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ABSTRACT Reconstructing precise dynamic points with multiple camera systems (MCSs) is a pivotal
work in many computer vision applications, such as motion capture. However, the deviation of 2-D position
leads to frequent mismatch when searching for correspondence from multi-view. This paper puts forward a
two-stage framework based on passive optical motion capture system to reconstruct precise dynamic points
with MCSs. Our proposed method improves the performance of calibration and matching simultaneously.
In the calibration stage, the extrinsic parameters of numerous cameras are calibrated synchronously via an
L-shaped frame, where the position of four reference points is optimized with multiple geometric constraints.
Bundle adjustment occurs after calibration. In the reconstruction stage, we propose a novel sparse multi-view
matching method called cyclical voting, which includes multiple pairs of global voting and in-group voting.
Point residual method is proposed to exclude outliers in matching groups further. The experiments show
that our proposed method can decrease mismatching significantly and achieve commendable reconstruction
results compared with Cortex (one of the most successful commercial motion analysis software).

INDEX TERMS Stereo vision, dynamic point reconstruction, multi-camera calibration, sparse multi-view
matching method.

I. INTRODUCTION
Recovering 3D structure and motion of non-rigid objects
from sets of 2D points in multi-view is a challenging
task in many computer vision applications,such as anima-
tion [1], biological [2], [3], medical diagnosis [4], and
robot control [5]. To perform this work, precise dynamic
point reconstruction is fundamental. Dynamic point recon-
struction is accomplished mainly by non-rigid structure
from motion (NRSFM) [6]–[9] or multiple camera sys-
tems (MCSs) [11], [12]. However, too much additional prior
knowledge leads NRSFM to result in poor robustness, so the
most common ways presently remain based on MCSs in
real application, like passive optical motion capture sys-
tems [11], [12]. Instead of monocular images, cameras are
fixed at multiple viewpoints in MCSs, ensuring that every
camera captures each configuration of non-rigid objects. The
ill-posed problem in NRSFM is thus avoided. The process
of a typical dynamic point reconstruction by MCSs involves
two stages, namely, calibration and reconstruction. On the
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FIGURE 1. Comparison of ideal situation and real situation when
searching for correspondence. p1,p2, and p3 are three points in real
world. p1

1,p2
1, p3

1 and p1
2,p2

2, p3
2 are projected points in cameras 1 and 2,

respectively. l1, l2, and l3 are the polar line of p1
2,p2

2, and p3
2 in camera 2.

The left figure shows the ideal situation, where p1
2,p2

2, and p3
2 are located

only on their corresponding polar line. The right figure illustrates the real
situation, in which p2

2 is a point located both on l2 and l3, p3
2 and p1

2 are
located far away from their respective polar lines l3 and l1. In these
cases, the matching of p1

1,p2
1 and p3

1 is disturbed.

one hand, the calibration of cameras distinctly affects the
quality of reconstruction. On the other hand, the deviation
of 2D position leads to interference when searching for cor-
respondence in the reconstruction stage, as shown in Fig. 1.
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Therefore mismatching often occurs. Both reasons lead to
erroneous point reconstruction and distorted model. In fact,
the problem even exists in Cortex, which is one of the
most successful commercial analysis and processing software
of motion data. This study puts forward a framework for
dynamic point reconstruction by MCSs, the framework is
based on passive optical motion capture system. To lower the
deviation of 2D position, markers are placed on key points,
the 2D position of markers are exacted directly from images
captured byMCSs. The overview of the presented framework
is shown in Fig. 2. Our method improves the performance of
calibration and matching at the same time. In the calibration
stage, we consider multiple geometric constraints to optimize
the position of calibration reference points. In the recon-
struction stage, we consider multi views together instead
of pairwise matching when searching for correspondence,
and, thus, a sparse multi-view matching method is proposed.
Our proposed approach exhibits high accuracy, without any
hypothesis, and good robustness for numerous dynamic point
reconstruction. Tests on standard and our ownmotion capture
datasets demonstrate the excellence of our method.

Our study has two main contributions.
1) We propose an efficient calibration model for MCSs.

Our method introduces Levenberg-Marquart(LM) algo-
rithms [13] to take nonlinear geometric constraints into
account, the result provides more accurate position of refer-
ence points for calibration. Experiments show that the treat-
ment can improve the calibration performance comparing to
Cortex.

2) We design a reconstruction model, which improves
the quality of dynamic point reconstruction significantly.
To search for correspondence, we propose a novel hierarchy
cyclical voting (CV) method consisted by multiple global
voting and in-group voting pairs. Point residual (PR) filter-
ing strategy is then proposed to exclude outliers of match-
ing groups during triangulation. Our approach considers all
views together to correct mismatching successfully. Experi-
ments show that our method performs well in motion capture
application.

The rest of this paper is organized as follows.
Section 2 introduces the related works. Section 3 discusses
our calibration model for MCSs and reconstruction model
in detail. Section 4 presents experiments and evaluation.
Section 5 summarizes the conclusions.

II. RELATED WORK
In this section, we investigate the related work about cali-
bration and 3D reconstruction of dynamic points based on
stationary MCSs.

A. CALIBRATION OF MCSS
Calibration is the first step for most stereo reconstruc-
tion algorithms [14]. Intrinsic parameters can be read
from cameras in certain situations, the challenge comes
from calibrating extrinsic parameters. In general, cam-
eras of stationary MCSs are fixed at a specified position,

so many studies employ different types of calibration objects,
such as markers, laser pointers, reference bars [15]–[17].
Active self-calibration provides another choice for calibra-
tion objects [18]. In select methods, extrinsic parameters
are inferred by estimating the fundamental or essential
matrix [19], [15], followed by bundle adjustment [20], [21].
The latter has been implemented in many types of
research [22], [23]. Schneider et al. [24] proposed a general
bundle adjustment with infinity scene points, and the process
reduced the number of equations in [25] to avoid singu-
lar covariance matrices. Later, Schneider and Förstner [26]
expanded his work to the calibration of extrinsic parameters.
Our work is based on the theory introduced in [21], [27],
and [28]. Zhang [27] proposed a classical and reliable cali-
bration model, which has been used in Matlab and OpenCV.
In his later work, Zhang [28] filled missing dimension with
reference points on a line, and the method performed well
especially for multiple cameras installed apart from each
other.

B. 3D RECONSTRUCTION OF POINTS
Reconstructing 3D points frommulti-view images is the most
common method in real application presently. Higgins [29]
first triangulated the position of stationary points by epipo-
lar geometry. Later, the research on geometry makes great
breakthrough in reconstructing static scenes, as summarized
in [31] and [32]. The advance has wide application, including
scene flow estimation [30] and motion capture [2], [3].

The real challenge comes from the 3D reconstruction of
dynamic points with large displacement and fast move. Many
types of research focus on dynamic point reconstruction from
a series of monocular images. Avidan and Shashua [33] first
proposed the term called trajectory triangulation, the research
demonstrated that if a point moved along a straight line or
a conic section, then reconstructing the point was possi-
ble. Enlightened by the work of Avidan and Shashua [33],
Shashua and Wolf [34] demonstrated that the reconstruction
of points moving along a polygon could be realized. Later,
Kaminski et al. [35] introduced a polynomial representa-
tion to reconstruct dynamic points moving along the general
trajectory. NRSFM is another research hotspot to recon-
struct dynamic points from monocular images. The principal
work was published by Bregler et al. [36]. They used lin-
ear shape models to represent non-rigid 3D structures, and
the results showed the fitness within the factorization-based
reconstruction paradigm in [37]. In subsequent research,
e.g., [6], [8], To overcome inherent ambiguity of the non-rigid
problem [10], substantial constraints and prior information
were added for specified shape models. The shape models
were used to represent facial expressions and the human body.
However, these additional assumptions lead to difficulty in
coping with complex movement.

Dynamic point reconstruction with MCSs has been proven
to be an efficient method, and its core work is stereo match-
ing. Most stereo matching algorithms generate disparity map
by measuring the difference between pixels and patches in
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FIGURE 2. Overview of our framework.

multiple images, most literatures divide stereomatching algo-
rithms into local and global methods [38]. With the devel-
opment of deep learning, modern stereo matching employs
CNN to predict disparity map [39], [40]. All these methods
focus on feature point matching, which are used mainly for
dense reconstruction.

In some situation, only the 2D positions are available,
like passive optical motion capture system. In this case, only
epipolar constraints are effective. Although epipolar geomet-
ric has been well developed in the application of pairwise
matching [29], [32], but mismatching still happens very often
even in commercial software [11], [12]. Considering all these
related researches, our reconstruction model is based on the
theory of epipolar geometry [29], [32].

III. PROPOSED FRAMEWORK
This study puts forward a framework for dynamic point
reconstruction with MCSs, as shown in Fig. 2. The frame-
work is divided into a calibration model and a reconstruction
model. First, an L-shaped frame is placed in the center of
MCSs to determine initial extrinsic parameters, and a T-wand
is waved in the venues surrounded by MCSs. The video from
each camera is then collected for bundle adjustment. After
the preliminary work, 2D motion datasets are collected to
reconstruct the dynamic points.

A. CALIBRATION MODEL
In stationary MCSs, cameras are fixed at a specific position
before reconstruction, the intrinsic and extrinsic parameters
of all the camerasmust be calibrated as accurately as possible.
Our presented calibration method is based on the calibration
of passive optical motion capture system. The entire calibra-
tion process includes five steps: 1) determining the coordi-
nates of the four reference points on an L-shaped frame in
each camera coordinate system, 2) optimizing positions of the
four reference points, 3) calculating the rotation parameters,

4) inferring the transformation parameters inversely, and
5) optimizing camera parameters by bundle adjustment.

Initial intrinsic parameters is read from cameras directly.
(u0, v0) is the translation vector between the 2D points in
the image plane and 2D points in the image; dx and dy are
the change of units ( mm

pixels ) in the x and y axes of the image
plane, respectively; f is the focus length, and k = [k1, k2]T is
the distortion coefficient, which is calculated according the
calibration method proposed by Zhang [27]. In our study,
all initial intrinsic parameters except for k are read from
cameras directly. The extrinsic parameters are denoted as
exI = (tx , ty, tz, rx , ry, rz), where we denote t = [tx , ty, tz]T

as the translation parameters and r = [rx , ry, rz]T as the
rotation parameters of a camera.

1) DETERMINING THE COORDINATES OF REFERENCE
POINTS IN TWO COORDINATE SYSTEMS
The initial extrinsic parameters are determined by the geo-
metric relationship of four reference points on an L-shaped
frame. Thus, the accuracy of position of reference points is
crucial. As shown in Fig. 3, P1, P2, P3 and P4 represent
the four reference points, respectively. The world coordinate
system is established based on the right-hand coordinate
system, where P1P4 is the x-axis, P1P3 is the y-axis, and
the axis passing through P1 and perpendicular to the plane of
the L-shaped frame is z axis. In the world coordinate system,
the coordinates of the four reference points are P1(0, 0, 0),
P2(200, 0, 0), P3(600, 0, 0) and P4(0,400,0), and P1 is the
origin of the world coordinates system.
Pwi(xwi, ywi, zwi)(i = 1, 2, 3, 4) represents the coordi-

nates of point Pi in the camera coordinate system, and
Pci(xci, yci, zci) represents the projections of Pwi on the nor-
malized image plane (z = 1). Let pi(ui, vi) represent the
pixel coordinate of the ith reference point in a camera;
thus, Pci(xci, yci, 1) can be easily calculated according to the
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FIGURE 3. The presentation of the L-shaped frame. (a)Geometric
relationship between the four reference points on the L-shaped frame,
where P1P4 = 400 mm, P1P2 = 200 mm, P1P3 = 600 mm,
P2P3 = 400 mm, and P1P3 is perpendicular to P1P4. In order to solve the
6 extrinsic parameters steadily, we chose four points. If we use 3 points
only, these are 6 equations corresponding to 6 extrinsic parameters,
obviously, that is unpractical in real application. Furthermore, 5 points
will bring addition computation and limited benefit. (b)The world
coordinate system determined by L-shaped frame. The L-shaped frame
make it easy for us to determine the word coordinates system and the
coordinate of the four reference points in world coordinates system. Our
world coordinate system is established according to the right-hand
coordinate system in MCSs.

intrinsic parameters and pi, shown as Eq. (1), xciyci
1

 =
 dx 0 u0

0 dy v0
0 0 1

−1 uivi
1

. (1)

At first, Pwi(xwi, ywi, zwi)(i = 1, 2, 3) are calculated accord-
ing to constrain 1, constrain 2.

FIGURE 4. Geometric relationship between the four referent points and
their projections. (a)Projection of points Pw1, Pw2, Pw3 and Pw4 on
normalized plane (z = 1) in camera coordinate system. OO′ are the
optical axes. (b) Detailed description of the projection relationship
(taking Pw1 as example). x ′O′y ′ is a normalized plane (z = 1), x ′′O′′y ′′ is
a plane that passes through Pw1, and parallel to the normalized plane.
P ′

c1 and P ′

w1 are the foot of perpendicular from Pc1 to x ′ and Pw1 to x ′′ .

Constraint 1:As shown in Fig. 4(b), Eq. (2) can be derived
according to similar triangle theorem,

xw1
xc1
=

yw1
yc1
=
zw1
1
,

xw2
xc2
=

yw2
yc2
=
zw2
1
,

xw3
xc3
=

yw3
yc3
=
zw3
1
. (2)

Constraint 2: as shown in Fig. 5, P′wi(i = 1, 2, 3) is the pro-
jection from Pwi(i = 1, 2, 3) to x axes, Pw1′P′w2 = xw1− xw2,
P′w1P

′

w3 = xw1 − xw3, Pw1Pw2 = P1P2 = 200 mm,

FIGURE 5. The proportion relationship of similar polygons.

Pw1Pw3 = P1P3 = 600 mm. According to the propor-
tion relationship of similar polygons,

P′w1P
′

w2
P′w1P

′

w3
=

xw1−xw2
xw1−xw3

=

Pw1Pw2
Pw1Pw3

=
200
600 =

1
3 . Similar conclusion can be obtained as

shown in Eq. (3),

xw1 − xw2
xw1 − xw3

=
1
3
;

yw1 − yw2
yw1 − yw3

=
1
3
;
zw1 − zw2
zw1 − zw3

=
1
3
; (3)

Transforming Eq. (2) and (3) together into a linear equation
set, as shown in Eq. (4),

xw1 − xc1zw1 = 0; yw1 − yc1zw1 = 0,

xw2 − xc2zw2 = 0; yw2 − yc2zw2 = 0,

xw3 − xc3zw3 = 0; yw3 − yc3zw3 = 0,

2xw1 − 3xw2 + xw3 = 0,

2yw1 − 3yw2 + yw3 = 0,

2zw1 − 3zw2 + zw3 = 0. (4)

Pwi(xwi, ywi, zwi)(i = 1, 2, 3) can be solved by SVD decom-
position. Pw4 is located on the ray OPc4, shown as Fig. 3(a),
according to the geometric relationship between Pw4 and
Pw1Pw2, the point on the ray OPc4 satisfying the following
conditions is chosen as Pw4: 1) the length of Pw4Pw1 equals
400 mm, and 2) line Pw4Pw1 is perpendicular to line Pw1Pw2.

2) OPTIMIZING COORDINATES OF THE REFERENCE POINTS
Many nonlinear constraints are not considered in the above
calculation, and, as such, the coordinates of the four ref-
erence points are not very accurate. The following con-
straints 3 to 6 are used to optimize the coordinates of the four
reference points on the L-shaped frame:
Constraint 3: The lengths of Pw1Pw2, Pw1Pw3, Pw1Pw4,

Pw2Pw3, Pw2Pw4, and Pw3Pw4.
Constraint 4: The reference points are located on the ray

OP1, OP2, OP3, and OP4.
Constraint 5: P1, P2, and P3 are proportional and collinear.
Constraint 6: P4 is perpendicular to Pw1Pw2, Pw2Pw3, and

Pw1Pw3. Equations formed by the above constraints are set
as objective function, and Pwi(xwi, ywi, zwi)(i = 1, 2, 3, 4) are
optimized with LM algorithm.
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3) CALCULATING THE ROTATION PARAMETERS
LetR represent the rotation matrix from the world coordinate
system to the camera coordinate system. R can be written as
the form of Eq. (5),

R =

R11 R12 R13
R21 R22 R23
R31 R32 R33

. (5)

R can also be represented as the form of rx , ry, rz, as shown
in Eq. (6):

R11 = cos(ry)cos(rz)

R12 = cos(ry)sin(rz)

R13 = −sin(ry)

R21 = sin(rx)sin(ry)cos(rz)− cos(rx)sin(rz)

R22 = sin(rx)sin(ry)sin(rz)+ cos(rx)cos(rz)

R23 = sin(rx)cos(ry)

R31 = cos(rx)sin(ry)cos(rz)+ sin(rx)sin(rz)

R32 = cos(rx)sin(ry)sin(rz)− sin(rx)cos(rz)

R33 = cos(rx)cos(ry) (6)

where r = [rx , ry, rz]T is the rotation parameters. The
L-shaped frame is then translated to the position where P1
coincides with the origin of camera coordinate system. The
new coordinates of P1,P2,P3 and P4 are shown in Eq. (7),

Pwc1(xwc1, ywc1, zwc1) = Pw1 − Pw1,

Pwc2(xwc2, ywc2, zwc2) = Pw2 − Pw1,

Pwc3(xwc3, ywc3, zwc3) = Pw3 − Pw1,

Pwc4(xwc4, ywc4, zwc4) = Pw4 − Pw1. (7)

The relationship between Pwci(xwci, ywci, zwci) and
Pci(i = 2, 3, 4) on the normalized plane(z = 1) is expressed
as Eq. (8),  xciyci

1

 = R

 xwciywci
zwci

 . (8)

Let S =

0 −c −bc 0 −a
b a 0

 represent an anti-symmetric matrix,

where a, b, and c are independent of each other. According to
the properties of anti-symmetric matrix and Rodriguezmatrix
in [41], R = (I + S)(I − S)−1, and R can be denoted as the
form of a, b, and c, as shown in Eq. (9),

R

=


1+a2−b2−c2

1+a2+b2+c2
−2c−2b

1+a2+b2+c2
−2b+2ac

1+a2+b2+c2
2c−2ab

1+a2+b2+c2
1−a2+b2−c2

1+a2+b2+c2
−2a−2bc

1+a2+b2+c2
2b+2ac

1+a2+b2+c2
2a−2bc

1+a2+b2+c2
1−a2−b2+c2

1+a2+b2+c2

.
(9)

At the same time, Eq. (8) can also be written as the form
of Eq. (10), xiyi

zi

 = (I+ S)(I− S)−1

 xwciywci
zwci

 . (10)

Substituting S with its full form and multiply with (I− S) on
both sides of Eq. (10), then Eq. (10) can bewritten as Eq. (11), 1 c b
−c 1 a
−b −a 1

 =
 1 −c −b
c 1 −a
b a 1

 xwciywci
zwci

 . (11)

Eq. (11) can be simplified as Eq. (12), 0 zi + zwci yi + ywci
zi + zwci 0 xi + xwci
yi + ywci xi + xwci 0


=

 ab
c

 xwci − xiywci − yi
zwci − zi

. (12)

Thus the value of a, b, c are calculated by Eq. (13), ab
c

 =
 0 zi + zwci yi + ywci
zi + zwci 0 xi + xwci
yi + ywci xi + xwci 0

−1 xwci − xiywci − yi
zwci − zi

.
(13)

Given Pwci(xwci, ywci, zwci) and Pi(xi, yi, zi), (i = 1, 3, 3, 4),
then the value of a, b, c are obtained by Householder orthog-
onal decomposition, and R is calculated according to Eq. (9).

According to Eq. (6), rotation parameters rx and ry
are calculated by inverse trigonometric function, as shown
in Eq. (14),

ry = −arcsin(R13),

rx = −arccos(R33/cos(ry)). (14)

As cameras always face up to and look down at objects, rx is
always greater than 0. If the sign of sin(rx)cos(ry) is different
from that of R23, ry should be added or subtracted by π , thus
rx needs to be resolved with the adjusted ry. The calculation
of rz is according to rz = −arcsin(R12/cos(ry)), and the sign
of rz should be verified by similar means.

4) INFERRING THE TRANSLATION PARAMETERS INVERSELY
The translation parameters are greatly influenced by the devi-
ation of pixel plane. Considering that the rotation parameters
has high accuracy, the translation parameters are inferred
inversely by the rotationmatrixR. LetR =

[
R1 R2 R3

]
, then

the projection relationship from Pi to Pci is shown as Eq. (15):

λ

 xciyci
1

 = R

 xiyi
zi

+
 t ′xt ′y
t ′z

 (15)

where λ is the scale factor, and t′ =
[
t ′x t
′
y t
′
z
]T

denotes
the translation parameters from word coordinate system to
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camera coordinate system. Eq. (16) can be obtained after
eliminating λ,

t ′x − xcit
′
z = (R1

T
− xciR3

T )
[
xi yi zi

]T
,

t ′y − ycit
′
z = (R2

T
− yciR3

T )
[
xi yi zi

]T
. (16)

SubstitutingPi andPci into Eq. (16), the approximate solution
of t′ =

[
t ′x t
′
y t
′
z
]T

is calculated by least-squares method.
However, the standard translation parameters t = [tx , ty, tz]T

is from camera coordinate system to word coordinate system,
and t′ can be transformed to t by multiplying RT , as shown
in Eq. (17),

[
tx ty tz

]T
= RT

 t ′xt ′y
t ′z

 . (17)

5) BUNDLE ADJUSTMENT
Bundle adjustment is used to optimize the intrinsic and extrin-
sic parameters of all cameras. After filtering out the valid
wand data, the core of the bundle adjustment is to design
the objective functions. In this study, a T-wand is introduced
in bundle adjustment, as shown in Fig. 6, where T1T2 =
200 mm, T2T3 = 300 mm and T1T3 = 500 mm. Each
camera collects the video by waving the T-wand in the field
surrounded by MCSs. The purpose of our object function
is to minimize two errors: 1)the error between the actual
position and the re-projected position of T1, T2 and T3; 2)the
error of Euclidean distance between reconstructed 3D points
T1_3D, T2_3D and T3_3D. Let xnij and x ′nij represent the actual
coordinate and re-projected coordinate of Ti(i = 1, 2, 3),
which is recorded in nth frame of jth camera, respectively. The
optimized intrinsic and extrinsic parameters should satisfy the
following objective functions in Eq. (18):

min
frameN∑
n=1

3∑
i=1

camN∑
j=1

||xnij − x ′nij||

st T1_3DT2_3D = 200

T2_3DT3_3D = 300

T1_3DT3_3D = 500 (18)

FIGURE 6. Collecting T-wand data for bundle adjustment.

where frameN denotes the total frames of the wand data, and
camN denotes the total number of cameras. Initial camera
parameters are optimized altogether using LM algorithm,
the flow chat is shown as Fig. 7.

FIGURE 7. Flow chart of the bundle adjustment.

B. RECONSTRUCTION MODEL
Suppose there are n sets of 2D observation of dynamic
points from n cameras, denoted as C1,C2, · · ·,Cn,Ci =

{CiP1,CiP2, · · · ,CiPj, · · · ,CiPki}, where n represents the
total number of cameras, CiPj denotes the jth point in ith

camera, and ki denotes the total number of points in ith

camera. Let S = {S1,S2, · · ·,Sr, · · ·,Sw} represent the set
of matching groups, where Sr is the set of 2D observa-
tions of the r th dynamic point in MCSs, and w is total
number of dynamic points. Our purpose is to assign every
2D point CiPj to its corresponding matching group Sr, and
finally calculate the 3D coordinates of all dynamic points
from set S. Our proposed reconstruction method is based
on a rigorous matching process, as shown in Fig. 8, which
includes three stages: 1) coarse matching by determination
of candidate points, 2) refined matching based on Cyclical
Voting(CV), and 3) calculating the 3D coordinates. The code
can be found in ‘‘https://github.com/Lijianfang6930/Robust-
Precise-Dynamic-Point-Reconstruction-from-Multi-view.’’

1) COARSE MATCHING BY DETERMINING
CANDIDATE CORRESPONDING POINTS
Coarse matching is accomplished by pairwise matching
between points in different cameras, and the purpose is
determining the candidate corresponding points for each sin-
gle point. Let (ui1j1 , vi1j1 , 1) and (ui2j2 , vi2j2 , 1) represent the
homogeneous coordinates ofCi1Pj1 andCi2Pj2 on pixel plane,
respectively. F12 represents the fundamental matrix from Ci1
to Ci2 , and l0 represents the polar line of Ci1Pj1 from camera
i1 to camera i2. According to epipolar geometry, point Ci2Pj2
is located on line l0; thus, we obtain Eq. (19),[

ui2j2 vi2j2 1
]
F12

[
ui1j1 vi1j1 1

]T
= 0. (19)

In reality, point Ci2Pj2 is usually located near line l0, some-
times even far away from l0; therefore, bipolar constraint is
introduced to determine the search area by a threshold θ ,
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FIGURE 8. Flow chart of the proposed reconstruction method.

FIGURE 9. Bipolar constraint. A searching area is constrained by
l1 and l2, and points within the area are considered as candidate
corresponding points of Ci1

Pj1
.

as shown in Fig. 9. For any point Ci2Pj3 (ui2j3 , vi2j3 ) in Ci2 ,
if the distance d from Ci2Pj3 to line l0 satisfies Eq. (20):

d =

∣∣∣∣∣∣
[
ui2j3 vi2j3 1

] [
L1 L2 L3

]T√
L21 + L

2
1

∣∣∣∣∣∣ ≤ θ (20)

where
[
L1 L2 L3

]T
= F12

[
ui1j1 vi1j1 1

]T , then Ci2Pj3 is a
candidate corresponding point of Ci1Pj1 .

FIGURE 10. Storage form of TP for 2 cameras.

In this study, we introduce a 0-1 matrix to represent the
corresponding relation for any pair of points in pairwise
matching. If a point is filtered out by bipolar constraint,
then it is marked as 1, otherwise, it is recorded as 0. The
matrix is denoted as TP, whose storage form is shown as
Fig. 10. TP records the camera number and point number
of the candidate corresponding point for any point CiPj. Our
subsequent matching process is all based onTP, and it greatly
facilitates the retrieval of candidate correspondence.

2) REFINED MATCHING PROCESS
BASED ON CYCLICAL VOTING
The objective of matching is to sign every point to a specific
matching group, where the points are the 2D observation of
the same 3D dynamic in multiple views. If we ignore the
noise and interference among numerous points, it is a simple
task by epipolar geometry in pairwise matching situation,
and the process of course matching is enough. But noise
and interference may cause significant mismatching in reality
application, as shown in Fig. 11. To address the problem,
we design a refined matching process, which considers all
views together when searching for a pair correspondence.
Our designed matching algorithm can decrease mismatching
significantly comparing to Cortex, and can be generalized to
engineering application too.

FIGURE 11. Issue of pairwise matching. Usually, p21, p22 and p23 in
Camera 2 are the corresponding points of p11, p12, p13 in Camera 1,
respectively. In real situation, the following mismatching may exist:
1) Both p22 and p21 are the candidate corresponding points of p11, but
only p21 is the right one. 2) p23 is outside of the searching scope and far
away from the polar line of p13, so p23 is not chosen as the candidate
corresponding point of p13.
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Algorithm 1TheMatching Process Based on Cyclical Voting
Input: TP, ipa
Output: S
1: r = 1
2: /I Traverse all points in TP I/
3: for ipa = 1 : m do
4: if Pipa has been matched then
5: continue
6: end if
7: Determine the initial Sr
8: if length(Sr)≤ 2 then
9: continue
10: end if
11: while Sr is not stable do
12: /I Global Voting: traverse every point in TP I/
13: if the votes of a point in TP is over half of total

number of FPs then
14: Incorporate the point into Sr
15: end if
16: /I In-group Voting: traverse every point in Sr I/
17: if the votes of a point in Sr is less than half of total

number of FPs then
18: Kick the point out of Sr
19: end if
20: Deal with the situation that two or more points

belong to the same camera in Sr.
21: end while
22: Mark the points in Sr as matched in TP
23: r = r + 1
24: end for

In an ideal situation, points in the same matching group are
corresponded to each other. If a point belongs to a specified
matching group, then it must correspond to the majority
points in the matching group. According to this idea, points
in the matching group are set as fiducial points (FPs) in every
step. If a point outside the matching group obtains majority
votes from FPs, then the point is added into the matching
group. For the definition of voting in this study, if point a
is FP, and point b is a candidate corresponding point of
point a, then point b receives a vote from FP. At the same
time, if a point within the matching group receives majority
votes from FPs, then the point is retained in the matching
group; otherwise, it will be kicked out of the matching group.
Algorithm 1 shows the matching process for a single frame
in MCS, where TP is a 0-1 matrix of m × m, m =

∑n
i=1 ki

is the total number of points in all cameras, and ki denotes
the total number of points in ith camera. ipa represents the
serial number of points from 1 to m in TP. Our purpose
is to assign every point CiPj to its corresponding matching
group Sr. Algorithm 2 describes how to determine initial Sr,
where pp is a set of candidate corresponding points of Pipa
in TP, tcp is a set of points that receives two votes from pp(i)
and Pipa in TP.

Algorithm 2 Determine the Initial Sr
Input: TP, ipa
Output: initial Sr
1: Add Pipa into Sr
2: if pp == [] then
3: return Sr
4: else
5: for i = 1:length(pp) do
6: if tcp ==[] then
7: continue
8: else
9: Deal with the situation that two or more points

belong to the same camera in tcp;
10: Add point pp(i) and points in tcp into Sr
11: end if
12: end for
13: end if
14: Delete the repetitive points in Sr
15: if votes of a point in Sr is less than 2/3 of total number of

FPs then
16: Kick the point out Sr
17: end if
18: return Sr

Later, we describe our method based on an instance includ-
ing 15 cameras and 40 dynamic points, each camera captures
3600-frames motion capture data. Here, C1P7 in the 60th

frame is chosen as the initial FP randomly. We must find a
matching group Sr containing the 2D observations of the r th

dynamic point.

TABLE 1. Candidate corresponded points of C1P7.

TABLE 2. Candidate corresponded points of C2P10.

TABLE 3. The initial matching group Sr.

The first step is determining the initial matching group Sr.
Twelve candidate corresponding points of C1P7 can be found
in TP, as shown in Table 1. Only C2P10 have two or more
candidate corresponding points that similar with Table 1,
as shown in Table 2. The intersection of Table 1 and 2 are
selected as the initial points in matching group Sr, as shown
in Table 3.
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TABLE 4. The updated Sr after the first round global voting.

The second step is determining the final matching group
by CV, which includes multiple rounds of global voting and
in-group voting. In the first round of global voting, if votes
of the point Pipa in TP is greater than a certain value, which
is determined as half of the total points in Sr, then Pipa will
be added into matching group Pipa. Here, votes of 6 points
are more than half of the total number of FPs, as shown
in Table 4. In the first round of in-group voting, if the votes
of a point in Sr are less than half of the total number of FPs,
then the point is kicked out of Sr. Except for points C2P10
and C13P8, no other FP votes for the original point C1P7.
This means that C1P7 only gets two votes, and will be kicked
out of Sr. Table 5 shows the results of the first round voting.

TABLE 5. The updated Sr after the first round in-group voting.

The results of the second-round voting is shown in Table 6,
which indicates that a new point C7P8 is added into the
matching group Sr. After the third-round voting, Sr stays
stable, and the final matching group Sr is shown in Table 6.
Points C2P10, C3P11, C4P8, C6P10, C7P8, C9P10, C12P9,
C13P8, and C14P9 are the 2D observations of the r th dynamic
point.

TABLE 6. The updated Sr after the second round global voting.

3) CALCULATING THE 3D COORDINATES
The 3D coordinates are triangulated by the DLT algorithm
from matching groups. In this step, a method called Point
Residual, expressed as Algorithm 3, is proposed to exclude
outliers further. At the end of the last round of in-group
voting, the votes of every point in matching group Sr are
obtained, denoted as Vr. After setting a 2D FP and a 3D FP,
if the Manhattan distance between 3D FP and 3D point
reconstructed by 2D FP and point in {Sr-2D FP} is larger
than a threshold, then the point in {Sr-2D FP} is excluded
from Sr. The entire process is shown as Algorithm 3, where
k1 and k2 are the serial numbers of points in Sr corresponding
to V ′r (1) and V

′
r (2).

IV. EXPERIMENTS AND EVALUATION
In this section, we provide our evaluation based on the
standard and our own datasets. The standard datasets

Algorithm 3 Point Residual
Input: Sr, Vr
Output: Refined Sr
1: V′r = Sort(Vr) /I Sort Vr from largest to smallest. I/
2: Triangulate the 3D FP by Sr (k1) and Sr (k2).
3: for i = 1:length(Sr) do
4: if i = k1 then
5: continue
6: else
7: ifManhattan distance between 3D FP and 3D point

reconstructed by Sr (k1) and Sr (i) is larger than a
threshold then

8: Delete Sr (i)
9: end if
10: end if
11: end for
12: return Sr(i)

are used to compare our method with NRSFM meth-
ods [6], [8], [42], [43] in precision evaluation, they include
Drink, Pick-up, Yoga, Stretch, and Dance. As 2D observa-
tions of standard datasets are unavailable directly, true 3D
points are projected to synthetic cameras every 24 degrees to
generate 15 sets of 2D observations. Gaussian noise is then
added to all these 15 sets of 2D observations, as [6], [8], [42],
and [43] done. Our own datasets are used to compare our
framework to Cortex, we collect multiple 2D motion datasets
using the MCS provided by Motion Analysis. The MCS
includes 15 cameras, and each 2D motion dataset contains
3600 frames and 90, 100, 110, 120, 130, 140, 150, 160,
170, 180, 190 and 200 dynamic points. In addition, as one
of the most successful commercial analysis and processing
software of motion data, Cortex [11] is chosen as our bench-
mark for the evaluation on our own datasets, it has been
widely used to reconstruct dynamic points in motion capture
application. Our experiments include: 1) calculation of the
value of θ , 2) evaluation of calibration, 3) evaluation of recon-
struction results, and 4)visualization of sample reconstruction
results.

The position error metric is the same as that reported
in [6], [8], [42], and [43], where e3D = 1

σFN

∑F
f=1

∑N
n=1 e

f
n

represents the normalized mean 3D error between the recon-
structed 3D points and the ground truth; efn is used to
denote the 3D error of the nth point in frame f ; and σ =
1
3F

∑F
f=1(σ

f
x + σ

f
y + σ

f
z ), σ

f
x , σ

f
y , and σ

f
z are the standard

deviations of error in frame f for x, y, and z coordinates.When
evaluating on our own datesets, directly comparing the 3D
position of the reconstructed dynamic points is unpractical
in each frame, since Cortex can not output the coordinates
of reconstructed dynamic points. Thus, we use the metric of
the percentage of frames, whose number of reconstruction
points is equal to the number of markers, the error metric is
denoted as pfwmp, the higher the pfwmp, the better the result
of reconstruction quality.

22416 VOLUME 7, 2019



D. Xiao et al.: Robust Precise Dynamic Point Reconstruction From Multi-View

FIGURE 12. (a): Variation of pfwmp with the value of θ from 1-10.
(b): Variation of pfwmp with the value of θ from 3.0-3.9.

A. DETERMINING THE VALUE OF θ
We first test the value of θ from 1 to 10, and results are
shown in Fig. 12(a). When θ increases from 1 to 3, The
figure shows that pfwmp increases at the same time on all
datasets, and reaches the peak at θ = 3 (shown as the black
bar), The reason is that when the value of θ is small, some
correct corresponding points are excluded by bipolar con-
straint. With the continuous increase of θ , pfwmp continues
to declines. The increase of θ lead increase of the number
of points in the search area to increase, finally resulting in
much mismatch. To further refine the value of θ , we test the
value of θ from 3.0 to 3.9. The statistical result is shown
in Fig. 12(b), indicating that pfwmp is decremented when θ
is from 3.0 to 3.9. Therefore, we determine θ = 3.0 for our
selected MCS.

B. CALIBRATION EVALUATION
We test the calibration method based on our own datasets.
Utilizing the same reconstructing method, we use the camera
parameters calibrated by our own method and Cortex respec-
tively. Fig. 13 shows the results. When using our calibration

FIGURE 13. Comparison of pfwmp by using our calibration (the blue bar)
+ our reconstruction, Cortex (the red bar) + our reconstruction, method
without optimization (the black bar).

method, pfwmp (blue bar) shows an average of 2.7% higher
compared with Cortex (the red bar) on all of our datasets.
Therefore, our calibration method leads to better reconstruc-
tion results compared with Cortex. In an additional test, when
the position of the four reference points is not optimized,
pfwmp drops by an average of 8.5% using our calibration
method, as the black bar shows. Optimizing the position of
the four reference points with multiple geometric constraints
improves the calibration quality significantly.

C. RECONSTRUCTION EVALUATION
In this subsection, we divide our evaluation into three parts:
1) compare the normalized mean 3D error e3D with NRSFM
method on the standard datasets, 2) compare the reconstruc-
tion quality with Cortex on our own datasets, and 3) compare
the matching quality with Cortex on our own datasets.

1) COMPARING WITH NRSFM METHOD
To evaluate position precision, we compare our proposed
method with the state-of-art NRSFM method on standard
datasets. e3D are quoted from [6], [8], [42], and [43].
As shown in Table 7, the e3D of our reconstruction performs
lower than all the latest state-of-art NRSFM method except
for [6], which only performs better in the dataset of Drink.
In another test, we use the 15 synthetic 2D datasets with noise
during matching and the 15 synthetic datasets without noise
during triangulation.We find that the reconstructed points are

TABLE 7. Comparison of performance on standard datasets.
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almost coincident with the ground truth and that the e3D of
each dataset is much close to 0. This result means that the
deviation of the reconstructed points in Table 7 is mainly
caused by the additional noise. Our experiments demon-
strate that the proposed method can reach a reliable position
precision.

2) COMPARING RECONSTRUCTION RESULTS WITH CORTEX
To evaluate our method in real application, we compare our
method with the commercial software Cortex on our own
datasets. In Fig. 14, as the number of points increases, regard-
less of ourmethod or Cortex, pfwmp shows a slight downward
trend. However, our method (blue bar) performs better than
Cortex (black bar) on each dataset, and pfwmp is 6.2% higher
on average. In addition, based on Cortex’s calibration results,
our reconstruction method (red bar) performs better than
Cortex’s reconstruction method (black bar), and the pfwmp of
the former is 3.7% higher on average. Moreover, our method
has a standard deviation of 2.0, whereas Cortex has a standard
deviation of 2.7, indicating that the former is more stable
as the number of points increases. Our experiments prove
that our reconstruction method can achieve better results than
Cortex.

FIGURE 14. Comparison results of our reconstruction method and Cortex.

3) COMPARING THE MATCHING RESULTS WITH CORTEX
In 3.3.3, we introduce how our method works. The same
motion data is input into Cortex, where the camera number
minus 1 corresponding to the camera number in our method.
In addition to the 60th frame, we record the matching group
of the r th dynamic point in the 1060th frame, 2060th frame,
and 3060th frames. Table 8 shows the results of our method,
and Fig. 15 shows the results of Cortex. In the 60th frame,
seven cameras can capture the r th dynamic point in Cor-
tex. In fact, the left camera (camera 3) and middle camera
(camera 7) should see the point, but they fail to capture
the point in Fig. 15(a). These two cameras correspond to
C2P10 and C6P10 in our matching group. In the 1060th frame,
the r th point faces to camera 7 and cameras 4, these two

FIGURE 15. Cameras capturing the r th dynamic point in Cortex. (a) 60th

frame. (b) 1060th frame. (c) 2060th frame. (d) 3060th frame.

cameras should see the point in Fig. 15(b), but they miss the
point. On the contrary, our matching group contains these two
cameras, which are denoted as C6P2 and C3P7 in Table 8.
Our method also finds that Camera 12 is likely to see the
point in cortex. In the 2060th frame, camera 4 in Fig. 15(c)
does not capture the r th point, but the corresponding point
C3P5 can be found in Table 8. Both our method and Cortex
miss camera 6(C5 in Table 8). In the 3060th frame, Cortex
misses cameras 16 and 14, but the corresponding points of
C15P6 and C13P10 can be found in our matching group.
Therefore, if we only consider the correct cameras included
in the matching group, our matching method performs much
better than Cortex.

TABLE 8. The matching groups of the r th dynamic point in our method.

D. VISUALIZATION OF SAMPLE
RECONSTRUCTION RESULTS
To visualize our reconstruction results, we present the com-
parison between the reconstruction results and ground truth
on standard datasets in Fig. 16. We also provide a visualiza-
tion for reconstruction results on our own dataset from 1695th

frame to 1721th frame, the datasets include two humans,
100 dynamic points, and 27 frames. Although many points
on the two humans almost overlap, and the interference
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FIGURE 16. Visualization of sample reconstruction results on standard
dataset. The ed points are the ground truth, and the green points are the
reconstruction results by our method.) (a)1th, 34th, 148th and 210th frame
of Dance dataset, e3D = 0.005. (b)103th, 374th, 662th and 960th frames of
Drink dataset, e3D = 0.003. (c)1th, 138th, 342th and 357th frame of Pickup
dataset, e3D = 0.001. (d)44th, 162th, 240th and 357th frame of Stretch
dataset, e3D = 0.000. (e)1th, 43th, 206th and 357th frame of Yoga dataset,
e3D = 0.002. (a) Dance. (b) Drink. (c) Pick up. (d) Stretch. (e) Yoga.

FIGURE 17. Recovering 100 3D dynamic points in our own datasets from
1695th frame to 1721th frame.

between the points is quite serious, our method still works
well to reconstruct these points. The number of reconstruction
points is 100 in all frames but one, as shown in Fig. 17.

However, in Cortex, we find eight frames whose reconstruc-
tion points are less or more than 100.

V. CONCLUSION
This study puts forward a complete framework to reconstruct
precise dynamic points only with their 2D positions inMCSs.
Our method focuses on decreasing mismatch when searching
for correspondence in multi-view. In the application of the
motion capture system, we introduce multiple constraints to
optimize the position of reference points, and we find that the
treatment improves the performance of calibration. During
matching, basing on epipolar geometry, we propose a novel
sparse multi-view matching method, which consists of CV
and PR. Experiments prove that our method can achieve
outstanding performance on standard and our own datasets.
Compared with commercial software Cortex, our method
exhibits better reconstruction quality and decrease mismatch-
ing significantly. In the future, we intend to develop a method
to determine the search area automatically, and improve our
computation speed by parallel computing.
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