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Abstract—The growth of Internet of Things (l0T) devices with multiple radio interfaces has resulted in a number of urban-scale
deployments of loT multinetworks, where heterogeneous wireless communication solutions coexist (e.g., WiFi, Bluetooth,

Cellular). Managing the multinetworks for seamless loT access and handover, especially in mobile environments, is a key challenge.
Software-defined networking (SDN) is emerging as a promising paradigm for quick and easy configuration of network devices, but its
application in urban-scale multinetworks requiring heterogeneous and frequent loT access is not well studied. In this paper we present
UbiFlow, the first software-defined lIoT system for combined ubiquitous flow control and mobility management in urban heterogeneous
networks. UbiFlow adopts multiple controllers to divide urban-scale SDN into different geographic partitions (assigning one controller
per partition) and achieve distributed control of 10T flows. A distributed hashing based overlay structure is proposed to maintain network
scalability and consistency. Based on this UbiFlow overlay structure, the relevant issues pertaining to mobility management such as
scalable control, fault tolerance, and load balancing have been carefully examined and studied. The UbiFlow controller differentiates
flow scheduling based on per-device requirements and whole-partition capabilities. Therefore, it can present a network status view
and optimized selection of access points in multinetworks to satisfy loT flow requests, while guaranteeing network performance for
each partition. Simulation and realistic testbed experiments confirm that UbiFlow can successfully achieve scalable mobility
management and robust flow scheduling in loT multinetworks; e.g., 67.21 percent throughput improvement, 72.99 percent reduced
delay, and 69.59 percent jitter improvements, compared with alternative SDN systems.

Index Terms—Distributed control, flow scheduling, Internet of Things, mobility management, software defined networking

1 INTRODUCTION

ECENT developments in wireless communications and
Rembedded systems have resulted in consumer devices
becoming highly ubiquitous creating a strong interest in the
Internet of Things (IoT) [1], [2] as part of smart city solu-
tions. Real world urban IoT applications are expected to be
heterogeneous, due to various access networks and connec-
tivity capabilities [3], [4], resulting in geographically wide-
scale multinetworks [5] where there is a coexistence of
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multiple wireless communication solutions (e.g., WiFi, Blue-
tooth, Cellular). Given the heterogeneity of IoT multinet-
works, it is challenging to coordinate and optimize the use
of the heterogeneous resources in mobile and multi-access
edge computing environments [6], [7].

1.1 Motivations

Large-scale mobile IoT network in urban scenario generates
highly dynamic traffic flows [8], [9]. Any solution which
manages flows in the networks adaptively, stores and
updates non-trivial amounts of information regarding flow’s
devices, access points, and allows dynamic modifications
in the strategies according to which the management is
performed will require significant processing power not
available on commodity networking devices [10]. Software
Defined Networking (SDN) [11] presents a feasible solution
which provides all of these features.

SDN is a relatively new paradigm for communication
networks which separates the control plane (that makes
decisions about how traffic is managed) from the data plane
(actual mechanisms for forwarding traffic to the desired
destinations); where control is handled by the SDN control-
ler. This decoupling abstracts low-level network functionali-
ties into higher level services, therefore allowing quick and
flexible configuration for flow-based routing and enabling
rescheduling over the network components. SDN is
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Fig. 1. Software defined loT.

particularly useful when networks have to be adapted to
ever changing traffic volumes with different demands. It is
for this reason that we believe that SDN is a good approach
to solving the resource management and access control
issues in wide-scale IoT multinetworks.

OpenFlow [11] is the most prominent approach which
implements the SDN concept, where the controller takes
charge of all the functions in control plane, while the Open-
Flow switch retains only the basic data forwarding func-
tions. In the OpenFlow centralized control model, all routes
are determined by the controller taking a global view of the
network status. However, the request processing capability
of a single controller is limited; for example NOX [12] can
process about 30K requests per second. In fact, large-scale
network environments (e.g., IoT applications in smart cities)
have the potential to provide vast amounts of data flows;
according to the report from Cisco, by 2021, there will be
over 11.6 billion mobile-connected IoT devices and the
monthly global mobile data traffic will surpass 10 exabytes
[13]. With the increasing scale of IoT deployments, central-
ized controllers will have serious implications for scalability
and reliability. Hence the next logical step is to build a dis-
tributed control plane with multiple physical controllers,
which can provide the scalability and reliability of a distrib-
uted architecture and yet preserves the simplicity of the
control function.

Fig. 1 presents such a software defined IoT system with
the support of distributed controllers and partially con-
nected OpenFlow switches in multinetworks that have het-
erogeneous access points. In this architecture built on the
distributed SDN framework, different IoT devices are asso-
ciated with the heterogeneous access points, dependent on
their various needs of flow types [14], [15]. The assignment
of access points to IoT devices is determined by the coordi-
nation of distributed controllers and OpenFlow switches.
Specifically, as shown in the figure, the IoT scenario in our
paper is illustrated as an urban-scale IoT multinetwork,
where IoT traffic flows are mainly from heterogeneous IoT
devices composed of various consumer devices (e.g., Smart
Phone, Smart Watch, Smart Mote, Tablet, Laptop, Drone,
AR/VR Glass, Activity Tracker, Versatile Camera, Robot,
Vehicle) that are configured with multiple radio access
capabilities (e.g., WiFi, 3G, 4G, Bluetooth, Zigbee, WiMax,
DSRC, TV White Space, mmWave) [3], [16], [17].

In urban environment, these heterogeneous IoT devices
carried by human or vehicle keep roaming from one urban
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partition to another, and the IoT traffic flows requested
by these devices in mobile scenario can be support by their
multiple radio access capabilities [18], [19], [20]. Therefore
we need a city-wide mobility management to dynamically
assign proper access point to these mobile IoT devices. Also,
most mobile traffic requested by these IoT devices are driven
by surrounding events (spatial domain) and personal inter-
ests (temporal domain), therefore the urban-scale flow sched-
uling across heterogeneous access points requires analysis of
spatialtemporal status of the IoT multinetworks. Different
from existing works that mainly discuss the cognitive radio
capability within the IoT devices for being co-existent [21], in
software defined IoT system, the cognitive radio capability
should be mainly executed by the SDN controller and the
controller can enable proper radio interface in the IoT devices
to access corresponding spectrum.

However, the current implementations of SDN technolo-
gies are still far from addressing the heterogeneous and
dynamic needs of ubiquitous IoT applications, especially in
mobile environments [22], [23], [24]. The popular use of
SDN technologies today is in Data Center Networks
(DCNs) [25], [26], [27], where the focus is on the optimisa-
tion of network behaviours (e.g., bandwidth consumption)
where nodes are linked via fast interconnections within a
data center. Even though Huawei have recently launched
the world’s first SDN-based Agile IoT Solution [28] as we
envisioned, their applications are only restricted to use cen-
tralized controller to manage static IoT devices (mostly sen-
sors) deployed in buildings, home appliances, gymnasiums,
etc., which is far from large-scale IoT multinetworks and
has not addressed the mobile IoT scenario that we have
illustrated in Fig. 1. In contrast to these SDN applications,
state information in the urban-scale IoT multinetwork set-
ting is gathered from mobile IoT devices distributed over a
more loosely coupled ubiquitous network. Therefore, the
main issues related to the application of software defined
IoT in urban mobile environments are:

1)  The operation of a distributed control plane requires
scalable control combined with consistent manage-
ment to coordinate multiple controllers and switches
for message exchange, while providing data replica-
tion and maintaining flow scheduling. This is espe-
cially challenging given IoT devices roam frequently
in urban environments and each controller needs a
network view about the mobility of these IoT devices
to manage their spatio-temporal access requests and
collaborate with other controllers for adaptive hand-
over and dynamic flow scheduling over multinet-
works. Where component failure or traffic congestion
occurs, distributed controllers are required to be fault
tolerant and able to load balance.

2)  The last hop links in urban IoT architecture are more
heterogeneous than existing Wi-Fi/LTE scenario. As
shown in Fig. 1, the last-hop radio access technolo-
gies (RATs) in urban IoT multinetworks not only
incorporate the well-known WiFi/3G/4G technolo-
gies but also potential 5G communication solutions,
such as TV White Space, mmWave and different
types of small cells, due to the emergent rich con-
sumer IoT devices that are configured with various
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interface capabilities and designed for different
application services. In addition, there might be sev-
eral access points providing homogeneous RAT for
client to connect at the same time. Coordination and
communication in this urban IoT multinetworks is
challenging because IoT device in the highly hetero-
geneous networks faces additional concerns on link
heterogeneity and redundancy; it must solve this
added complication and choose not only the proper
interface used in the connection but also the best-
available access point through which a device estab-
lishes a connection, so that the basic flow QoS can be
guaranteed for its running application.

3)  Unlike the DCN situation, link and node capabilities
in IoT multinetworks are highly heterogeneous and
application requirements are correspondingly differ-
ent. This implies that single objective optimization
techniques of typical DCN flow scheduling are not
directly applicable in IoT multinetworks. In this
sense, controllers should schedule the access point to
transmit IoT flows based on specific per-device ser-
vice requirements, while providing network traffic
balance through the interactions between controllers
and controlled devices.

4) The performance metrics of interest in urban IoT
multinetworks go beyond bandwidth consumption;
with more heterogeneous and time-sensitive traffic
flows from consumer IoT devices; unlike DCNs,
whose network requirements primarily focus on uti-
lization and bandwidth, IoT multinetworks metrics
are delay, jitter, packet loss, and throughput.

1.2 Summary of Prior Work
Two popular approaches have been used in scalable SDN
management. One is to design a distributed SDN architec-
ture, such as Hyperflow [29] and Onix [30]. In Hyperflow, the
controllers are flatly organized where every controller has a
global view of the network. Onix controllers represent a hier-
archical structure, where the lower tier controller and its man-
aged network are aggregated as a logical node in upper tiers.
The network view is distributed among multiple controller
instances in Onix. The alternative approach is to offload the
partial workload of controllers to switches, as DevoFlow [26].
This approach can improve scalability to some extent, how-
ever the switch hardware is required to be modified. Never-
theless, all of the above scalable techniques are designed
specifically for DCN, not designed for IoT multinetworks.
Our work contributes to the dynamic SDN management
for IoT communications. In previous multi-contrioller sys-
tems, ElastiCon [31] was proposed as an elastic distributed
controller architecture designed to dynamically reassign
switches to controllers and grow or shrink the pool of con-
trollers assigned to an SDN as demand grows or shrinks.
Schmid et al. [32] present a locality centered view of distrib-
uted SDN computing to partition distributed system by sym-
metry into problem aspects, where the symmetric aspects
must be solved globally, and asymmetric aspects can be
solved locally. However, none of existing work has presented
fine-grained solution to guarantee both local and global per-
formance by adapting to the variance of spatial-temporal
demands. As for consistent maintenance of distributed
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system, Cassandra [33] is a distributed storage system for
managing very large amounts of structured data spread out
across different data centers, while providing highly avail-
able service with no single point of failure. Auspice [34]
produces a scalable alternative to DNS which is able to
resolve resource identity more quickly than competing alter-
natives under conditions where devices are highly mobile.
These literature worked on a related but not identical prob-
lem in comparison with our research. We concentrate on
consistent scheme of distributed controllers to exchange
mobility information of IoT devices roaming across different
urban partitions deployed with heterogeneous wireless com-
munication infrastructure.

More recently, SDN techniques are being applied to het-
erogeneous wireless networks, differently from traditional
flow and access scheduling schemes in specific networks [35],
[36], [37]. OpenRadio [38] suggests the idea of decoupling the
control plane from the data plane to support ease of migra-
tion for users from one type of network to another, in
the PHY and MAC layers. The flow scheduling between
WiFi and WiMAX/Bluetooth networks when video data
is streamed has been prototyped in OpenRoads [39] and
MINA [40], using centralized controller. OpenFlow based
vertical handover is also discussed and implemented in the
GENTI testbed [41]. These wireless SDN solutions provide the
necessary building blocks for managing IoT multinetworks,
but they are not sufficient. Two important functions absent
in these wireless SDN solutions are mobility management
and distributed control. Mobile IP [42] uses a tunnel between
a mobile device and a home agent to record the new IP
address of the mobile device, but its triangle routing problem
adds delay and extra network costs. SoftCell [43] and Soft-
MoW [44] have mechanisms in handling mobility and hand-
overs, however these architectures are designed specifically
for cellular networks and do not address the device/flow
heterogeneity problems. Therefore the existing schemes can-
not support heterogeneous IoT devices and dynamic flow
requirements in urban mobile scenario.

1.3 Our Approaches and Contributions

In this paper, we present UbiFlow, the first software-defined
IoT system for ubiquitous flow control and mobility manage-
ment in urban heterogeneous networks. To achieve light-
weight processing in IoT devices, in UbiFlow all jobs related
to mobility management, handover optimization, access
point selection, and flow scheduling are executed by the
coordination of distributed controllers. Specifically, UbiFlow
adopts multiple controllers to divide an urban-scale SDN
into different geographic partitions to achieve distributed
control of IoT flows. A distributed hashing based overlay
structure is proposed to maintain network scalability and
consistency. Based on this UbiFlow overlay structure, rele-
vant issues in mobility management such as scalable control,
fault tolerance, and load balancing have been carefully
examined and studied. The UbiFlow controller differentiates
flow scheduling based on the requirements per-device as
well as whole-partition capabilities. Therefore, it can present
a network status view for the optimized selection of access
points in multinetworks to satisfy IoT flow requests, while
guaranteeing the network performance in each partition. In
general, the key contributions of UbiFlow are as follows:
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Fig. 2. UbiFlow system architecture.

1) A novel overlay structure to achieve mobility man-
agement and fault tolerance in software-defined IoT.
The consistency and scalability of distributed con-
trollers are maintained by their individual roles
under a framework using modified distributed hash-
ing in ubiquitous environments.

2) A network calculus model based on discrete packet
aggregation is used in the analysis of network
requirements. Both node-level analysis and multi-
hop path analysis by association operations present
a partition view for the controller to evaluate current
network status, and then make handover decisions
for IoT flow scheduling.

3) Distributed controllers are able to match the best
available access points to IoT devices, by running an
assignment optimization algorithm with current net-
work status analysis and incoming IoT flow requests
as inputs. An adaptive window scheme is designed
for the algorithm to serve mobile IoT devices with
better output.

4) Instead of static mapping between switches and con-
trollers, UbiFlow periodically load balances the con-
trollers by analyzing the variations in both temporal
and spatial traffic characteristics. The dynamical
adaptation of the switch to controller mapping is
accomplished via elastic double-hashing on the fly.

Note that UbiFlow is specifically addressed to regulate city-
wide mobility management and flow scheduling of IoT con-
sumer devices in urban environments, however it also can be
applied in many different kinds of IoT networks for example
inventory management across multiple warehouses and retail
location, and asset monitoring for heterogeneous construction
equipment, where flow scheduling is always needed between
mobile IoT devices and surrounding access points [45].

The rest of this paper is organized as follows. Section 2
gives a system overview of UbiFlow architecture. Section 3
describes the UbiFlow overlay structure for mobility man-
agement. Section 4 addresses the ubiquitous flow control
and related issues in UbiFlow. Section 5 evaluates UbiFlow
performance using simulations and real testbed experi-
ments. Section 6 concludes our paper.

2 SYSTEM OVERVIEW

The UbiFlow system is designed for ubiquitous access to mul-
tinetworks and the mobility management of IoT devices in
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the distributed SDN context. The system architecture is illus-
trated in Fig. 2, where the data server, controllers, switches,
access points and IoT devices act as its core components.

Multiple controllers have been deployed to divide the
network into several partitions, which represent different
geographical areas in our paper. All IoT devices in a single
partition associate with different types of access points
(e.g., WiFi, WIMAX, Cellular), which are connected to local
switches to request various types of data flow (e.g., text,
audio, video) from the corresponding data server. Informa-
tion pertaining to service requests and flow transmissions can
be analyzed and administrated by the partition-dependent
controller. Additionally, for urban-scale SDN, mobile IoT
devices roam across different partitions at different times.
Newly joining and leaving IoT devices are also recorded in
the local controller to indicate user density and resource
usage. Therefore, each controller has a partitioned view of its
local network status.

The architecture of UbiFlow controller is illustrated in
Fig. 3. The data collection component collects network/
device information from the IoT multinetwork environment
and stores it in databases. This information is then utilized
by the layered components in the controller. The task-
resource matching component maps the task request (e.g.,
flow requirements) onto the existing resources (e.g., avail-
able access points) in the multinetwork. Once candidate
resources are selected, the solution specification component
adds more network characteristics and constraints (e.g., par-
tition view) to filter resources. Finally, the flow scheduling
component takes these requirements and schedules flows
that satisfy them. For example, given a minimum through-
put request from an IoT device, the controller first lists
some candidate access points in its partition that can pro-
vide the throughput, and then adds more constraints (e.g.,
delay, energy, fairness) to find the best available access
point that can both satisfy the flow request of the IoT device
and guarantee optimal network performance of whole parti-
tion. To better perform network monitoring, the controller is
also extended by the Admin/Analyst APIs, which enable
the control processes to be governed not only by the control-
ler itself but also by humans or external programs.

In UbiFlow architecture, as shown in Fig. 2, switches from
different partitions are partially interconnected, so that the
network information recorded in different controllers can
be exchanged through these connected switches to achieve
network consistency and robust maintenance. In addition,
connected switches can also facilitate the inter-controller
flow migration over the IoT multinetwork for load balancing
purpose. In general, there are two types of IoT flows in
the context of a distributed SDN as shown in Fig. 2. The first
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one is the IoT flow between the data server and the IoT
device. This is scheduled through intra-partition communi-
cation, with the assistance of a local access point, switch and
controller. The second one is the IoT flow between IoT devi-
ces located within different partitions. This type of IoT flow
needs to be scheduled through inter-partition communica-
tion. Utilizing the connected switches, controllers can coordi-
nate to direct the flow initiated from one partition to a
different access point in another partition. Note that IoT
device to IoT device multi-hop wireless communication
(e.g., ZigBee, WiFi Direct) also exists in the UbiFlow system.
If this happens in the same partition and the last hop is
directed to an access point to connect remote data server,
then it can be classified as the first type of IoT flow. Other-
wise, if the last hop is an IoT device (not an access point) in
the same partition as the origin device, then the IoT flow is
transmitted by purely multi-hop wireless communication
without SDN support [46], [47]; it does not belong to the
discussion of this paper, since we focus on using SDN to
improve the IoT multinetwork performance.

Given the UbiFlow architecture, we will discuss its
mobility management and flow scheduling in the following
sections.

3 MosBILITY MANAGEMENT IN UBIFLOW

When IoT devices roam from one partition to another and
request efficient handover, a consistent scheme to coordi-
nate controllers is required for the mobility management of
IoT devices. Assume a large-scale IoT networks is composed
of different regions. These regions can correspond to a prior
geographic division, for example Zip Codes; regions are dis-
tinct and different from the UbiFlow partitions in our
scheme; a region could have multiple partitions. For a
region-scale network UbiFlow uses an overlay structure
based mobility solution to present it, as shown in Fig. 4. We
will illustrate its key functions in the following sections.

3.1 Overlay Structure

Two types of IDs are used in the mobility management,
which are:

e  Mobile ID: the identifier of a mobile IoT device (e.g.,
IP v6 address or MAC address);
e  Controller ID: the identifier of a controller in distrib-
uted SDN.
To provide scalable and efficient mobility management,
UbiFlow maintains a controller network based on struc-
tured overlays (e.g., Chord DHT [48]), where a consistent

(b) Mobility

M1 C(16) c(3) 2

(c) Handover

hashing [49] is maintained based on an ordered ring overlay,
as shown in Fig. 4a. The purpose of using a ring structure
similar to Chord in our UbiFlow system is to locate resour-
ces which can be mapped into the hash ring in a network
rapidly and efficiently [50]. In the consistent hashing frame-
work, distributed controllers are configured as overlay
nodes with unique integer identifiers in the range of
[0,2"7!]. Each controller ID can be represented by m bits.
The consistent hashing also matches each mobile ID with
an m-bit integer as a “key” using a base hash function h,
such as SHA-1 [51]; therefore key = h (Mobile ID). The key
can be later used for the lookup of controllers, as explained
in Section 3.3.

Each controller C(n) with ID n maintains a routing table,
namely the “finger table”, to achieve scalable key lookup
in this overlay structure. Each finger table has up to e
entries. The ith entry in the table indicates the closest con-
troller to the corresponding point, where the controller ID
> (n+271). A query for a given key is forwarded to the
nearest node that most immediately precedes the key,
among the e entries at the controller. Finger tables are used
for the case where there is no controller with the exact ID as
the key value. In that case, we designate the closest succes-
sor of the key as the expected controller. For example, in
Fig. 4a, we represent the controller with ID n as C(n), and
there are 3 entries in the finger table of C'(3). The 3rd entry
of the finger table points the successor of the key (3 + 22),
which is C(9) in reality.

Theorem 1. In an N-controller overlay network based on consis-
tent hashing, the lookup cost to find a successor is bounded by
O(log N).

Proof. The lookup cost in an N-controller overlay network
indicates the number of nodes that must be contacted to
find a successor. The above theorem has been proved in
the paper [48] that introduced Chord overlay structure,
also based on consistent hashing. 0

For a region-scale network, UbiFlow divides a region into
multiple partitions and each partition is regulated by a con-
troller. The region maintains its own overly structure as
shown in Fig. 4a to lookup controllers in different partitions.
The propagation latency between controllers within a region
is not big enough to impact the lookup delay, due to the fact
that the distance between partitions is no very differed.

3.2 Mobility Structure
In our region-scale SDN based controller overlay architec-
ture, we achieve efficient mobility management through
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coordination between controllers. Specifically, in an SDN
with multiple controllers, we have two classes of controllers:

e  Associated Controller: the current controller that the
mobile IoT device is associated with;

e  Supervisory Controller: the controller that is assigned
to a newly joined IoT device as its initially associated
controller. Note that each supervisory controller also
functions as an associated controller but with addi-
tional information to record the mobility behaviour
of its supervised IoT devices. The updated mobile
information of an IoT device could be collected
through information exchange with its current asso-
ciated controller, following our UbiFlow architecture
as described in Section 2

A geographical region, e.g., a city, is divided into several
network partitions; each partition has a single controller.
An IoT device that has never previously connected to the
network after entering a region assigns itself a default access
point (it is chosen arbitrarily from those available to the IoT
device to connect to the network). The default access point
is used to register the IoT device to its supervisor controller,
which is determined by the hash value of the mobile ID of
the IoT device, and then connect the IoT device to current
partition’s controller as its associated controller. After ana-
lyzing the device’s flow requests and the communication
capability of its default access point, the associated control-
ler will assign an optimal access point in the partition for
the device to transmit its requested flow (the optimization
for making this choice is described in Section 4.2).

Each network request will be sent to the device’s associ-
ated controller because it is at the gateway between the Inter-
net and the device. The associated controller will log that it is
the controller for the mobile device in its area at the device’s
supervisory controller. Then when the device moves to
another partition, its associated controller assigned in the
new partition can recover the flow from the device’s previous
associated controller (information stored at the supervisory
controller) without disrupting the flow. After the device’s
new associated controller captures the flow state from the
device’s previous associate controller the previous associated
controller is free to remove this data from its memory.
Finally, once the state information is stored at the new associ-
ated controller, the IoT device is notified and it gracefully
transitions from the access point used to communicate with
the previous associated controller to the access point used to
communicate with the new associated controller.

Note that in overlay networks covering geographically
distant areas propagation delays become an issue and path
latency can be increased because the algorithms operating
on the overlay network do not take into account these
implicit latencies between overlay nodes. However by vir-
tue of a relatively simple change in our architecture and
protocol in Fig. 4a, cases where the network covers a wide
area can be accounted for. The UbiFlow architecture pre-
sented in this paper assumes that a large-scale network can
be broken into multiple regions and each region maintains
an independent overlay structure. These regions are geo-
graphically localized to the extent that cross-region propa-
gation delay between their controllers in the network is
within the same order of magnitude. To account for this
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new complication each IoT device will maintain a geofence
[52] detecting its migration from region to region. Each
device will store both the origin region and destination
region when a region boundary is crossed. We amend the
description of a mobile ID as introduced in Section 3.1 to
include not only a unique device identifier, but also a
unique regional identifier specifying the coordinate of the
centroid of the region the device is in. The mobile ID is a
concatenation of these two identifier fields.

As an IoT device transitions from region to region and
simultaneously from partition to partition (as we assume
that no partition spans more than one region) it will migrate
its supervisor controller from a controller mapped to with
the hash of an identifier representing its origin region to a
hash entry representing its destination region. In addition,
it is necessary to ensure that the log (N) communications
necessary to recover the supervisor controller do not
obscure asymmetric latencies; to do so we employ the fam-
ily of locality preserving hash functions discovered by
Indyk et al. [53]. As our hash function for UbiFlow overlay,
we define the distance metric in the domain of our function
to be the spherical distance between the regional centroid
components of the identifiers. With these modifications we
can ensure first that the supervisor controller for any device
will always be identified by an identifier encoding the cen-
troid of the same region as the location in which the device
is located. Second, we ensure that hash-lookups of the
device’s identifier (including the identifier of the residing
region) will map into the neighborhood of controllers
located geographically near it, thus the log (N) communica-
tions will take place within a region where latency between
nodes is similar.

Fig. 5 shows five regions from the US state of Texas, the
regional division coincides with the actual division of the
land in the state into separate zip codes. Suppose that each
such region is administered by a network implementing
UbiFlow, that is internally each cloud in Fig. 5a which rep-
resents a UbiFlow deployment as described in Fig. 2. Then
if an IoT device is moving across the zip-code boundary
between the top-left and bottom-right regions as described
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above, the geofence at the mobile device will send a request
for the supervisory controller and associated controller
managing the device in the UbiFlow deployment at the top-
left region to transfer mobility and flow information to its
new supervisory and associated controllers at the bottom-
right region. The bottom-right region will assign these con-
trollers based on a new mobile ID that the mobile device
will assign itself at the time it enters the bottom-right region.
We show the changes to the mobile ID needed for this tran-
sitioning to work in Fig. 5b. When the device transitions to
the bottom-right region and associates with the new mobile
ID, its previous supervisory controller (located as before by
hashing previous mobile ID) will transfer previous mobility
and flow information to its new supervisory controller that
can be hashed by the new mobile ID.

For consistency in following sections, we will mainly
describe UbiFlow for the region-scale overlay network.
However, by the above modifications, UbiFlow can be eas-
ily extended to support large-scale IoT networks that are
composed of multiple regions.

3.3 Mobile Handover

In the urban mobile scenario, when an IoT device is assigned
to one controller, the controller will store its flow informa-
tion. However, the IoT device may frequently change its
associated controller. To achieve seamless mobile handover,
when an IoT device enters a new partition, the correspond-
ing controller requires a fast lookup of the device’s previous
associated controller to fetch the uncompleted session data
so that it can quickly reroute flows to the newly joined IoT
devices via the APs in its partition. Therefore the mobile IoT
device can obtain a continuous data service without data loss
or handover delay. In the SDN based mobility management,
we achieve efficient handover through the coordination
between controllers.

When a new IoT device joins the distributed SDN net-
work, as a bootstrapping step, it will be assigned to a super-
visory controller as its initially associated controller, based
on the hash result of its mobile ID. In the mobility scenario,
for each IoT device with its mobile ID as the original value,
the UbiFlow overlay structure can hash the mobile ID to get
an integer key, and use this to localize its supervisory con-
troller. Both the controller ID and the hashed key of the
mobile user are required to be placed in the same ID space
ranging [0,2"']. Specifically, to localize the supervisory
controller, we follow the rule to assign a hashed key to the
controller that has the closest ID, namely the immediate suc-
cessor of the key.

Since every controller can use consistent hashing to local-
ize an IoT device’s supervisory controller, the supervisory
controller is used in UbiFlow to record the previous and
current associated controllers of the mobile IoT device.
Using this scheme for distributed SDN, the new associated
controller can localize the previous associated controller of
the IoT device by fetching this information from the super-
visory controller assigned to the IoT device.

As shown in Fig. 4b, mobile IoT device 1, denoted as M1,
was previously associated with controller C(16) at time ¢1,
and its supervisory controller is C(10). When A/1 moves to
the geographical partition of C'(3) at time ¢2, C'(3) needs to
localize its previous associated controller and reroute flows
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to its current partition. To do this, C(3) first tries to localize
the supervisory controller according to the hashed key of
M1. Based on the finger table, C'(3) can forward the lookup
request to the furthest controller C(9) that is closer to the
supervisory controller. Then C'(9) can help to localize C(10)
as the expected supervisory controller. As shown in Fig. 4c,
once C(3) localizes C(10) from the traceback route, as
C(10) — C(9) — C(3), it can later directly communicate
with C(10) to learn that the previous associated controller
of M1 is C(16) at t1. After this, C'(3) can directly communi-
cate with C(16) to fetch the previous session between M1
and C(16) and reroute flows to current partitions. As for
C(10), it will also update the current associated controller of
M1 to be C(3) at 2, and notify C(16) to end the previous
session for M1.

Note that as a mobile IoT device in the urban scenario, M1
may leave the partition of C(3) and re-enter again with unpre-
dictable mobility, therefore in the UbiFlow overlay structure,
there is an extra entry in the finger table of each controller to
label all the supervisory controllers of its current and previ-
ously associated IoT devices with a TTL (time-to-live). Hence,
when previously associated IoT device enters its partition
again, the controller does not need to initiate another multi-
hop request to localize the supervisory controller. Instead, the
controller can localize the supervisory controller using fast
lookup in its finger table, which will further save the commu-
nication cost and improve the efficiency of handover.

Theorem 2. The mobile lookup cost to find the previous associ-
ated controller for an IoT device in UbiFlow could be either
O(log N) or O(2).

Proof. Mobility management of UbiFlow is organized by a
consistent hashing based overlay structure. Theorem 1
has proven that the usually lookup cost in this kind of
structure is bounded to O(log N). Since supervisory con-
troller records previous association of supervised devices,
the normal mobile lookup cost to find the previous associ-
ated controller for an IoT device is O(log N) + 1, by local-
izing supervisory controller first and then requesting
local lookup in the supervisory controller, which is still
bounded to O(log N). If the supervisory controller was
found before and has been recorded in the local finger
table as the additional information, the lookup cost for
the corresponding mobile device is then just a local
lookup as O(2), with one step to reach the supervisory
controller and one step to request local lookup in the
supervisory controller. O

3.4 Scalable Control

To achieve scalable mobility management by multiple con-
trollers in distributed SDN, we focus on the Join and Leave
operations of controllers, as follows:

1)  Join: When a new controller with ID 7 joins an exist-
ing SDN with multiple controllers, it first identifies
its successor by performing a lookup in the SDN
according to its ID. Once it localizes the successor,
it selects the successor’s keys that the new controller
is responsible for. After this, the new controller
sets its predecessor to its successor’s former prede-
cessor, and sets its successor’s predecessor to itself.



WU ET AL.: TOWARDS DISTRIBUTED SDN: MOBILITY MANAGEMENT AND FLOW SCHEDULING IN SOFTWARE DEFINED URBAN 10T

Meanwhile, an initial finger table will be built in the
joined controller by performing lookup points
(n+2' —1),fori=1,2,...,e, where e is the number
of finger print entries.

2)  Leave: When a controller with ID n wants to leave an
existing SDN, it first moves all keys that the control-
ler is responsible for to its successor. After this, it
sets its successor’s predecessor to its predecessor,
and sets its predecessor’s successor to its successor.
For consistency purposes, before the controller
leaves the distributed network, the SDN related con-
trol information (e.g., network status and flow sta-
tus) in the controller will be copied to its successor
by default, and other controllers can later update
their finger tables by replacing controller n with its
successor in the corresponding entry. If the control-
ler also performs as the supervisory controller for
some IoT devices, its successor will be also desig-
nated as the new supervisory controller for these IoT
devices, and it records the existing mobility informa-
tion from the leaving controller.

3.5 Fault Tolerance

To handle failure in the distributed SDN, we tackle failures
of different components in UbiFlow. As for controller level
failure, we adopt data replication to achieve robust control.
That is, we copy the finger tables and data-bases from local
controller n to its r live successors in the UbiFlow overlay
structure, by searching key (n+2"1'), for i =1,2,...,r.
These r successors also update these replications periodi-
cally. Therefore, if the local controller fails, we can find a
new successor that still can provide the control service.

As for finger-table level failure, we adaptively choose
alternate paths while routing. That is, if a finger does not
respond, we take the previous fingers in the local table, or
the finger-table replicas from one of the r successors. In
addition, the local finger table also performs self-check to
refresh all fingers by periodically looking-up the key
(n+2"") for a random finger entry i. The periodic cost is
O(log N) per controller due to the finger refresh.

As for access-point failure, we designate an associated
controller to detect the failure and redirect flows going
through failed access points to others in its partition. We
address the assignment of the best available access point to
the IoT device in Section 4.

4 FLOW SCHEDULING IN UBIFLSOW

Given flow requirements (e.g., delay, throughput, jitter)
from an IoT device, the UbiFlow controller needs to find the
best available access point that can both satisfy the flow
request of the IoT device and guarantee optimal network
performance of the whole partition. The relevant UbiFlow
design to achieve robust flow scheduling is described in this
section.

4.1 Network Calculus based Partition View

The UbiFlow controller of each partition needs a partition
view to obtain current network status for flow scheduling. To
guarantee the performance of software defined IoT with vari-
ous flow requirements, UbiFlow controller uses Network
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Fig. 6. Network calculus based partition view in UbiFlow.

Calculus [54] to model the arrival traffic A(t), served traffic
S(t), and departure traffic D(¢) on a network node during
the time interval [0,t) as the partition view in its partition.
We assume that each node has a constant capacity R and
can provide a service curve S(t) = R[t — T|", where R is
the capacity (transmission rate), [z]" = max{0,z}, and T is
the transmission delay, which is the time between the first
bit of the packet entering a queue and the last bit leaving the
transmitter. 7" depends on R, the length of this packet, and
the amount of data currently in the queue. We can use min-
plus convolution on arrival and service curves, to generate a
departure curve: as D(t) = A(t) ® S(t), which means: D(t) >
infsgt(A(S) + S(t — S))

If there is more than one flow going through a node, all
flows share the same transmission service. Here we assume
each intermediate node has a FIFO scheduler, in which
packets are served in the sequence as they arrived. Flow ¢
will have a leftover service curve:

oi
S; = —=——R[t—T]", (1)
>

where R is the capacity of the downlink of this node (trans-
mission rate), and 6 is the weight of each flow; In a multi-
hop path, the departure curve of the current hop is the
arrival curve of the next hop as shown in Fig. 6a, and a com-
bination service curve along the path S(t) can be obtained
by iteratively adding each node’s service curve using the
associative operation in min-plus convolution, as follow:

S(t):S1®SQ®...®Sn~ (2)

In order to provide a fine grained partition view of the
traffic, UbiFlow models the traffic as a set of discrete points
(each point represents a packet) in Network Calculus. It
assumes that the profile of each flow (e.g., packet length
and sending time) is known at each sender, and each packet
is served by the service curve S(t) with a constant capacity
Rand a delay T'. At packet arrival time, we examine the cur-
rent queue state in terms of how many packets are in the
queue and their lengths. The delay 7" is the transmission
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time of all packets that are already in the queue. Hence the
total delay of a packet consists of two parts: one is 7" and the
other is the transmission (service) time of the packet itself.
In this way, we can get an approximate end-to-end delay
for each packet. To verify this model, we examine three QoS
parameters: delay, throughput, and jitter. For each flow, we
profile it with points at the sender side to plot the curve.
Once we get the arrival curve D(¢) of flow ¢ at the destina-
tion node by the modified Network Calculus model, we
compare it with flow ¢’s initial arrival curve A(t). Each point
(packet) will suffer from a delay and the final arrival time is
recorded. The average delay, average jitter, and total
throughput for each flow can be calculated by UbiFlow con-
troller accordingly. As shown by the test in Fig. 6b for a two-
hop network consisting of one video server and one audio
server, one router and 5 clients, each server connects to the
router via a 100 Mbps Ethernet link while each client con-
nects to the router via a 2 Mbps 802.11b wireless link. Each
server provides either a video streaming service [55] or a
Skype voice service [56] to one of the clients. The correspond-
ing test results in Fig. 6c show consistent performance with
our Network Calculus based model: the average error rate of
the delay, jitter, and throughput (i.e., TP) are 5, 8, and 3 per-
cent respectively. Therefore, the fine grained model can be
used by UbiFlow controller to obtain the partition view.

4.2 loT Multinetworks Matching

After obtaining the partition view of the current network
status from the network calculus model, the UbiFlow con-
troller can manage handover between heterogeneous access
networks by assigning newly joined mobile IoT devices to
the best access point, based on the current multinetwork
capacity in the controlled partition, the supported radio
access technologies and the types of services the mobile
devices are requesting.

We formulate the assignment of a set of newly joined
mobile IoT devices MD to a set of access points AP as a gen-
eralized assignment problem (GAP). Each access point j is
characterized by a residual bandwidth capacity function
B(j), and each mobile device i is characterized by a band-
width demand function d(, j) that describes the bandwidth
demand of device ¢ when assigned to access point j. A util-
ity function u(7, j) measures the benefit obtained by the sys-
tem as a result of assigning a mobile device ¢ to access point
J. The assignment problem is formulated as:

D> uli (i g)

JEAPicMD

> d(i, j)=(i, 5) < B(j),Vj € AP

ieMD 3)
> a(i,j) < 1,Vi € MD
JEAP
z(i,7) =0 or 1,Vi € MD,Vj € AP,

maximize

subject to

where z (4, j) = 1 if device i is assigned to access point j or 0
otherwise.

Note that the optimization takes place per partition and
no global variables are shared between partitioned optimi-
zations, the optimizations at each partitions are thus inde-
pendent and performance of the optimization per partition
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does not degrade as the number of partitions grows larger.
As the set of access points and especially the set of mobile
devices changes dynamically, the assignment is done in an
adaptive time-window based manner. The assignment is
performed at the end of each window using (1) the capacity,
demand and utility functions evaluated at that time, (2) the
set of newly joined mobile devices within the window of
time, and (3) the set of active access points at that time.
Algorithm 1 is an adaptation of the GAP approximation
in [57] combined with a greedy heuristics for the Knapsack
problem that sorts items based on their utility-to-demand
ratio and tries to pack as much high-ratio items as possible.
It takes the sets of access points and devices, a matrix of util-
ities and demands, and a vector of capacities as an input. It
starts by checking the residual capacity (capacity at the end
of the time window) of the set of access points (AP) against
the demand vector (D, [ap]) of mobile devices with respect
to that access point type, and creating a feasible set of access
points (AP;) by selecting those that can at least satisfy the
minimum demand. It then initializes the assignment vector
(X) and iteratively computes the assignment as follows. For
each access point, it creates a utility vector from the utility
matrix using either the original utility value or the differ-
ence in utility depending on whether the mobile device is
assigned to an access point in the previous iteration. The
utility-to-demand ratio is then computed using the utility
vector, and the set of mobile devices (MD) is sorted in non-
decreasing order based on this ratio. Using this ratio and a
greedy Knapsack packing scheme, the mobile devices are
assigned to the current access point. This is repeated until
all access points are exhausted. The vector X is the result of
the assignment where X[md] indicates that mobile device
md is assigned to access point X[md] if X[md] is not -1.

The UbiFlow controller determines each mobile device’s
compatibility (i.e., support for the radio access technology
used by the access point) with access points and requirement
with respect to quality of service such as bandwidth demand
(d) and the maximum tolerable latency (/;) based on the
types of services the device is trying to access. The demands
of IoT devices can be obtained during their request pro-
cesses, and the partition status can be derived from the net-
work calculus model, as described in Section 4.1. If there is
compatibility between a device and an access point, the
degree of satisfaction of a mobile device, if assigned to the
access point, with respect to these requirements is modeled
by utility functions namely u; and w; respectively. In addi-
tion, a utility function u, that measures the load (i.e., the
number of mobile devices) on an access point is used in
order to take the degree of distribution of load into consider-
ation so that one capable access point will not be overloaded.
Given an access point with latency [ and N number of
mobile devices already assigned to it, the utility functions
are as follows:

l
w(i, §) = log (1+%>,l >0 )
N |[MD|
ua(]) = lOg (1 +W>,MD 7é @
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Using these utility functions, the controller computes the
utilities for each potential assignment, normalizes them and
then computes the total system utility using predefined pos-
itive weights that capture the significance of each type of
utility as:

)

u(i,j) = wqtia(i, 7) + wity(i, §) + waue(j)  compatible
=0 otherwise

6))

where 4y; and 4; are the normalized utilities and
wq + w; + w, = 1. It then performs assignments that would
maximize the overall system utility.

Algorithm 1. Mobile Device to Access Point Assignment

Input: AP, MD, U, D, C
Output: X

1: forap € AP do
2 if Clap] > min{D.[ap]} then
3 Add ap to APy
4 end if
5: end for
6
7
8

: forr =1 to |MD| do
X[r] « -1
: end for
9: for ap € APy do
10: for md € MD do

11: if X[md] == —1 then

12: Uqplmd] «— U[md][ap]

13: else

14: Uyp|md] — Ulmd][ap] — U[md][X[md]]

15: end if

16: Compute utility-to-demand ratio vector: R,,[md] «—
Ugp[md

17: end for

18: Sort MD such that R,,[md] is in non-increasing order

q
19: b — min{q € {1,ldots, MD|} : ZDQPM > Clapl}

r=1
20: forg=1tob—1do

21: Xlq] < ap
22: end for
23: end for

Theorem 3. The time complexity for the assignment of |MD]
mobile devices to |AP| access points using Algorithm 1 is
bounded by O(]AP||MD|log (|MD)|)) when an O(|MD|log
(IMDY)) algorithm is used to sort the utility-to-demand ratio
vector.

Proof. The running times of the first and second loops
are proportional to [MD||AP| and |MD] respectively. Sup-
pose the running time of the sorting algorithm used
to sort the utility-to-demand ratio vector is f(|MD]|). Con-
sequently, the running time of the third loop is pro-
portional to |[AP|(|]MD| + f(|MD|) + |[MD| 4+ |[MD|). Hence,
the time complexity of the algorithm is O(|AP|f(|MD]|)+
|AP||MDJ). Thus, when an O(|MD|log (|MD|)) algorithm is
used to sort the utility-to-demand ratio vector the time
complexity of Algorithm 1is O(|AP||MD|log ([MD|)). O

Note that above optimized IoT multinetwork matching
scheme also works for mobile handover in the same
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partition (but with a different access point). When a IoT
device moves out of the communication range of its associ-
ated access point or the quality of flow service is degrading
obviously with the access point, these mobile information
can be collected by our Network Calculus model as parti-
tion view. Once the controller in the partition obtains the
new partition view after at the end of a time window, it will
perform above optimization to choose a new access point
for the IoT device in the partition.

4.3 Adaptive Matching Window

The window of time the controller waits before performing
the next assignment plays a significant role in achieving
optimal assignments. If the controller performs instanta-
neous assignments, devices that would maximize the sys-
tem’s profit would be assigned to a less suitable access
point or left unassigned if there is not enough capacity left.
Conversely, a longer window would result in discovering
more devices and thereby facilitating better assignments
provided that the residual capacity of the access points is
not exceeded by the demand of the newly discovered devi-
ces. However, the choice of the exact length requires consid-
eration of the residual capacity of the access points; the rate
of arrival of mobile devices to the network and their associ-
ated demand; and the waiting period mobile devices can
tolerate before they are assigned to an access point. If the
arrival of devices to the network is characterized by a mean
rate A and the expected demand of the devices by a mean
demand g, the upper bound for the best (with respect to
achieving optimal assignment) window length can be esti-

ZjeA]P B(j)/m

mated as . This bound could be dynamically

estimated by choosing appropriate models for the arrival
rate of mobile devices to the network and their demands,
and learning the parameters of these models using a maxi-
mum likelihood estimation. The actual window length can
then be decided by taking this bound and the waiting
period mobile devices can tolerate before they are assigned
to an access point into consideration (e.g., the minimum of
the two values).

We propose that in a real-world situation the length of
the time window ¢ + 1 is calculated after the time window ¢
elapses, and the calculation will take into account flow data
calculated during the window ¢. Data on the arrival of devi-
ces within the window ¢ is used to calculate the expected
mean device arrival rate A\. Demand data within the win-
dow t is used to calculate the expected demand of devices
() within the next window. & and X are then used to calcu-
late the length of the optimal window according to above
upper bound formula. The length of window ¢ + 1 is then
set to be the minimum value between the optimal time win-
dow length calculated by the controller, and the tolerant
waiting period of mobile devices to associate with an access
point in the corresponding partition. Above operations for
the controller to select an adaptive matching window of
time are described in Algorithm 2.

4.4 Load Balancing

One key limitation of existing SDN systems is that the
mapping between a switch and a controller is statically
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configured, making it difficult for the control plane to adapt
to temporal and spatial traffic load variations. If the switch
to controller mapping is static, a controller may become
overloaded if the switches mapped to this controller sud-
denly observe a large number of flows, while other control-
lers remain underutilized. Furthermore, the load may shift
across controllers over time, depending on the temporal
and spatial variations in traffic conditions. As load imbal-
ance occurs, it is desirable to migrate a switch from a
heavily-loaded controller to a lightly-loaded one. However,
such a migration operation is not supported natively in cur-
rent de faco SDN OpenFlow standards. Following our archi-
tecture as illustrated in Fig. 2, UbiFlow consists of a cluster
of autonomous controllers that coordinate amongst them-
selves to provide a consistent control logic for the entire net-
work. We can design a robust load balancing scheme based
on the UbiFlow architecture to dynamically shift the load
across switches and controllers.

Algorithm 2. Adaptive Matching Window

Input: The arrival rate sample set R and demand sample set D in
the time window ¢ — 1; The set of active access points AP
Output: The length T of time window ¢

1: forsample r; in R do

2: I(N)x = p(ri|N)

3: end for

4: forsample d; in D do

5. U(p)* = p(di|p)

6: end for

7:  Solving maximum likelihood function I(\) = H p(r;|\) as
icR

X = arg max In p(r;|A
g1 ZR p(rilA)
8: Solving maximum likelihood function I(u
= argmalenp di|w)
H i€D
9: if Z B(j)is not exceeded by the demand of a device then

= [[p(di|n) as

i€

JjEAP
10: = LET:BU)

11: Mrmmum tolerate time of devices is ¢’

12: return T = min{t,t'}

13: else

14: The capacity of access points is not enough
15: end if

Given a controller n, if new flow requests, collected from
local IoT devices, cause traffic imbalance (e.g., over maxi-
mum capacity, longer process delay) controller n needs to
switch the flow to a lightly-loaded controller. However, the
usual linear balancing scheme that relays the flow request
to one of its r successors is not robust enough in the mobile
SDN scenario, because the r successors have locally loaded
flows and these may be heavily-loaded as well. Further-
more, the fault tolerant scheme presented in Section 3.5 will
generate redundant data in the 7 successors, so additional
flow requests from other partitions tend to cluster the
requests of the flows into contiguous runs, which may even
overlap in our circular overlay structure. In addition,
because of the importance of the supervisory controller, if
the supervisory controller is heavily-loaded and cannot
accept other newly joined IoT devices, we also need a
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scheme to mitigate the traffic flow on this supervisory con-
troller by directing the flows for new IoT devices to other
controllers as a backup supervisory controller. Meanwhile,
we need a consistent scheme for other controllers to be able
to localize these backup supervisory controllers.

To avoid the linear clustering of heavily-loaded control-
lers and guarantee system consistency in the UbiFlow over-
lay, we use double hashing to balance a large number of
flow requests and distribute them fairly in the overlay struc-
ture. The load balancing using our double hashing solution
is realized in Algorithm 3. Specifically, different from the
hash function h used in the finger key search, we choose a
secondary hash function, 2’ for collision handling. If & maps
some finger key k to a controller C[i], with k= h (Mobile
ID), that is already heavily-loaded, then we iteratively try
the controllers C[(i + f(j)) mod P] next, for j=1,2,3,...,
where f(j) = jh/(k). In this scheme, the secondary hash
function is not allowed to evaluate to zero; a common choice
is h'(k) = q— (kmodgq), for some prime number ¢ < P.
Also, P should be a prime number.

Algorithm 3. Load Balancing Using Double Hashing

Input: The Mobile ID set of IoT devices MD
Output: The controller ID
1: for Mobile ID in MD do
k = h(Mobile ID)
k is mapped to C[i] which is a supervisory controller
if C[i] is already heavily-loaded then
forj=1tondo
f(j) = j(¢ — (kmod q))
The backup supervisory controller of kis C[(i + f(j))
mod P]

8: if C[(i + f(j)) mod P] is not heavily-loaded then
9: The C[i] records that k is mapped to controller
Cl(i + £(j)) mod P]
10: return The ID of controller C[(i + f(j)) mod P]
11: end if
12: end for
13: end if
14: return The ID of controller Ci]
15: end for

Theorem 4. The time complexity of using double hashing to
avoid linear of heavily-loaded controllers is O(1) or O(n) in
UbiFlow.

Proof. The bound of a successful search for a finger key k to a
controller follows a probe sequences formed by the sec-
ondary hash function when it was first inserted. so if k& is
the (i + 1)th key to insert into the UbiFlow overlay net—
work the average cost of a successful search is: SZ
— 7/T Z i/TT ?ZZ:U l—i/TT’ where T is the size
of the overlay network, and S is the number of keys that
have been inserted in the overlay network, and o = S/T'is
the load factor meaning a measure on the load of finger
keys in the overlay network. We can convert the sumrna—
tion process to following calculus process: 5 Ty : /T 1=
1[5 =dx = LIn(s%;). According to this, the average search
cost is independent of T when « is less than 1, and its
time complexity follows the constant order O(1). How-
ever, the average search cost is bounded only by 7" when
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o is close to 1, and its time complexity follows the linear
order as O(n). O

Note that, for supervisory controller, the heavy load sta-
tus may cause local failure, but its mobility records for IoT
devices are important for the mobility management. When
UbiFlow observes the load imbalance in a supervisory con-
troller, it also uses the double-hashing scheme to copy the
mobility information to other controllers as a backup. By
this way, UbiFlow can effectively protect the mobility infor-
mation, in case consecutive failures happen and the redun-
dancy scheme in Section 3.5 fails.

5 PERFORMANCE EVALUATIONS

We have implemented a prototype of UbiFlow, and evalu-
ated its performance on flow scheduling and mobility man-
agement by both simulation and real testbed experiments.
The simulation is performed by the OMNeT++ network
simulator [58], and the real testbed is built based on the
Orbit wireless testbed [59], both with OpenFlow support.

5.1 Implementation Methodology
The specific implementation methods and details of our
UbiFlow prototype are explained as follows.

5.1.1  Compatibility With Heterogeneous

Access Technologies

In traditional SDN, the SDN controller or OpenFlow switch
itself does not support heterogeneous networks with differ-
ent radio access technologies. In our UbiFlow system, we use
encapsulation to mark the category of radio access on packet
level, and make SDN work in compatibility with heteroge-
neous networks after decapsulation. Specifically, when an
AP receives new packets, the corresponding AP attributes,
such as its access category and spectrum information will be
encapsulated into these packets and then forwarded to the
OpenFlow switch. Since the SDN controller can obtain a
copy of these packets from the switch through the OpenFlow
protocol, it then parses the radio access information from
these packets by decapsulation process. On one hand, the
information can assist the controller to recognize current cat-
egory of AP used by a specific IoT device, and direct control
message or service flow to the corresponding AP. On the
other hand, the information can be used by the controller to
run statistical analysis on the usage status of heterogeneous
APs through our Network Calculus approach as explained
in Section 4.1, and update the partition view to obtain whole-
partition capabilities and perform optimal assignment of het-
erogeneous APs to IoT devices.

5.1.2 Co-Existence of Heterogeneous
Spectrum Access

The cognitive radio capability is mainly executed by the
SDN controller and the controller can enable proper radio
interface in the IoT devices to access corresponding spec-
trum. Specifically, a newly joined IoT device will first
choose a default radio access to connect an AP by custom-
ized setting and send out its flow requests. As explained
above, once the AP receives and encapsulates packets from
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the IoT device, the controller can decapsulate these packets
for statistical analysis on the residual capability of corre-
sponding AP, and summarize current spectrum usage of
heterogeneous APs in its partition. Then, the controller can
differentiate flow scheduling based on the requirements
per-device as well as whole-partition capabilities, and later
obtain the optimized selection of access points in multinet-
works to satisfy IoT flow requests, while guaranteeing the
network performance in each partition. If the initial AP con-
nected by the IoT device is overloaded, the controller will
assign another AP with specific spectrum in its partition to
the IoT device. Once the IoT device receives the AP update
message from the controller, it will disconnect the initial
AP by closing current radio interface, and switch to connect
the assigned AP in designated spectrum by opening a new
radio interface.

5.1.3 Communications Between SDN Controller
and loT Devices

Several control traffic have been specifically added between
SDN controller and IoT devices for distributed control,
which are mainly composed of following types of control
messages. The first one is the AP request message initiated
by the IoT device to request AP assignment from the con-
troller. The second one is the AP response message from the
controller to assigns optimal AP to the IoT device. The third
one is the AP update message when IoT devices roaming in
different SDN partitions, so that the SDN controller can
detect the mobility behavior and update the connections of
IoT devices with APs. The fourth one is the flow request
message sent from the IoT device to the SDN controller to
request different types of data flow, so that the controller
can localize proper server with corresponding data service
and provide flow path to the server, and later the server
directly transmits the data flow to the IoT device.

The detailed process of managing control traffic varies in
each transmission phase between SDN controller and IoT
devices. During the communication phase from SDN con-
troller to OpenFlow switch, all types of control messages
are loaded into the Packet-Out message which is a message
type of the default southbound OpenFlow protocol, and the
control traffic share the same channel with the data traffic.
During the phase from OpenFlow switch to APs, these con-
trol messages are forwarded to different APs through the
corresponding AP identifier encapsulated in each control
message, and these messages share the same channel too.
After the control messages arrive at an AP, the AP uses mul-
tiple control channels to transmit the control messages to
IoT devices through corresponding types of communication
spectrums according to the spectrum information encapsu-
lated in the control message.

5.1.4 Interactions Between SDN Controller and APs

As for the SDN controller to interact with the AP, the SDN
controller employs the Network Calculus to obtain the par-
tition view, and execute AP assignment optimization algo-
rithm. After this, it sends the AP update message to the AP
through the OpenFlow switch. As for the AP to interact
with the SDN controller, the AP encapsulates radio access
and spectrum information into the packet received from the
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Fig. 7. Mobile flow scheduling in UbiFlow.

connected IoT devices, and forward these packets to the
SDN controller through the OpenFlow switch for the statis-
tical analysis on partition view. At the same time, the AP
waits the AP update message come from the SDN control-
ler. If the optimal assignment is the AP itself, it continues to
maintain connection with the IoT devices. Otherwise, the
AP will disconnect the IoT devices and update the IoT devi-
ces to connect the newly assigned AP. Therefore, the SDN
controller interacts with the APs through OpenFlow switch,
and these interactions are mainly driven by the access
events and flow requests from IoT devices.

5.2 Simulation Results

Recently, OMNeT++ has incorporated an OpenFlow exten-
sion implemented in the INET framework for SDN simula-
tion [60]. However, its controller only supports the wired
data center networks and lacks mobility management. We
have changed its data plane to incorporate the inherent
advantages of OMNeT++ on setting heterogeneous wireless
networks, and extended its control plane to support multi-
ple SDN controllers. The UbiFlow framework has been
implemented in these controllers to support mobility man-
agement, flow processing and flow forwarding under dis-
tributed environments.

To verify the performance of UbiFlow in urban scenario,
our simulation is based on a popular area in the city of
London, which consists of several parks, universities, and
museums, as shown in Fig. 7a. This area is usually crowded
by high density of tourists, students and workers, with large
number of IoT devices and various types of flow requests.
Therefore, in our first set of evaluation, three controllers have
been deployed in park partition, university partition and
museum partition, respectively, for flow scheduling and
mobility management. The backbone topology consists of
3 data servers (each of the three data servers provides either
file sharing, audio, or video streaming services), 3 switches
(each switch has a 1 Gbps Ethernet link to one server; each
controller directly controls one switch), and 20 access points
(each access point has one 100 Mbps Ethernet link to every
switch). There are three types of access points: WiMAX,
WiFi and Femtocell, with data rates 30 Mbps, 10 Mbps, and
2 Mbps respectively. Each IoT device has three network inter-
faces to directly connect with corresponding access points,
and at each time instance only one interface can be used.

5.2.1 Handover in UbiFlow

In our first set of simulation, as shown in Fig. 7a, there are
5 access points (orange dots) in the park partition, 9 access

points (green dots) in the university partition, and 6 access
points (blue dots) in the museum partition. Some of these
access points are already under heavy traffic load, and others
still have enough capacity. Assume there are 60 IoT devices
sending new flow requests at a time, and they are moving
along the red path. 10 of them request file sharing services,
20 of them request audio services, and 30 of them request
video streaming services. In our evaluation, file sharing
flows are modeled by sending Constant Bit Rate with packet
length uniformly distributed in [100, 1000] bytes with period
T, the latter uniformly distributed in [0.01, 0.1] seconds.
Audio and video streaming flows are from real traffic
traces [55], [56]. For practical applications, the file sharing
service requires large throughput, the audio service requires
low delay, while the video streaming service requires low jit-
ter. We evaluate our UbiFlow scheduling and compare it
with other two common scheduling algorithms used in SDN
world: DevoFlow [26] and Hedera [25]. The former tries to
accommodate as many flows as possible into a single link to
maximize the link utilization. Instead, the latter assigns flows
into a link so that the total amount of the flows are propor-
tional to the capacity of the link.

As shown in Fig. 7, we have totally 60 flows (each of
60 end devices has one flow): flows 1-10 are file sharing,
flows 11-30 are audio, and flows 31-60 are video streaming.
Fig. 7b shows the comparison of flow throughput. For file
sharing flows, UbiFlow outperforms DevoFlow by an aver-
age of 67.21 percent, while it has an average of 15.91 percent
throughput increase if compared with Hedera. The reason
is that in wireless links when link utilization exceeds a
threshold, the packet drop rate increases dramatically. The
load balancing scheme in UbiFlow uses the controller to
schedule flows according to the utilization status of each
access point; therefore it can achieve comparably fair alloca-
tion of flow traffic to decrease packet drop rate. Fig. 7c
shows that for audio flows, our proposed algorithm can
improve the end-to-end delay performance by 72.99 and
66.79 percent, compared to DevoFlow and Hedera respec-
tively. Audio flows have bursty traffic patterns; it might
not have big data volume, but if two flows are scheduled
with similar bursty patterns in the same link, a large delay
occurs. Due to the traffic-aware dynamic flow scheduling
scheme, UbiFlow can schedule flows both by the consider-
ation of partition load and device requirement; therefore it
can reduce the impact of flow interference. Fig. 7d shows
that video streaming flows have an average 69.59 and
49.72 percent less jitter with UbiFlow than DevoFlow and
Hedera. Because of the holistic solution in flow scheduling
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Fig. 8. Scalability in UbiFlow.

and mobility management, distributed controllers in Ubi-
Flow can provide more stable video flow for IoT devices.

5.2.2 Scalability in UbiFlow

In the implementation of OpenFlow, the Packet-In message
is a way for the OpenFlow switch to send a captured packet
to the controller. A flow arrival resulting in sending a
Packet-In message to the controller. In the second set of sim-
ulation, we use Packet-In message to evaluate the scalability
of flow scheduling by UbiFlow. For better scalability evalua-
tion, we add more controllers in the above urban scenario.
In addition, for every controller in its partition, the control-
ler is directly connected with 3 to 5 switches, and controls
20 to 50 access points with various heterogeneous interfaces.
For each controller, we send 10000 consecutive Packet-In
messages to it and plot the throughput of UbiFlow with
varying number of controllers, as shown in Fig. 8a. We
observe that adding controller nodes increases the through-
put almost linearly. This is because in the architecture of
UbiFlow, as shown in Fig. 2, each controller mainly controls
the traffic flows in its own partition. However, if there is an
imbalance in one controller, other controllers with light-
weight traffic also can help to migrate the flows to their par-
titions by physically partial connected switch and the Ubi-
Flow overlay structure. To further illustrate the scalability
of UbiFlow, we also plot the response time behaviour for
Packet-In messages with changing flow arrival rate, as
shown in Fig. 8b. We repeat the experiment while changing
the number of controller nodes. As expected, we observe
that response time increases marginally up to a certain
point. Once the packet generation rate exceeds the capacity
of the processor, queuing causes response time to shoot up.
This point is reached at a higher packet-generation rate
when UbiFlow has more number of nodes.

5.2.3 Fault Tolerance in UbiFlow

When the number of controllers increase, we also care about
the performance of UbiFlow on fault tolerance, especially in
mobility management. In the third set of simulation, we
evaluate the ability of UbiFlow on lookup of mobile nodes
after a large percentage of controllers fail simultaneously.
We consider a 10° controller network that stores 10° keys,
and randomly select a fraction p of controllers that fail. Note
that in mobility management, UbiFlow classifies controllers
into supervisory controllers and associated controllers,
where supervisory controllers record the updated mobility
information of IoT devices. To obtain this information, asso-
ciated controllers need to first localize the supervisory
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controllers for mobile lookup. In our setting, the failed con-
trollers could be supervisory controllers and associated con-
trollers. A correct mobile lookup of a key is one that finds
the supervisory controller that is responsible for the key.
Fig. 9 compares UbiFlow with Chord, by the mean lookup
failure rate and the confidence interval as a function of p. In
Chord, the lookup failure rate is almost exactly p. Since this
is just the fraction of keys expected to be lost due to the fail-
ure of the responsible nodes. UbiFlow can further improve
the performance of Chord on mobile lookup both in mean
lookup failure rate and the confidence interval, because of
its consistent overlay scheme on mobility management. Ubi-
Flow uses redundancy to resist failure, by coping the mobil-
ity information from local controller to its live successors in
the overlay structure. Meanwhile, when a supervisory con-
troller fails because of load imbalance, UbiFlow can use
double-hashing scheme to localize the backup supervisory
controller for effective lookup of mobility information.

5.2.4  Flow Scheduling Between loT Devices

Though we consider device to server flows primarily in this
paper since it is the more common case of SDN-based com-
munications, as discussed in Section 2 another type of IoT
flow potentially existed in software-defined IoT is the data
flow between IoT devices located within different partitions.
This type of IoT flow needs to be scheduled through inter-
partition communication. Utilizing the connected switches,
controllers can coordinate to direct the flow initiated from
one partition to a different access point in another partition.
Following the same settings of our evaluation in Fig. 7, we
choose one device A in the university partition as sender,
one device B in the university partition as receiver, and one
device C in the park partition as another receiver. All the
three IoT devices are assigned with WiFi access points
and the data flows sent from A to B, and A to C are the
same video streaming. The average performance collected in
one minute is presented in Fig. 10. Fig. 10a compares the
end-to-end flow throughput between A — B and A — C
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Fig. 10. Device to device flow scheduling.
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transmissions from the receiver aspect. Fig. 10b shows the
difference of end-to-end delay performance between the two
device to device data flows. It is interesting that in this set of
evaluation intra-partition (A — B) has worse performance
than inter-partition (A — C) flow scheduling both on throu-
ghput and delay metrics, even though the flow path from
A — Clislonger than A — B. This is due to the fact that there
are more IoT devices crowded in the university partition
than the park partition in our settings. The density of IoT
devices in the university partition results in higher demand
of communication resources and heavier processing status in
its corresponding controller, therefore generating lower
throughput and higher delay along the path from controller
to receiver in the same partition, in comparison with the path
from controller to receiver in the park partition that has more
communication and controller resources available to use.

5.2.5 Cross-Region Flow Scheduling

We have also verified the impact of UbiFlow overlay net-
work on large-scale urban network scheduling across differ-
ent geographic regions. Specifically we evaluate how the
overlay network of the controller system would impose
latency in the mobile IoT device to server communication.
Our simulation is based on the mobile scenario, as shown in
Fig. 5, where the top-left region has 400 IoT devices and 100
access points, and the bottom-right region has 200 access
points and 600 IoT devices (the limitation of OMNeT++ is
that it supports up to nearly 2000 nodes in simulations). A
mobile IoT device associated with video streaming service is
frequently roaming across the two regions and their partition
areas. The average flow latency and its standard deviation in
each region is presented in Fig. 11. We observe that the
scheduled flow latency for this device in the bottom-right
region does not change a lot in comparison with that in the
top-left region. The stable performance is achieved by our
specific design for large-scale mobility in UbiFlow, where
controllers is geographically localized to the extent that
propagation delay between them is within the same order of
magnitude. In addition, when an IoT device enters a new
region, a new supervisory controller will be assigned in the
region to manage its mobility, so that the device can avoid
too much cross-region long-distance information exchanges
with old supervisory controller. Therefore, in case that a
mobile IoT device frequently roams inside a region (with
multiple partitions) and across different regions (separated
by long distance), the latency from distributed UbiFlow over-
lay can still maintain within the same order of magnitude.

5.3 Testbed Experiment Results

In our real testbed experiments, we use ORBIT as the wireless
network testbed to evaluate UbiFlow. ORBIT is composed
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Fig. 12. Mobile flow scheduling in real testbed.

of 400 radio nodes, where a number of experimental
“sandboxes” can be accessed via its management framework.
Available sandboxes include WiFi, WiMAX, USRP2, etc.
ORBIT supports Floodlight [61] based OpenFlow controller to
switch access between the WiFi and WiMAX interfaces, and
uses Open vSwitch (OVS) [62] to allow a network interface to
be OpenFlow-enabled.

The deployment of ORBIT testbed follows a grid topol-
ogy, and we choose an ORBIT sandbox with 1 WiMAX node
and 7 WiFi nodes in our experiments. UDP is used as our
transmission protocol. The delay is measured per packet and
its performance is averaged using the fine grained network
calculus model. We are aware that real mobile access pattern
of IoT devices in urban scenario does not follow the random
waypoint model. Actually, the urban-scale access of multi-
networks is more like event or motivation driven behaviour.
To better evaluate UbiFlow in this kind of mobile scenario,
we collected a campus-wide mobile trace driven by class
events, and use it in our evaluation. Specifically, the trace is
collected during a period (10 minutes) between two consecu-
tive classes around a lecture building by three types of IoT
devices: smart phone, tablet and laptop. During that period,
some students leave the building after previous class, some
students come to the building for incoming class, and some
students still stay in the building. Therefore, the wireless
access of their IoT devices can be classified as “leaving”,
“joining”, and “staying”. We use the trace file to generate the
mobile scenario in our ORBIT testbed, and verify the perfor-
mance of IoT devices supporting two types of ORBIT access
points: WiFi and WiMAX under the mobile scenario. That is,
we match the 8 OpenFlow-enabled ORBIT nodes as corre-
sponding access points in the building, and use two Flood-
light based OpenFlow controller to scheduling different
service requests from around 300 IoT devices during that
period, according to the mobile trace file.

We compare UbiFlow with an OpenFlow-based hand-
over scheme proposed by GENI [63] (namely GENI). The
GENI handover [41] is a vanilla implementation of SDN in
wireless environment, without ubiquitous flow scheduling
and mobility management. As shown in Fig. 12, we select
30 flows from the hundreds of active IoT devices, where
flows 1-5 are file sharing, flows 6-15 are audio, and flows
16-30 are video streaming. The performance shows the simi-
lar results as previous simulation results with various flow
types. Generally, UbiFlow outperforms GENI handover
both on end-to-end throughput and delay evaluation. For
the 30 flows, UbiFlow can achieve an average throughput as
7.24 Mbps, while GENI only can provide 5.09 Mbps; Ubi-
Flow improves the average throughput performance by
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42.24 percent. The average delay in UbiFlow is around
0.11 s, while the delay in GENI is 0.29 s; UbiFlow reduces
the average delay by 62.07 percent. In comparison with
GENI, UbiFlow adopts dynamic flow scheduling scheme
from the views of partition and device aspects, therefore
can achieve better assignment of access points to satisify dif-
ferent flow requirements of IoT devices. In addition, the
overlay structure based load balancing can effectively allo-
cate flows in UbiFlow, by the coordination of controllers
and switches. It also can help to improve the throughput
and reduce the delay.

To test the mobility management of UbiFlow in real
testbed, we choose one mobile device and evaluate the
change of its multinetwork access in a period of one minute,
while associating with different types of access points. The
performance of throughput and delay of its access is shown
in Figs. 13a and 13b respectively. As we can see, since there is
only one WiMAX node in our testbed, and it is crowded by
other mobile users, the throughput provided by WiMAX is
much lower than WiFi nodes. According to this situation, the
SDN controller only assigns the mobile device to access
WiMAX when there is no available WiFi access points pro-
viding higher data rate. Once the controller finds a WiFi
access point with better capacity and the mobile device sends
flow request in its range, it will assign the mobile device to
access the WiFi node. In mobile scenario, we notice that the
average flow transmission delay for this mobile device is
below 0.4s, which presents stable performance of our mobil-
ity management, considering there are hundreds of active
IoT devices and only 8 working access points. Mobile delay
only increases obviously when UbiFlow runs handover steps
to assign new access point to the mobile device, which hap-
pens at the 25th second and 40th second of this period. Usu-
ally, when a mobile device requests an access point, it will
initially send the request to the controller, and then controller
sends the assignment decision back. This process results in
the extra delay for message exchange and computation,
which cannot be avoided if we use the controller to match
access points with mobile devices. However, in these special
cases, UbiFlow still can achieve a handover delay less than
0.9 seconds, therefore shows satisfactory results.

We also verify the scalability of UbiFlow in the ORBIT
testbed, where we choose three ORBIT sandboxes (each has
1 WiMAX node and 7 WiFi) and assign each sandboxes with
a controller. Similar to our scalability simulation in Section
5.2, Packet-In message is used to evaluate the scalability of
flow scheduling in UbiFlow. On average, for each controller,
we send 10000 consecutive Packet-In messages to reflect
the flow requests generated by around 100 IoT devices in
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10 minutes to it. We plot the throughput of UbiFlow with
varying number of controllers, as shown in Fig. 14a. We
observe that adding controllers increases the throughput
almost linearly due to the fact that each controller in UbiFlow
mainly controls the traffic flows in its own partition. In addi-
tion, if there is an imbalance in one controller, other control-
lers with light-weight traffic also can help to migrate the
flows to their partitions by the UbiFlow overlay structure.

Note that the Packet-In messages in the scenario of
Fig. 14a is a type of control message generated by the Open-
Flow switches and sent to the SDN controller to request flow
services for ubiquitous IoT devices. In our UbiFlow imple-
mentation, these messages are triggered by the flow request
messages initiated from the IoT device. In addition, there are
other overhead imposed by the distributed coordination of
SDN controllers under different networking and traffic con-
ditions. We present the total number of overhead generated
by different types of control messages during mobility
management and flow scheduling with varying number of
controllers in Fig. 14b. In general, these control message
based overhead can be classified as Packet-In messages and
Packet-Out messages, respectively, for the SDN controller.

As for the interaction between the SDN controller and the
IoT devices, the AP request messages and flow request mes-
sages generated by the IoT devices all can trigger Packet-In
messages from the switch to the controller. From the con-
troller aspect, the AP response messages and AP update
message can trigger Packet-Out messages from the control-
ler to the switch. As for the interaction between the control-
ler and the switch, if new flow arrives or flow changes, the
controller sends Packet-Out messages to the switch to
update its flow table. The controller also sends Packet-Out
messages to the switch to obtain traffic information for sta-
tistical analysis of network status and derive the partition
view. As for the interaction between different controllers,
the join or leave operation of a controller node on our over-
lay network makes its neighboring controllers to send
Packet-Out message to maintain the network consistency.
Also, the mobile handover of an IoT device across different
geographical partitions triggers its current associated con-
troller to localize its previous associate controller through
its supervisory controller. This process results in Packet-
Out message transmitted between the different types of con-
trollers for information inquiry, mobility update and flow
migration purposes. In addition, when controller level fail-
ure happens, our fault tolerance mechanism requires the
failed controller to send Packet-Out message carrying data
replica to its successor controllers.

Above interactions happened during mobility manage-
ment and flow scheduling result in the overhead cost in
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Fig. 14b. For one controller case, in addition to the 10000
consecutive Packet-In messages for flow requests from 100
IoT devices, extra overhead are caused by the control mes-
sages of interaction between the controller and the IoT devi-
ces, and the control messages of interaction between the
controller and the switch. For two and three controllers, we
observe that adding controllers increases the overhead
almost linearly due to the fact that each controller mainly
controls the traffic flows in its own partition, and on average
there are 100 IoT devices in each partition generating 10000
flow request message in 10 minutes. Meanwhile, the control
messages of interaction happened between different con-
trollers generate additional overhead in comparison to the
one controller case. The overhead cost of SDN controller is
induced in the necessary interaction procedures, and these
interactions present the dynamic capability of UbiFlow to
re-adapt scheduling and effective flow bandwidth when
varying the network conditions.

Overall, both simulation and real testbed results have
shown that, in mobile environments, UbiFlow can adaptively
match various traffic flows to wireless links; therefore can
provide better service to satisfy the requirements of IoT devi-
ces and guarantee the partition performance at the same time.

6 CONCLUSION

In this paper, we have presented a software-defined IoT sys-
tem, namely UbiFlow, for efficient flow control and mobility
management in urban heterogeneous networks. In addition
to flow scheduling, the approach shifts mobility manage-
ment, handover optimization, and access point selection
functions from the relatively resource constrained IoT devi-
ces to more capable distributed controllers. The distributed
controllers are organized in a scalable and fault tolerant
manner. The system was evaluated through simulation and
on a testbed.
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