
Journal of Systems Architecture 112 (2021) 101849

A
1

Contents lists available at ScienceDirect

Journal of Systems Architecture

journal homepage: www.elsevier.com/locate/sysarc

Task migration optimization for guaranteeing delay deadline with mobility
consideration in mobile edge computing
Fan Tang a, Chubo Liu a,∗, Kenli Li a,∗, Zhuo Tang a, Keqin Li a,b

a College of Information Science and Engineering, Hunan University, Hunan 410082, China
b Department of Computer Science, State University of New York, New Paltz, NY 12561, USA

A R T I C L E I N F O

Keywords:
Delay deadline
Mobile edge computing
Mobility
Quality of service
Task migration

A B S T R A C T

Mobile edge computing (MEC) is envisioned to integrate cloud-like capabilities into the edge of networks for
improving quality of service (QoS). This makes it possible for users with resource-limited devices to execute
computation-intensive tasks by offloading them to MEC nodes. Extensive works have been done for MEC.
However, few of them involve user mobility. Whether to migrate task dynamically cannot be ignored when
taking QoS into account. In this paper, we try to optimize task migration with user mobility consideration, in
which deadlines of tasks are also involved. The problem is proved to be NP-hard. To solve it, we analyze three
variants of this problem and devise a group migration (GM) algorithm with known trajectories of users. Our
goal is to maximize the number of tasks whose deadlines are guaranteed. Extensive experiments are carried
out, and the results confirm that GM algorithm can achieve up 35%-75% performance improvement compared
three other common heuristics.
1. Introduction

1.1. Motivation

Nowadays, the explosively increasing smart phones, tablets, and
other mobile devices have become an indispensable part in people’s
daily life [1]. With the increasing usage of mobile devices, a wide
variety of mobile applications, as exemplified by autonomous driving
and face recognition, augmented reality (AR), virtual reality (VR),
online gaming, emerge and attract people’s attention [2–5]. How-
ever, better quality of service (QoS) is always pursued by mobile
users, which contradicts with running these computation-intensive and
latency-sensitive applications due to mobile device’s limited resources
(i.e., memory, battery). To mitigate this tension, mobile edge com-
puting (MEC) [2] has emerged as a promising technology. Related
edge computing paradigms, such as fog computing, cloudlet, mist
computing, are compared in [6].

Deployed at the edge of networks and in close proximity to mo-
bile users, MEC is envisioned to deliver some cloud-like capabilities
efficiently [7]. Mobile users with resource-limited devices can offload
computation-intensive or latency-sensitive tasks to MEC nodes for ex-
ecution. Extensive studies have been done for MEC . Nevertheless,
most of them only concern about computation offloading schemes in
MEC. They usually study the quasi-static scenario and overlook the user
mobility that is one of the most important features in MEC.

∗ Corresponding authors.
E-mail addresses: fantang@hnu.edu.cn (F. Tang), liuchubo@hnu.edu.cn (C. Liu), lkl@hnu.edu.cn (K. Li), ztang@hnu.edu.cn (Z. Tang), lik@newpaltz.edu

Fig. 1. An example that two mobile users move across multiple MEC nodes after
offloading their heavy tasks to the MEC node on the far left.

Let us consider a scenario shown in Fig. 1, there are two mobile
users endowed with resource-limited devices moving across multiple
vailable online 6 August 2020
383-7621/© 2020 Elsevier B.V. All rights reserved.

(K. Li).

https://doi.org/10.1016/j.sysarc.2020.101849
Received 12 April 2020; Received in revised form 9 July 2020; Accepted 2 August
 2020

http://www.elsevier.com/locate/sysarc
http://www.elsevier.com/locate/sysarc
mailto:fantang@hnu.edu.cn
mailto:liuchubo@hnu.edu.cn
mailto:lkl@hnu.edu.cn
mailto:ztang@hnu.edu.cn
mailto:lik@newpaltz.edu
https://doi.org/10.1016/j.sysarc.2020.101849
https://doi.org/10.1016/j.sysarc.2020.101849
http://crossmark.crossref.org/dialog/?doi=10.1016/j.sysarc.2020.101849&domain=pdf

Journal of Systems Architecture 112 (2021) 101849F. Tang et al.

n

MEC nodes after offloading their tasks to the MEC node on the far
left. However, mobile users may move out of the coverage of the
far left MEC node when their tasks are completed, thus we need to
consider whether to migrate tasks dynamically with QoS (e.g., task’s
delay deadline) consideration.

To our knowledge, only a few works consider user mobility in
MEC. Some of them assume that user mobility follows a Markovian
process, but there are some cases where the Markovian assumption is
not valid [24]. Some works exploit mobility information by deep learn-
ing and neural networks technology. However, none of them involves
deadlines of tasks. The problem that designs an efficient task migration
scheme is challenging when delay deadlines of tasks are involved.
The reason lies in that completion time of task includes transmission
time of input data and output data, execution time on MEC node, and
migration cost among MEC nodes. All of them will be greatly influenced
by different task migration schemes. Nevertheless, guaranteeing delay
deadlines of the above latency-sensitive applications is important in
MEC. Hence, the motivation of this paper is trying our best to make
some supplementations from our perspective.

1.2. Related work

During the past several years, computation offloading in MEC has
been extensively studied by numerous researchers (see [25] for a
comprehensive survey). There are some researchers concerned with
delay-optimal computation offloading in MEC [8–16]. Some of which
assume that computing resources are infinite and overlook the con-
gestion of computing resources among multiple tasks [8,13]. Then the
computation offloading problem is simplified to a wireless resource
allocation problem. In [10], Liu et al. addressed the problem of power-
constrained delay minimization, and demonstrated the optimal task
offloading policy can obtain by a one-dimensional search algorithm.
In [11], with the assumption that arrival of task obeys the Poisson
distribution, Sun et al. tried to minimize the average delay of tasks un-
der multiple users and multiple MEC nodes environment. The authors
considered delay as a partial goal in their work [12]. In [15], the
authors addressed task offloading problem to maximize the weighted
sum computation rate, with system resources management and task
computing time allocation. Luo et al. tackled the offloading scheduling
problem to minimize the weighted sum of the total latency delay and
device energy consumption [16]. The problem will be trickier when de-
lay deadlines of tasks need to be guaranteed, however, only a few works
have involved delay deadlines of tasks. In [9], the authors formulated
the offloading problem as a cooperative game to maximize the number
of tasks whose delay deadlines are satisfied. Jiang et al. addressed the
parallel real-time tasks modeled as directed acyclic graphs (DAG) with
tight relative deadlines [14]. Nevertheless, all of the aforementioned
works ignored user mobility which is one of the most important features
in MEC.

Compared with the works which do not involve user mobility, works
involving user mobility are far less. As shown in Table 1, according
to the way of mobility modeling, we classify existing work into three
categories, i.e., online processing [17,22], Markovian hypothesis [19,
23], and with known trajectory [18,20,21]. In the first category, lack
of mobility information, the migration decision is triggered after the
position of user is changed. which is a kind of delayed processing
method and suitable for scenarios that mobility is hard to predict and
model. The authors aimed at minimizing the average delay under long-
term energy budget constraint, based on Lyapunov optimization due to
the absence of mobility information [17,22]. Generally, studies for the
second category assume that user mobility follows a Markovian process,
and then adopt the method of Markov Decision Process. Taleb et al.
proposed a framework named Follow-Me Cloud and considered user
experience as a partial goal with the assumption that the user mobility
follows a Markovian process [23]. The authors formulated the task
2

migration problem as a sequential decision-making problem, in which
the decision was only based on the distance between mobile user and
MEC node [19]. However, there are some cases where the Markovian
assumption is not valid. For example, the author in [24] showed that
mobility is non-Markovian especially when the moving object tends to
reach a specific destination.

Research for the last category usually devise task migration schemes
with known trajectories of users. With the rapid development of deep
learning and neural network technology, a short-term mobility predic-
tion can achieve the accuracy of 95% or higher [26]. This makes it
rational to exploit mobility information when designing task migration
scheme. Plachy et al. tried to find a suitable communication path to
further reduce offloading delay [21]. In [20], Nadembega et al. also
considered quality of experience as a partial goal with a mobility-
based prediction scheme DAMP [27]. The authors tried to minimize the
average time cost with known trajectories of users [18]. Nevertheless,
as shown in Table 1, none of the above works involves deadlines
of tasks, and the problem becomes even harder when simultaneously
involving mobility and deadline guarantees.

Motivated by the above facts, we try to optimize task migration with
user mobility consideration under multiple users and multiple MEC
nodes environment, in which deadlines of tasks are also involved.

1.3. Contributions

In this paper, we investigate the problem of task migration with user
mobility consideration under multiple users and multiple MEC nodes
environment, while delay deadlines of tasks are also involved. Specifi-
cally, each mobile user is associated with a computation-intensive task
to be offloaded to the nearby MEC node. Each task has an expected de-
lay deadline that needs to be guaranteed. Mobile user may move out of
the coverage of the nearby MEC node when its task is completed. Thus
we need to consider whether to migrate task dynamically with delay
deadline of the task consideration. Our goal is to find a task migration
scheme to maximize the number of tasks whose delay deadlines are
guaranteed. The main contributions of this paper can be summarized
as follows.

• By analyzing properties of three variants of this problem, plenty
of theoretical analyzes are presented and significant algorithms
have been proposed as a guideline to solve the original problem.

• We devise a group migration (GM) algorithm with known trajec-
tories of users to maximize the number of tasks whose deadlines
are guaranteed.

• Extensive experiments are carried out to evaluate the perfor-
mance of GM algorithm for the number of tasks whose deadlines
are guaranteed. Compared with three other common heuristics,
the results confirm that GM algorithm can achieve up 35%-75%
performance improvement.

The rest of this paper is organized as follows. Section 2 presents
system model and definitions of notations used in this paper. Maximum
optimization problem in which the number of tasks whose deadlines are
guaranteed is formulated in Section 3. In Section 4, we analyze three
variants of this problem and devise a group migration (GM) algorithm
with known trajectories of users. Extensive experiments are carried out
to evaluate the performance of GM algorithm in Section 5. Finally, the
conclusion is presented in Section 6.

2. System model

2.1. System overview

In this section, we introduce the system model. As shown in Fig. 1,
we consider an MEC environment with a set  = {1, 2,… ,𝑀} of MEC
odes and a set  = {1, 2,… , 𝑁} of mobile users. Each MEC node

could be a wireless access point or a base station which is endowed with
computing resources and wireless resources. Specifically, main system

characteristics of this paper can be summarized as follows.

Journal of Systems Architecture 112 (2021) 101849F. Tang et al.

N
b
d
w
t
F
𝐽
𝐽
W
u
a
t
m
o
o
o
w

d

Table 1
Comparison of related work.

Properties Without User Mobility [8–16] With User Mobility [17–23]

Number of mobile users Single [10,12], Multiple [8,9,11,13–16] Single [17,19,21], Multiple [18,20,22,23]
Tasks with deadlines [9,14], No [8,10–13,15,16] No [17–23]
Number of MEC nodes Single [8,10,12,15,16], Multiple [9,11,13,14] Multiple [17–23]
Computing resource of MEC nodes Infinite [8,13], Limited [9–12,14–16] Infinite [19], Limited [17,18,20–23]
User mobility No user mobility [8–16] Online processing [17,22], Markov process

[19,23], Known trajectory [18,20,21]
f

t
w
f

• Each mobile user with a computation-intensive and latency-
sensitive task which needs to be executed on MEC node.

• Each task has a strict deadline that needs to be guaranteed.
• Multiple heterogeneous MEC nodes with limited computing re-

sources.
• Considering user mobility with known trajectory.
• The objective is to maximize the number of tasks whose delay

deadlines are guaranteed.

ote that each mobile user with multiple tasks can also be supported
y dynamically calling our approach. We use  =

{

𝐽1, 𝐽2,… , 𝐽𝑁
}

to
enote task set of all mobile users. We consider a discrete time frames
ith  = {1, 2,… , 𝑇 }, in which 𝑇 denotes the maximum number of

ime slots, and the length of one time slot is equal to 𝜏. For example in
ig. 1, mobile user 𝑛 ∈  moves to the right after offloading its task
𝑛 ∈  to the far left MEC node for execution. MEC node executes task
𝑛 at time slot 𝑡−1 is the source MEC node of task 𝐽𝑛 at time slot 𝑡 ∈  .
hen task 𝐽𝑛 is completed at time slot 𝑡, MEC node which covers mobile

ser 𝑛 at time slot 𝑡 is destination MEC node of task 𝐽𝑛. We use 𝑠𝑡𝑛 ∈ 
nd ℎ𝑡𝑛 ∈  to denote source MEC node and destination MEC node of
ask 𝐽𝑛. Note that source MEC node and destination MEC node of a task
ay be different at different time slots. For each time slot 𝑡, controller

f MEC nodes makes a task migration scheme to maximize the number
f tasks whose delay deadlines are guaranteed. Migration decisions
f all tasks in time slot 𝑡 can be expressed as 𝑡 =

{

𝑎𝑡1, 𝑎
𝑡
2,… , 𝑎𝑡𝑛

}

,
here 𝑎𝑡𝑛 ∈

{

0, 𝑠𝑡𝑛, ℎ
𝑡
𝑛
}

denotes the MEC node which executes task 𝐽𝑛
at time slot 𝑡. Each task can only be executed on one MEC node at each
time slot. textcolorblueUncompleted task of a mobile user needs to be
executed at each time slot before its completion. Specially, we have
𝑎𝑡𝑛 = 0 if task 𝐽𝑛 is completed before time slot 𝑡. All notations we used
in this paper are summarized in Table 2.

2.2. Communication model

Without loss of generality, we adopt a widely used parameter model
to describe task 𝐽𝑛 ≜ (𝜆𝑛, 𝑐𝑛, 𝑑𝑛, 𝑂𝑛). Specifically, 𝜆𝑛 (in bits) denotes in-
put data size of task 𝐽𝑛, 𝑐𝑛 (in CPU cycles/bit) is workload requirement
of task 𝐽𝑛, 𝑑𝑛 and 𝑂𝑛 denote delay deadline and output data size of task
𝐽𝑛, respectively. Given transmission power 𝑝𝑛 of mobile user 𝑛, with
reference to [1], uplink data transmission rate between mobile user 𝑛
and source MEC node 𝑚 ∈  can be expressed as

𝑟𝑢𝑝(𝑚, 𝑛) = 𝑊𝑚 log2

(

1 +
𝑝𝑛𝐻𝑚,𝑛

𝜃𝑚

)

, (1)

where 𝑊𝑚 is wireless channel bandwidth that MEC node 𝑚 allocates
for mobile user 𝑛, 𝐻𝑚,𝑛 is channel gain between user 𝑛 and MEC node
𝑚, 𝜃𝑚 is white noise power. Then we can compute transmission time of
input data between mobile user 𝑛 and MEC node 𝑚 as

𝑇𝑢(𝑚, 𝑛) =
𝜆𝑛

𝑟𝑢𝑝(𝑚, 𝑛)
. (2)

Note that transmission time of output data is not ignored in our work,
the same as [1,10,11]. We assume that downlink data transmission
rate 𝑟𝑑𝑜𝑤𝑛(𝑚, 𝑛) is equal to uplink data transmission rate 𝑟𝑢𝑝(𝑚, 𝑛). Thus
ownlink data transmission rate 𝑟𝑑𝑜𝑤𝑛(𝑚, 𝑛) can be expressed as

𝑟𝑑𝑜𝑤𝑛(𝑚, 𝑛) = 𝑊𝑚 log2

(

1 +
𝑝𝑛𝐻𝑚,𝑛

)

. (3)
3

𝜃𝑚
Table 2
Notations.

Notation Definition

𝑀,𝑁 number of MEC node and user
𝐽𝑛 task of mobile user 𝑛
𝑎𝑡𝑛 MEC node that executes task 𝐽𝑛 in time slot 𝑡
𝜆𝑛 , 𝑜𝑛 input and output data size of task 𝐽𝑛
𝑐𝑛 workload requirement of task 𝐽𝑛
𝑑𝑛 delay deadline of task 𝐽𝑛
𝑝𝑛 transmission power of mobile user 𝑛
𝑊𝑚 wireless bandwidth of MEC node 𝑚
𝜃𝑚 white noise power
𝐻𝑚,𝑛 channel gain between MEC node 𝑚 and user 𝑛
𝑟𝑢𝑝(𝑚, 𝑛), 𝑟𝑑𝑜𝑤𝑛(𝑚, 𝑛) uplink and downlink data transmission rate between

MEC node 𝑚 and mobile user 𝑛
𝑇𝑢(𝑚, 𝑛) transmission time of input data between MEC

node 𝑚 and mobile user 𝑛
𝑇𝑑 (ℎ𝑡

𝑛 , 𝑛) transmission time of output data between MEC
node ℎ𝑡

𝑛 and mobile user 𝑛
𝐵 wire bandwidth among MEC nodes
𝛾 𝑡𝑛 remaining CPU cycles requirement in time slot 𝑡
𝑓𝑚 maximal CPU frequency of MEC node 𝑚
𝑇𝑢(𝑛, 𝑡) remaining execution time of task 𝐽𝑛 in time slot 𝑡
𝑇 (𝑛, 𝜆), 𝑇 (𝑛, 𝑜) migration time of input and output data of task 𝐽𝑛
𝜏 length of time slot
𝐷(𝑛) completion time of task 𝐽𝑛

When task 𝐽𝑛 is completed, output data of the task will be transmitted
rom destination MEC node ℎ𝑡𝑛 to mobile user 𝑛. We can calculate

transmission time of output data between destination MEC node ℎ𝑡𝑛 and
mobile user 𝑛 as

𝑇𝑑 (ℎ𝑡𝑛, 𝑛) =
𝑂𝑛

𝑟𝑑𝑜𝑤𝑛(ℎ𝑡𝑛, 𝑛)
. (4)

2.3. Computation model

We use 𝑓𝑚 to describe the maximum computation capability (i.e.,
CPU cycles/s) that MEC node 𝑚 can provide to execute task. Here we
consider a heterogeneous edge computing environment that different
MEC nodes may have different computation capabilities. MEC node
can execute multiple tasks simultaneously by using processor sharing,
to model the interference among tasks accurately is hard, which is
influenced by many factors. Furthermore, we focus on optimizing task
migration with user mobility consideration in this paper. Therefore,
we consider a simple way of CPU cycles sharing. For each time slot 𝑡,
several tasks may be executed on the same MEC node (i.e., 𝑎𝑡𝑛 = 𝑎𝑡𝑛−1),
hus they have to share computing resources of the MEC node. Besides,
e define 𝛾 𝑡𝑛 to denote how many remaining CPU cycles are required

or task 𝐽𝑛 at the beginning of time slot 𝑡, where 𝛾1𝑛 = 𝜆𝑛 ⋅ 𝑐𝑛. Thus
completion time of task 𝐽𝑛 executed on MEC node 𝑚 can be estimated
as

𝑇𝑒(𝑛) =
𝛾 𝑡𝑛
𝑓𝑚

∑

𝑖∈ 𝐼
{

𝑎𝑡𝑖=𝑎
𝑡
𝑛
}

, (5)

𝑎𝑡𝑛 = 𝑚, ∀𝑛, 𝑡, 𝑚. (6)

Here 𝐼 {𝑥} is an indicator function with 𝐼 {𝑥} = 1 if the event 𝑥 is true
and 𝐼 𝑥 = 0 otherwise.
{ }

Journal of Systems Architecture 112 (2021) 101849F. Tang et al.

d

w
w
M
p
w
m
𝐽
s
m
a

𝑇

f

d
t

m

t
t
p

T

P
p

m

w
d
t
t

2.4. Migration model

For the presence of user mobility, controller of MEC nodes is sup-
posed to make a task migration scheme to satisfy requirements of users
(i.e., delay deadlines of tasks). Specifically, if controller decides to
migrate task 𝐽𝑛 from source MEC node to destination MEC node for
execution (𝑎𝑡𝑛 ≠ 𝑎𝑡−1𝑛), then extra migration cost of transmitting input
ata for task 𝐽𝑛 cannot be ignored. Migration time of input data for

task 𝐽𝑛 between source MEC node and destination MEC node can be
expressed as

𝑇 (𝑛, 𝜆) =
𝜆𝑛
𝐵

, (7)

here 𝐵 is wire network bandwidth among MEC nodes. For simplicity,
e assume that wire network bandwidth is same between any two
EC nodes. Overall migration is considered in our migration model at

resent, and partial migration of task will be considered in our future
ork. On the other hand, if controller decides to not migrate task 𝐽𝑛 but
obile user 𝑛 is beyond the coverage of source MEC node when task
𝑛 is completed, then output data of task 𝐽𝑛 needs to be migrated from
ource MEC node to destination MEC node. Similarly, we can calculate
igration time of output data for task 𝐽𝑛 between source MEC node

nd destination MEC node as

(𝑛, 𝑜) =
𝑂𝑛
𝐵

. (8)

3. Problem formulation

In this section, we present the mathematical expression of our opti-
mization problem. As mentioned earlier, we focus on the task migration
scheme with known trajectory under multiple users and multiple MEC
nodes environment, in which deadlines of tasks are involved. We try to
find a task migration scheme to maximize the number of tasks whose
deadlines are guaranteed. For task 𝐽𝑛, we have 𝑎𝑡𝑛 = 0 if it is completed
before time slot 𝑡, thus completion time of task 𝐽𝑛 is the sum of time
slots when 𝑎𝑡𝑛 > 0. It is given by

𝐷(𝑛) =
𝑡=𝑇
∑

𝑡=1
𝐼
{

𝑎𝑡𝑛 > 0
}

𝜏, (9)

where 𝜏 is the length of one time slot. Similarly, 𝐼 {𝑥} is an indicator
unction with 𝐼 {𝑥} = 1 if the event 𝑥 is true and 𝐼 {𝑥} = 0 otherwise.

Note that our goal is to maximize the number of tasks whose
eadlines are guaranteed, mathematically, which can be formulated as
he following task migration management (M-M) problem

aximize
𝑛=𝑁
∑

𝑛=1
𝐼
{

𝐷(𝑛) ≤ 𝑑𝑛
}

, (10)

s.t. 𝑎𝑡𝑛 ∈
{

0, 𝑠𝑡𝑛, ℎ
𝑡
𝑛
}

, ∀𝑛 ∈  ,∀𝑡 ∈  . (11)

Unfortunately, we find that this problem is NP-hard, which means
hat there is no polynomial-time algorithm to obtain the optimal solu-
ion unless 𝑃 = 𝑁𝑃 . Next, proof of NP-hardness for M-M problem is
resented.

heorem 1. M-M problem is NP-hard.

roof. To proceed, we first introduce the maximum cardinality bin
acking problem (MCBPP) [28]: Given 𝑁 items with sizes 𝑣𝑖 and 𝑀

bins of same capacity 𝐶, and the objective is to assign a maximum
number of items to the fixed number of bins within the capacity
constraint, which means finding a 𝑀 partition 𝑄1 ∪⋯∪𝑄𝑚 of items set
{1, 2,… , 𝑁} to reach the above objective. Mathematically, the MCBPP
problem can be formulated as

maximize
∑

|𝑚|,
4

𝑚∈{1,2,…,𝑀} t
s.t.
∑

𝑖∈𝑄𝑚

𝑣𝑖 ≤ 𝐶,∀𝑚 ∈ {1, 2,… ,𝑀} .

Refer to [28], we can know that the maximum cardinality bin
packing problem above is NP-hard.

Here we consider a special instance of M-M problem, in which there
are 𝑁 mobile users. Each mobile user has a task, which consists of
a set of tasks  =

{

𝐽1, 𝐽2,… , 𝐽𝑛
}

with same delay deadline 𝑑. Each
mobile user moves across 𝑀 heterogeneous MEC nodes with same
𝑅 computing resources. We use 𝑟𝑖 to denote the allocated computing
resource of task 𝐽𝑖. 𝑆𝑚 ⊆  denotes the set of tasks which are
completed within 𝑑 on MEC node 𝑚. Then, the M-M problem can be
formulated as

maximize
∑

𝑚∈{1,2,…,𝑀}
|𝑚|,

s.t.
∑

𝑖∈𝑆𝑚

𝑟𝑖 ≤ 𝑅,∀𝑚 ∈ {1, 2,… ,𝑀} .

This special instance of M-M problem corresponds to the MCBPP
with capacity 𝑅. Therefore, M-M problem is NP-hard, which achieves
the proof of NP-hardness for M-M problem. □

4. Group migration algorithm

Characteristics of the M-M problem are analyzed in Section 3,
in which we have proved the NP-hardness of this problem. Thus it
is impossible to obtain a solution in polynomial time. To solve the
problem, we analyze three variants of this problem, depending on
whether destination MEC nodes of tasks are same and whether source
MEC nodes of tasks are same. Specifically, three variants include Case1:
Different Source–Different Destination, Case2: Different Source–Same
Destination, Case3: Same Source–Same Destination. By analyzing char-
acteristics of these variants, plenty of theoretical analyzes are presented
and significant algorithms are developed as a guideline to solve the M-
M problem. Then we devise a group migration (GM) algorithm based
on these theoretical analyzes and significant algorithms. The details of
which are presented as follows.

4.1. Case1: Different source–different destination

In this case, we assume that source MEC nodes of all tasks are differ-
ent and destination MEC nodes of all tasks are different. Besides, there
is no intersection between all source MEC nodes and all destination
MEC nodes. We find that there is no congestion of computing resources
among multiple tasks, thus we can obtain an optimal solution in this
case. The following theorem gives an optimal task migration scheme
for Case1.

Theorem 2. In Case1, the number of tasks whose delay deadlines are guar-
anteed ∑𝑛=𝑁

𝑛=1 𝐼
{

𝐷(𝑛) ≤ 𝑑𝑛
}

is maximized, if task 𝐽𝑛 (𝑛 ∈ {1, 2,… , 𝑁}) is
decided to migrate only when its completion time 𝑍𝑡′

𝑛 on destination MEC
node is less than completion time 𝑍𝑡

𝑛 on source MEC node in time slot 𝑡.

Proof. We use 𝑚 ∈  and 𝑚′ ∈  to denote source MEC node and
destination MEC node of task 𝐽𝑘 ∈  at time slot 𝑡, respectively. If

igration decision of task 𝐽𝑘 is executed on source MEC node 𝑚 rather
than migrated to destination MEC node 𝑚′ for execution, then we can
estimate completion time of task 𝐽𝑘 in time slot 𝑡 as

𝑍𝑡
𝑘 = 𝜏(𝑡 − 1) +

𝛾 𝑡𝑘
𝑓𝑚

∑

𝑖∈ 𝐼
{

𝑎𝑡𝑖=𝑎
𝑡
𝑘

}

+
𝑂𝑘
𝐵

+
𝑂𝑘

𝑟𝑑𝑜𝑤𝑛(𝑚′, 𝑘)
, (12)

here 𝜏(𝑡 − 1) is the sum of past time slots for executing task 𝐽𝑘, 𝛾 𝑡𝑘
enotes how many remaining CPU cycles are required to accomplish
ask 𝐽𝑘 at the beginning of time slot 𝑡, 𝑓𝑚 denotes maximum compu-
ation frequency of source MEC node 𝑚, and the denominator denotes

he number of tasks executed on source MEC node 𝑚 in time slot 𝑡. In

Journal of Systems Architecture 112 (2021) 101849F. Tang et al.

c

𝑍

t

t
s
c
T
⋯
M
t
M
a
8

T
M
l
i

P
t
a
n

𝜏

Case1, source MEC nodes of all tasks are different and destination MEC
nodes of all tasks are different, and there is no intersection between all
source MEC nodes and all destination MEC nodes. Thus each MEC node
executes one task at most in Case1. If user 𝑘 is beyond the coverage of
source MEC node when task 𝐽𝑘 is completed, then output data 𝑂𝑘 of the
task should be transmitted from source MEC node 𝑚 to destination MEC
node 𝑚′ via wire network, and 𝐵 is the wire network bandwidth among
MEC nodes. Finally, output data 𝑂𝑘 of the task will be transmitted from
destination MEC node 𝑚′ to user 𝑘 via wireless channel. Thus estimated
completion time of task 𝐽𝑘 is the sum of above time period.

On the contrary, if migration decision of task 𝐽𝑘 is migrated from
source MEC node 𝑚 to destination MEC node 𝑚′ for execution, then the
orresponding completion time of task 𝐽𝑘 can be estimated as

𝑡′
𝑘 = 𝜏(𝑡 − 1) +

𝜆𝑘
𝐵

+
𝛾 𝑡𝑘
𝑓𝑚′

∑

𝑖∈ 𝐼
{

𝑎𝑡𝑖=𝑎
𝑡
𝑘
′
}

+
𝑂𝑘

𝑟𝑑𝑜𝑤𝑛(𝑚′, 𝑘)
. (13)

Similarly, completion time of the task 𝐽𝑘 includes the sum of past time
slots 𝜏(𝑡−1) and execution time of task 𝐽𝑘 on destination MEC node 𝑚′,
and transmission time of output data 𝑂𝑘 from destination MEC node
𝑚′ to user 𝑘 via wireless channel. The difference is that task 𝐽𝑘 will
be migrated to destination MEC node 𝑚′, thus input data 𝜆𝑘 needs to
be migrated from source MEC node 𝑚 to destination MEC node 𝑚′.
Therefore, migration time of input data 𝜆𝑘 should be considered into
completion time of task 𝐽𝑘.

In Case1, controller of MEC nodes can make a task migration deci-
sion by minimizing completion time of tasks. For task 𝐽𝑘, if completion
time of the task executed on destination MEC node 𝑍𝑡′

𝑘 is less than
completion time of the task executed on source MEC node 𝑍𝑡

𝑘, then task
𝐽𝑘 will be decided to migrate from source MEC node 𝑚 to destination
MEC node 𝑚′ for execution (𝑎𝑡𝑘 ≠ 𝑎𝑡−1𝑘), otherwise, task 𝐽𝑘 will be
executed on the source MEC node 𝑚 till it is completed (𝑎𝑡𝑘 = 𝑎𝑡−1𝑘).
As we presented before, each task cannot be migrated to other MEC
nodes except its destination MEC node for each time slot in our work.
Note that there is no congestion of computing resources among multiple
tasks in this case, thus completion time of each task is minimal with this
migration scheme. Hence the number of tasks whose delay deadlines
are guaranteed is maximized. Therefore, this proves the theorem and
the result follows. □

The significance of Theorem 2 is that we can try to minimize
completion time of tasks when devising a migration scheme, thus the
number of tasks whose delay deadlines are guaranteed is maximized to
some extent.

4.2. Case2: Different source–same destination

In this case, we assume that source MEC nodes of all tasks are
different, but destination MEC node of all tasks is same. Similarly, there
is no intersection between all source MEC nodes and the destination
MEC node. However, Case2 is similar to the M-M problem, which is
also NP-hard. To solve it, we first define a threshold 𝑡ℎ𝑘 for task 𝐽𝑘,
which denotes maximum number of tasks executed on destination MEC
node that task 𝐽𝑘 can accept, if task 𝐽𝑘 will be migrated from source
MEC node to destination MEC node. According to Theorem 2, task 𝐽𝑘
will be migrated from source MEC node 𝑚 to destination MEC node 𝑚′,
only when completion time of the task executed on destination MEC
node 𝑍𝑡′

𝑘 is less than completion time executed on source MEC node
𝑍𝑡

𝑘. Thus we can calculate threshold 𝑡ℎ𝑘 of task 𝐽𝑘 as

𝜏(𝑡 − 1) +
𝜆𝑘
𝐵

+
𝛾 𝑡𝑘
𝑓𝑚′
𝑡ℎ𝑘

+
𝑂𝑘

𝑟𝑑𝑜𝑤𝑛(𝑚′, 𝑘)
=

𝜏(𝑡 − 1) +
𝛾 𝑡𝑘
𝑓𝑚

∑

{

𝑡 𝑡
}

+
𝑂𝑘
𝐵

+
𝑂𝑘

𝑟𝑑𝑜𝑤𝑛(𝑚′, 𝑘)
, (14)
5

𝑖∈ 𝐼 𝑎𝑖=𝑎𝑘
𝑡ℎ𝑘 =

⌊

𝑓𝑚′
∑

𝑖∈ 𝐼
{

𝑎𝑡𝑖 = 𝑎𝑡𝑘
}

𝑓𝑚
+

(𝑂𝑘 − 𝜆𝑘)𝑓𝑚′

𝐵𝛾 𝑡𝑘

⌋

. (15)

Note that 𝑡ℎ𝑘 denotes the maximum number of tasks executed on des-
ination MEC node that task 𝐽𝑘 can accept, if task 𝐽𝑘 will be migrated

from source MEC node to destination MEC node. Therefore, 𝑡ℎ𝑘 should

be rounded down, 𝑡ℎ𝑘 =

⌊

𝑓𝑚′
∑

𝑖∈ 𝐼
{

𝑎𝑡𝑖=𝑎
𝑡
𝑘

}

𝑓𝑚
+ (𝑂𝑘−𝜆𝑘)𝑓𝑚′

𝐵𝛾 𝑡𝑘

⌋

. Algorithm 1

gives the task migration scheme in detail for Case2.

Algorithm 1 Case2-Migration Algorithm

Input: 𝑡−1 =
{

𝑎𝑡−11 , 𝑎𝑡−12 ,… , 𝑎𝑡−1𝑛
}

,  , 𝑐𝑚′.
Output: 𝑡.
1: for (task 𝑘 from 1 to 𝑁) do
2: 𝑡ℎ𝑘 ← 0, 𝑎𝑡𝑘 ← 𝑎𝑡−1𝑘 ;
3: if (𝑎𝑡−1𝑘 ≠ 0) then

4: 𝑡ℎ𝑘 ←
⎢

⎢

⎢

⎣

𝑓𝑚′
∑

𝑖∈
𝐼
{

𝑎𝑡𝑖=𝑎
𝑡
𝑘

}

𝑓𝑚
+ (𝑂𝑘−𝜆𝑘)𝑓𝑚′

𝐵𝛾 𝑡𝑘

⎥

⎥

⎥

⎦

;

5: end if
6: end for
7: Sort tasks according to the sequence 𝛼 such that 𝑡ℎ𝛼1 ≥ 𝑡ℎ𝛼2 ≥ ⋯ ≥

𝑡ℎ𝛼𝑁 ;
8: for (𝑘 from 1 to 𝑁) do
9: if (𝑐𝑚′ ≤ 𝑡ℎ𝛼𝑘) then

10: 𝑎𝑡𝛼𝑘 ← 𝑚′;
11: 𝑐𝑚′ + +;
12: else
13: break;
14: end if
15: end for
16: return 𝑡 =

{

𝑎𝑡1, 𝑎
𝑡
2,… , 𝑎𝑡𝑛

}

;

As shown in Algorithm 1, input parameters include task migration
scheme 𝑡−1 in time slot 𝑡 − 1 and information of tasks  , and the
number of tasks executed on destination MEC node 𝑐𝑚′. We assume
hat migration scheme of task is same with the last time slot and we
et initial value of 𝑡ℎ is equal to 0 (Step 2). For tasks which are not
ompleted, we calculate their 𝑡ℎ values based on Eq. (15) (Steps 3–5).
hen we sort tasks according to the sequence 𝛼 such that 𝑡ℎ𝛼1 ≥ 𝑡ℎ𝛼2 ≥
≥ 𝑡ℎ𝛼𝑛 (Step 6). Based on 𝑡ℎ values of tasks and 𝑐𝑚′ of destination

EC node, migration decisions of tasks are updated (Steps 8–15). Once
ask 𝐽𝑘 is decided not to migrate from source MEC node to destination
EC node, then tasks whose 𝑡ℎ values are less than or equal to 𝑡ℎ𝑘 will

lso be decided not to migrate, which will be proved to support Steps
–15 in Algorithm 1.

heorem 3. In Case2, if task 𝐽𝑘 is decided not to migrate from source
EC node to destination MEC node, then for task 𝐽𝑖 whose 𝑡ℎ values are

ess than or equal to task 𝐽𝑘 (𝑡ℎ𝑖 ≤ 𝑡ℎ𝑘), completion of task 𝐽𝑖 is less when
t is decided not to migrate (𝑍𝑡

𝑖 < 𝑍𝑡′
𝑖).

roof. According to Algorithm 1, controller of MEC nodes decides not
o migrate task 𝐽𝑘 from source MEC node to destination MEC node, if
nd only if 𝑡ℎ𝑘 is less than number of tasks executed on destination MEC
ode (𝑡ℎ𝑘 < 𝑐𝑚′). Then the following inequality can be established as

(𝑡 − 1) +
𝜆𝑘
𝐵

+
𝛾 𝑡𝑘
𝑓𝑚′
𝑡ℎ𝑘

+
𝑂𝑘

𝑟𝑑𝑜𝑤𝑛(𝑚′, 𝑘)
<

𝜏(𝑡 − 1) +
𝜆𝑘
𝐵

+
𝛾 𝑡𝑘
𝑓𝑚′

+
𝑂𝑘

𝑟 (𝑚′, 𝑘)
. (16)
𝑐𝑚′ 𝑑𝑜𝑤𝑛

Journal of Systems Architecture 112 (2021) 101849F. Tang et al.

s
d

1
1
1
2
2

t
A
i
(
b

O

o
a
t
T
w
f
a
i

4

r
M
c
l
(
u
t
t
M
1
a
s
o
A
p

1
p
w
B
f
n
d
p
g
w

As we mentioned before, 𝑡ℎ𝑘 =

⌊

𝑓𝑚′
∑

𝑖∈ 𝐼
{

𝑎𝑡𝑖=𝑎
𝑡
𝑘

}

𝑓𝑚
+ (𝑂𝑘−𝜆𝑘)𝑓𝑚′

𝐵𝛾 𝑡𝑘

⌋

.

Thus we have

𝜏(𝑡 − 1) +
𝛾 𝑡𝑘
𝑓𝑚

∑

𝑖∈ 𝐼
{

𝑎𝑡𝑖=𝑎
𝑡
𝑘

}

+
𝑂𝑘
𝐵

+
𝑂𝑘

𝑟𝑑𝑜𝑤𝑛(𝑚′, 𝑘)
<

𝜏(𝑡 − 1) +
𝜆𝑘
𝐵

+
𝛾 𝑡𝑘
𝑓𝑚′
𝑐𝑚′

+
𝑂𝑘

𝑟𝑑𝑜𝑤𝑛(𝑚′, 𝑘)
, (17)

we can find that left-hand side of the inequality is 𝑍𝑡
𝑘 and the right-hand

side of the inequality is 𝑍𝑡′
𝑘 . That is to say if 𝑡ℎ𝑘 < 𝑐𝑚′, then we can

deduce that completion time of task 𝐽𝑘 executed on source MEC node
is smaller than completion time of task 𝐽𝑘 executed on destination MEC
node (𝑍𝑡

𝑘 < 𝑍𝑡′
𝑘). Thus for task 𝐽𝑖 whose 𝑡ℎ value is smaller than task

𝐽𝑘, 𝑡ℎ𝑖 < 𝑡ℎ𝑘 < 𝑐𝑚′, we can also deduce that 𝑍𝑡
𝑖 < 𝑍𝑡′

𝑖 , then task 𝐽𝑖 will
be decided not to migrate from source MEC node to destination MEC
node. This proves Theorem 3. □

4.3. Case3: Same source–same destination

In this case, we assume that source MEC node of all tasks is same,
and destination MEC node of all tasks is also same. Besides, the source
MEC node is different from the destination MEC node. We find that
Case3 is also NP-hard, and there is no polynomial-time algorithm to
obtain the optimal solution unless 𝑃 = 𝑁𝑃 . Furthermore, congestion
of computing resources for multiple tasks is more intensive in Case3.
Fortunately, we can refer to Theorem 3 and Algorithm 1 in Case2 to
olve Case3. Algorithm 2 gives task migration scheme for Case3 in
etail.

Algorithm 2 Case3-Migration Algorithm

Input: 𝑡−1 =
{

𝑎𝑡−11 , 𝑎𝑡−12 ,… , 𝑎𝑡−1𝑛
}

,  , 𝑐𝑚′.
Output: 𝑡.
1: for (task 𝑘 from 1 to 𝑁) do
2: 𝑡ℎ𝑘 ← 0, 𝑎𝑡𝑘 ← 𝑎𝑡−1𝑘 ;
3: if (𝑎𝑡−1𝑘 ≠ 0) then

4: 𝑡ℎ𝑘 ←
⎢

⎢

⎢

⎣

𝑓𝑚′
∑

𝑖∈
𝐼
{

𝑎𝑡𝑖=𝑎
𝑡
𝑘

}

𝑓𝑚
+ (𝑂𝑘−𝜆𝑘)𝑓𝑚′

𝐵𝛾 𝑡𝑘

⎥

⎥

⎥

⎦

;

5: end if
6: end for
7: Sort the tasks according to the sequence 𝛼 such that 𝑡ℎ𝛼1 ≥ 𝑡ℎ𝛼2 ≥

⋯ ≥ 𝑡ℎ𝛼𝑁 ;
8: while True do
9: if (𝑐𝑚′ ≤ 𝑡ℎ𝛼1) then

10: 𝑎𝑡𝛼1 ← 𝑚′, 𝑐𝑚′ + +, 𝑡ℎ𝛼1 ← 0;
11: for (𝑘 from 1 to 𝑁) do
12: if (𝑡ℎ𝛼𝑘 ≠ 0) then
13: Update 𝑡ℎ𝛼𝑘 ;
14: end if
15: end for
16: Resort the tasks according to the sequence 𝛼 such that 𝑡ℎ𝛼1 ≥

𝑡ℎ𝛼2 ≥ ⋯ ≥ 𝑡ℎ𝛼𝑁 ;
7: else
8: break;
9: end if
0: end while
1: return 𝑡 =

{

𝑎𝑡1, , 𝑎
𝑡
2,… , 𝑎𝑡𝑛

}

;

As you can see, Algorithm 2 refers to main idea of Algorithm 1
o a great degree. Input parameters of Algorithm 2 are identical to
lgorithm 1. Similarly, we assume that migration decision of each task

s same with the last time slot and we set initial value of 𝑡ℎ is equal to 0
Step 2). For tasks which are not completed, we calculate their 𝑡ℎ values
ased on Eq. (15) (Steps 3–5). Then we sort tasks according to the
6

Algorithm 3 Group Migration Algorithm

Input: 𝑡−1 =
{

𝑎𝑡−11 , 𝑎𝑡−12 ,… , 𝑎𝑡−1𝑛
}

,  ,  ,  .
utput: 𝑡.

1: for (task 𝑘 from 1 to 𝑁 and 𝑎𝑡−1𝑘 ≠ 0) do
2: 𝑎𝑡𝑘 ← 𝑎𝑡−1𝑘 ;
3: Divide task 𝑘 into corresponding groups according to its

destination MEC node i.e., 𝑔𝑟𝑜𝑢𝑝1, 𝑔𝑟𝑜𝑢𝑝2,… , 𝑔𝑟𝑜𝑢𝑝𝑝;
4: end for
5: for (group 𝑗 from 1 to 𝑝) do
6: if (source MEC nodes of tasks in group 𝑗 are different) then
7: Case2-Migration Algorithm(group 𝑗);
8: else
9: Further dividing group 𝑗 into subgroups according to

source MEC nodes of tasks, and tasks whose source
MEC nodes are different consist of the last subgroup i.e.,
𝑠𝑢𝑏𝑔𝑟𝑜𝑢𝑝1, 𝑠𝑢𝑏𝑔𝑟𝑜𝑢𝑝2,… , 𝑠𝑢𝑏𝑔𝑟𝑜𝑢𝑝𝑞 ;

10: Case2-Migration Algorithm(subgroup 𝑞);
11: for (subgroup 𝑖 from 1 to 𝑞 − 1) do
12: Case3-Migration Algorithm(subgroup 𝑖);
13: end for
14: end if
15: end for
16: return 𝑡 =

{

𝑎𝑡1, 𝑎
𝑡
2,… , 𝑎𝑡𝑛

}

;

sequence 𝛼 such that 𝑡ℎ𝛼1 ≥ 𝑡ℎ𝛼2 ≥ ⋯ ≥ 𝑡ℎ𝛼𝑛 (Step 6). Based on 𝑡ℎ values
f tasks and 𝑐𝑚′ of destination MEC node, migration decisions of tasks
re updated (Steps 8–18). Note that if task 𝐽𝑘 is decided to migrate,
hen tasks whose 𝑡ℎ value is less than or equal to 𝑡ℎ𝑘 will be influenced.
hat is because source MEC nodes of these tasks are same. Hence,
e update 𝑡ℎ values of these tasks after task 𝐽𝑘 is decided to migrate

rom source MEC node to destination MEC node, and resorting tasks
ccording to 𝑡ℎ value in a descending order. Steps 8–18 in Algorithm 2
s supported by the above-mentioned Theorem 3.

.4. Group migration algorithm for M-M problem

However, as described in M-M problem, we need to consider a more
ealistic scenario, in which there is an intersection between all source
EC nodes and destination MEC nodes. Thus M-M problem is more

omplicated to solve. Fortunately, based on plenty of theoretical ana-
yzes and algorithms presented before, we can devise a group migration
GM) algorithm to solve the M-M Problem. As shown in Fig. 2, mobile
sers with resource-limited devices offload their latency-sensitive tasks
o MEC nodes for execution. Depending on destination MEC nodes of
asks, we divide tasks into different groups. For each group, if source
EC nodes of all tasks are different, then we can perform Algorithm
to solve it. For groups in which source MEC nodes of some tasks

re same, we further divide these groups into subgroups depend on
ource MEC nodes of tasks. For subgroups in which source MEC nodes
f all tasks are same and destination MEC nodes of all tasks are same,
lgorithm 2 is proposed to solve them. The details of GM algorithm are
resented as follows.

As shown in Algorithm 3, input parameters are similar to Algorithm
and Algorithm 2 we presented before. But there are two additional

arameters, including a set of destination MEC nodes  and a set 
hich records the number of tasks executed on destination MEC nodes.
ased on theoretical analyzes and algorithms we presented before, we
irst divide tasks into different groups according to destination MEC
odes of them. For group which source MEC nodes of all tasks are
ifferent, note that this scenario is identical to Case2. Thus we can
erform Algorithm 1 to obtain an optimal solution for this scenario. For
roup which there are some tasks whose source MEC nodes are same,
e can further divide the group into subgroups according to source

Journal of Systems Architecture 112 (2021) 101849F. Tang et al.
Fig. 2. An illustration of proposed GM algorithm.
MEC nodes of tasks, and tasks with different source MEC nodes consist
of last subgroup. Note that the last subgroup and other subgroups are
same to Case2 and Case3, respectively. Thus we can perform Algorithm
1 and Algorithm 2 to solve them. As for information collection of
GM algorithm, at the first time slot, MEC nodes send information of
tasks executed on them to central controller, including input data size,
workload, output data size, and deadline. Then MEC nodes only need
to send 𝛾 𝑡𝑛 that denotes how many remaining CPU cycles are required
for task 𝐽𝑛 to central controller in the next time slots. In addition, the
mobility information of mobile users is obtained by an extra module
that provides trajectories of mobile users.

Next, time complexity of GM algorithm is presented. As shown
in Algorithm 3, we need to make a grouping operation for each task
according to its destination MEC node, which requires time complexity
𝛩(𝑁) (Steps 1–4). 𝑁 is the number of tasks of all mobile users. Then
we make migration decisions for 𝑝 groups in turn, thus number of
iterations of outer ‘‘for" loop (Steps 5–15) is 𝛩(𝑝). 𝑝 is the number of
groups, and we use 𝑔 to denote the number of tasks for each group.
For each iteration, we perform Algorithm 1 for groups in which source
MEC nodes of all tasks are different, and time complexity required
by Algorithm 1 is 𝛩(2𝑔). As we said before, we use 𝑔 to denote the
number of tasks for each group, thus the value of 𝑁 in Algorithm 1
and Algorithm 2 is 𝑔. Specially in Algorithm 1, there are two ‘‘for"
loops with 𝑔 operations, therefore, and time complexity required by
Algorithm 1 is 𝛩(2𝑔). Besides, for groups in which source MEC nodes
of some tasks are same, we further divide the group into 𝑞 subgroups
according to source MEC node of tasks. For simplification, we also
use 𝑔 to denote the overrated number of tasks for each subgroup. For
the first 𝑞 − 1 subgroups in which source MEC nodes of all tasks are
same, then we can perform Algorithm 2 to solve it. There are 𝑞 − 1
subgroups, thus the outer loop is 𝛩(𝑞 − 1). Specially in Algorithm 2, at
first, there is a ‘‘for" loop with 𝑔 operations. Then migration decisions
are made for each tasks in subgroups. There is a ‘‘while" loop with a
nested ‘‘for" loop. Thus the time complexity required by Algorithm 2
is 𝛩(𝑔2). For the last 𝑞 subgroups in which source MEC nodes of all
tasks are different, then we can perform Algorithm 1 to solve it with
𝛩(2𝑔) complexity. Hence we can estimate the time complexity of GM
algorithm is 𝛩(𝑁 + 𝑝(2𝑔 + (𝑞 − 1) ⋅ 𝑔2 + 2𝑔)).

5. Performance evaluation

In this section, we conduct numerical studies to illustrate perfor-
mance of the proposed grouping migration algorithm.

5.1. Parameter configuration

We consider an MEC environment with 16 MEC nodes which pro-
vide wireless stations and computation services. As shown in Table 3,
MEC node occupies 500 ∗ 500 𝑚2 and CPU frequency 𝑓 of MEC node
7

𝑚

Table 3
Experiment parameters.

Parameters (Fixed)–[Varied range] (Increment)

Number of mobile user (𝑁) (30)–[20, 100] (20)
Number of MEC node (𝑀) 16
Input data size (𝜆𝑛) [100,500]–[100, 250-700] (150) KB
Output data size (𝑂𝑛) [100,150]–[100, 150-600] (150) KB
Workload (𝑐𝑛) [800,2400]–[800, 1600-6400] (1600)

cycles/bit
Deadline of task (𝑑𝑛) [5,50]–[5, 25-70] (15) s
MEC CPU frequency (𝑓𝑚) {0.1, 0.2,… , 1.0} GHz
Length of time slot 5 s
Wireless bandwidth 𝑊𝑚 1 Mbps
Channel gain 𝐻𝑚,𝑛 10−6

Transmission power 𝑝𝑛 1 W
White noise power 𝜃𝑚 10−9 W
Wire bandwidth 𝐵 8 Mbps

is uniformly selected from the set {0.1, 0.2,… , 1.0} GHz [29]. There
are 𝑁 mobile users endowed with a resource-limited device randomly
moving across multiple MEC nodes, where 𝑁 is varied from 20 to
120. For trajectories of mobile users, actually, there is no real moving
trajectories data set that matches task data set. Thus refer to [11]
and [21], trajectories of mobile users are generated by random walk
model in this paper.

As we described before, each mobile user is associated with a
computation-intensive task to be offloaded to nearby MEC node. For
a task, input data size 𝜆𝑛 is uniformly selected from [𝑎1, 𝑏1] KB, where
𝑎1 is fixed at 100 and 𝑏1 varies from 250 to 700. Similarly, output data
size 𝑂𝑛 is uniformly selected from [𝑎2, 𝑏2] KB, where 𝑎2 is fixed at 100
and 𝑏2 varies from 150 to 600. The workload requirement 𝑐𝑛 (in CPU
cycles/bit) is uniformly selected from [𝑎3, 𝑏3] CPU cycles/bit, where 𝑎3
is fixed at 800 and 𝑏3 varies from 1600 to 6400. Similarly, deadline
𝑑𝑛 of the task also follows a uniform distribution with 𝑑𝑛 ∈ [𝑎4, 𝑏4] s,
where 𝑎4 is fixed at 5 and 𝑏4 varies from 25 to 70. The length of a
time slot 𝜏 is 5 s. As suggested in [30], wireless channel gain 𝐻𝑚,𝑛 is
10−6. Besides, white noise power 𝜃𝑚 = 10−9 W [10], wireless channel
bandwidth 𝑊𝑚=1 Mbps, transmission power of mobile user 𝑝𝑛=1 W,
network bandwidth among MEC nodes 𝐵=8 Mbps.

5.2. Performance benchmark

To our knowledge, few works have considered user mobility in
MEC. Due to different environment characteristics and performance
metric, related work mentioned before is not appropriate to compare
with GM algorithm(see Table 1). Hence like related work [18,19,22,31]
we presented before, we also introduce three heuristics benchmark
algorithms to evaluate the performance of our proposed GM algorithm.

Journal of Systems Architecture 112 (2021) 101849F. Tang et al.
Fig. 3. Dynamics of the number of tasks whose deadlines are guaranteed with varied
decision time slot.

1) Not Migrating (NM): task will not be migrated wherever mobile
user is moving to. In other words, task will be executed on source MEC
node till it is completed. 2) Always Migrating (AM): when mobile user
is beyond the coverage of source MEC node, task will be migrated to
destination MEC node according to the predicted mobility information
of mobile user. 3) Cold Treatment (CT): when mobile user is beyond
the coverage of source MEC node, task’s migration decision is made
without considering the resource congestion among multiple tasks,
specifically, each task makes a migration decision only based on other
tasks’ information in last time slot.

5.3. Random results

We first show dynamics of the number of tasks whose deadlines
are guaranteed with increased decision time slot in Fig. 3. Specifically,
we show the convergence of proposed GM algorithm with number of
mobile users 𝑁 varying from 40 to 100. We can find that number of
tasks whose deadlines are guaranteed can converge to a stable point
with increased decision time slot when GM algorithm is performed.
Furthermore, the smaller number of mobile users, the faster that GM
algorithm converges. It is normal that there is a performance degra-
dation in the early stages of decision time slots. The reason lies in
that proposed algorithm is a global target-oriented ground algorithm.
To sum up, the proposed GM algorithm has a satisfactory convergence
speed.

In the following experiments, we randomly generate 100 sets of data
and show the average number, minimal number, and maximal number
of tasks whose deadlines are guaranteed. We first show dynamics of
number of tasks whose deadlines are guaranteed with varied input data
sizes of tasks in Fig. 4. The number of mobile user is fixed at 30.
With fixed the number of MEC nodes and CPU frequencies of MEC
nodes, we increase input data sizes of tasks with an increment 150
KB. We can observe that the number of tasks whose deadlines are
guaranteed is decreasing with increased input data sizes of tasks. That
is because computation and communication time are increasing with
increased input data sizes of tasks. However, deadlines of tasks are
remaining unchanged. Therefore, the number of tasks whose deadlines
are guaranteed is decreased. Nevertheless, compared with AM and NM
and CT algorithms, the proposed GM algorithm can achieve up to 60%
performance improvement.

While other variables remain unchanged, we also increase output
data sizes of tasks to assess its impact on the number of tasks whose
deadlines are guaranteed. As shown in Fig. 5, we can observe that
the number of tasks whose deadlines are guaranteed is also decreased
with increased output data sizes of tasks. The reason lies in that
communication times of tasks are increasing with increased output
data sizes of tasks. Nevertheless, deadlines of tasks remain unchanged.
8

Fig. 4. The number of tasks whose deadlines are guaranteed with the variation of
input data size.

Fig. 5. The number of tasks whose deadlines are guaranteed with the variation of
output data size.

Thus the number of tasks whose deadlines are guaranteed is decreased.
However, the proposed GM algorithm always outperforms the other
two benchmark algorithms with the variation of output data size.

Fig. 6 presents the experiment results with varied workload require-
ments. The number of mobile user is also fixed at 30. We increase
workload requirements of tasks from [800, 1600] to [800, 6400] (in CPU
cycles/bit) with an increment 1600. We can observe that the number of
tasks whose deadlines are guaranteed is also decreased with increased
workload requirements of tasks. That is because both number of MEC
nodes and CPU frequencies of MEC nodes remain unchanged. Thus
completion times of tasks are increased with the increase of work-
load requirement. However, deadlines of tasks also remain unchanged.
Hence, the number of tasks whose deadlines are guaranteed is de-
creased with increased workload requirements of tasks. As the picture
shows, our proposed GM algorithm always outperforms AM and NM
and CT algorithms.

On the premise of other variables remain unchanged, we also
change deadlines of tasks to assess the impact on the number of tasks
whose deadlines are guaranteed. We increase deadlines of tasks from
[5, 25] to [5, 70] s with an increment 15. Fig. 7 presents experimental
results with varied deadlines of tasks. From the figure, we can observe
that the number of tasks whose deadlines are guaranteed tends to
increase with increased deadlines of tasks. However, no matter how

Journal of Systems Architecture 112 (2021) 101849F. Tang et al.
Fig. 6. The number of tasks whose deadlines are guaranteed with the variation of
workload requirement.

Fig. 7. The number of tasks whose deadlines are guaranteed with the variation of
deadline.

interval of deadline varies, the proposed GM algorithm always outper-
forms AM and NM and CT algorithms, which illustrates the advantage
of our algorithm to satisfy delay deadlines of tasks.

Besides, we present the performance gap between the proposed GM
algorithm and optimal solution. The optimal solution is obtained by
brute-force method, and the time complexity is 2𝑁𝑇 , which increases
exponentially with the increased number of task and time slot. Thus
we only compare the results of small scale problem when number
of user is 10, specifically, we present the minimum and average and
maximum value of the number of tasks whose deadlines are guaranteed
for running 100 dataset. And CPU frequency set of MEC node is
{0.1, 0.2,… , 0.5} GHz. From Fig. 8, we find that results of proposed GM
algorithm are near the optimal solution, compared to other algorithms.

Furthermore, Fig. 9 presents experimental results with different
numbers of mobile user and fixed CPU frequency set {0.1, 0.2,… , 1.0}
GHz of MEC node. The number of mobile users varies from 20 to
120 with an increment 20. In this figure, we only present the average
number of tasks whose deadlines are guaranteed with running 100
task datasets. With increased number of mobile users, congestion for
computing resources among mobile users becomes more intensive.
However, both number of MEC nodes and CPU frequencies of MEC
9

Fig. 8. The number of tasks whose deadlines are guaranteed.

Fig. 9. The number of tasks whose deadlines are guaranteed with varied number of
users.

nodes remain unchanged, thus it is reasonable that performance im-
provement of proposed GM algorithm with more number of mobile
users is lower than less number of mobile users. Similarly, compared
with AM and NM and CT algorithms, the proposed GM algorithm
can make a pretty high performance improvement no matter how the
number of mobile users varies.

On the other hand, we also change number of mobile users under
varied CPU frequencies of MEC nodes to observe their common influ-
ences on number of deadlines guaranteed tasks. Number of mobile users
also varies from 20 to 120 with an increment 20. CPU frequency set
of MEC node varies from [0.1, 0.5] to [0.6, 1.0] GHz. From Fig. 10, we
find that the number of tasks whose deadlines are guaranteed tends to
increase with increased CPU frequencies of MEC node. The reason lies
in that completion times of tasks are decreased with increased CPU fre-
quencies of MEC nodes. However, deadlines of tasks remain unchanged.
Therefore, the number of tasks whose deadlines are guaranteed tends
to increase with increased CPU frequencies of MEC nodes. As shown in
Fig. 10(a), GM algorithm has a few performance improvements when
number of mobile users is 20. That is because computing resources are
abundant for in this case. However, we can observe that performance
improvement of GM algorithm grows with increased number of mobile
users and increased CPU frequencies of MEC nodes in Fig. 10(b)–10(f).

Fig. 11 presents the average number of tasks whose deadlines are
guaranteed under different CPU frequency sets of MEC nodes. As shown
in Fig. 11(a), the number of tasks whose deadlines are guaranteed
presents a trend of parabola with increased number of mobile users
when GM algorithm is performed. The reason lies in that extremely

Journal of Systems Architecture 112 (2021) 101849

10

F. Tang et al.

Fig. 10. The number of tasks whose deadlines are guaranteed with varied CPU frequencies of MEC nodes under different numbers of users.

Fig. 11. The number of tasks whose deadlines are guaranteed with varied number of users under different CPU frequency sets of MEC nodes.

Journal of Systems Architecture 112 (2021) 101849F. Tang et al.
limited computing resources are not enough to execute too many
tasks of mobile users. In Fig. 11(b)–11(f), the trend of parabola is
gone be disappeared with increased higher CPU frequencies of MEC
nodes. As shown in Fig. 11(f), compared with other two benchmark
algorithms, performance improvement of the proposed GM algorithm
is low when number of mobile users is small. That is because comput-
ing resources are pretty enough to execute corresponding tasks. Task
migration scheme has no obvious effect on performance improvement
in this case. However, the proposed GM algorithm always outperforms
AM and NM and CT algorithms in the above-mentioned simulations. To
sum up, all experimental results that verify advantages of the proposed
GM algorithm.

6. Conclusion and future work

In this paper, we addressed the task migration problem with user
mobility consideration under multiple users and multiple MEC nodes
environment, in which deadlines of tasks are involved. By analyzing
properties of three variants of this problem, plenty of theoretical ana-
lyzes were presented and significant algorithms had been proposed as
a guideline to solve it. We proposed a group migration (GM) algorithm
with known trajectories of users. Our goal was to maximize the number
of tasks whose deadlines are guaranteed. Extensive experiments were
carried out to evaluate the performance of GM algorithm. Compared
with always migrating (AM) and not migrating (NM) and cold treat-
ment (CT) algorithms, the results confirmed that GM algorithm can
achieve up 35%-75% performance improvement.

As part of future direction, we plan to extend the existing work by
considering computation offloading decision-making simultaneously in
current scenario.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Acknowledgments

The authors would like to express their gratitude to the anony-
mous reviewers whose constructive comments have greatly helped to
improve this manuscript. This work was partially supported by the Na-
tional Key Research and Development Program of China
(2018YFB1701403), Programs of National Natural Science Foundation
of China (Grant Nos. U19A2058, 61702170). This work was also
sponsored by Zhijiang Lab, China (No. 2020KE0AB01).

References

[1] T.Q. Dinh, J. Tang, Q.D. La, T.Q. Quek, Offloading in mobile edge computing:
Task allocation and computational frequency scaling, IEEE Trans. Commun. 65
(8) (2017) 3571–3584.

[2] M. Patel, B. Naughton, C. Chan, N. Sprecher, S. Abeta, A. Neal, et al., Mobile-
edge computing introductory technical white paper, in: White Paper, Mobile-Edge
Computing (MEC) Industry Initiative, 2014, pp. 1089–7801.

[3] F. Wang, J. Xu, X. Wang, S. Cui, Joint offloading and computing optimization in
wireless powered mobile-edge computing systems, IEEE Trans. Wireless Commun.
17 (3) (2017) 1784–1797.

[4] T.-L. Chou, L.-J. ChanLin, Augmented reality smartphone environment orienta-
tion application: a case study of the fu-jen university mobile campus touring
system, Proc.-Soc. Behav. Sci. 46 (2012) 410–416.

[5] H. Dai, X. Zeng, Z. Yu, T. Wang, A scheduling algorithm for autonomous driving
tasks on mobile edge computing servers, J. Syst. Archit. 94 (2019) 14–23.

[6] A. Yousefpour, C. Fung, T.T. Nguyen, K.P. Kadiyala, F. Jalali, A. Niakanlahiji,
J. Kong, J.P. Jue, All one needs to know about fog computing and related edge
computing paradigms: A complete survey, J. Syst. Archit. 98 (2019) 289–330.

[7] N. Abbas, Y. Zhang, A. Taherkordi, T. Skeie, Mobile edge computing: A survey,
11

IEEE Internet Things J. 5 (1) (2017) 450–465.
[8] X. Chen, L. Jiao, W. Li, X. Fu, Efficient multi-user computation offloading for
mobile-edge cloud computing, IEEE/ACM Trans. Netw. 24 (5) (2015) 2795–2808.

[9] C. Liu, K. Li, J. Liang, K. Li, COOPER-MATCH: Job offloading with a cooperative
game for guaranteeing strict deadlines in MEC, IEEE Trans. Mob. Comput.
(2019).

[10] J. Liu, Y. Mao, J. Zhang, K.B. Letaief, Delay-optimal computation task scheduling
for mobile-edge computing systems, in: 2016 IEEE International Symposium on
Information Theory (ISIT), IEEE, 2016, pp. 1451–1455.

[11] X. Sun, N. Ansari, Latency aware workload offloading in the cloudlet network,
IEEE Commun. Lett. 21 (7) (2017) 1481–1484.

[12] Y. Mao, J. Zhang, K.B. Letaief, Joint task offloading scheduling and transmit
power allocation for mobile-edge computing systems, in: 2017 IEEE Wireless
Communications and Networking Conference (WCNC), IEEE, 2017, pp. 1–6.

[13] S. Sardellitti, G. Scutari, S. Barbarossa, Joint optimization of radio and compu-
tational resources for multicell mobile-edge computing, IEEE Trans. Signal Inf.
Process. Netw. 1 (2) (2015) 89–103.

[14] X. Jiang, N. Guan, X. Long, Y. Tang, Q. He, Real-time scheduling of parallel
tasks with tight deadlines, J. Syst. Archit. 108 (2020) 101742.

[15] C. Li, M. Song, H. Tang, Y. Luo, Offloading and system resource allocation
optimization in TDMA based wireless powered mobile edge computing, J. Syst.
Archit. 98 (2019) 221–230.

[16] J. Luo, X. Deng, H. Zhang, H. Qi, QoE-Driven computation offloading for edge
computing, J. Syst. Archit. 97 (2019) 34–39.

[17] Y. Sun, S. Zhou, J. Xu, EMM: Energy-aware mobility management for mobile
edge computing in ultra dense networks, IEEE J. Sel. Areas Commun. 35 (11)
(2017) 2637–2646.

[18] S. Wang, R. Urgaonkar, T. He, K. Chan, M. Zafer, K.K. Leung, Dynamic service
placement for mobile micro-clouds with predicted future costs, IEEE Trans.
Parallel Distrib. Syst. 28 (4) (2016) 1002–1016.

[19] S. Wang, R. Urgaonkar, M. Zafer, T. He, K. Chan, K.K. Leung, Dynamic service
migration in mobile edge-clouds, in: 2015 IFIP Networking Conference (IFIP
Networking), IEEE, 2015, pp. 1–9.

[20] A. Nadembega, A.S. Hafid, R. Brisebois, Mobility prediction model-based service
migration procedure for follow me cloud to support QoS and QoE, in: 2016 IEEE
International Conference on Communications (ICC), IEEE, 2016, pp. 1–6.

[21] J. Plachy, Z. Becvar, E.C. Strinati, Dynamic resource allocation exploiting
mobility prediction in mobile edge computing, in: 2016 IEEE 27th Annual
International Symposium on Personal, Indoor, and Mobile Radio Communications
(PIMRC), IEEE, 2016, pp. 1–6.

[22] T. Ouyang, Z. Zhou, X. Chen, Follow me at the edge: Mobility-aware dynamic
service placement for mobile edge computing, IEEE J. Sel. Areas Commun. 36
(10) (2018) 2333–2345.

[23] T. Taleb, A. Ksentini, P.A. Frangoudis, Follow-me cloud: When cloud services
follow mobile users, IEEE Trans. Cloud Comput. 7 (2) (2019) 369–382.

[24] M. Srivatsa, R. Ganti, J. Wang, V. Kolar, Map matching: Facts and myths, in:
Proceedings of the 21st ACM SIGSPATIAL International Conference on Advances
in Geographic Information Systems, ACM, 2013, pp. 484–487.

[25] P. Mach, Z. Becvar, Mobile edge computing: A survey on architecture and
computation offloading, IEEE Commun. Surv. Tutor. 19 (3) (2017) 1628–1656.

[26] A. Hadachi, O. Batrashev, A. Lind, G. Singer, E. Vainikko, Cell phone subscribers
mobility prediction using enhanced Markov chain algorithm, in: 2014 IEEE
Intelligent Vehicles Symposium Proceedings, IEEE, 2014, pp. 1049–1054.

[27] A. Nadembega, A. Hafid, T. Taleb, A destination and mobility path predic-
tion scheme for mobile networks, IEEE Trans. Veh. Technol. 64 (6) (2014)
2577–2590.

[28] K.-H. Loh, B. Golden, E. Wasil, Solving the maximum cardinality bin packing
problem with a weight annealing-based algorithm, in: Operations Research and
Cyber-Infrastructure, Springer, 2009, pp. 147–164.

[29] C. You, K. Huang, H. Chae, B.-H. Kim, Energy-efficient resource allocation
for mobile-edge computation offloading, IEEE Trans. Wireless Commun. 16 (3)
(2016) 1397–1411.

[30] J. Guo, Z. Song, Y. Cui, Z. Liu, Y. Ji, Energy-efficient resource allocation
for multi-user mobile edge computing, in: GLOBECOM 2017-2017 IEEE Global
Communications Conference, IEEE, 2017, pp. 1–7.

[31] S. Wang, R. Urgaonkar, T. He, M. Zafer, K. Chan, K.K. Leung, Mobility-induced
service migration in mobile micro-clouds, in: 2014 IEEE Military Communications
Conference, IEEE, 2014, pp. 835–840.

http://refhub.elsevier.com/S1383-7621(20)30137-5/sb1
http://refhub.elsevier.com/S1383-7621(20)30137-5/sb1
http://refhub.elsevier.com/S1383-7621(20)30137-5/sb1
http://refhub.elsevier.com/S1383-7621(20)30137-5/sb1
http://refhub.elsevier.com/S1383-7621(20)30137-5/sb1
http://refhub.elsevier.com/S1383-7621(20)30137-5/sb2
http://refhub.elsevier.com/S1383-7621(20)30137-5/sb2
http://refhub.elsevier.com/S1383-7621(20)30137-5/sb2
http://refhub.elsevier.com/S1383-7621(20)30137-5/sb2
http://refhub.elsevier.com/S1383-7621(20)30137-5/sb2
http://refhub.elsevier.com/S1383-7621(20)30137-5/sb3
http://refhub.elsevier.com/S1383-7621(20)30137-5/sb3
http://refhub.elsevier.com/S1383-7621(20)30137-5/sb3
http://refhub.elsevier.com/S1383-7621(20)30137-5/sb3
http://refhub.elsevier.com/S1383-7621(20)30137-5/sb3
http://refhub.elsevier.com/S1383-7621(20)30137-5/sb4
http://refhub.elsevier.com/S1383-7621(20)30137-5/sb4
http://refhub.elsevier.com/S1383-7621(20)30137-5/sb4
http://refhub.elsevier.com/S1383-7621(20)30137-5/sb4
http://refhub.elsevier.com/S1383-7621(20)30137-5/sb4
http://refhub.elsevier.com/S1383-7621(20)30137-5/sb5
http://refhub.elsevier.com/S1383-7621(20)30137-5/sb5
http://refhub.elsevier.com/S1383-7621(20)30137-5/sb5
http://refhub.elsevier.com/S1383-7621(20)30137-5/sb6
http://refhub.elsevier.com/S1383-7621(20)30137-5/sb6
http://refhub.elsevier.com/S1383-7621(20)30137-5/sb6
http://refhub.elsevier.com/S1383-7621(20)30137-5/sb6
http://refhub.elsevier.com/S1383-7621(20)30137-5/sb6
http://refhub.elsevier.com/S1383-7621(20)30137-5/sb7
http://refhub.elsevier.com/S1383-7621(20)30137-5/sb7
http://refhub.elsevier.com/S1383-7621(20)30137-5/sb7
http://refhub.elsevier.com/S1383-7621(20)30137-5/sb8
http://refhub.elsevier.com/S1383-7621(20)30137-5/sb8
http://refhub.elsevier.com/S1383-7621(20)30137-5/sb8
http://refhub.elsevier.com/S1383-7621(20)30137-5/sb9
http://refhub.elsevier.com/S1383-7621(20)30137-5/sb9
http://refhub.elsevier.com/S1383-7621(20)30137-5/sb9
http://refhub.elsevier.com/S1383-7621(20)30137-5/sb9
http://refhub.elsevier.com/S1383-7621(20)30137-5/sb9
http://refhub.elsevier.com/S1383-7621(20)30137-5/sb10
http://refhub.elsevier.com/S1383-7621(20)30137-5/sb10
http://refhub.elsevier.com/S1383-7621(20)30137-5/sb10
http://refhub.elsevier.com/S1383-7621(20)30137-5/sb10
http://refhub.elsevier.com/S1383-7621(20)30137-5/sb10
http://refhub.elsevier.com/S1383-7621(20)30137-5/sb11
http://refhub.elsevier.com/S1383-7621(20)30137-5/sb11
http://refhub.elsevier.com/S1383-7621(20)30137-5/sb11
http://refhub.elsevier.com/S1383-7621(20)30137-5/sb12
http://refhub.elsevier.com/S1383-7621(20)30137-5/sb12
http://refhub.elsevier.com/S1383-7621(20)30137-5/sb12
http://refhub.elsevier.com/S1383-7621(20)30137-5/sb12
http://refhub.elsevier.com/S1383-7621(20)30137-5/sb12
http://refhub.elsevier.com/S1383-7621(20)30137-5/sb13
http://refhub.elsevier.com/S1383-7621(20)30137-5/sb13
http://refhub.elsevier.com/S1383-7621(20)30137-5/sb13
http://refhub.elsevier.com/S1383-7621(20)30137-5/sb13
http://refhub.elsevier.com/S1383-7621(20)30137-5/sb13
http://refhub.elsevier.com/S1383-7621(20)30137-5/sb14
http://refhub.elsevier.com/S1383-7621(20)30137-5/sb14
http://refhub.elsevier.com/S1383-7621(20)30137-5/sb14
http://refhub.elsevier.com/S1383-7621(20)30137-5/sb15
http://refhub.elsevier.com/S1383-7621(20)30137-5/sb15
http://refhub.elsevier.com/S1383-7621(20)30137-5/sb15
http://refhub.elsevier.com/S1383-7621(20)30137-5/sb15
http://refhub.elsevier.com/S1383-7621(20)30137-5/sb15
http://refhub.elsevier.com/S1383-7621(20)30137-5/sb16
http://refhub.elsevier.com/S1383-7621(20)30137-5/sb16
http://refhub.elsevier.com/S1383-7621(20)30137-5/sb16
http://refhub.elsevier.com/S1383-7621(20)30137-5/sb17
http://refhub.elsevier.com/S1383-7621(20)30137-5/sb17
http://refhub.elsevier.com/S1383-7621(20)30137-5/sb17
http://refhub.elsevier.com/S1383-7621(20)30137-5/sb17
http://refhub.elsevier.com/S1383-7621(20)30137-5/sb17
http://refhub.elsevier.com/S1383-7621(20)30137-5/sb18
http://refhub.elsevier.com/S1383-7621(20)30137-5/sb18
http://refhub.elsevier.com/S1383-7621(20)30137-5/sb18
http://refhub.elsevier.com/S1383-7621(20)30137-5/sb18
http://refhub.elsevier.com/S1383-7621(20)30137-5/sb18
http://refhub.elsevier.com/S1383-7621(20)30137-5/sb19
http://refhub.elsevier.com/S1383-7621(20)30137-5/sb19
http://refhub.elsevier.com/S1383-7621(20)30137-5/sb19
http://refhub.elsevier.com/S1383-7621(20)30137-5/sb19
http://refhub.elsevier.com/S1383-7621(20)30137-5/sb19
http://refhub.elsevier.com/S1383-7621(20)30137-5/sb20
http://refhub.elsevier.com/S1383-7621(20)30137-5/sb20
http://refhub.elsevier.com/S1383-7621(20)30137-5/sb20
http://refhub.elsevier.com/S1383-7621(20)30137-5/sb20
http://refhub.elsevier.com/S1383-7621(20)30137-5/sb20
http://refhub.elsevier.com/S1383-7621(20)30137-5/sb21
http://refhub.elsevier.com/S1383-7621(20)30137-5/sb21
http://refhub.elsevier.com/S1383-7621(20)30137-5/sb21
http://refhub.elsevier.com/S1383-7621(20)30137-5/sb21
http://refhub.elsevier.com/S1383-7621(20)30137-5/sb21
http://refhub.elsevier.com/S1383-7621(20)30137-5/sb21
http://refhub.elsevier.com/S1383-7621(20)30137-5/sb21
http://refhub.elsevier.com/S1383-7621(20)30137-5/sb22
http://refhub.elsevier.com/S1383-7621(20)30137-5/sb22
http://refhub.elsevier.com/S1383-7621(20)30137-5/sb22
http://refhub.elsevier.com/S1383-7621(20)30137-5/sb22
http://refhub.elsevier.com/S1383-7621(20)30137-5/sb22
http://refhub.elsevier.com/S1383-7621(20)30137-5/sb23
http://refhub.elsevier.com/S1383-7621(20)30137-5/sb23
http://refhub.elsevier.com/S1383-7621(20)30137-5/sb23
http://refhub.elsevier.com/S1383-7621(20)30137-5/sb24
http://refhub.elsevier.com/S1383-7621(20)30137-5/sb24
http://refhub.elsevier.com/S1383-7621(20)30137-5/sb24
http://refhub.elsevier.com/S1383-7621(20)30137-5/sb24
http://refhub.elsevier.com/S1383-7621(20)30137-5/sb24
http://refhub.elsevier.com/S1383-7621(20)30137-5/sb25
http://refhub.elsevier.com/S1383-7621(20)30137-5/sb25
http://refhub.elsevier.com/S1383-7621(20)30137-5/sb25
http://refhub.elsevier.com/S1383-7621(20)30137-5/sb26
http://refhub.elsevier.com/S1383-7621(20)30137-5/sb26
http://refhub.elsevier.com/S1383-7621(20)30137-5/sb26
http://refhub.elsevier.com/S1383-7621(20)30137-5/sb26
http://refhub.elsevier.com/S1383-7621(20)30137-5/sb26
http://refhub.elsevier.com/S1383-7621(20)30137-5/sb27
http://refhub.elsevier.com/S1383-7621(20)30137-5/sb27
http://refhub.elsevier.com/S1383-7621(20)30137-5/sb27
http://refhub.elsevier.com/S1383-7621(20)30137-5/sb27
http://refhub.elsevier.com/S1383-7621(20)30137-5/sb27
http://refhub.elsevier.com/S1383-7621(20)30137-5/sb28
http://refhub.elsevier.com/S1383-7621(20)30137-5/sb28
http://refhub.elsevier.com/S1383-7621(20)30137-5/sb28
http://refhub.elsevier.com/S1383-7621(20)30137-5/sb28
http://refhub.elsevier.com/S1383-7621(20)30137-5/sb28
http://refhub.elsevier.com/S1383-7621(20)30137-5/sb29
http://refhub.elsevier.com/S1383-7621(20)30137-5/sb29
http://refhub.elsevier.com/S1383-7621(20)30137-5/sb29
http://refhub.elsevier.com/S1383-7621(20)30137-5/sb29
http://refhub.elsevier.com/S1383-7621(20)30137-5/sb29
http://refhub.elsevier.com/S1383-7621(20)30137-5/sb30
http://refhub.elsevier.com/S1383-7621(20)30137-5/sb30
http://refhub.elsevier.com/S1383-7621(20)30137-5/sb30
http://refhub.elsevier.com/S1383-7621(20)30137-5/sb30
http://refhub.elsevier.com/S1383-7621(20)30137-5/sb30
http://refhub.elsevier.com/S1383-7621(20)30137-5/sb31
http://refhub.elsevier.com/S1383-7621(20)30137-5/sb31
http://refhub.elsevier.com/S1383-7621(20)30137-5/sb31
http://refhub.elsevier.com/S1383-7621(20)30137-5/sb31
http://refhub.elsevier.com/S1383-7621(20)30137-5/sb31

Journal of Systems Architecture 112 (2021) 101849F. Tang et al.
Fan Tang received the B.S. degree in computer science
and technology from Huaqiao University, China, in 2018.
She is currently working toward the M.S. degree at Hu-
nan University, China. Her research interests are mainly
in cloud computing, edge computing, parallel computing,
reinforcement learning, and game theory.

Chubo Liu received the B.S. degree and Ph.D. degree in
computer science and technology from Hunan University,
China, in 2011 and 2016, respectively. He is currently an
associate professor of computer science and technology at
Hunan University. His research interests are mainly in game
theory, approximation and randomized algorithms, cloud
and edge computing. He has published over 25 papers
in journals and conferences such as the IEEE Transactions
on Parallel and Distributed Systems, IEEE Transactions on
Cloud Computing, IEEE Transactions on Mobile Computing,
IEEE Transactions on Industrial Informatics, IEEE Internet of
Things Journal, ACM Transactions on Modeling and Perfor-
mance Evaluation of Computing Systems, Theoretical Computer
Science, ICPADS, HPCC, and NPC. He won the Best Paper
Award in IFIP NPC 2019 and the IEEE TCSC Early Career
Researcher(ECR) Award in 2019. He is a member of IEEE
and CCF.

Kenli Li received the Ph.D. degree in computer science from
Huazhong University of Science and Technology, China, in
2003. He was a visiting scholar at University of Illinois
at Urbana-Champaign from 2004 to 2005. He is currently
the dean and a full professor of computer science and
technology at Hunan University and deputy director of
National Supercomputing Center in Changsha. His major
research areas include parallel computing, high-performance
computing, grid and cloud computing. He has published
more than 230 research papers in international conferences
and journals such as the IEEE Transactions on Computers,
the IEEE Transactions on Parallel and Distributed Systems,
the IEEE Transactions on Signal Processing, the Journal of
Parallel and Distributed Computing, ICPP, and CCGrid. He is
an outstanding member of CCF. He is a senior member
of the IEEE and serves on the editorial board of IEEE
Transactions on Computers.
12
Zhuo Tang received the Ph.D. in computer science from
Huazhong University of Science and Technology, China,
in 2008. He is currently a full professor of the College
of Computer Science and Electronic Engineering at Hunan
University, and is the associate chair of the department
of computing science. His majors are distributed comput-
ing system, cloud computing, and parallel processing for
big data, including distributed machine learning, security
model, parallel algorithms, and resources scheduling and
management in these areas. He is a member of ACM and
CCF.

Keqin Li is a SUNY Distinguished Professor of computer
science. His current research interests include parallel
computing and high performance computing, distributed
computing, energy-efficient computing and communication,
heterogeneous computing systems, cloud computing, big
data computing, CPU–GPU hybrid and cooperative com-
puting, multicore computing, storage and file systems,
wireless communication networks, sensor networks, peer-
to-peer file sharing systems, mobile computing, service
computing, Internet of things and cyber–physical systems.
He has published over 630 journal articles, book chapters,
and refereed conference papers, and has received several
best paper awards. He is currently serving or has served
on the editorial boards of the IEEE Transactions on Parallel
and Distributed Systems, the IEEE Transactions on Computers,
the IEEE Transactions on Cloud Computing, the IEEE Trans-
actions on Services Computing, and the IEEE Transactions on
Sustainable Computing. He is a fellow of the IEEE.

	Task migration optimization for guaranteeing delay deadline with mobility consideration in mobile edge computing
	Introduction
	Motivation
	Related work
	Contributions

	System model
	System overview
	Communication model
	Computation model
	Migration model

	Problem formulation
	Group migration algorithm
	Case1: Different source–different destination
	Case2: Different source–same destination
	Case3: Same source–same destination
	Group migration algorithm for M-M problem

	Performance evaluation
	Parameter configuration
	Performance benchmark
	Random results

	Conclusion and future work
	Declaration of competing interest
	Acknowledgments
	References

