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Abstract
The Fire Dynamics Simulator (FDS) is widely used for fire simulation but faces scalability challenges due to its limited grid 
partitioning capabilities. To address this issue, we propose Para-FDS, a scalable multilevel parallel scheme for accelerating 
FDS targeted at multicore architectures. Para-FDS integrates three key optimizations: (1) an adaptive grid partitioning algo-
rithm to enhance scalability, (2) a communication localization optimization approach to reduce overhead between computing 
nodes, and (3) a NUMA-aware process mapping strategy to improve core utilization within Non-Uniform Memory Access 
(NUMA) architecture. Implemented on the Tianhe next-generation supercomputer, Para-FDS achieves a speedup of up to 
214× on a practical example. It further reduces communication overhead by up to 38% and execution time by up to 22%, 
significantly improving FDS scalability and efficiency.

Keywords  Communication optimization · Fire dynamics simulator · Adaptive grid partitioning · HPC · Multicore 
architecture · Parallel algorithm

1  Introduction

Indoor fires pose significant risks to life and property, 
making accurate and rapid fire simulations crucial for 
building design and disaster analysis. FDS (Verda et al. 

2021; Yakovchuk et al. 2020) is a widely used open-source 
tool for fire modeling. However, its block-structured input 
grids cannot be subdivided, limiting scalability and paral-
lelization, especially for large and complex simulations. 
Furthermore, as each input grid can only be assigned to a 
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single MPI (Message Passing Interface) process, signifi-
cant disparities in grid dimensions result in severe load 
imbalance.

Large-scale numerical simulations in FDS are critically 
dependent on high-performance computing (HPC) systems. 
Nowadays, multicore architectures playing a dominant role 
due to their exceptional computational capabilities and rapid 
evolutionary progress (Diaz et al. 2012). However, the par-
allelism of FDS significantly lags behind hardware ability, 
resulting in inefficient hardware resource utilization and high 
energy consumption of modern multi-core architectures.

Achieving full acceleration of FDS on modern multi-
core HPC platforms presents three critical challenges: (1) 
developing scalable parallelization strategies with balanced 
workload distribution across input blocks, (2) minimiz-
ing frequent inter-node communication overhead, and (3) 
ensuring effective utilization of NUMA-aware multi-core 
architectures.

To address the challenges in enhancing the scalability of 
FDS on multicore architectures, we propose Para-FDS, a 
multilevel parallel scheme that integrates several optimiza-
tion strategies. At the process level, we introduce an adaptive 
grid partitioning algorithm that dynamically subdivides the 
input blocks into smaller subblocks, effectively improving 
workload balance. At the inter-node level, we implement a 
communication localization strategy that minimizes com-
munication overhead by grouping processes based on data 
locality, thereby optimizing inter-process communication. 
At the intra-node level, we leverage a NUMA-aware process 
mapping scheme that efficiently utilizes the Non-Uniform 
Memory Access (NUMA) nodes, ensuring better memory 
access patterns and reducing contention. Together, these 
components significantly enhance the overall performance 
and scalability of FDS on multicore systems.

The most important contributions of this paper are sum-
marized as follows.

•	 We propose an adaptive grid partitioning algorithm to 
automatically decompose and scale FDS input blocks.

•	 We scale practical FDS input blocks from several to 
1,024 processes with 214× speedup on the Tianhe next-
generation (Tianhe NG) supercomputer.

•	 We develop a communication localization strategy and 
a NUMA-aware process mapping scheme for FDS on 
multicore architectures, reducing communication time by 
22%–38% and execution time by 18%–22%.

This paper is structured as follows: In Sect. 2, we introduce 
related work. Section 3 provides background information 
on FDS. In Sect. 4, we present the details of Para-FDS. Sec-
tion 5 illustrates the experiments and analyzes the optimiza-
tion results. Section 6 concludes this paper with a discussion 
of our future work.

2 � Related work

As the complexity and scale of FDS simulations increase, 
efficient parallelization becomes critical to ensure scalability 
and performance. Although established algorithms for grid 
partitioning, process mapping, and load balancing have been 
extensively researched and applied in various domains, their 
integration and adaptation to FDS software pose unique chal-
lenges. This section reviews these key techniques and dis-
cusses their relevance to FDS, which motivated our approach.

Grid partitioning methods Traditional domain decom-
position methods, which divide the original domain into 
multiple sub-domains evenly, are widely used to meet the 
requirements for parallel computation (Qian and Zhang 
2012; Rantakokko 2000; Schamberger and Wierum 2003; 
Allen et al. 2011). For instance, Qian and Zhang (2012) 
developed an octree-based method to generate basic block-
structured blocks, while (Wang et al. 2013) introduced a grid 
partitioning tool, TH-MeshSplit, to divide a given single- or 
multi-block structured grid into many subblocks for parallel 
computing. TH-MeshSplit aims to minimize the ratio of sur-
face area to the volume of the subblock cells, i.e., to partition 
the grid into cubes in three directions as much as possible. 
This approach reduces the communication area and balances 
the computational load between subblocks.

However, when there is a significant disparity in the 
lengths of the three dimensions of input grids, partition-
ing them into near-cubes via 3D partitioning becomes 
challenging, as one or two dimensions may not meet the 
requirements.

Communication optimizing In computational fluid dynam-
ics (CFD) applications, inter-process communication consti-
tutes a critical performance bottleneck, particularly when 
scaling to massive parallel systems with numerous dynami-
cally generated subblocks (Rabenseifner and Wellein 2003; 
Maliszewski et al. 2019). The communication overhead 
grows exponentially with system scale due to increasing 
complexity in cross-node data exchanges. Recent advances 
in topology-aware process placement strategies (Valgren 
et al. 2007; Hoefler et al. 2014; Georgiou et al. 2017) have 
demonstrated effective solutions by optimizing data affinity 
through intelligent mapping of communicating processes to 
adjacent compute nodes or shared memory domains.

A representative work by Jeannot (2022), TopoMatch, 
addresses this challenge through dynamic communica-
tion pattern adaptation, specifically designed for modern 
hierarchical architectures featuring NUMA domains and 
multi-level interconnects. This approach achieves supe-
rior communication efficiency by preserving data locality 
while accommodating complex topology constraints.

NUMA-aware process mapping Load balance is another criti-
cal factor in ensuring the efficient use of multicore architectures, 
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particularly in NUMA-based systems (Muddukrishna et al. 
2016; Drebes et al. 2016). Psaroudakis et al. (2016) designed an 
adaptive NUMA-aware data placement for analytical workload 
in main-memory column stores, which could balance the utili-
zation of resources across NUMA nodes. By applying NUMA-
aware process mapping strategy for FDS, we optimized intra-
node workload distribution, ensuring that each NUMA node was 
fully utilized while minimizing memory access cross NUMA 
node. This led to a more efficient use of computing resources 
and reduced simulation runtimes for large-scale fire models.

3 � Background

FDS adopts the low-mach, large-eddy simulation (LES) 
method to simulate thermally-driven flows within build-
ings (McGrattan et al. 2005). The governing equations are 
approximated using second-order accurate finite differences 
on uniformly spaced 3D grids. Blocks are constructed by 
multiple grid cells, and each block can be processed in par-
allel using MPI (Harlow and Welch 1965; Morinishi et al. 
1998) processes.

One FDS input block is a structured hexahedron composed 
of fundamental units called grid cells. The solution process 
for FDS occurs within each grid cell. For example, an input 
block may contain 8, 12, and 10 grid cells in the X , Y  , and Z 
axes, respectively, totaling 8 × 10 × 12 grid cells. Each input 
block is assigned to a separate MPI process. The compu-
tational complexity of an input block is determined by its 
number of grid cells; consequently, a higher number of grid 
cells in an input block leads to increased computing time.

FDS process comprises three phases: initialization, pre-
diction, and correction. The initialization phase begins with 
setting up the MPI, reading FDS input files, and initializing 
data. During the main cycle, variables are initially estimated 
with coarse precision and subsequently refined in the cor-
rection phase. After computations are completed within a 
time step, variable data must be communicated across the 
boundary grid cells of the input block.

4 � Methods

As shown in Fig. 1, Para-FDS mainly includes three parts: 
adaptive grid partitioning algorithm at the process level, 
communication localization optimization at the inter-node 
level and NUMA-aware process mapping within a node.

4.1 � Adaptive grid partitioning

In FDS simulations, the distribution of grid cells across 
computational blocks plays a critical role in determining 
computational efficiency. Significant disparities in grid 
cell counts between adjacent blocks often lead to severe 
workload imbalance. Moreover, the lack of automatic input 
block partitioning in FDS fundamentally restricts its com-
putational scalability. To mitigate these limitations, we pro-
pose an adaptive grid partitioning algorithm that optimizes 
workload distribution by minimizing the ratio of maximum 
to minimum grid cells among subblocks. The key variables 
of this algorithm are systematically presented in Table 1.

The problem is formally defined with m input blocks, 
where the i-th block denoted as Mi contains Vi grid cells and 
is partitioned into ni subblocks. The total number of gener-
ated subblocks is n , where:

The proposed algorithm consists of two phases: (1) comput-
ing the optimal number of subblocks ni for each input block 

(1)n =

m
∑

i=1

ni.

Fig. 1   The multilevel parallel framework of Para-FDS on multicore 
HPC platforms

Table 1   Notation introduction in the adaptive grid partitioning algo-
rithm

Abbreviation Full name

m The number of input blocks
Mi The i-th input block
Vi The number of grid cells in the i-th input block
ni The number of subblock of the i-th input block
n The number of all divided subblocks
V
all

The sum of grid cells over all input blocks
V
ave

The average number of grid cells over all input blocks
nz The quotient of Vi divide by V

ave

S The sum of all ni
n
over

The difference between Sum_ni and n
nt The initial value of ni
Uj The number of grid cells in the j-th subblock
L The number of grid cells of X axis
W The number of grid cells of Y axis
H The number of grid cells of Z axis
K Maximum value of L, W, H
Nj The j-th divided subblock
no The difference between nt and ni
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Mi , and (2) adaptively decomposing the block Mi into its 
corresponding ni subblocks.
Algorithm 1   Optimal Subblock Computing Algorithm

4.1.1 � Phase 1: Calculation of the subblocks for input blocks

The partitioning process, as outlined in Algorithm 1, oper-
ates on each input block Mi containing Vi grid cells and 
determines the optimal number of subblocks ni . The algo-
rithmic procedure proceeds as follows:

•	 For all input blocks, derive the total count and average 
value of their constituent grid cells. (L1).

Algorithm 2   Adaptive Factorization Grid Partitioning Algorithm

•	 Determine the number of subblocks ni to be partitioned 
for the i-th input block Mi (L2 – L5).

•	 Adjust the maximum value of ni to obtain the number of 
subblock of the i-th input block (L6 – L9).
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4.1.2 � Phase 2: Decomposition of input blocks

Building upon the subblock count ni determined in Algo-
rithm 1, this phase performs 3D partitioning of input blocks. 
The algorithm decomposes ni into a three-factor product 
a × b × c , representing the partitioning dimensions. Subse-
quently, the grid cells are uniformly distributed along the 
three spatial dimensions, with proportional scaling pre-
served. The optimization objective aims to minimize the 
directional subblock cost, defined as L∕a +W∕b + H∕c . For 
prime-valued ni , the algorithm implements uniform parti-
tioning along the longest dimension. The complete imple-
mentation details are specified in Algorithm 2:

•	 Exact Division: When Vi is divisible by ni , uniformly 
partition Vi along the optimal spatial axis (1D/2D/3D) 
into ni sub-units (L3 - L4).

•	 Composite Divisor: For non-divisible ni where ni is com-
posite:

–	 Factorize ni into three integers a × b × c.
–	 Partition Vi proportionally along three dimen-

sions to minimize the spatial cost function 
( L∕a +W∕b + H∕c ) (L5–L10).

•	 Prime Divisor Handling:

–	 Adequate Grid Capacity: If maximum grid dimen-
sion exceeds prime ni , partition along that dimension 
(L12–L15).

–	 Insufficient Capacity: reduce ni by 1 and recursively 
re-evaluate partitioning (L16–L18).

•	 Recursive Refinement: For residual partitions from recur-
sion ( no > 0 ), bisect each subblock uniformly (L20–
L25).

4.2 � Communication localization optimization

In distributed high-performance computing systems such as 
supercomputers, data communication between nodes relies 
on network-based transmission, whereas processes within a 
single node can access shared memory and exchange data 
via direct copying, free from network interference (Lu et al. 
2022). As a result, intra-node communication is inherently 
faster than inter-node communication. For example, the 
default mapping scheme automatically assigns 16 processes 
to four nodes in a fixed order, as shown in the right panel of 
Fig. 2. Here, the physical spatial distribution of processes 
within each node is relatively scattered, leading to subopti-
mal data locality.

To address this issue, we aim to minimize inter-node com-
munication by designing a communication locality-based 
mapping scheme. By strategically co-locating processes that 
frequently communicate within the same node, inter-node 
communication overhead can be significantly reduced. As 
illustrated in the left panel of Fig. 2, the original scheme 
incurs 12 instances of inter-node communication, whereas 
the communication-optimized scheme reduces this number 
to 8, achieving a one-third reduction in inter-node communi-
cation through communication locality optimization.

4.3 � NUMA‑aware process mapping

In modern HPC architectures, NUMA is a prevalent design 
where each computing node consists of multiple NUMA 
nodes, each containing several cores (Hager and Wellein 
2008). Efficient NUMA utilization requires distributing 
MPI processes across nodes to balance computational load. 
However, conventional block-based scheduling sequentially 
assigns processes, leading to overloading of certain nodes 
while others remain underutilized.

Performance in such systems is often constrained by the 
most heavily loaded NUMA node due to memory conten-
tion. To alleviate this problem, we propose a NUMA-aware 

Fig. 2   Communication localiza-
tion optimization strategy on 
four nodes. Blocks of the same 
color indicate blocks with 
communication locality. Each 
number represents a process 
that a block is assigned
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process mapping scheme that evenly distributes tasks across 
NUMA nodes evenly, ensuring workload balance within a 
node. As illustrated in Fig. 3, with 32 MPI processes allo-
cated on a node containing eight NUMA nodes (each with 
eight cores), the original scheduling method only utilizes 
four nodes, leaving the remaining nodes idle. In contrast, 
NUMA-aware process mapping distributes 32 processes 
across all eight NUMA nodes, maximizing resource utiliza-
tion and improving system performance.

5 � Evaluation and experiments

We conduct experiments on the Tianhe NG supercomputer 
(Lu et al. 2022; Wang et al. 2020) to test the performance 
of Para-FDS. Each computing node contains an FT2000+ 
processor, which consists of eight NUMA nodes, each with 
eight cores, totaling 64 cores, all running at a clock speed 
of 2.2 GHz. Each core is supported by a 32 KB L1 cache, 
and four cores share a 32 MB L2 cache. Together, the 64 
cores can achieve a peak performance of 563.2 Gflop/s 
of double-precision using the ARM 64 instruction set. 

Fig. 3   The NUMA-aware 
process mapping when 32 
processes are assigned to a 
processor with 8 NUMA nodes, 
with 8 cores each. The blue 
block represents the core of the 
assigned task, and the white 
block represents no assigned 
task
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The system is equipped with 124 GB of DDR4 memory. 
The software system in use is Linux Ubuntu 20.04.5 with 
Infiniband interconnection. The MPI is OpenMPI version 
4.1.4, and FDS is version 6.7.4.

First, we propose a metric to evaluate the workload 
distribution across subblocks by comparing the grid par-
titioning method with the original undivided one. Next, 
we assess the efficiency of the adaptive grid partitioning 
algorithm through practical scenarios. Subsequently, we 
analyze the effectiveness of the communication locali-
zation optimization approach. Finally, we evaluate the 
NUMA-aware process mapping method.

5.1 � Workload balancing estimation

We introduce an indicator Rb to measure workload balanc-
ing. Rb is defined as the ratio of the grid cell number of the 
maximal subblock to the minimum one:

The balance metric Rb quantitatively reflects workload dis-
tribution, where Rb = 1 indicates perfect balance and higher 
values denote increasing imbalance. We evaluate our algo-
rithm using the Subway engineering case comprising seven 
input blocks. As shown in Table 2, the initial configura-
tion yields Rb = 24.39 when treating each input block as a 
single unit, revealing severe workload imbalance. However, 
our adaptive grid partitioning algorithm achieves remark-
able balance when dividing the system into ≥ 32 subblocks, 
maintaining Rb below 1.5 and approaching the ideal value 
of 1. This demonstrates the algorithm’s effectiveness in 
creating balanced workload distributions across partitioned 
subblocks.

(2)Rb =
max(Ui)

min(Ui)
.

5.2 � Scalability

The adaptive grid partitioning algorithm effectively scales 
input blocks and achieves substantial speedup across various 
scenarios. Performance evaluation using the Subway case 
reveals key insights. As shown in Fig. 4a, execution time and 
speedup are analyzed over a 10-s simulation with varying 
subblock counts. Initially, both wall clock and iteration times 
decrease significantly, reaching a minimum at 128 subblocks 
before gradually increasing. Here, speedups of 169.92 (based 
on wall-clock time) and 214.29 (based on iteration time) are 
achieved, with a workload balancing factor Rb of 1.19, indi-
cating an effectively balanced workload distribution. Here, 
at most 214.29× speedup is obtained when dividing into 128 
subblocks from seven initial blocks with the same configura-
tion. These results confirm our algorithm’s scalability and 
effectiveness in enhancing input block simulations.

To evaluate the adaptability of the adaptive grid par-
titioning algorithm, we tested it on four FDS scenarios: 
Strong- scale , Box- burn , Pressure, and Enthalpy. Fig-
ure 4b–-e present the results of execution time and speedup 
over a 10-s simulation with varying subblock partitions. In 
Strong- scale (Fig. 4b), execution time decreases up to 256 
subblocks, achieving peak speedups of 38.86 (wall clock) 
and 71.46 (iteration time), before increasing due to com-
munication overhead. Box- burn (Fig. 4c) follows a similar 
trend, with optimal speedups of 27.77 and 31.52 at 64 sub-
blocks. Pressure (Fig. 4d) reaches its lowest execution time 
at 256 subblocks, yielding speedups of 46.16 and 47.66. 
Enthalpy (Fig. 4e) performs best at 128 subblocks, with 
speedups of 42.96 and 50.79.

These results confirm the adaptive grid partitioning algo-
rithm’s effectiveness across different scenarios, demonstrat-
ing scalability and significant speedup. However, increasing 
subblocks beyond an optimal point introduces more commu-
nication overhead, limiting scalability. The results in Fig. 4 
show the optimal subblock count varies (128, 256, 64, 256, 
and 128), influenced by simulation scale and computational 
complexity. Thus, determining the optimal grid partition-
ing requires empirical tuning based on specific physical and 
chemical conditions.

5.3 � Communication localization optimization

In this section, we evaluated the communication localiza-
tion optimization strategy using the Subway case with 128 
subblocks on 16 nodes. As shown in Fig. 5, the communica-
tion localization scheme reduces the communication time by 
22.92%–38.31% and the execution time by 18.36%–22.33%.

The results above illustrate that the communication local-
ization optimization strategy, which puts as many commu-
nicating processes as possible into a single computing node, 

Table 2   Comparison of block-wise grid cell distributions and R
b
 

values between the adaptive grid partitioning scheme and the initial 
scheme for the Subway case

Scheme Subblocks Maximum-grid-cell Minimum-
grid-cell

R
b

Initial 7 333,600 13,680 24.39
16 48,000 13,680 3.51
32 20,850 13,680 1.52
64 9828 6,840 1.44

Adaptive grid 
partitioning

128 4914 4140 1.19

256 2400 1800 1.33
512 1365 1140 1.20
1024 650 468 1.39
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reduces the long communication distances between nodes, 
and thus significantly reduces the communication time, as 
well as reduces the execution time.

5.4 � NUMA‑aware process mapping

To assess the efficacy of the proposed NUMA-aware process 
mapping scheme, we performed experiments on the Subway 

benchmark, utilizing 128 subblocks distributed on 16 comput-
ing nodes. As depicted in Fig. 6, the experimental results reveal 
substantial performance enhancements. Notably, the proposed 
scheme reduced wall-clock time by 19.23%, iteration time by 
22.51%, communication time by 23.29%–30.37%.

In this configuration, 128 processes were mapped to 128 
computational blocks distributed across 16 nodes, with each 
node hosting eight processes. Under the initial scheme, 
all eight processes per node were constrained to a single 

Fig. 4   Execution time and 
speedup for FDS cases when 
dividing into subblocks for five 
practical cases
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Fig. 5   Comparison of execution 
time and communication time 
between the communication 
localization optimization and 
the original scheme on 16 nodes 
with 128 processes in case 
Subway 

Fig. 6   Comparison of execu-
tion time and communication 
time between the NUMA-aware 
process mapping scheme and 
the original scheme on 16 nodes 
with 128 processes in case 
Subway 

Fig. 7   Execution time for the communication localization optimization and NUMA-aware process mapping scheme with 128 processes on eight 
nodes in case Subway 
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NUMA node, leading to resource contention and degraded 
performance. In contrast, the optimized scheme strategi-
cally distributes these processes across eight NUMA nodes, 
ensuring a balanced workload allocation within each node. 
This approach mitigates resource contention and yields sig-
nificant performance improvements.

Further testing combined this scheme with the communi-
cation localization optimization with case Subway on eight 
nodes over a 100-s simulation. Figure 7 shows that only a sin-
gle communication optimization reduces the communication 
time by 12.59%–28.86% and the execution time by 9%, while 
two optimization strategies reduce the communication time by 
18.40%–36.79% and the execution time by 13%. This result 
indicates that the two schemes can be superimposed to have 
simultaneous optimization effects both at the inter-node level 
of the process and at the intra-node level.

6 � Conclusion

This paper presents the deployment and optimization of block-
structured FDS on multicore HPC platforms via a scalable mul-
tilevel parallel framework, Para-FDS. To address the challenges 
of load imbalance and limited scalability in conventional FDS 
deployments, we propose a hierarchical optimization approach. 
At the process level, an adaptive grid partitioning algorithm 
dynamically balances computational workloads. At the inter-
node level, a communication locality optimization minimizes 
inter-node communication overhead, while at the intra-node 
level, a NUMA-aware process mapping strategy ensures effi-
cient workload distribution across NUMA domains.

Experimental results on the Tianhe NG supercomputer 
demonstrate the effectiveness of Para-FDS, achieving a 214× 
speedup by partitioning seven blocks into 1024 subblocks. 
Communication time and overall execution time are reduced 
by up to 38% and 22%, respectively. These improvements 
directly alleviate performance bottlenecks caused by load 
imbalance and poor scalability, significantly enhancing the 
parallel efficiency and scalability of FDS simulations.

In future work, we plan to extend Para-FDS to heteroge-
neous computing architectures and scale it to larger HPC 
clusters, aiming to support more complex, data-intensive, 
and dynamic fire simulation scenarios.
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