
β ∗ Q . Symbol α ∈ [0, 1] is a preset threshold to determine how full
the Map task queues are allowed. Similarly, β ∈ [0, 1] is preset to
determine how empty the Map task queues are allowed.

Proof. If ∃j ∈ [0,mi−1], dMapTaskN(j)+addedDataSplit(j) > α∗

Q , this means the Map task number of one Map task queue will be
above threshold if the new data splits were added. It automatically
triggers a Map task bumping request to the scheduler. Similarly,
if ∀j ∈ [0,mi − 1], dMapTaskN(j) + addedDataSplit(j) < β ∗ Q
holds, this indicates the Map task count of each Map queue is less
than a preset value, which means sufficient resources have been
provided. A request is therefore sent out to reduce the Map task
count. �

In a nutshell, the purpose of designing such an adaptive sched-
uler is to leverage the processing capability of all theMap tasks and
balance the start time of all the Reduce tasks.

4.4. Adaptive Map task provisioning

In the previous section, we focus on discussing the Map task
provisioning condition, that is,whenMap task needs to be updated.
A direct and natural extension along that line requires answering a
provisioning mechanism—how many Map tasks need to be added
or reduced to process the new stream data splits. If adding Map
task is required, how to distribute the stream data splits across all
the Map tasks, including the new added ones. On the contrary, if
reducing Map task is required, how to distribute the stream data
splits, as well as the data splits in the queues that are supposed to
remove, to all the remaining Map task queues.

Theorem 2. Given the condition in Theorem 1 and ∃j ∈ [0,mi − 1],
dMapTaskN(j) + addedDataSplit(j) > α ∗ Q , the number of the new
Map tasks that is needed is given below:

⌊(Ni+1 − αQSUM(eMapTaskC(:))/eMapTaskC(j∗)

+ SUM(dMapTaskN(j))) ∗ eMapTaskC(j∗)/αQ ⌋ + 1. (2)
For the Map task j, the new data splits count added to its queue equals
the formula below when j ∈ [0,mi − 1].

αQeMapTaskC(j)/eMapTaskC(j∗) − dMapTaskN(j). (3)

Suppose the default estimated computing capacity of each new Map
task is eMapTaskC. For the new added Map task, each is allocated an
initial number of data splits in their queues. The data split number is
given below:

αQeMapTaskC/eMapTaskC(j∗). (4)

Proof. SupposeMap task j∗ has themaximum computing capacity
across all the Map tasks: eMapTaskC(j∗) > eMapTaskC(j) for all
j ∈ [0,mi − 1]. Then the maximum data splits count allowed to
be added to its queue equals αQ − dMapTaskN(j∗). Proportionally
compared, the maximum data split count of the jth Map task
queue equals αQeMapTaskC(j)/eMapTaskC(j∗) − dMapTaskN(j)
and Eq. (3) is proven. Therefore, aggregating all the data splits
that are allocated to Map task j equals αQSUM(eMapTaskC(:
))/eMapTaskC(j∗) − SUM(dMapTaskN(:)). Since we assume that
all the Map tasks can be finished within αQ/eMapTaskC(j∗), then
given the default processing capacity of all the new Map tasks for
the remaining data splits, the neededMap tasks count is calculated
by dividing the remaining data split count over the expected Map
task finish time and Eq. (2) is therefore proven. Eq. (4) is calculated
by multiplying the predicted Map task execution time with the
default processing capacity of each Map task. �

Theorem 3. Given the condition in Theorem 1 and ∀j ∈ [0,mi − 1],
dMapTaskN(j)+addedDataSplit(j) < β∗Q and suppose dMapTaskN
(0) > dMapTaskN(1) > · · · > dMapTaskN(mi − 1), the Map Task
set {MapTask_0,MapTask_1, . . . ,MapTask_k} needs to be removed
if: ∀j ∈ [k,mi − 1], dMapTaskN(j) + addedDataSplit(j, k) < β ∗ Q
and ∃j ∈ [k + 1,mi − 1], dMapTaskN(j) + addedDataSplit(j, k +

1) > α ∗ Q . After removing the Map tasks, the remaining Map task
j (j ∈ [k+1,mi −1]) adds data split count: addedDataSplit(j, k+1).
A more general term is defined as follows.

addedDataSplit(j, p) = eMapTaskC(j) ∗ (Ni+1

+ SUM(dMapTaskN(:)))/SUM(eMapTaskC(p : mi − 1))

− dMapTaskN(j). (5)

Proof. A descending order of the remaining data splits leads to
removing the Map task starting from the slowing one. The slower
one Map task is, the more data split count that stay in its queue.
We start to remove MapTask_0 and add its queued data splits to
Ni+1. Reallocating the total Ni+1 + dMapTaskN(0) data splits to the
remaining mi − 1 Map tasks. If the data split count of each these
remaining Map task still lower than β ∗ Q , the procedure moves
on. This procedure stops until when at least there is one Map task
has its queued data split count larger than α ∗ Q (see Fig. 5). �

4.5. Adaptive Reduce task provisioning

Adaptively provision the Reduce tasks is far less straightforward
than provisioning the Map tasks. Since Hadoop MapReduce is a
framework primarily designed to scale the Map stage by involving
embarrassingly parallel Map tasks, the Reduce tasks require
network resource and an m to r data shuffling stage. In Fig. 6,
we identify a scaling scenario of adding a new Reduce task to the
original three tasks. The new added Reduce task should have no
impact on saving the network usage since all the intermediate data
still have to be moved among all the compute nodes. The only
difference is the degree of parallelism in theReduce stage, that each
Reduce task can process less data partitions as well as move less
output data back to HDFS.



156 F. Zhang et al. / Future Generation Computer Systems 43–44 (2015) 149–160
Fig. 5. Demonstration of adding an adaptive Map task. Continued from the previous example, if the input data split count is six, the scheduler adaptively launches one Map
task instead of feeding all the data splits to the queues. The other three data splits are moved to the newly added Map task.
Fig. 6. A graphical illustration shows one parallel Reduce task being added. This added Reduce task brings no benefit in the data shuffling stage but results to a reduced data
volume to be processed/outputted for each Reduce task.
As aforementioned, the Map tasks can be added incrementally
one by one. However, this does not necessarily guarantee best
scheduling performance if Reduce tasks are added in a same strat-
egy. This is because there is no strict demand that one input data
split should go to a particular Map task. The Reduce tasks, how-
ever, only accepts their partition data in need. Adding one Reduce
task would inevitable change the hash function, which accordingly
leads to the partition changed.

For example, suppose the key set of the whole dataset is [0, 1,
2, . . . , 8]. There are three Reduce tasks R1, R2 and R3 as shown
in Fig. 6. The hash function is a simple modular operation, e.g. key
mod 3, in this case. Therefore, R1 gets partition datawhose keys are
[0, 3, 6]; R2 gets partition data whose keys are [1, 4, 7]; R3 gets par-
tition data whose keys are [2, 5, 8]. Adding one Reduce task leads
to the keys [0, 4, 8] for R1, [1, 5] for R2, [2, 6] for R3 and [3, 7] for
R4. In all, there are six keys that are either moved to R4 or being
exchanged among inside R1, R2, and R3. Similar conclusion applies
to the case that five Reduce tasks are used. However, if the Reduce
task number is doubled to 6, then [0, 6] will be for R1; [1, 7], [2, 8],
[3], [4], [5] are keys for R2 toR6 respectively. Then there are data as-
sociated with only three keys, [3], [4] and [5], that needs to moved.

In such a case, a workaround would replace the hash function
with an enumerated list of the keys as a lookup table. For each in-
termediate key-value pair needs to be shuffled, the corresponding
Reduce task number is searched through the list. For example, the



F. Zhang et al. / Future Generation Computer Systems 43–44 (2015) 149–160 157
a b c

d e f

g h i

Fig. 7. Comparison under three types of workloads. (a), (d), (g) are light, moderate and heavy workload respectively; (b), (e), (h) demonstrate the workload prediction
accuracy of the two method: Smooth filter and Kalman filter; (c), (f), (i) report the makespan of using the two prediction methods. Kalman filter based workload prediction
performs better than the Smooth filter based prediction method.
list can be like this [R1, 0, 1, 2], [R2, 3, 4, 5], [R3, 6, 7, 8]. If a new
Reduce task R4 is added, we can simply create a new entry as [R4,
2, 8], and remove the keys [2] and [8] from their corresponding list.

The downside of theworkaround approach can be easily identi-
fied. The search operation might involve I/O data accessing, which
is far less efficient than calculating the hash function. We can put
the mapping list in memory instead if the total number of the keys
are not very large.

5. Experimental studies

In this section, we first propose two methods for stream data
workload prediction. After that, we show our experimental results
of the prediction performance of themethods and themakespan of
using thesemethods. Last, we report our task-level adaptive exper-
imental results in terms of the Map and Reduce count in runtime
when workload changes.

5.1. Workload prediction methods

For stream data applications, adaptive MapReduce task provi-
sioning strategy should align with the workload variation. How-
ever, workloads are normally unknown in advance. In this section,
we investigate two widely used prediction methods first and com-
pare their prediction performance using real workload in the next
section.

Stochastic control, or learning-based control method, is a dy-
namic control strategy to predict workload characteristics. There
are numerous filters that can be applied. For example, smooth fil-
ter, or what we normally call as smoothing technique, predicts
real-time workload by averaging the workload of a previous time
span. The basic assumption here is that workload behaves reac-
tively and not subject to significant variation in a short period of
time. The average of the past one period would best represents the
future workload.

There are many further improvements on the smoothing tech-
nique. For example, weighted smoothing gives higher weights to
more recent workload than those that are old. The assumption
here is that more recent workload would show higher impact on
the real-time workload than older ones. Other prediction meth-
ods include ARmethod, which applies polynomial functions to ap-
proximate the workload. Among others, we want to bring forward
the Kalman filter [25], also named as linear quadratic estimation,
which is also widely used in workload prediction. Kalman filter
works on a series of historical data stream of noise, updates and
predicts future trend with statistically optimal estimations.

5.2. Experimental settings

Simulations are carried out by using SimEvent [26], which is a
software toolkit included in Matlab. The Scheduler, Map and Re-
duce tasks are emulated as a queuing network model, with each
node being a queue. We assume that Map or Reduce tasks are
running at different service capacity, thus the queue length varies
during the simulation process. This justifies our needs for the task-
level adaptive scheduling solution.

We apply both the Kalman Filter and the Smooth Filter to pre-
dict the workload. Comparisons are made in terms of the work-
load prediction accuracy as well as the makespan when applying
the three approaches. Our workloads are generated based on case



158 F. Zhang et al. / Future Generation Computer Systems 43–44 (2015) 149–160
Time(Minute)

T
h

e 
Q

u
eu

e 
le

n
g

th
 o

f 
ea

ch
 M

ap
 T

as
k

(a) Data split count for each Map task queue in each minute.

Time(Minute)

T
h

e 
A

ct
iv

e 
M

ap
 T

as
k 

C
o

u
n

t

(b) Map task count in each minute.

Time(Minute)

T
h

e 
A

ct
iv

e 
R

ed
u

ce
 M

ap
 T

as
k 

C
o

u
n

t

(c) Reduce task count in each minute.

Fig. 8. Demonstration of the Map task queue, Map task number and Reduce task number in each minute of the light workload case. The Map and Reduce count adaptively
follow the workload trend firmly.



F. Zhang et al. / Future Generation Computer Systems 43–44 (2015) 149–160 159
studies of body area network data trace [27,28]. Theworkload fluc-
tuation amplitude is based on the web trace from the 1998 Soc-
cer World Cup site [29]. This workload trace shows the average
arrival rate during each minute over sixty-minute duration as
shown in Fig. 7(a), (d) and (g). We carefully choose three typical
stream data workload types: small, moderate and heavy, for the
simulation purpose. Lightworkload typically generates 20–60 data
splits perminute.Moderateworkload generates 30–150 data splits
per minute while heavy workload generates 160–1180 data splits
per minute.

5.3. Experimental results

As we can see from Fig. 7(b), (e), (h), the Kalman filter shows
up to 19.97% prediction error compared to 50% of the Smooth fil-
ter method in the light workload case. In the moderate workload
case, the prediction errors of the two methods are 14.1% and 35%
respectively. In the heavyworkload case, these values are 27.2% for
the Kalman filter prediction compared with 90.3% for the Smooth
filter prediction. Comparing and subtracting the prediction error of
the two methods over all the workload cases, the maximum mar-
gin is in the heavy workload case, which is typically 63.1% less by
using the Kalman filter method.

From Figure (c), (f), (i), we can see that under the three types of
workloads, the Kalman based workload prediction based method
outperforms the smooth filter based method over up to 28%, 34%
and 85%. All these results indicate that a good prediction method
only gives a satisfactory estimation of the workload trend, but also
improves the scheduling performance.

In Fig. 8, we demonstrate the scheduling effect of the task-level
adaptive MapReduce framework. Fig. 8(a) illustrates the data split
count of each Map task queue in each minute. Correspondingly,
Fig. 8(b) demonstrates the number of Map task that are actively
using. These Map task numbers are calculated by Theorems 2 and
3. The number of the Reduced tasks for each minute is reported in
Fig. 8(c). The Reduce task counts are calculated by the total data
partition for all the Reduce tasks over the processing capacity.

We can see from the figures that as the workload grows, the
Map task count grows accordingly and each Map task has more
data splits in its queue, so do the Reduce tasks. In Fig. 8(a), the
rising trend becomes less when hitting the 61th minute since no
more follow-up stream data splits are coming. However, it is not
until the 71th minute when the Map task number starts to reduce
as shown in Fig. 8(b). The reason is that the data splits in each Map
task is accumulating in the previous 61 min. Until the 71th minute
the data splits of each Map task queue are sufficiently short and
Theorem 3 starts to reduce the total Map tasks.

6. Conclusions and future work

In this section, we first conclude ourmajor contributions in this
work and then suggest three directions to extend this work.

6.1. Conclusions

As more and more healthcare scientific applications need to
process stream data, we have designed a task-level adaptive
MapReduce framework and proposed a few scheduling mecha-
nisms to determine the active count Map and Reduce tasks in
runtime. To summarize the major contribution, we have three
technical aspects as follows.
(1) A task-level adaptive MapReduce scheme: This novel scheme im-
plements a daemon-based mechanism to design each Map and
Reduce task. The purpose is to revise the current MapReduce
framework to process stream data in real-life healthcare scien-
tific applications. We demonstrate the detail of the scheme by us-
ing real MapReduce case studies to justify the applicability of this
scheme.
(2) Runtime Map and Reduce task calculation: We have proposed
three theorems and one corollary to investigate the runtime Map
and Reduce task count. These methods are used to increase and/or
decrease the runtime Map and Reduce tasks as the workload fluc-
tuates.
(3) Adaptive MapReduce simulator: We release the adaptive
MapReduce simulator online and not only can it be used as a
software toolkit for the healthcare application workload purpose,
but also can be applied to other stream data application scenarios
of a much wider areas.

6.2. Future work

Wesuggest extending thiswork in the following twodirections:
(1) Extend the work theoretically towards the heterogeneous cloud
systems. Currently the adaptive scheme in this paper scales Map
and Reduce tasks only. Readers would equally be interested in the
scalable framework if they have more knowledge of how the task
scaling aligns with the compute node scaling. When the compute
nodes are heterogeneous, the problem ismore challenging but also
very interesting. We need to extend the theoretical part of this
work along this line.
(2) Implement the scheme in Hadoop MapReduce applications. This
paper primarily focuses on a generic MapReduce framework,
which is out of the context of the widely used HadoopMapReduce.
To be able to get it deployed on a large group of application scenar-
ios, we need to release such a Hadoop release to help users deploy
their stream data scientific applications on both public and private
cloud.
(3) Building useful tools to serve for larger virtualized cloud platform.
The simulation analyzing the optimal number of the Map and Re-
duce tasks in our experiment should be packaged into software
toolkits in order to make it available for larger virtualized cloud
platforms. Our experimental software can be tailored and proto-
typed towards this end.

Acknowledgments

Thisworkwas supported in part by theNational Natural Science
Foundation of China under Grant No. 61233016, by the Ministry
of Science and Technology of China under National 973 Basic
Research Grant Nos. 2011CB302505, 2013CB228206, Guangdong
Innovation TeamGrant 201001D0104726115 andNational Science
Foundation under Grant CCF-1016966. The work was also partially
supported by an IBM Fellowship for Fan Zhang, and by the
Intellectual Ventures endowment to Tsinghua University.

References

[1] S. Ullah, H. Higgins, B. Braem, et al., A comprehensive survey of wireless body
area networks, J. Med. Syst. 36 (3) (2010) 1065–1094.

[2] M. Chen, S. Gonzalez, A. Vasilakos, et al., Body area networks: a survey,
ACM/Springer Mob. Netw. Appl. 16 (2) (2011) 171–193.

[3] R. Schmidt, T. Norgall, J. Mörsdorf, et al., Body Area Network BAN—a key
infrastructure element for patient-centered medical applications, Biomed.
Technol. 47 (1) (2002) 365–368.

[4] J. Dean, S. Ghemawat,Mapreduce: simplified data processing on large clusters,
in: Proc. of 19th ACM Symp. on Operating Systems Principles, OSDI 2004, pp.
137–150.

[5] G. Malewicz, M.H. Austern, A.J.C. Bik, et al. Pregel: a system for large-scale
graph processing, in: Proc. of the 2008 ACM SIGMOD International Conference
on Management of Data, SIGMOD 2010, pp. 135–146.

[6] Y. Low, J. Gonzalez, A. Kyrola, et al. GraphLab: a new framework for parallel
machine learning, in: Proc. of the 26th Conference on Uncertainty in Artificial
Intelligence, UAI 2010.

[7] Y. Low, J. Gonzalez, A. Kyrola, et al., Distributed GraphLab: a framework for
machine learning and data mining in the cloud, J. Proc. VLDB Endow. 5 (8)
(2012) 716–727.

http://refhub.elsevier.com/S0167-739X(14)00131-9/sbref1
http://refhub.elsevier.com/S0167-739X(14)00131-9/sbref2
http://refhub.elsevier.com/S0167-739X(14)00131-9/sbref3
http://refhub.elsevier.com/S0167-739X(14)00131-9/sbref7


160 F. Zhang et al. / Future Generation Computer Systems 43–44 (2015) 149–160
[8] http://aws.amazon.com/elasticmapreduce/.
[9] F. Zhang, M.F. Sakr, Cluster-size scaling and MapReduce execution times,

in: Proc. of the International Conference on Cloud Computing and Science,
CloudCom 2013.

[10] R. Haux, Health information systems—past, present, future, Int. J. Med. Inform.
75 (3–4) (2006) 268–281.

[11] P.L. Reichertz, Hospital information systems—past, present, future, Int. J. Med.
Inform. 75 (3–4) (2006) 282–299.

[12] http://hadoop.apache.org/.
[13] J. Talbot, R.M. Yoo, C. Kozyrakis, Phoenix++: modular MapReduce for

shared-memory systems, in: Proc. of the Second International Workshop on
MapReduce and its Applications, MapReduce 2011, pp. 9–16.

[14] O. Christopher, C. Greg, C. Laukik, et al. Nova: continuous pig/hadoop
workfows, in: Proc. of the 2011 ACM SIGMOD International Conference on
Management of Data, SIGMOD 2011, pp. 1081–1090.

[15] C. Olston, B. Reed, U. Srivastava, et al. Pig latin: a not-so-foreign language for
data processing, in: Proc. of the 2008 ACM SIGMOD International Conference
on Management of Data, SIGMOD 2008, pp. 1099–1110.

[16] P. Bhatotia, A. Wieder, R. Rodrigues, et al. Incoop: MapReduce for incremental
computations, in: Proc. of the 2ndACMSymposiumon Cloud Computing, SoCC
2011.

[17] L. Neumeyer, B. Robbins, A. Nair, et al. S4: distributed stream computing
platform, in: Proc. of the International Workshop on Knowledge Discovery
Using Cloud and Distributed Computing Platforms, KDCloud 10, pp. 170–177.

[18] http://storm.incubator.apache.org/.
[19] http://www.scribesoft.com/.
[20] J. Kreps, N. Narkhede, J. Rao, et al. Kafka: a distributed messaging system for

log processing, in: Proc. of 6th International Workshop on Networking Meets
Databases NetDB 2011.

[21] http://flume.apache.org/index.html.
[22] http://www.streambase.com/.
[23] http://www.hstreaming.com/.
[24] http://esper.codehaus.org/.
[25] R.E. Kalman, A new approach to linear filtering and prediction problems,

J. Basic Eng. 82 (1) (1960) 35–45.
[26] http://www.mathworks.com/products/simevents/.
[27] C. Otto, A. Milenković, C. Sanders, E. Jovanov, System architecture of a wireless

body area sensor network for ubiquitous health monitoring, 1 (4) (2005),
307–326.

[28] E. Jovanov, A.Milenkovic, C. Otto1, P.C. de Groen, Awireless body area network
of intelligent motion sensors for computer assisted physical rehabilitation,
J. Neuroeng. Rehabil. 2 (6) (2005) 1–10.

[29] M. Arlitt, T. Jin, Workload characterization of the 1998 World Cup Web Site,
Tech. Rep. No. HPL-1999-35R1, Palo Alto, CA: HP Labs.

Fan Zhang is currently a postdoctoral associate with the
Kavli Institute for Astrophysics and Space Research at
Massachusetts Institute of Technology. He is also a spon-
sored researcher in Tsinghua University, Beijing, China.
He has been appointed as a visiting associate professor in
the Shenzhen Institute of advanced technology, Chinese
Academy of Science since January 2014. He received his
Ph.D. from Department of Control Science and Engineer-
ing, Tsinghua University in January 2012.

From2011 to 2013 hewas a research scientist at Cloud
Computing Laboratory, Carnegie Mellon University. As an

IEEE Senior Member, he received an Honorarium Research Funding Award from the
University of Chicago and Argonne National Laboratory (2013), a Meritorious Ser-
vice Award (2013) from IEEE Transactions on Service Computing, two IBMPh.D. Fel-
lowship Awards (2010 and 2011). His research interests include big-data scientific
computing applications, simulation-based optimization approaches, cloud comput-
ing, and novel programmingmodels for streaming data applications on elastic cloud
platforms.
Junwei Cao received his Ph.D. in Computer Science from
the University of Warwick, Coventry, UK, in 2001. He re-
ceived his bachelor andmaster degrees in Control Theories
and Engineering in 1998 and 1996, respectively, both from
Tsinghua University, Beijing, China. He is currently Profes-
sor and Deputy Director of Research Institute of Informa-
tion Technology, Tsinghua University, Beijing, China. He is
also Director of Open Platform and Technology Division,
Tsinghua National Laboratory for Information Science and
Technology.

Prior to joining Tsinghua University in 2006, he was a Research Scientist at MIT
LIGO Laboratory and NEC Laboratories Europe for about 5 years. He has published
over 150 papers and cited by international scholars for over 6000 times. He has
authored or edited 6 books. His research is focused on distributed computing
technologies and applications. He is a Senior Member of the IEEE Computer Society
and a Member of the ACM and CCF.

Samee U. Khan is an assistant professor at the North
Dakota State University. He received his Ph.D. from the
University of Texas at Arlington in 2007. His research in-
terests include optimization, robustness, and security of:
cloud, grid, cluster and big data computing, social net-
works, wired and wireless networks, power systems,
smart grids, and optical networks. His work has appeared
in over 225 publications with two receiving best paper
awards. He is a Fellow of the IET and a Fellow of the BCS.

Keqin Li is a distinguished professor of Computer Science
at the State University of New York. He is an Intellectual-
Ventures endowed visiting chair professor at Tsinghua
University, China. His research interests are mainly in
design and analysis of algorithms, parallel and distributed
computing, and computer networking. He has over 245
research publications and has received several Best Paper
Awards for his research work. He is currently on the
editorial boards of IEEE Transactions on Parallel and
Distributed Systems and IEEE Transactions on Computers.

Kai Hwang is a professor of Electrical Engineering and
Computer Science, University of Southern California. He is
also an EMC-endowed visiting chair professor at Tsinghua
University, China. He received the Ph.D. from University
of California, Berkeley in 1972. His has published 8 books
and 230 papers, which have been cited over 12,000 times
with a citation h-index of 49. His latest book Distributed
and Cloud Computing (with G. Fox and J. Dongarra) was
published by Kaufmann in 2011which has been translated
to Chinese in 2013.

As an IEEE Fellow, he received CFC Outstanding
Achievement Award in 2004, the Founders Award from IEEE IPDPS-2011 and a
Life time Achievement Award from IEEE Cloudcom-2012. He has served as the
Editor-in-Chief of the Journal of Parallel and Distributed Computing for 28 years and
delivered 35 keynote speeches inmajor IEEE/ACMConferences. Presently, he serves
on the editorial boards of IEEE Trans. on Cloud Computing and International Journal
of Big Data Intelligence. He also co-chaired the Second ASE International Conf. on Big
Data Science, Social Computing, and Cybersecurity held at Stanford University in May
27–29, 2014.

http://aws.amazon.com/elasticmapreduce/
http://refhub.elsevier.com/S0167-739X(14)00131-9/sbref10
http://refhub.elsevier.com/S0167-739X(14)00131-9/sbref11
http://hadoop.apache.org/
http://storm.incubator.apache.org/
http://www.scribesoft.com/
http://flume.apache.org/index.html
http://www.streambase.com/
http://www.hstreaming.com/
http://esper.codehaus.org/
http://refhub.elsevier.com/S0167-739X(14)00131-9/sbref25
http://www.mathworks.com/products/simevents/
http://refhub.elsevier.com/S0167-739X(14)00131-9/sbref28

	A task-level adaptive MapReduce framework for real-time streaming data in healthcare applications
	Introduction
	Related work and our unique approach
	Related work
	Our unique approach

	Problem formulation of a real-life healthcare application
	Task-level adaptive MapReduce framework
	Preliminary of Hadoop MapReduce framework
	Task-level adaptive MapReduce framework
	Adaptive input data split feeding
	Adaptive Map task provisioning
	Adaptive Reduce task provisioning

	Experimental studies
	Workload prediction methods
	Experimental settings
	Experimental results

	Conclusions and future work
	Conclusions
	Future work

	Acknowledgments
	References


