CCF Transactions on High Performance Computing
https://doi.org/10.1007/542514-025-00246-x

REGULAR PAPER q

Check for
updates

Para-FDS: a scalable multilevel parallel scheme for fire dynamic
simulator on multicore architectures

Dazheng Liu' - Sheng Xiao'2® - Xiaoli Ren? - Wenjuan Liu* - Dajiang Yi' - Zean Tian' - Jianping Wu? - Yongan Wu' -
Zuodong Niu' - Keqin Li* - Shaoliang Peng'

Received: 25 May 2025 / Accepted: 24 August 2025
© China Computer Federation (CCF) 2025

Abstract

The Fire Dynamics Simulator (FDS) is widely used for fire simulation but faces scalability challenges due to its limited grid
partitioning capabilities. To address this issue, we propose Para-FDS, a scalable multilevel parallel scheme for accelerating
FDS targeted at multicore architectures. Para-FDS integrates three key optimizations: (1) an adaptive grid partitioning algo-
rithm to enhance scalability, (2) a communication localization optimization approach to reduce overhead between computing
nodes, and (3) a NUMA-aware process mapping strategy to improve core utilization within Non-Uniform Memory Access
(NUMA) architecture. Implemented on the Tianhe next-generation supercomputer, Para-FDS achieves a speedup of up to
214x on a practical example. It further reduces communication overhead by up to 38% and execution time by up to 22%,
significantly improving FDS scalability and efficiency.

Keywords Communication optimization - Fire dynamics simulator - Adaptive grid partitioning - HPC - Multicore
architecture - Parallel algorithm

1 Introduction 2021; Yakovchuk et al. 2020) is a widely used open-source
tool for fire modeling. However, its block-structured input
grids cannot be subdivided, limiting scalability and paral-
lelization, especially for large and complex simulations.

Furthermore, as each input grid can only be assigned to a

Indoor fires pose significant risks to life and property,
making accurate and rapid fire simulations crucial for
building design and disaster analysis. FDS (Verda et al.

P4 Sheng Xiao Keqin Li
xiaosheng @hnu.edu.cn lik@newpaltz.edu
Dazheng Liu Shaoliang Peng
liudz@hnu.edu.cn slpeng@hnu.edu.cn

Xiaoli Ren
renxiaolil8 @nudt.edu.cn

Wenjuan Liu
liuwenjuan89 @hnu.edu.cn
Dajiang Yi
yidajiang@hnu.edu.cn
Zean Tian

tianzean @hnu.edu.cn
Jianping Wu
wjp@nudt.edu.cn

Yongan Wu
wyoa@hnu.edu.cn

Zuodong Niu
niuzuodong @hnu.edu.cn

Published online: 05 November 2025

College of Computer Science and Electronic Engineering,
Hunan University, Lushan South Road, Changsha 410082,
Hunan, China

Xiangjiang Laboratory, Jianshan Road, Changsha 410013,
Hunan, China

College of Meteorology and Oceanography, National
University of Defense Technology, Deya Road,
Changsha 410073, Hunan, China

School of Computer, Hunan First Normal University, Fenglin
Third Road, Changsha 410205, Hunan, China

Department of Computer Science, State University of New
York, 1 Hawk Drive, New York 14260, State of New York,
USA

@ Springer

http://crossmark.crossref.org/dialog/?doi=10.1007/s42514-025-00246-x&domain=pdf
http://orcid.org/0000-0003-1081-0739

D.Liuetal.

single MPI (Message Passing Interface) process, signifi-
cant disparities in grid dimensions result in severe load
imbalance.

Large-scale numerical simulations in FDS are critically
dependent on high-performance computing (HPC) systems.
Nowadays, multicore architectures playing a dominant role
due to their exceptional computational capabilities and rapid
evolutionary progress (Diaz et al. 2012). However, the par-
allelism of FDS significantly lags behind hardware ability,
resulting in inefficient hardware resource utilization and high
energy consumption of modern multi-core architectures.

Achieving full acceleration of FDS on modern multi-
core HPC platforms presents three critical challenges: (1)
developing scalable parallelization strategies with balanced
workload distribution across input blocks, (2) minimiz-
ing frequent inter-node communication overhead, and (3)
ensuring effective utilization of NUMA-aware multi-core
architectures.

To address the challenges in enhancing the scalability of
FDS on multicore architectures, we propose Para-FDS, a
multilevel parallel scheme that integrates several optimiza-
tion strategies. At the process level, we introduce an adaptive
grid partitioning algorithm that dynamically subdivides the
input blocks into smaller subblocks, effectively improving
workload balance. At the inter-node level, we implement a
communication localization strategy that minimizes com-
munication overhead by grouping processes based on data
locality, thereby optimizing inter-process communication.
At the intra-node level, we leverage a NUMA-aware process
mapping scheme that efficiently utilizes the Non-Uniform
Memory Access (NUMA) nodes, ensuring better memory
access patterns and reducing contention. Together, these
components significantly enhance the overall performance
and scalability of FDS on multicore systems.

The most important contributions of this paper are sum-
marized as follows.

e We propose an adaptive grid partitioning algorithm to
automatically decompose and scale FDS input blocks.

e We scale practical FDS input blocks from several to
1,024 processes with 214X speedup on the Tianhe next-
generation (Tianhe NG) supercomputer.

e We develop a communication localization strategy and
a NUMA-aware process mapping scheme for FDS on
multicore architectures, reducing communication time by
22%-38% and execution time by 18%—22%.

This paper is structured as follows: In Sect. 2, we introduce
related work. Section 3 provides background information
on FDS. In Sect. 4, we present the details of Para-FDS. Sec-
tion 5 illustrates the experiments and analyzes the optimiza-
tion results. Section 6 concludes this paper with a discussion
of our future work.

@ Springer

2 Related work

As the complexity and scale of FDS simulations increase,
efficient parallelization becomes critical to ensure scalability
and performance. Although established algorithms for grid
partitioning, process mapping, and load balancing have been
extensively researched and applied in various domains, their
integration and adaptation to FDS software pose unique chal-
lenges. This section reviews these key techniques and dis-
cusses their relevance to FDS, which motivated our approach.

Grid partitioning methods Traditional domain decom-
position methods, which divide the original domain into
multiple sub-domains evenly, are widely used to meet the
requirements for parallel computation (Qian and Zhang
2012; Rantakokko 2000; Schamberger and Wierum 2003;
Allen et al. 2011). For instance, Qian and Zhang (2012)
developed an octree-based method to generate basic block-
structured blocks, while (Wang et al. 2013) introduced a grid
partitioning tool, TH-MeshSplit, to divide a given single- or
multi-block structured grid into many subblocks for parallel
computing. TH-MeshSplit aims to minimize the ratio of sur-
face area to the volume of the subblock cells, i.e., to partition
the grid into cubes in three directions as much as possible.
This approach reduces the communication area and balances
the computational load between subblocks.

However, when there is a significant disparity in the
lengths of the three dimensions of input grids, partition-
ing them into near-cubes via 3D partitioning becomes
challenging, as one or two dimensions may not meet the
requirements.

Communication optimizing In computational fluid dynam-
ics (CFD) applications, inter-process communication consti-
tutes a critical performance bottleneck, particularly when
scaling to massive parallel systems with numerous dynami-
cally generated subblocks (Rabenseifner and Wellein 2003;
Maliszewski et al. 2019). The communication overhead
grows exponentially with system scale due to increasing
complexity in cross-node data exchanges. Recent advances
in topology-aware process placement strategies (Valgren
et al. 2007; Hoefler et al. 2014; Georgiou et al. 2017) have
demonstrated effective solutions by optimizing data affinity
through intelligent mapping of communicating processes to
adjacent compute nodes or shared memory domains.

A representative work by Jeannot (2022), TopoMatch,
addresses this challenge through dynamic communica-
tion pattern adaptation, specifically designed for modern
hierarchical architectures featuring NUMA domains and
multi-level interconnects. This approach achieves supe-
rior communication efficiency by preserving data locality
while accommodating complex topology constraints.

NUMA-aware process mapping Load balance is another criti-
cal factor in ensuring the efficient use of multicore architectures,

Para-FDS: a scalable multilevel parallel scheme for fire dynamic simulator on multicore...

particularly in NUMA-based systems (Muddukrishna et al.
2016; Drebes et al. 2016). Psaroudakis et al. (2016) designed an
adaptive NUMA-aware data placement for analytical workload
in main-memory column stores, which could balance the utili-
zation of resources across NUMA nodes. By applying NUMA-
aware process mapping strategy for FDS, we optimized intra-
node workload distribution, ensuring that each NUMA node was
fully utilized while minimizing memory access cross NUMA
node. This led to a more efficient use of computing resources
and reduced simulation runtimes for large-scale fire models.

3 Background

FDS adopts the low-mach, large-eddy simulation (LES)
method to simulate thermally-driven flows within build-
ings (McGrattan et al. 2005). The governing equations are
approximated using second-order accurate finite differences
on uniformly spaced 3D grids. Blocks are constructed by
multiple grid cells, and each block can be processed in par-
allel using MPI (Harlow and Welch 1965; Morinishi et al.
1998) processes.

One FDS input block is a structured hexahedron composed
of fundamental units called grid cells. The solution process
for FDS occurs within each grid cell. For example, an input
block may contain 8, 12, and 10 grid cells in the X, Y, and Z
axes, respectively, totaling 8 x 10 X 12 grid cells. Each input
block is assigned to a separate MPI process. The compu-
tational complexity of an input block is determined by its
number of grid cells; consequently, a higher number of grid
cells in an input block leads to increased computing time.

FDS process comprises three phases: initialization, pre-
diction, and correction. The initialization phase begins with
setting up the MPI, reading FDS input files, and initializing
data. During the main cycle, variables are initially estimated
with coarse precision and subsequently refined in the cor-
rection phase. After computations are completed within a
time step, variable data must be communicated across the
boundary grid cells of the input block.

Para-FDS: A Multilevel Parallel Scheme for FDS on HPC

[At the Process Level] &= [(il Pt et }

Algorithm

Communication
Locality Optimization

[At the Inter-node Level } &= [

[At the Intra-node Level] &= [

NUMA -aware
Process Mapping

Fig. 1 The multilevel parallel framework of Para-FDS on multicore
HPC platforms

Table 1 Notation introduction in the adaptive grid partitioning algo-
rithm

Abbreviation Full name

The number of input blocks

The i-th input block

The number of grid cells in the i-th input block
The number of subblock of the i-th input block
The number of all divided subblocks

The sum of grid cells over all input blocks

= < % 3

The average number of grid cells over all input blocks
The quotient of V; divide by V,

Ve

=
@

“F <SS

The sum of all n;

S

over The difference between Sum_n; and n

=

The initial value of n;

The number of grid cells in the j-th subblock
The number of grid cells of X axis

The number of grid cells of Y axis

The number of grid cells of Z axis
Maximum value of L, W, H

The j-th divided subblock

The difference between 7, and n;

2RI 2 CC

S
°

4 Methods

As shown in Fig. 1, Para-FDS mainly includes three parts:
adaptive grid partitioning algorithm at the process level,
communication localization optimization at the inter-node
level and NUMA-aware process mapping within a node.

4.1 Adaptive grid partitioning

In FDS simulations, the distribution of grid cells across
computational blocks plays a critical role in determining
computational efficiency. Significant disparities in grid
cell counts between adjacent blocks often lead to severe
workload imbalance. Moreover, the lack of automatic input
block partitioning in FDS fundamentally restricts its com-
putational scalability. To mitigate these limitations, we pro-
pose an adaptive grid partitioning algorithm that optimizes
workload distribution by minimizing the ratio of maximum
to minimum grid cells among subblocks. The key variables
of this algorithm are systematically presented in Table 1.

The problem is formally defined with m input blocks,
where the i-th block denoted as M, contains V; grid cells and
is partitioned into #; subblocks. The total number of gener-
ated subblocks is n, where:

n= Z n;. 1)
i=1

The proposed algorithm consists of two phases: (1) comput-
ing the optimal number of subblocks #; for each input block

@ Springer

D.Liuetal.

M;, and (2) adaptively decomposing the block M, into its e For all input blocks, derive the total count and average
corresponding 7; subblocks. value of their constituent grid cells. (L1).
Algorithm 1 Optimal Subblock Computing Algorithm

Input: m input blocks, named M; with V; grid cells
Output: n; subblocks for M;, n subblocks in all

oW N

© ® 3>

Vall — ZT ‘/;Ia ‘/ave — Vall/n
Ny < Vvi/vave»ni — [nz] // Round n, to n;
if n, —n; > 0.5 then
end if
S Z?ln N, Noyer S—n
if noper > 0 then
max{n;} < max{n;} — Noyer
end if

4.1.1 Phase 1: Calculation of the subblocks for input blocks e Determine the number of subblocks r; to be partitioned

for the i-th input block M; (L2 - L5).

The partitioning process, as outlined in Algorithm 1, oper- e Adjust the maximum value of n; to obtain the number of
ates on each input block M, containing V; grid cells and subblock of the i-th input block (L6 — L9).

determines the optimal number of subblocks ;. The algo-

rithmic procedure proceeds as follows:

Algorithm 2 Adaptive Factorization Grid Partitioning Algorithm

Input: n; subblocks for M; from 1 to m
Output: n subblocks with grid cells U;

1:

© ® PR W

I N e T e e T e e
TS N T e B L I A a4

22:
23:
24:
25:
26:

while ¢ from 1 to m do

ng < n;, LXW X H<+V,

if V; mod n; = 0 then
divide V; into Uy, U, - - -, Uy,

else if n; mod V; # 0 N n; ¢ Prime then
factor n; into @ x b x ¢ in three dimensions
divide L into a parts
divide W into b parts
divide H into ¢ parts
Uy Ly xWy xHy, Uy, < Ly x Wy, x H,
// divide V; in three dimensions

else if n; mod V; # 0 N n; € Prime N max{L, W, H} > n; then
K + max{L,W,H}
divide K into n; parts
divide V; into n; parts along the K dimension

else
n; < n; — 1
return to line 3
end if

if ny —n; > 0 then
No = Ny — Ny
while j from 1 to n, do
divide U; into two parts equally
end while
end if
end while

@ Springer

Para-FDS: a scalable multilevel parallel scheme for fire dynamic simulator on multicore...

4.1.2 Phase 2: Decomposition of input blocks

Building upon the subblock count n; determined in Algo-
rithm 1, this phase performs 3D partitioning of input blocks.
The algorithm decomposes n; into a three-factor product
a X b X c, representing the partitioning dimensions. Subse-
quently, the grid cells are uniformly distributed along the
three spatial dimensions, with proportional scaling pre-
served. The optimization objective aims to minimize the
directional subblock cost, defined as L/a + W /b + H/c. For
prime-valued 7;, the algorithm implements uniform parti-
tioning along the longest dimension. The complete imple-
mentation details are specified in Algorithm 2:

e Exact Division: When V; is divisible by n;, uniformly
partition V; along the optimal spatial axis (1D/2D/3D)
into n; sub-units (L3 - L4).

e Composite Divisor: For non-divisible n; where n; is com-
posite:

— Factorize n, into three integers a X b X c.

— Partition V; proportionally along three dimen-
sions to minimize the spatial cost function
(Lfa+W/b+ H/c) (L5-L10).

e Prime Divisor Handling:

— Adequate Grid Capacity: If maximum grid dimen-
sion exceeds prime n;, partition along that dimension
(L12-L15).

— Insufficient Capacity: reduce n; by 1 and recursively
re-evaluate partitioning (L16-L18).

e Recursive Refinement: For residual partitions from recur-
sion (n, > 0), bisect each subblock uniformly (L20-
L25).

4.2 Communication localization optimization

In distributed high-performance computing systems such as
supercomputers, data communication between nodes relies
on network-based transmission, whereas processes within a
single node can access shared memory and exchange data
via direct copying, free from network interference (Lu et al.
2022). As a result, intra-node communication is inherently
faster than inter-node communication. For example, the
default mapping scheme automatically assigns 16 processes
to four nodes in a fixed order, as shown in the right panel of
Fig. 2. Here, the physical spatial distribution of processes
within each node is relatively scattered, leading to subopti-
mal data locality.

To address this issue, we aim to minimize inter-node com-
munication by designing a communication locality-based
mapping scheme. By strategically co-locating processes that
frequently communicate within the same node, inter-node
communication overhead can be significantly reduced. As
illustrated in the left panel of Fig. 2, the original scheme
incurs 12 instances of inter-node communication, whereas
the communication-optimized scheme reduces this number
to 8, achieving a one-third reduction in inter-node communi-
cation through communication locality optimization.

4.3 NUMA-aware process mapping

In modern HPC architectures, NUMA is a prevalent design
where each computing node consists of multiple NUMA
nodes, each containing several cores (Hager and Wellein
2008). Efficient NUMA utilization requires distributing
MPI processes across nodes to balance computational load.
However, conventional block-based scheduling sequentially
assigns processes, leading to overloading of certain nodes
while others remain underutilized.

Performance in such systems is often constrained by the
most heavily loaded NUMA node due to memory conten-
tion. To alleviate this problem, we propose a NUMA-aware

Fig.2 Communication localiza- e N N e ~ T N /T N
tion optimization strategy on 4 12
four nodes. Blocks of the same v . . 12 0 8
color indicate blocks with
communication locality. Each
number represents a process 1 5 9 13 1 5 9 13
that a block is assigned > \L \L 1/
T N (® =
2 6 10 14 2 6 10 14
3 7 11 15 3 7 11 15
- 1 J o

- l / \f N -

Process Numa node

@ Springer

D.Liuetal.

Fig.3 The NUMA-aware
process mapping when 32
processes are assigned to a
processor with 8 NUMA nodes,
with 8 cores each. The blue
block represents the core of the
assigned task, and the white
block represents no assigned
task

Memoy] — [[T T T T]

NUMAI NUMA2 NUMA3 NUMA4 NUMAS NUMA6 NUMA7 NUMAS

(a) Original scheme

NUMAI NUMA2 NUMA3 NUMA4 NUMAS NUMA6 NUMA7 NUMAS

process mapping scheme that evenly distributes tasks across
NUMA nodes evenly, ensuring workload balance within a
node. As illustrated in Fig. 3, with 32 MPI processes allo-
cated on a node containing eight NUMA nodes (each with
eight cores), the original scheduling method only utilizes
four nodes, leaving the remaining nodes idle. In contrast,
NUMA-aware process mapping distributes 32 processes
across all eight NUMA nodes, maximizing resource utiliza-
tion and improving system performance.

@ Springer

(b) Optimized scheme

5 Evaluation and experiments

We conduct experiments on the Tianhe NG supercomputer
(Lu et al. 2022; Wang et al. 2020) to test the performance
of Para-FDS. Each computing node contains an FT2000+
processor, which consists of eight NUMA nodes, each with
eight cores, totaling 64 cores, all running at a clock speed
of 2.2 GHz. Each core is supported by a 32 KB L1 cache,
and four cores share a 32 MB L2 cache. Together, the 64
cores can achieve a peak performance of 563.2 Gflop/s
of double-precision using the ARM 64 instruction set.

Para-FDS: a scalable multilevel parallel scheme for fire dynamic simulator on multicore...

Table2 Comparison of block-wise grid cell distributions and R,
values between the adaptive grid partitioning scheme and the initial
scheme for the Subway case

Scheme Subblocks Maximum-grid-cell Minimum- R,
grid-cell

Initial 7 333,600 13,680 24.39
16 48,000 13,680 3.51
32 20,850 13,680 1.52
64 9828 6,840 1.44

Adaptive grid 128 4914 4140 1.19

partitioning
256 2400 1800 1.33
512 1365 1140 1.20
1024 650 468 1.39

The system is equipped with 124 GB of DDR4 memory.
The software system in use is Linux Ubuntu 20.04.5 with
Infiniband interconnection. The MPI is OpenMPI version
4.1.4, and FDS is version 6.7.4.

First, we propose a metric to evaluate the workload
distribution across subblocks by comparing the grid par-
titioning method with the original undivided one. Next,
we assess the efficiency of the adaptive grid partitioning
algorithm through practical scenarios. Subsequently, we
analyze the effectiveness of the communication locali-
zation optimization approach. Finally, we evaluate the
NUMA-aware process mapping method.

5.1 Workload balancing estimation

We introduce an indicator R, to measure workload balanc-
ing. R, is defined as the ratio of the grid cell number of the
maximal subblock to the minimum one:

max(U;)

b= m)

The balance metric R, quantitatively reflects workload dis-
tribution, where R;, = 1indicates perfect balance and higher
values denote increasing imbalance. We evaluate our algo-
rithm using the Subway engineering case comprising seven
input blocks. As shown in Table 2, the initial configura-
tion yields R, = 24.39 when treating each input block as a
single unit, revealing severe workload imbalance. However,
our adaptive grid partitioning algorithm achieves remark-
able balance when dividing the system into > 32 subblocks,
maintaining R, below 1.5 and approaching the ideal value
of 1. This demonstrates the algorithm’s effectiveness in
creating balanced workload distributions across partitioned
subblocks.

5.2 Scalability

The adaptive grid partitioning algorithm effectively scales
input blocks and achieves substantial speedup across various
scenarios. Performance evaluation using the Subway case
reveals key insights. As shown in Fig. 4a, execution time and
speedup are analyzed over a 10-s simulation with varying
subblock counts. Initially, both wall clock and iteration times
decrease significantly, reaching a minimum at 128 subblocks
before gradually increasing. Here, speedups of 169.92 (based
on wall-clock time) and 214.29 (based on iteration time) are
achieved, with a workload balancing factor R, of 1.19, indi-
cating an effectively balanced workload distribution. Here,
at most 214.29x speedup is obtained when dividing into 128
subblocks from seven initial blocks with the same configura-
tion. These results confirm our algorithm’s scalability and
effectiveness in enhancing input block simulations.

To evaluate the adaptability of the adaptive grid par-
titioning algorithm, we tested it on four FDS scenarios:
Strong- scale, Box- burn, Pressure, and Enthalpy. Fig-
ure 4b—-e present the results of execution time and speedup
over a 10-s simulation with varying subblock partitions. In
Strong- scale (Fig. 4b), execution time decreases up to 256
subblocks, achieving peak speedups of 38.86 (wall clock)
and 71.46 (iteration time), before increasing due to com-
munication overhead. Box- burn (Fig. 4c) follows a similar
trend, with optimal speedups of 27.77 and 31.52 at 64 sub-
blocks. Pressure (Fig. 4d) reaches its lowest execution time
at 256 subblocks, yielding speedups of 46.16 and 47.66.
Enthalpy (Fig. 4e) performs best at 128 subblocks, with
speedups of 42.96 and 50.79.

These results confirm the adaptive grid partitioning algo-
rithm’s effectiveness across different scenarios, demonstrat-
ing scalability and significant speedup. However, increasing
subblocks beyond an optimal point introduces more commu-
nication overhead, limiting scalability. The results in Fig. 4
show the optimal subblock count varies (128, 256, 64, 256,
and 128), influenced by simulation scale and computational
complexity. Thus, determining the optimal grid partition-
ing requires empirical tuning based on specific physical and
chemical conditions.

5.3 Communication localization optimization

In this section, we evaluated the communication localiza-
tion optimization strategy using the Subway case with 128
subblocks on 16 nodes. As shown in Fig. 5, the communica-
tion localization scheme reduces the communication time by
22.92%-38.31% and the execution time by 18.36%—22.33%.

The results above illustrate that the communication local-
ization optimization strategy, which puts as many commu-
nicating processes as possible into a single computing node,

@ Springer

D.Liuetal.

Fig.4 Execution time and
speedup for FDS cases when
dividing into subblocks for five
practical cases

Time (s)

Time (s)

[Wall clock time

|2 Tteration time

—=— Wall clock time speedup —=— Iteration time speedup

10000

1000 4

100

0.1+

Speedup

Time (s)

[all clock time

[1teration time

—o— Wall clock time speedup —=— Iteration time speedup

1200 4

1000

800

600 -

400

2004

04

16 32 64
Subblocks

128 256 512 1024

(c) Case Subway

[Wall clock time

[tteration time

1 2 4 8

16 32 64 128 256 512
Subblocks

(d) Case Strong-scale

[Wall clock time [Iteration time

—— Wall clock time speedup —=— Iteration time speedup

1200

1000 4

800 -

600 4

400

200

04

2 4

16 32

Subblocs

r30

64 128 256

(e) Case Boz-burn

Time (s)

reduces the long communication distances between nodes,
and thus significantly reduces the communication time, as
well as reduces the execution time.

5.4 NUMA-aware process mapping

To assess the efficacy of the proposed NUMA-aware process
mapping scheme, we performed experiments on the Subway

@ Springer

[Wall clock time

—e— Wall clock time speedup —=— Iteration time speedup

—e— Wall clock time speedup —=— Iteration time speedup
60

8,000 4
7,000 4
6,000 1
5,000 1

4,000

Time (s)

3,000 1
2,000 1

1,000

8

16 32
Subblocks

64 128 256

(f) Case Pressure

[Iteration time

800
7004

Fs0
6001

F40
500+
4004 k30
3004

k20
2004

k10
1004

04 -

12 4 8

16 32 64 128 256 5121024
Subblocks

(g) Case Enthalpy

Speedup

F40

Speedup

F20

512

benchmark, utilizing 128 subblocks distributed on 16 comput-
ing nodes. As depicted in Fig. 6, the experimental results reveal
substantial performance enhancements. Notably, the proposed
scheme reduced wall-clock time by 19.23%, iteration time by
22.51%, communication time by 23.29%-30.37%.

In this configuration, 128 processes were mapped to 128
computational blocks distributed across 16 nodes, with each
node hosting eight processes. Under the initial scheme,
all eight processes per node were constrained to a single

Para-FDS: a scalable multilevel parallel scheme for fire dynamic simulator on multicore...

Fig.5 Comparison of execution
time and communication time
between the communication
localization optimization and
the original scheme on 16 nodes
with 128 processes in case
Subway

Fig.6 Comparison of execu-
tion time and communication
time between the NUMA-aware
process mapping scheme and
the original scheme on 16 nodes
with 128 processes in case

@@ Original

Time (s)

3

s

a0

30 I
2

1

0

3 Comm optimized

—— Optimizied_ratio

NWw W W W
N o NN
W o U o u

Optimized ratio (%)

NN
N wv
[} o

N
o
o

Bim

Wall Clock Time Iteration Time Max Comm

(a) Time comparison

17.5
Min Comm Wall Clock Time Iteration Time Max Comm Min Comm

(b) Optimization ratio

@3 Original

a0
30
20
10
0

[Numa optimized

Bm

Min Comm

30{ —*— Optimizied_ratio
28

26

24

Optimized ratio (%)

22

20

Wall Clock Time Iteration Time Max Comm Min Comm

(b) Optimization ratio

Subway £ .
c
Wall Clock Time Iteration Time Max Comm
(a) Time comparison
[Original
1400 { [Comm optimized 35
3 Comm + Scheduling optimized
1200 301
10001 g 251
o g
% 800 1 _g 20
E :
s N |
600 g 15
=%
o
10
400 1
51
200
01

ol
Wall Clock Time Iteration Time

—e— Original
-#=- Comm optimized
Comm + Scheduling optimized

Max Comm Min Comm

(a) Time comparison

Wall Clock Time Iteration Time

Max Comm Min Comm

(b) Optimization ratio

Fig. 7 Execution time for the communication localization optimization and NUMA-aware process mapping scheme with 128 processes on eight

nodes in case Subway

@ Springer

D.Liuetal.

NUMA node, leading to resource contention and degraded
performance. In contrast, the optimized scheme strategi-
cally distributes these processes across eight NUMA nodes,
ensuring a balanced workload allocation within each node.
This approach mitigates resource contention and yields sig-
nificant performance improvements.

Further testing combined this scheme with the communi-
cation localization optimization with case Subway on eight
nodes over a 100-s simulation. Figure 7 shows that only a sin-
gle communication optimization reduces the communication
time by 12.59%-28.86% and the execution time by 9%, while
two optimization strategies reduce the communication time by
18.40%—36.79% and the execution time by 13%. This result
indicates that the two schemes can be superimposed to have
simultaneous optimization effects both at the inter-node level
of the process and at the intra-node level.

6 Conclusion

This paper presents the deployment and optimization of block-
structured FDS on multicore HPC platforms via a scalable mul-
tilevel parallel framework, Para-FDS. To address the challenges
of load imbalance and limited scalability in conventional FDS
deployments, we propose a hierarchical optimization approach.
At the process level, an adaptive grid partitioning algorithm
dynamically balances computational workloads. At the inter-
node level, a communication locality optimization minimizes
inter-node communication overhead, while at the intra-node
level, a NUMA-aware process mapping strategy ensures effi-
cient workload distribution across NUMA domains.

Experimental results on the Tianhe NG supercomputer
demonstrate the effectiveness of Para-FDS, achieving a 214x
speedup by partitioning seven blocks into 1024 subblocks.
Communication time and overall execution time are reduced
by up to 38% and 22%, respectively. These improvements
directly alleviate performance bottlenecks caused by load
imbalance and poor scalability, significantly enhancing the
parallel efficiency and scalability of FDS simulations.

In future work, we plan to extend Para-FDS to heteroge-
neous computing architectures and scale it to larger HPC
clusters, aiming to support more complex, data-intensive,
and dynamic fire simulation scenarios.

Acknowledgements This study was supported by the Major
Program of Xiangjiang Laboratory (No0.22XJ01004); NSFC-
FDCT (62361166662); National Key R&D Program of China
(2023YFC3503400, 2022YFC3400400); The Innovative Research
Group Project of Hunan Province (2024JJ1002); Top 10 Technical
Key Project in Hunan Province (2023GK1010); Key R&D Program
of Hunan Province (2023GK2004, 2023SK2059, 2023SK2060);
Key Technologies R&D Program of Guangdong Province
(2023B1111030004); The National Natural Science Foundation of
China (41875121, 42305170), and the Natural Science Foundation of
Hunan Province (2023JJ40678); The Funds of State Key Laboratory of

@ Springer

Chemo/Biosensing and Chemometrics; the National Supercomputing
Center in Changsha (http://nscc.hnu.edu.cn/), and Peng Cheng Lab.

Declarations

Conflict of interest The authors have no conflict of interest to declare
that are relevant to the content of this article.

References

Allen, S.D., Burke, E.K., Kendall, G.: A hybrid placement strategy
for the three-dimensional strip packing problem. Eur. J. Oper.
Res. 209(3), 219-227 (2011)

Diaz, J., Munoz-Caro, C., Nino, A.: A survey of parallel program-
ming models and tools in the multi and many-core era. IEEE
Trans. Parallel Distrib. Syst. 23(8), 1369-1386 (2012)

Drebes, A., Pop, A., Heydemann, K., Drach, N., Cohen, A.: Numa-aware
scheduling and memory allocation for data-flow task-parallel appli-
cations. In: Proceedings of the 21st ACM SIGPLAN Symposium on
Principles and Practice of Parallel Programming, pp. 1-2 (2016)

Georgiou, Y., Jeannot, E., Mercier, G., Villiermet, A.: Topology-
aware resource management for hpc applications. In: Proceed-
ings of the 18th International Conference on Distributed Com-
puting and Networking, pp. 1-10 (2017)

Hager, G., Wellein, G.: Architecture and performance characteris-
tics of modern high performance computers. In: Computational
Many-Particle Physics, pp. 681-730. Springer (2008)

Harlow, F.H., Welch, J.E.: Numerical calculation of time-dependent
viscous incompressible flow of fluid with free surface. Phys.
Fluids 8(12), 2182-2189 (1965)

Hoefler, T., Jeannot, E., Mercier, G.: An overview of topology mapping
algorithms and techniques in high-performance computing. High-
performance computing on complex environments 95, 75 (2014)

Jeannot, E.: Process mapping on any topology with topomatch. J.
Parallel Distrib. Comput. 170, 39-52 (2022)

Lu, P.-J., Lai, M.-C., Chang, J.-S.: A survey of high-performance
interconnection networks in high-performance computer sys-
tems. Electronics 11(9), 1369 (2022)

Lu, K., Wang, Y., Guo, Y., Huang, C., Liu, S., Wang, R., Fang, J., Tang, T.,
Chen, Z., Liu, B.: Mt-3000: a heterogeneous multi-zone processor for
hpc. CCF Trans. High Performance Comput. 4(2), 150-164 (2022)

Maliszewski, A.M., Vogel, A., Griebler, D., Roloff, E., Fernandes, L.G.,
Oa, N.P.: Minimizing communication overheads in container-based
clouds for hpc applications. In: 2019 IEEE Symposium on Computers
and Communications (ISCC), pp. 1-6 (2019). IEEE

McGrattan, K.B., Forney, G.P., Floyd, J., Hostikka, S., Prasad,
K.: Fire Dynamics Simulator (version 4)—User’s Guide.
US Department of Commerce, Technology Administration,
National Institute of... (2005)

Morinishi, Y., Lund, T.S., Vasilyev, O.V., Moin, P.: Fully conserva-
tive higher order finite difference schemes for incompressible
flow. J. Comput. Phys. 143(1), 90-124 (1998)

Muddukrishna, A., Jonsson, P.A., Brorsson, M.: Locality-aware task sched-
uling and data distribution for openmp programs on numa systems and
manycore processors. Sci. Program. 2015, 5-5 (2016)

Psaroudakis, I., Scheuer, T., May, N., Sellami, A., Ailamaki, A.:
Adaptive numa-aware data placement and task scheduling for
analytical workloads in main-memory column-stores. Proc.
VLDB Endow. 10(2), 37-48 (2016)

Qian, J., Zhang, Y.: Automatic unstructured all-hexahedral mesh
generation from b-reps for non-manifold cad assemblies. Eng.
Comput. 28, 345-359 (2012)

http://nscc.hnu.edu.cn/

Para-FDS: a scalable multilevel parallel scheme for fire dynamic simulator on multicore...

Rabenseifner, R., Wellein, G.: Communication and optimization
aspects of parallel programming models on hybrid architectures.
Int. J. High Performance Comput. Appl. 17(1), 49-62 (2003)

Rantakokko, J.: Partitioning strategies for structured multiblock
grids. Parallel Comput. 26(12), 1661-1680 (2000)

Schamberger, S., Wierum, J.-M.: Graph partitioning in scientific
simulations: Multilevel schemes versus space-filling curves. In:
International Conference on Parallel Computing Technologies,
pp- 165-179 (2003). Springer

Valgren, C., Duckett, T., Lilienthal, A.: Incremental spectral cluster-
ing and its application to topological mapping. In: Proceedings
2007 IEEE International Conference on Robotics and Automa-
tion, pp. 4283-4288 (2007). IEEE

Verda, V., Borchiellini, R., Cosentino, S., Guelpa, E., Tuni, J.M.: Expand-
ing the fds simulation capabilities to fire tunnel scenarios through
a novel multi-scale model. Fire Technol. 5§7(5), 2491-2514 (2021)

Wang, Y.-X., Zhang, L.-L., Liu, W., Che, Y.-G., Xu, C.-F., Wang,
Z.-H., Zhuang, Y.: Efficient parallel implementation of large
scale 3d structured grid cfd applications on the tianhe-1a super-
computer. Comput. Fluids 80, 244-250 (2013)

Wang, R., Lu, K., Chen, J., Zhang, W., Li, J., Yuan, Y., Lu, P., Huang,
L., Li, S., Fan, X.: Brief introduction of tianhe exascale proto-
type system. Tsinghua Sci. Technol. 26(3), 361-369 (2020)

Yakovchuk, R., Kuzyk, A., Skorobagatko, T., Yemelyanenko, S.,
Borys, O., Dobrostan, O.: Computer simulation of fire test
parameters fagcade heat insulating system for fire spread in fire
dynamics simulator (fds) (2020)

Springer Nature or its licensor (e.g. a society or other partner) holds
exclusive rights to this article under a publishing agreement with the
author(s) or other rightsholder(s); author self-archiving of the accepted
manuscript version of this article is solely governed by the terms of
such publishing agreement and applicable law.

Dazheng Liu is a Ph.D. student
in College of Computer Science
and Electronic Engineering at
Hunan University, Changsha,
Hunan, China. His research
interests mainly include parallel
computing, Al for Science.

ShengXiao is currently an associ-
ate professor in College of Com-
puter Science and Electronic
Engineering, Hunan University,
China. He obtained B.S.(02)
from Tsinghua University,
China, M.S.(03) from National
University of Singapore, and
Ph.D.(13) from University of
Massachusetts, Amherst, U.S.A.

Xiaoli Ren obtained the Ph.D.
degree with the College of Com-
puter Science and Technology,
National University of Defense
Technology, Changsha, China, in
2021. She is currently an assis-
tant researcher with the College
of Meteorology and Oceanogra-
phy, National University of
Defense Technology. Her
research focuses on high perfor-
mance computing, parallel opti-
mization, and meteorological
and oceanographic big data.

Wenjuan Liu received her Ph.D.
from Tongji University and was
a postdoctoral fellow at the
National Supercomputing Center
in Changsha, Hunan University.
Her main research areas include
high-performance computing,
system expansion, and large-
scale data processing.

Dajiang Yi who graduated from
National University of Defense
Technology with a doctoral
degree, currently serves as the
Vice President of the Innovation
Research Institute of National
Supercomputing Center in
Changsha. His main research
areas include satellite navigation,
high-performance computing,
and large model technology.

Zean Tian got his Ph.D degree
from Hunan University in 2009,
and was engaged in postdoctoral
research at the School of Materi-
als Science and Engineering,
University of New South Wales,
Australia from 2010 to 2014. He
is currently working at National
Supercomputing Center in
Changsha and College of Com-
puter Science and Electronic
Engineering in Hunan Univer-
sity. Dr. Tian’s research interests
include: high-performance com-
puting, dynamic analysis of com-
plex systems, molecular dynam-
ics simulation, structure analysis of disordered system, visualization in
scientific computing, and artificial intelligence applications, etc.

@ Springer

D.Liuetal.

@ Springer

JianpingWu born in 1974, PhD,
researcher. His main interests
include large-scale science and
engineering computing, and
numerical weather prediction,
and ocean modeling.

Yongan Wu received his Ph.D.
from the National University of
Defense Technology and serves
as the Deputy Director of the
High-Performance Computing
Department at the National
Supercomputing Center in
Changsha, Hunan University.
His main research areas cover
high-performance computing,
artificial intelligence, and big
data processing.

Zuodong Niu received the M.S.
Degree in control engineering
from the College of Electrical
Engineering, Guizhou Univer-
sity, Guiyang, China, in 2020.
He is currently working toward
the Ph.D. degree with the Col-
lege of Computer Science and
Electronic Engineering, Hunan
University, Changsha, China.
His main research interests
include computer vision, deep
learning, and object detection.

Keqin Li received a B.S. degree
in computer science from Tsing-
hua University in 1985 and a
Ph.D. degree in computer sci-
ence from the University of Hou-
ston in 1990. He is a SUNY Dis-
tinguished Professor at the State
University of New York and a
National Distinguished Professor
at Hunan University (China).

Shaoliang Peng is the executive
director/professor of College of
Computer Science and Elec-
tronic Engineering. His main
research areas include high-per-
formance computing, system
expansion, and large-scale data
processing, Al for medical big
data.

	Para-FDS: a scalable multilevel parallel scheme for fire dynamic simulator on multicore architectures
	Abstract
	1 Introduction
	2 Related work
	3 Background
	4 Methods
	4.1 Adaptive grid partitioning
	4.1.1 Phase 1: Calculation of the subblocks for input blocks
	4.1.2 Phase 2: Decomposition of input blocks

	4.2 Communication localization optimization
	4.3 NUMA-aware process mapping

	5 Evaluation and experiments
	5.1 Workload balancing estimation
	5.2 Scalability
	5.3 Communication localization optimization
	5.4 NUMA-aware process mapping

	6 Conclusion
	Acknowledgements
	References

