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Big data stream computing systems should work continuously to process streams of on-
line data. Therefore, fault tolerance is one of the key metrics of quality of service in big 
data stream computing. In this paper, we propose a fault tolerant framework with deadline 
guarantee for stream computing called FTDG. First, FTDG identifies the critical path of a 
data stream graph at a given data stream throughput, and quantifies the system reliability 
of a data stream graph. Second, FTDG allocates tasks by the fault tolerance aware heuristic 
and critical path scheduling mechanism. Third, FTDG online optimizes the task scheduling 
by reallocating the critical vertices on the critical path of the data stream graph to lower 
the response time and reduce system fluctuations. Theoretical as well as experimental 
results demonstrate that the FTDG makes a desirable trade-off between high fault tolerance 
and low response time objectives in big data stream computing environments.

© 2016 Elsevier Inc. All rights reserved.

1. Introduction

1.1. Background and motivation

Big data stream computing, the long-held dream of high-throughput computing which uses programs that compute 
continuous data streams, has opened up the new era of future computing due to big data, which are datasets that are 
too large, too fast, too dispersed, and too unstructured, and thus beyond the ability of available hardware and software 
facilities to undertake their acquisition, access, analysis and/or applications in a reasonable amount of time and space. 
Some popular features of big data are described by nVs, high Volume, high Velocity, high Variety, high Veracity, high 
Validity, high Value, and so on. The rise of big data presents big opportunities and big challenges. Stream computing is 
an effective way to support big data and cloud computing by providing extremely low-latency velocities with massively 
parallel processing architectures, and is becoming the fastest and most efficient way to obtain useful knowledge from big 
data, allowing organizations to react quickly when problems appear or to predict new trends in the near future [1–4].

Big data stream computing can be employed in many different scenarios, such as stock market analysis, click streams 
analysis, traffic stream analysis, and emergency response, to name but a few. Usually, when compared with batch data, 
big data stream is difficult to be processed in real time with traditional data computing infrastructures, as it has the 

* Corresponding author.
E-mail addresses: sundaweicn@cugb.edu.cn (D. Sun), gyzh@tsinghua.edu.cn (G. Zhang), wcw14@mails.tsinghua.edu.cn (C. Wu), lik@newpaltz.edu (K. Li), 

zwm-dcs@tsinghua.edu.cn (W. Zheng).
http://dx.doi.org/10.1016/j.jcss.2016.10.010
0022-0000/© 2016 Elsevier Inc. All rights reserved.

http://dx.doi.org/10.1016/j.jcss.2016.10.010
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/jcss
mailto:sundaweicn@cugb.edu.cn
mailto:gyzh@tsinghua.edu.cn
mailto:wcw14@mails.tsinghua.edu.cn
mailto:lik@newpaltz.edu
mailto:zwm-dcs@tsinghua.edu.cn
http://dx.doi.org/10.1016/j.jcss.2016.10.010
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jcss.2016.10.010&domain=pdf


D. Sun et al. / Journal of Computer and System Sciences 89 (2017) 4–23 5
following distinctive characteristics [2,5–7]. (1) The data are not all available at once as they arrive one tuple by one 
tuple in continuous data stream form. (2) The order of arrival of each data tuple cannot be controlled, when the same data 
tuples are to be recomputed, the order of those tuples is always different with that of before. (3) The input data stream 
rate is often at a high speed level and might fluctuate with time, or some statistical properties might change and increase 
computing and communication demands, failing to deal with such cases may result in performance bottlenecks, and at 
worst, data loss. So the big data stream computing system needs to online adjust and elastically adapt to the change of 
input data stream. (4) Timely analysis of the data stream is very important as the life cycle of most of the data is very 
short, all the data tuples will be processed in real time, and each data tuple can be processed only once. (5) The scale of 
data is infinite, and the infinite scale of data needs to be processed under tight constraints, furthermore, the volume of data 
is so high that there is not enough space for storage, and not all data need to be stored, so the batch computing model with 
the feature of store then computing is not fit all. Nearly all the data in big data environments have the feature of stream, 
and thus stream computing has appeared to solve the dilemma of big data computing by computing data online within real 
time constraints. So the stream computing model will be a new trend for high-throughput computing in big data era, and 
it is urgent to investigate the challenges in big data stream computing systems.

The issue of high fault tolerance is one of the major obstacles for opening up the new era of reliable stream computing 
in big data environments. While in most current stream computing environments, high performance and service level objec-
tives are under consideration, high fault tolerance is ignored. In big data stream computing environments, the data centers 
are usually composed of tens of thousands of diverse sets of computing nodes with different capabilities and interconnected 
with arbitrary network architectures, failures are inevitable due to the inherently unreliable nature of the computing nodes 
and communication links. Many different types of failures are actually correlated with each other and have adverse effects 
on applications running on such environments [8,9]. So it is needed to consider fault tolerance in data centers with the 
expansion of the scale of the data centers for big data stream computing and ever-rising demand for higher reliability of 
big data stream computing applications, while maintaining high performance and service level objectives.

To achieve reliable stream computing in big data computing environments and to address high fault tolerance by carefully 
choosing the running computing nodes and communication links in data centers, it is important to obtain a clear picture 
of the total reliability of the computing nodes and communication links in big data environments. More importantly, it 
is needed to understand how to maximize the system reliability and minimize the response time in data centers, and to 
deal with the trade-off between high fault tolerance and low response time objectives efficiently and effectively, which 
is missing in most existing researches in big data stream computing environments [5–9]. While in most current big data 
stream computing environments, low response time is under consideration, high fault tolerance is ignored. This justifies 
the importance of modeling a fault tolerant framework with deadline guarantee for online applications in big data stream 
computing environments, so as to maximize the system reliability and minimize the response time to achieve high fault 
tolerance and low response time objectives measurement and management in big data stream computing environments.

Our work is motivated by the following observations.
(1) Existing resource scheduling strategies are inefficient.
In existing big data stream computing systems (e.g., the Storm system and the S4 system), the desirable architecture is 

under consideration, but highly efficient resource scheduling strategy is ignored. For example, the instance number of task 
topology in the Storm system is statically set by users, which cannot adapt to the changes in data stream dynamically. The 
round-robin strategy is employed to allocate resources when a task topology is submitted to the system. However, this has 
been shown to be inefficient. Obviously, a resource scheduling strategy with the feature of elasticity and adaptability to 
changes in data streams is needed. The authors of [10] have also tried to solve this problem. However, their solution only 
focuses on response time, but many factors are not considered, such as initial scheduling and critical path of task topology. 
In our previous work [23], we have proposed a critical path and critical vertex based resource scheduling and optimization 
framework, and have solved this problem in some extent. In this paper, we try to solve this problem from the perspective 
of system fault tolerance. According to our practice and observation, fault tolerance is more important in big data stream 
computing environments than that in other computing environments.

(2) The factor of high fault tolerance is not considered.
At present, high fault tolerance is not considered in designing a big data stream computing system. Most existing schedul-

ing algorithms in big data stream computing systems only focus on response time. For example, in Storm system, fault 
tolerance is achieved by the timeout mechanisms (30 seconds, by default). Obviously, this fault tolerance strategy is mean-
ingless in big data stream computing environments as the fault checking delay is too long. It is also meaningless if we only 
consider the response time while fault tolerance is not considered in designing a big data stream computing system. Usually, 
in the data centers of big data stream computing environments, the reliability of each computing nodes and communication 
link is different. So, high system reliability can be achieved by adjusting the distribution of the vertices running on the 
computing nodes.

Hence, we try to achieve high fault tolerance and low response time in a big data stream computing environment. Our 
approach is partially inspired by the following ideas.

(1) Precedence constraint of data stream graph.
In big data stream computing environments, most of the applications are descried by data stream graph, which can be 

as simple as a linear pipeline or as complicated as precedence constraint based directed acyclic graph. As shown in Fig. 1(a), 
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Fig. 1. a) Storm source code, and (b) data stream graph as a linear pipeline.

Fig. 2. (a) Storm source code, and (b) data stream graph as a precedence constraint based directed acyclic graph.

the Storm source code is the main part to achieve TOP_N computing function, the corresponding data stream graph is a 
linear pipeline, as shown in Fig. 1(b), where each vertex only has one instance.

As shown in Fig. 2(a), the Storm source code is also the main part to achieve TOP_N computing function, the corre-
sponding data stream graph is a precedence constraint based directed acyclic graph, as shown in Fig. 2(b), where vertex va

is parallelized into four instances, vertex vb and vertex vc are parallelized into three instances.
According to research about the scheduling precedence constraint based directed acyclic graph in distributed hetero-

geneous computing environments, finding an optimal schedule has been studied for years and is known to be NP-hard. 
Therefore, heuristics are used to obtain a suboptimal scheduling rather than parsing all possible schedules [7–9].

(2) Live migration of the vertices.
Once a data stream graph is submitted to big data stream computing environments, it will online run forever until the 

user kills it or some errors occur. When some factors have changed to a special extent in the big data stream computing 
environments, one or many vertices in the data stream graph needs to be reallocated according to a special online reallo-
cation strategy in order to adapt to the latest changes. The capability of live migrating one or many vertices in the data 
stream graph makes it possible to meet high fault tolerance and low response time objectives by balancing the global loads 
among computing nodes and by moving one or many vertices in the data stream graph when a failure is predicted for a 
computing nodes, as shown in Fig. 3.

(3) Critical path in a directed acyclic graph (DAG).
In a DAG, the response time is determined by the latency of the critical path in the DAG. As shown in Fig. 4, in a 

real-time stream computing environment, rescheduling all vertices to improve the response time is not a wise choice, 
which will affect the online running of the DAG seriously. Rescheduling one or a few vertices is better than rescheduling 
all vertices. Rescheduling the heaviest vertex, i.e., vertex 35, is also not a good choice. The response time is determined by 
the latency of the critical path (10–21–25–12) of the DAG, while vertex 35 is not on the critical path. Vertex 25 is on the 
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Fig. 3. Live migrating one or many vertices in the data stream graph.

Fig. 4. Directed acyclic graph.

critical path (10–21–25–12) of the DAG. If we reschedule vertex 25, the computing time is reduced from 25 milliseconds 
to 20 milliseconds. Accordingly, the response time of the DAG will also be reduced by 5 milliseconds. However, if the 
computing time of vertex 25 is reduced form 25 milliseconds to 15 milliseconds, the response time of the DAG will be 
reduced by 6 milliseconds instead of by 10 milliseconds. This is because the critical path has changed and the new critical 
path (10–35–5–12) will determine the response time of the DAG.

All those ideas can be used to model a fault tolerant framework with deadline guarantee for online applications in big 
data stream computing environments, and some or all of them can be combined to use. One fact is trying to improve one 
aspect of the scheduling framework, it will complement each other when some or all of them are combined.

1.2. Contributions

We profile the mathematical relationship among fault tolerance, response time, and resource utilization in big data 
stream computing, and obtain the conditions to meet the high system reliability and low response time objectives. In 
this paper, we propose a fault tolerant framework with deadline guarantee for stream computing called FTDG. First, FTDG 
identifies the critical path of a data stream graph at a given data stream throughput, and quantifies the system reliability 
of a data stream graph. Second, FTDG allocates tasks by the fault tolerance aware heuristic and critical path scheduling 
mechanism. Third, FTDG online optimizes the task scheduling by reallocating the critical vertices on the critical path of the 
data stream graph to lower the response time and reduce system fluctuations.

We implement a prototype system of FTDG by modification of the Storm system. We evaluate FTDG in fault tolerance 
and response time in big data stream computing environments. Theoretical and experimental results demonstrate that the 
FTDG makes a trade-off between high fault tolerance and low response time objectives efficiently and effectively. In other 
words, it has the ability to provide efficient fault tolerance enhancements and obvious response time reduction.

Our contributions are summarized as follows:
(1) Formal definitions of data stream graph, big data stream computing architecture, and high system reliability and low 

response time objectives;
(2) Systematic investigation of the computation of nodes, communication among nodes, allocating tasks by the fault 

tolerance aware heuristic and critical path scheduling mechanism, and building data stream graph based reliability analysis 
model;

(3) Identification of the critical path of a data stream graph at a special data stream throughput, and online optimizing 
the scheduling mechanism;

(4) Quantification of the system reliability of a data stream graph, and consolidating non-critical vertices on non-critical 
path to meet high fault tolerance objective;

(5) Prototype implementation, simulation, and performance evaluation of the FTDG.
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1.3. Paper organization

The remainder of this paper is organized as follows. In Section 2, definitions of data stream graph and applications 
scheduling model in big data stream computing systems are given. Section 3 presents the system architecture, workflow 
description, and algorithm description of the FTDG framework. Section 4 focuses on critical path quantification in data 
stream graph. Section 5 describes the failure modeling, vertex reliability quantification, and demonstrates the reliability of 
data stream graph from the quantitative perspective. Section 6 addresses the simulation environment, parameter setup and 
performance evaluation of the proposed heuristic vertex online allocation algorithms. Section 7 reviews the related works 
on big data stream computing, performance-oriented data stream scheduling, and fault tolerance strategy in distributed 
heterogeneous computing system. Finally, conclusions and future directions are given in Section 8.

2. Problem statement

In big data stream computing environments, a stream application is partitioned into a set of sub-task where in each 
sub-task can depend on the results of executions of other sub-task in the application, and is described by a data stream 
graph, which is described by directed acyclic graph (DAG). All those directed acyclic graphs will be submitted to data center. 
Each vertex of a directed acyclic graph is mapped to a computing node in a data center. To precisely reflect these factors in 
the schedule, and to optimize and evaluate the data stream graph for big data stream computing, some related definitions 
are given as follows [6,11–14].

2.1. Data steam graph

In stream computing, multiple continuous parallel data streams can be processed by data stream graph, and are usually 
represented as directed acyclic graph. A measurable view of data stream graph can be defined by Definition 1.

Definition 1 (Data stream graph). A data stream graph G is a directed acyclic graph composed of a vertex set and directed 
edge set, has a logical structure and special function, and is denoted as G = (V (G), E(G)), where V (G) = {v1, v2, · · · , vn}
is a finite set of n vertices, which represent sub-tasks that can be executed on any of the available computing nodes, and 
E(G) = {e1,2, e1,3, · · · , en−i,n} ⊂ V (G) × V (G) is a finite set of directed edges, which represent the execution precedence 
between vertices. If ∃ei, j ∈ E(G), then vi, v j ∈ V (G), vi �= v j , and 〈vi, v j〉 is an ordered pair, where the data stream comes 
from vi , and go to v j . This means that vi should complete its execution before v j starts its execution.

The vertex vi is an abstract computational step and is characterized by a five-tuple vi = (idvi , f vi , cvi , ivi , ovi ), where 
idvi is the identification of vertex vi , f vi is the function of vertex vi , cvi is the computation cost of vertex vi , ivi is the 
input data stream for vertex vi , and ovi is the output data stream for vertex vi .

Vertex vi represents a task composed of a set of instructions. It will change ivi by f vi to ovi with cvi , that is ovi =
f vi (ivi ). The function of data stream graph G is achieved by all the n vertices, that is O  = F (I), where O , F , and I are the 
output data steam, the function of data stream graph G, and the input data steam, respectively.

The directed edge ei, j is the directed communication link from vertex vi to v j , which is characterized by a tuple, that is 
ei, j = (idei, j , cei, j ), where idei, j is the identification of directed edge ei, j , and cei, j is the communication cost of directed edge 
ei, j from connected vertex vi to v j . If vi and v j run on the same computing node, then cei, j = 0.

The in-degree of vertex vi is the number of incoming edges and the out-degree of vertex vi is the number of outgoing 
edges. When all the incoming data of vertex vi are available, it is triggered to execute. After its execution, it generates 
corresponding outputs, to the directly connected successor vertex (vertices) of vertex vi . The source vertex vs is the vertex 
whose in-degree is zero, and the end vertex ve is the vertex whose out-degree is zero. A data stream graph G has at least 
one source vertex and one end vertex. The inputs of the source vertex come from the data source, and the outputs of the 
end vertex are outputted to the user. Without loss of generality, we assume that data stream graph G has exactly one 
source vertex vs and one end vertex ve . If an application has multiple source or end vertices, this data stream graph may 
be converted by inserting a virtual source vertex or end vertex of complexity zero connected to all source or end vertices 
with zero time-weight data transfer.

2.2. Application scheduling

An application scheduling system typically consists of the user broker, the scheduling broker and data centers. The 
scheduling broker is the data center central managing broker. Some specific features of a data stream graph scheduling 
system can be described as follows.

Let U = {u1, u2, · · · , um} be a user set composed of m users, Gs = {Gs1, Gs2, · · · , Gsm} be a set of data stream graphs 
of the user set U , and Gs j = {G j1 , G j1 , · · · , G jm j

} be a sub-set of data stream graphs of the jth user u j , where m j is the 
number of data stream graphs of the jth user u j , and Gsk is the kth data stream graph submitted to the scheduling broker 
through a user interface and independent of the other users. The scheduling broker schedules them to the appropriate 
computing nodes on the data centers. If u0 has two data stream graphs, then Gs0 = {G01 , G02 }, and m0 = 2.
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For simplicity, we assume that the data stream graphs are non-interruptible, which means that as soon as a data stream 
graph scheduling is started, it cannot be interrupted until all vertices in this graph is completely allocated in computing 
nodes in the data centers. All resources operate non-preemptively, which means that a data stream graph cannot transfer 
execution from one computing node to another one once it gets started.

Let DC = {cn1, cn2, · · · , cnn} be a fully interconnected data center composed of n computing nodes, which are running 
in the form of virtual machines on physical machines. All those computing nodes are fully connected by an underlying 
communication subsystem. A data center DC can be described as an undirected graph composed of computing node set and 
undirected edge set, which has a physical structure and specially function, and is denoted as UG = (CN(UG), UE(UG)), where 
CN(UG) = {cn1, cn2, · · · , cnn} is a finite set of n computing nodes, and UE(UG) = {ue1,2, ue1,3, · · · , uen−i,n} is a finite set 
of bi-directional communication links between the connected computing nodes. If ∃uei, j ∈ UE(UG), then cni, cn j ∈ CN(UG), 
cni �= cn j , and (cni, cn j) is a bi-directional communication link between the connected computing nodes cni and cn j .

A computing node cnk is characterized by a five-tuple cnk = (cidk, cfk, cbwk, cpk, cmk), where cidk , cfk , cbwk , cpk , and 
cmk are the computing node identification, failure probability, network bandwidth, processing capacity, and memory of 
computing node cnk , respectively. The processing capacity cpk is characterized by the frequency of CPU. cpk can vary from 
cpmin

k to cpmax
k with the help of DVS, where 0 < cpmin

k < cpmax
k .

The scheduling probability matrix of vertices in a data stream graph is Pn×m =
⎛
⎝ p11 ··· p1m

.

.

.
. . .

.

.

.
pn1 ··· pnm

⎞
⎠, where pij is the proba-

bility of vertex v j in the data stream graph submitted to computing node cni , pij ≥ 0, and 
∑n

i=0 pij = 1. In order to keep 
computing node cni in serviceability state, cni should meet the constraint defined by (1), and the data center DC should 
meet the constraint defined by (2), so that tasks will not be generated in a rate exceeding the limit at which tasks can be 
processed.

m∑
j=0

pij · cdr j ≤ cpi · (1 − cfi), (1)

n∑
i=0

m∑
j=0

pij · cdr j ≤
n∑

i=0

cpi · (1 − cfi). (2)

In (1) and (2), cdr j is the data stream arrival rate of vertex v j on computing node cnk .
The data stream graph scheduling model for allocating data stream graphs to the computing nodes in a data center can 

be defined by Definition 2.

Definition 2 (Data stream graph scheduling model). Let the data stream graph scheduling model Gm of a big data stream 
computing system be represented by a four-tuple Gm = (U , DC, Of , �), where U = {u1, u2, · · · , um} is a user set composed 
of m users, and each user may request service independently with each other. DC = {cn1, cn2, · · · , cnn} is a data center 
composed of n computing nodes, which are running in the form of virtual machines on physical machines. For each data 
stream graph, Of is an objective function for scheduling each data stream graph in the big data computing environment, 
which is defined according to (3), so as to maximize the system reliability and minimize the response time, and can be 
achieved by the fault tolerant framework with deadline guarantee for online applications, and � is an algorithm which 
achieves all those optimal strategies.

Of
(
l(G), r(G)

) = max
(
r(G)|l(G)

)
and min

(
l(G)

)
. (3)

min(l(G)) can be achieved by minimizing the critical path of data stream graph G , as the critical path is the longest path 
of G . That is,

min
(
l(G)

) = min
(
max

{
lp1(vs, ve), · · · , lpm (vs, ve)

})
, (4)

where lpi (vs, ve) is the latencies of the ith path from vertex vs to vertex ve .
max(r(G)) is the reliability of all those instances of the vertex set successfully running on the computing nodes with 

mth try strategy and all data are successfully transferred from the immediate predecessor vertex to its immediate successor 
vertex. It will be achieved by consolidating some vertices, not all vertices, running on non-critical path. The goal is to 
improve system reliability to a better degree, while avoiding too much system fluctuations. The prerequisite for those fault 
tolerance strategies is not affecting the minimum the response time of data stream graph G .

3. FTDG overview

In order to have a bird’s-eye view of the fault tolerant framework with deadline guarantee in big data stream computing 
environments, in this section, we focus our attention on the overall framework of FTDG in a big data stream computing 
environment, which includes the system architecture, workflow description, and algorithm description [15–19].
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Fig. 5. FTDG system architecture.

3.1. System architecture

The system architecture of the fault tolerant framework with deadline guarantee for online applications FTDG is com-
posed of four spaces, which are the hardware space, Storm space, graph space, and user space, as shown in Fig. 5.

In the hardware space, one or many data centers are distributed in different geographical locations. In each data center, 
multiple physical machines provide hardware infrastructure for big data stream computing.

In the Storm space, the critical vertex-based real-time scheduling model, reliability-aware consolidation, and vertex du-
plication model are employed to support real-time reliability-aware resource scheduling and optimization objectives based 
on the open source Storm platform [20], which is an open source and distributed big data stream computing system provid-
ing a set of general primitives for doing real time big data stream computing. The critical vertex-based real-time scheduling 
model is used to minimize the response time of a special data stream graph. The reliability-aware consolidation model is 
used to maximize system reliability of a big data stream computing environment while maintaining the response time min-
imized. The vertex duplication model is used to improve the response time and system reliability by creating some copies 
for special vertex or vertices.

In the graph space, one or many data stream graphs can be created according to the source codes, which are designed 
and submitted by the user. Each data stream graph represents a special user application at one time. All those data stream 
graphs can run concurrently.

In the user space, one or many users can design and submit applications at any time, from anywhere, by any way in the 
world on demand of the data center.

3.2. Workflow description

To maximize the system reliability and minimize the response time, a related definition is given in Definition 3.

Definition 3 (Failure-aware running time, FRT). In a big data stream computing environment, FRT is a running time, where 
the cost of failure of all the instances of the vertex set or the cost of failure of all the edges between the corresponding 
instances of vertices is taken into account.

FRT vi of a vertex vi can be calculated by (5), and FRTei, j of a directed edge ei, j can be calculated by (6).

FRT vi = cvi ,cnk + (1 − rvi ) · (cvi ,cnk + �t), (5)

FRTei, j = cei, j + (1 − rei, j ) · (cei, j + �t). (6)
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In (5) and (6) cvi,k,cnk and cei, j are the corresponding computing time interval of vertex vi running on computing node cnk
and the corresponding transmission time interval from vertex vi to vertex v j , respectively. rvi and rei, j are the corresponding 
reliability of vertex vi , and the corresponding reliability of edge ei, j from vertex vi to vertex v j , respectively. �t is the delay 
of checking a failure.

By introducing the concept of failure-aware reliable running time, FRT, the optimization objectives to maximize the sys-
tem reliability and minimize the response time, can be further simplified as an objective to minimize the failure-aware 
reliable running time. In our work, we allocate all the vertices based on the critical path, and the vertices on the critical 
path will be allocated with priority allocation, taking into account vertices on the non-critical path. Under the same circum-
stances, when a vertex has multiple different options, the computing node or edge with minimum failure-aware reliable 
running time will be selected. While the failure-aware reliable running times are the same, the one with the maximum 
reliability will be selected.

To maximize the system reliability and minimize response time to achieve high fault tolerance and low response time 
objectives measurement and management in big data stream computing environments, we employ the fault tolerant frame-
work with deadline guarantee for online applications FTDG on Storm platform. In order to achieve maximum system 
reliability without affecting the minimum response time, all vertices in DAG will be divided into two groups, vertices 
on the critical path and vertices on non-critical path. The minimize response time is only determined by all the vertices on 
the critical path. Furthermore, maximizing the system reliability can be achieved by consolidating the recourse for vertices 
without affecting the response time of DAG. Maximizing the system reliability can also be achieved by creating duplicates 
of vertices to make better use of the waiting time (free time) in the DAG.

In the first phase, the failure-aware running time based computation cost of each vertex and the failure-aware running 
time based communication cost of each edge in each DAG are estimated in the current data stream environments, the critical 
path and critical vertices can be calculated. When the DAG is first scheduled, a critical path based earliest effective reliable 
running and completion time priority scheduling strategy is employed, in which the computing cost and communication cost 
are under consideration. In this strategy, the vertices on the critical path will be priority scheduled to the earliest effective 
reliable running and completion time computing node only if its predecessors have been scheduled. If the predecessors of 
this vertex have not been scheduled, the predecessors will be priority scheduled to the earliest effective reliable running 
and completion time computing node based on a topology sort. Hereafter, when arrive rate of the data stream has changed 
significantly (increase or decrease), the response time can be largely improved, then a critical vertex on the critical path of 
a DAG is selected and scheduled to a new computing node to achieve minimum response time and system fluctuations, and 
the system reliability is estimated of the current resource allocation states.

In the second phase, a data stream graph reliability model is employed to estimate the system reliability in the current 
data stream environments. A reliability-aware consolidated non-critical vertex on non-critical path strategy is employed to 
maximize the system reliability while not to increases the response time of the current DAG. Usually, the more vertices in a 
DAG, the higher system reliability will be achieved, and the vertex duplicate strategy is used to improve the response time 
and system reliability by creating some copies for the special vertex or vertices, which can make better use of the free time 
in an allocation scheme.

3.3. Algorithm description

The algorithm of fault tolerant framework with deadline guarantee for online applications FTDG is composed of two 
steps, first placement of DAG and online optimization of DAG, as described in Algorithm 1. This scheduling algorithm can 
be implemented by rewriting the IScheduler interface of the Storm platform [20].

When a DAG is first placed to computing nodes, a critical path based earliest completion time priority placement strategy 
is employed, in which failure-aware running time based computing cost and communication cost are considered. In this 
strategy, the vertices on the critical path will be placed, in a high priority, onto the earliest completion computing node 
only if its predecessors have been placed. If the predecessors of this vertex have not been placed, the predecessors will be 
prior placed to the earliest completion computing node based on a topology sort.

When the arrival rate of the data stream has changed, the response time may also has changed. A critical vertex on 
the critical path of a DAG is selected and scheduled to a new computing node to achieve minimum response time and 
system fluctuations. A reliability quantification model of the data stream graph is employed to estimate the reliability of 
each DAG in the current data stream environments. A reliability-aware consolidation of non-critical vertices on non-critical 
path strategy is employed to maximize the system reliability without disturbing the response time of the current DAG. The 
vertex duplication strategy is used to improve the response time and system reliability by creating some copies for special 
vertex or vertices, which can make better use of the free time in an allocation scheme.

The inputs of FTDG algorithm are DAG G , capacity ability matrix C vn×m of the computing nodes in data centers, reliability 
vector Rcn of the computing nodes in data centers, and the data rate of the data stream in real-time. The output is a fault 
tolerance allocation strategy with deadline guarantee. Steps 4–21 schedule vertices to the computing nodes by critical path 
based earliest completion time priority scheduling strategy, in which failure-aware running time based computing cost and 
communication cost are under consideration. Steps 23–35 adjust in real-time the vertices scheduling strategy according to 
changes in the rate of the data stream to maximize the system reliability and minimize the response time, so as to achieve 
trade-off between high fault tolerance and low response time objectives in big data stream computing environments.
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Algorithm 1 FTDG algorithm.
Input: DAG G , capacity ability matrix C vn×m of computing nodes in data centers, reliability vector Rcn of computing nodes in data centers, and data rate of 
data stream in real-time.
Output: A fault tolerance allocation strategy with deadline guarantee.

1. if DAG G or computing nodes is null then
2. return null.
3. end if
4. Evaluate the most common data rate in a big data stream computing environment.
5. Calculate the failure-aware running time based computation cost of each vertex running on each computing node and the relevant failure-aware

running time based communication cost of each edge between corresponding vertices, getting the computation cost matrix Cvn×m .
6. Determine the reliability of each computing node.
7. Sort all vertices topologically in DAG G .
8. Calculate the earliest start time EST and the latest start time LST of each vertex in DAG G .
9. Determine the critical path CP DAG G .

10. for each vertex on critical path CP of DAG G do
11. if vertex vi with the feature of in-degree is zero then
12. Select vertex vi as the will-be-selected vertex vsel .
13. else
14. Select an immediate predecessor vertex of vertex vi as the will-be-selected vertex vsel .
15. end if
16. Calculate the earliest finish time EFTvi of vertex vi on all remaining available computing nodes.
17. Schedule vertex vsel to the earliest finish computing node cn j , which has the best reliability if multiple vertices meeting the time constraint.
18. Refresh the capacity ability of computing nodes cn j , and in-degree of the immediate successor vertex of vertex vsel.
19. Recalculate the earliest start time EST and the latest start time LST of each vertex in DAG G .
20. Refresh the critical path CP of the DAG.
21. end for
22. Monitor the real-time rate of the data stream in the input interface.
23. while |rnew − rold| > �r do
24. Recalculate the failure-aware running time based computation cost of each vertex running on each node under the new data rate and relevant

failure-aware running time based communication cost of each edge between corresponding two vertices, getting the computation cost matrix
C vn×m .

25. Calculate the earliest start time EST and the latest start time LST of each vertex in DAG G and determining the critical path CP DAG G .
26. Try to reschedule vertex vi to computing nodes of the immediate predecessor or successor vertex with the constraint of remaining available

capacity ability is enough, get the best improvement in response time, and recalculate critical vertex cvmax to the computing node cnmax.
27. Identify those computing nodes on non-critical path as the reliability-improve computing nodes.
28. if one or some reliability-improve computing nodes can improve the system reliability then
29. Schedule all vertices running on reliability-improve computing node cn to the corresponding computing nodes running the immediate predeces–

sor or successor vertex with the constraint that the remaining available capacity ability is enough
30. end if
31. Recalculate the response time of DAG and the system reliability of the data center.
32. if some free time in this allocation scheme then
33. Create a copy of the nearest vertex, which is on the critical path and the EFT is earlier than the end time of the free time, to improve the response

time and system reliability to an extent.
34. end if
35. end while
36. return The fault tolerance allocation strategy with deadline guarantee.

4. Quantitative study of critical path

In a big data stream computing environments [15,16,21,22], for a data stream graph G , the computation cost matrix 

Cvn×m =
⎛
⎝

cv1,cn1 ··· cv1,cnm

.

.

.
. . .

.

.

.
cvn ,cn1 ··· cvn ,cnm

⎞
⎠, is a n ×m matrix, in which each computation cost cvi ,cn j (in second) is the time required when 

running vertex vi on computing node cn j . The communication cost cei, j (in second) of directed edge ei, j is the time required 
for transmitting the data stream from vertex vi to v j . If vi and v j run on the same computing node, then cei, j = 0.

EST vi ,cn j and EFT vi ,cn j are the earliest start time and the earliest finish time of vertex vi running on computing node cn j , 
respectively. For the source vertex vs , the earliest start time EST vs on any computing nodes are 0, as shown in (7), and the 
earliest finish time EFT vs is the finish time of running the source vertex vs on the computing node with the best processing 
ability pcn j , as shown in (8).

EST vs,cnany = 0, (7)

EFT vs,cnpbest
= cvi ,cnpbest

. (8)

For the other vertices in DAG, the earliest start time can be calculated from the source vertex vs . In order to calculate 
ESTvi ,cn j , all immediate predecessor vertices of vi must have been scheduled.

EST vi ,cn j = max
{

tidle
v ,cn , tdata

v ,cn , tdata
v ,cn , · · · , tdata

v ,cn

}
, (9)
i j pred1 j pred2 j predn j
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where tidle
vi ,cn j

is the earliest time at which computing node cn j is ready for use, and tdata
vpredk

,cn j
is the time at which all input 

data of the kth immediate predecessor vertex of vertex vi will be ready on computing nodes cn j , which can be calculated 
by (10).

tdata
vpredk

,cn j
= EFT vpredk

+ cepredk ,i , (10)

where vpredk
is the kth immediate predecessor vertex of vertex vi .

The earliest finish time EFT vi ,cn j of vertex vi running on computing node cn j can be calculated by (11).

EFT vi ,cn j = EST vi ,cn j + cvi ,cn j . (11)

LST vi ,cn j is the latest start time of vertex vi running on computing node cn j , which can be calculated by traversing the 
data stream graph G in a topology sort but in the reverse direction. For the end vertex ve , the latest start time LST ve,cn j on 
computing nodes cn j is equal to the earliest start time EST ve,cn j on computing nodes cn j , that is.

LST ve,cn j = EST ve,cn j . (12)

For the other vertex in DAG, the latest start time can be calculated from the end vertex ve , where is the time at which 
the latest time of all output data of immediate successor vertices of vertex vi , and can be calculated by (13).

LST vi ,cn j = min
vsucc∈succ(vi)

{LST vsucc − cei,succ} − cvi ,cn j , (13)

where succ(vi) is the set of immediate successor vertices of vertex vi .

Definition 4. Critical path, CP, also called the longest path, is a path having the longest latencies from source vertex vs to 
end vertex ve in data stream graph G . All vertices on CP with the feature of the earliest start time EST equal to the latest 
start time LST .

The response time of a data stream graph G is also determined by the CP, which is equal to the earliest finish time EFT ve

of the end vertex ve .
In a big data stream computing environment, Critical Vertex, CV , is a vertex on the critical path, CP, of the data stream 

graph G . To the currently computing environment, if the data stream rate changes, the current allocation scheme is not a 
good choice, then moving CV to a new best fit computing node, the maximum response time reduction will be achieved.

The reduced time �tcv of rescheduling CV can be calculated by (14).

�tcv = min
{|CPafter − CPbefore|, |cvcv,cnafter − cvcv,cnbefore |

}
, (14)

where CPafter , CPbefore , cvcv,cnafter , and cvcv,cnbefore are the CP after rescheduling CV , the CP before rescheduling CV , the com-
putation cost of CV on before rescheduling computing node cnbefore , and the computation cost of CV on after rescheduling 
computing node cnbefore , respectively.

In an online big data stream computing environment, when the data stream rate changes, the computation cost of each 
vertex and the communication cost of each edge will also change. Rescheduling all vertices is not a good choice, as all 
the data streams will be lost. The historically allocated information is not considered, and huge system fluctuations are 
unavoidable. In RERF framework, in the first scheduling, a critical path based earliest completion time priority scheduling 
strategy is employed. Hereafter, when the arrival rate of data stream has changed significantly (increase or decrease), if the 
response time can be largely improved, then a critical vertex on the critical path of a DAG is selected and scheduled to a 
new best fit computing node to achieve minimum response time and system fluctuations.

5. Reliability quantification theory

In this section, we focus our attention on the quantized system reliability in a big data stream computing environment, 
including failure modeling, vertex reliability quantification, and reliability quantification of data stream graphs [15,24–26].

5.1. Failure modeling

In a big data stream computing environment, the failure of a vertex or an edge will occur inevitable and will follow a 
special failure density function f (t), which can be defined by Definition 5.

Definition 5 (Failure density function). A failure density function f (t) of a continuous failure is a function that describes the 
relative likelihood for the failure to occur at a given time. The failure density function f (t) is defined by (15).
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⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

f (t) = F ′(t) = dF (t)

dt
,

s.t. f (t) ≥ 0,

+∞∫
−∞

f (τ )dτ = 1,

(15)

where F (t) is the failure distribution function, as defined in Definition 6, which is also related to the failure density function 
f (t).

Definition 6 (Failure distribution function). A failure distribution function F (t) of a continuous failure is a function that 
describes a real-valued random variable t with a given failure density function f (t) and will be found at a value less than 
or equal to t . Intuitively, it is the “area so far” function of the failure density function f (t). The failure distribution function 
F (t) is defined by (16).⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

F (t) = P (−∞ ≤ t) =
t∫

−∞
f (τ )dτ ,

1 − F (t) = P (+∞ > t) =
+∞∫
t

f (τ )dτ ,

F (tb) − F (ta) = P (ta < t ≤ tb) =
tb∫

ta

f (τ )dτ ,

s.t. lim
t→−∞ F (t) = 0,

lim
t→+∞ F (t) = 1.

(16)

Definition 7 (Failure expectation value). A failure expectation distribution value E(t) of a continuous failure is a value that 
describes the weighted average of all possible failure time values that admits a probability density function f (t). The failure 
expectation value E(t) can be calculated by (17).

E(t) =
+∞∫

−∞
τ · f (τ )dτ . (17)

In real cases, the failure of a vertex or an edge is closely related to the physical parameters (i.e., size, material) of 
computing nodes or physical links. In general, the failure of a vertex or an edge is assumed to follow a Poisson distribution 
with constant failure rate λ. Failures of different vertices or edges are assumed to be statistically independent. Although 
such assumptions may not hold in reality, reasonably useful mathematical models can be obtained using this simplified 
assumption [9,27]. So,

f (x = k) = e−λ·t · (λ · t)k

k! , λ > 0, k ∈ {0,1,2,3, · · · }, (18)

where f (x = k) is the failure distribution function in time interval [0, t].

F (x = k) = e−λ·t ·
�k�∑
i=0

(λ · t)i

i! , (19)

E(t) = λ · t, (20)

σ(t) = λ · t. (21)

The reliability rvi,k,cnk of the kth instance of vertex vi running on computing node cn j in time interval [0, t] is the 
probability of running a data tuple successfully during the time of execution, that is k = 0 in (18), and the fault follows a 
Poisson distribution with constant failure rate λv , then rvi,k,cnk can be calculated by (22).

rvi,k,cnk = f (x = 0) = e−λv ·t . (22)

The reliability rei, j of the directed edge ei, j from vertex vi to vertex v j in time interval [0, t] is the probability of 
transferring a data tuple successfully during the time of transmission, and the fault follows a Poisson distribution with 
constant failure rate λe , then rei, j can be calculated by (23).
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rei, j = f (x = 0) = e−λe ·t . (23)

5.2. Vertex reliability quantification

In big data stream computing environments, multiple instances of vertex and mth try strategy can be employed to 
improve the execution reliability of vertex vi in the local level, and to provide a high fault tolerance environment of data 
stream graph in global level. Hence, it is important to maximize the reliability probability of each data stream graph by 
using the multiple instances of vertex and mth try strategy, and the vertex reliability of vertex vi is given in Theorem 1.

Theorem 1. In a stream computing environments, the reliability of each instance of vertex vi running on computing node cn j is 
described as rvi,k,cnk . The n instances of vertex and mth try strategy are employed to improve the reliability of vertex vi . In the situation 
of where there are n instances of vertex vi , each instance will be retried at most m times. Then, the probability that rvi,N,M-tries can be 
calculated by (24).

rvi ,N,M-tries = (
1 − (1 − rvi ,cn)

n) ·
m∑

j=1

(1 − rvi ,cn)
n·( j−1). (24)

Proof. When it comes to multiple instances of vertex, in the situation of where there are n instances of vertex vi , and 
each instance of vertex vi runs on different computing nodes. If the reliability of the kth instance of vertex vi running 
on computing node cn j is described as rvi,k,cnk , so vertex vi is unavailable if and only if all n instances of vertex vi are 
unavailable. Therefore,

rvi ,N = r(vi,1, vi,2, · · · , vi,n). (25)

Each instance of vertex vi runs on different computing nodes, and independent of each other, thus,

rvi ,N = r(vi,1 × vi,2 × · · · × vi,n)

= r(vi,1) × r(vi,2) × · · · × r(vi,n)

= rvi,1,cn1 · rvi,2,cn2 · . . . · rvi,n,cnn

=
n∏

k=1

rvi,k,cnk ,

(26)

where rvi,k,cnk is in interval (0, 1).
As rvi,k,cnk = 1 − rvi,k,cnk , and rvi ,N = 1 − rvi ,N , we obtain,

rvi ,N =
n∏

k=1

(1 − rvi,k,cnk ), (27)

and,

rvi ,N = 1 −
n∏

k=1

(1 − rvi,k,cnk ). (28)

In a big data center, when the computing nodes are in virtual machine form, we can assume the reliability of each 
instance of vertex vi is same and is described as rvi ,cn , that is,

rvi,1,cn1 = rvi,2,cn2 = · · · = rvi,k,cnk = rvi ,cn. (29)

Then (28) can be further simplified as (30).

rvi ,N = 1 − (1 − rvi ,cn)
n. (30)

When it comes to the mth try strategy, in the situation of where there is only one instance of vertex vi . In the mth try 
strategy, this strategy presumes that all the m − 1 previous attempts have failed, and the mth try succeeds. The mth try 
strategy will be employed when the one instance of vertex vi is fails in all those m − 1 tries, then reliability rvi,m−try,cnk of 
vertex vi on computing node cnk at the mth try can be calculated by (31).

rvi,m−try,cnk = r(vi,1-th,cnk
, vi,2-th,cnk

, · · · , vi,m−1-th,cnk
, vi,m-th,cnk

)

= r(vi,1-th,cnk
× vi,2-th,cnk

× · · · × vi,m−1-th,cnk
× vi,m-th,cnk

)

= r(vi,1-th,cnk
) × r(vi,2-th,cnk

) × · · · × r(vi,m−1-th,cnk
) × r(vi,m-th,cnk

)

= r · r · . . . · r · r .

(31)
vi,1-th,cnk vi,2-th,cnk vi,m−1-th,cnk vi,m-th,cnk
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In a big data center, we can assume the reliability of one instance of vertex vi running on computing node cnk are same 
in all those m tries, and is described as rvi ,cnk , that is,

rvi,1-th,cnk = rvi,2-th,cnk = · · · = rvi,m−1-th,cnk = 1 − rvi,m-th,cnk = 1 − rvi ,cnk . (32)

We obtain,

rvi,m−try,cnk = rvi ,cnk · (1 − rvi ,cnk )
m−1. (33)

The probability that vertex vi will be successfully completed on or before the mth try can be calculated by (34).

rvi ,M-tries,cnk =
m∑

j=1

rvi, j−try,cnk =
m∑

j=1

(
rvi ,cnk · (1 − rvi ,cnk )

j−1), (34)

which is the summation of the probability of the completion of the m tries.
When it comes to multiple instances of vertex and the mth try strategy, in the situation where there are n instances of 

vertex vi and each instance of vertex vi employs the mth try strategy when all those instance of vertex vi in the m − 1
previous attempts have failed, then the reliability rvi of the instance of vertex vi at the mth try can be calculated by (35).

rvi ,N,m-th = r

⎛
⎜⎜⎜⎜⎜⎜⎝

vi,1,1-th,cnk
, vi,2,1-th,cnk

, · · · , vi,n,1-th,cnk

vi,1,2-th,cnk
, vi,2,2-th,cnk

, · · · , vi,n,2-th,cnk
...

... · · · ,
...

vi,1,m−1-th,cnk
, vi,2,m−1-th,cnk

, · · · , vi,n,m−1-th,cnk

¬(vi,1,m-th,cnk
, vi,2,m-th,cnk

, · · · , vi,n,m-th,cnk
)

⎞
⎟⎟⎟⎟⎟⎟⎠

(35)

=
(

1 −
n∏

k=1

(1 − rvi,k,cnk )

)
·

n∏
k=1

(1 − rvi,k,cnk )
m−1.

For simplicity, if the reliability of each instance of vertex vi on each computing node are the same and is described as 
rvi ,cn , then (35) can be further simplified as (36).

rvi ,N,m-th = (
1 − (1 − rvi ,cn)

n) · (1 − rvi ,cn)
n·(m−1). (36)

The probability that vertex vi will be successfully completed on or before the mth try can be calculated by (37).

rvi ,N,M-tries =
m∑

j=1

rvi ,N, j-th

=
m∑

j=1

((
1 − (1 − rvi ,cn)

n) · (1 − rvi ,cn)
n·( j−1)

)
(37)

= (
1 − (1 − rvi ,cn)

n) ·
m∑

j=1

(1 − rvi ,cn)
n·( j−1).

This completes the proof. �
For a scenario, when it comes to multiple instances of vertex, if vertex vi has three instances, and the reliability rvi ,cn

of each instance of vertex vi is 0.8, that is rvi ,cn = 0.8, then reliability rvi of vertex vi can be calculated by (30). That is 
rvi = 1 − (1 − rvi ,cn)

n = 1 − (1 − 0.8)3 = 0.992. When it comes to the mth try strategy, if vertex vi has one instance, and the 
instance will retry at most three times, and the reliability rvi ,cn of the instance of vertex vi on computing node cnk is also 
0.8, that is rvi ,cn = 0.8, then rvi ,M-tries,cnk = ∑m

j=1(rvi ,cnk · (1 − rvi ,cnk )
j−1) = ∑3

l=1(0.8 · (1 − 0.8) j−1) = 0.992. When it comes 
to multiple instances of vertex and the mth try strategy, if vertex vi has three instances, and the reliability rvi ,cn of each 
instance of vertex vi is 0.8, each instance will retry at most three times, then rvi ,N,M-tries = (1 − (1 − rvi ,cn)

n) · ∑m
j=1(1 −

rvi ,cn)
n·( j−1) = (1 − (1 − 0.8)3) · ∑3

j=1(1 − 0.8)3·( j−1) = 0.9999.
The relationship between reliability rvi ,cn of each instance of vertex vi and the reliability rvi ,N of vertex vi with the 

n instances is shown in Fig. 6. The relationship between reliability rvi ,cn of each instance of vertex vi and the reliability 
rvi ,M-tries,cnk of vertex vi with the m tries is shown in Fig. 7. The relationship between reliability rvi ,cn of each instance of 
vertex vi and the reliability rvi ,N,M-tries of vertex vi with the n instances and m tries is shown in Fig. 8. We can easily get 
the follow conclusions (1) multiple instances of a vertex in space and multiple tries of an instance in time will be able to 
achieve the same effect; (2) in a big data computing environment, the number of n in multiple instances and the number 
of m in multiple tires can be get by the reliability of each instance of a vertex and the objective reliability of the vertex; 
(3) as usual, when only consider the reliability of a vertex, the number of n in multiple instances should be less than 3, and 
the number of m in multiple tires should be less than 2.
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Fig. 6. Reliability of vertex with n instances.

Fig. 7. Reliability of vertex with m tries.

Fig. 8. Reliability of vertex with n instances and m tries.

5.3. Reliability quantification of data stream graph

Let a data stream graph G = (V (G), E(G)) be composed of vertex set and directed edge set, where V (G) =
{v1, v2, · · · , vn} is a finite set of n vertices and E(G) = {e1,2, e1,3, · · · , en−i,n} is a finite set of m directed edges.

Recall that failures of vertices and edges in big data stream computing environments are assumed to be statistically 
independent. Therefore, the r(G) of data stream graph G is equal to the probability of all its instances of vertex set success-
fully running on computing nodes with the mth try strategy and all data are successfully transferred from its immediate 
predecessor vertex to its immediate successor vertex, and can be calculated by (38).
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Fig. 9. Response time of DAG with different data stream rates.

r(G) =
n∏

i=1

rvi ·
∏

ex,y∈E(G)

rex,y . (38)

The reliability expectation value Er(G)[ta, tb] of data stream graph G in a corresponding computing time interval cvi,k,cnk

and a corresponding transmission time interval cei, j to process data stream successfully can be calculated by (39).

Er(G)[ta, tb] =
n∏

i=1

rvi · cvi,k,cnk ·
∏

ex,y∈E(G)

rex,y · cex,y . (39)

6. Simulation and performance evaluation

In order to evaluate the performance of the proposed FTDG algorithm, simulation environment and parameter set are 
discussed firstly in this section, followed by the precise performance evaluation results.

6.1. Simulation environment and parameter setup

Storm platform [10,20,28,29] is used in the experiment environment, which is a parallel, distributed, and fault-tolerant 
system. It is designed to fill the gap of providing a platform that supports real-time data stream computing on clusters of 
horizontally scalable commodity machines. Our experiment is done on Storm 0.8.1.

24 physical machines are created in a data center in the simulation environment. The physical machine has a dual 
6-core, Intel Xeon 2 GHz, 32 bit, 4 GB Memory, and 1 Gbps network interface. Each machine runs Linux Ubuntu Server 
13.04. All those machines are interconnected by arbitrary processor network, communication links are bidirectional, and its 
topological structure is a fully connected graph. The failure of a machine or a communication link is set to follow a Poisson 
distribution with constant failure rate λ = 0.1. The corresponding reliability of a machine or a communication link is usually 
in the range of [0.9, 1] in 1 second. Failures of different virtual machines or edges are set to be statistically independent.

Moreover, a linear pipeline based directed acyclic graph and a complicated precedence constraint based directed acyclic 
graph, as shown in Fig. 1 and Fig. 2, are submitted to the data centers. The function of the two DAGs is to achieve TOP_N 
computing in big data stream computing environments. Those two DAGs are critical path sensitive DAGs. The length of the 
critical path is significantly longer than other paths. The length of each tuple is considered as a random number within the 
range of [1000, 2000] KI.

6.2. Performance evaluation

The experimental set up contains three evaluation parameters: the response time RT , system throughput ST , system 
reliability R(sys).

(1) Response time. The response time RT or makespan of a DAG is determined by the critical path of that DAG. RT can 
be calculated by EFT of the end vertex ve of the DAG, as shown in (11). RT can also be obtained by Storm UI, which is 
provided by the Storm platform.

When the rate of a data stream is stable, with the increase of time, the response time of DAG will decrease. When the 
time is long enough, the response time will stabilized at a low level. As shown in Fig. 9, when the rate of the data stream is 
stable at 100 tuples/s, 2000 tuples/s, and 5000 tuples/s, the response time is 0.282 ms, 0.323 ms, and 0.378 ms, respectively.

When the rate of a data stream is stable, with the increase of the number of vertex instances, the average response 
time of DAG is decrease. As shown in Fig. 10, when the rate of the data stream is stable at 100 tuples/s, 2000 tuples/s, 
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Fig. 10. Response time of DAG with different vertices instances.

Fig. 11. System throughput of DAG different data stream rates.

5000 tuples/s, and the number of vertex instances is 22, the average response time is 0.229 ms, 0.264 ms, and 0.306 ms, 
respectively.

(2) System throughput. System throughput ST reflects the data rate of a data center when processing the same data 
stream by a DAG. ST can be described by tuples per each millisecond of all the applications in a big data stream computing 
environment.

When the rate of a data stream is stable, with the increase of time, the system throughput of DAG has some fluctuations. 
When the time is long enough, the system throughput will stabilize at a reasonable level. As shown in Fig. 11, when the 
rate of the data stream is stable at 100 tuples/s, 2000 tuples/s, and 5000 tuples/s, the system throughput is 0.367 tuples/ms, 
6.609 tuples/ms, and 16.329 tuples/ms, respectively.

When the rate of a data stream is stable, with the increase of the number of vertex instances, the average system 
throughput of DAG will decrease. As shown in Fig. 12, when the rate of the data stream is stable at 100 tuples/s, 2000 
tuples/s, and 5000 tuples/s, and the number of vertex instances is 22, the average system throughput is 0.463 tuples/ms, 
11.491 tuples/ms, and 24.991 tuples/ms, respectively.

(3) System reliability. System reliability R(sys) reflects the total reliability of a data center when processing the same data 
stream by a DAG. R(sys) can be calculated by the reliability of all applications in a big data stream computing environment, 
and can be obtained by (40).

R(sys) =
n∏

i=1

r(Gi). (40)

When the rate of a data stream is stable at 100 tuples/s, with the increase of the vertex number, the FTDG allocation 
algorithm can improve the system reliability to a degree, the more the number of vertices, the greater degree of the im-
provement in system reliability. As shown in Fig. 13, comparing to the basic Round-Robin allocation strategy in Storm, and 
the improved allocation strategy in JStorm [20], which is built on Storm, it is a great improvement in system reliability in 
the data center.
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Fig. 12. System throughput of DAG with different vertex instances.

Fig. 13. System reliability.

7. Related work

In this section, three broad categories of related work are presented: big data stream computing, performance-oriented 
data stream scheduling, and fault tolerance strategy in distributed heterogeneous computing systems.

7.1. Big data stream computing

Big data stream computing is a new trend for future computing with the quantity of data growing. In general, there are 
two main mechanisms for big data computing, big data stream computing and big data batch computing. Big data stream 
computing is the model of straight through computing, such as Storm [20] S4 [30], while big data batch computing is the 
model of storing then computing, such as MapReduce framework [31], open sourced by the Hadoop implementation [32]. 
However, big data batch computing is not adequate for supporting big data stream computing.

In [11], a distributed-system infrastructure, TimeStream, is designed specifically for reliable low-latency continuous 
computing of big streaming data on large clusters of commodity machines. The big streaming data has the following charac-
teristics: (1) High volumes, the incoming data arrives continuously at volumes that far exceeds the capabilities of individual 
machines; (2) Low latency, input streams incur multi-staged computing at low latency to produce output streams. A pow-
erful abstraction, called resilient substitution, serves as a uniform foundation for handling failure recovery and dynamic 
reconfiguration correctly and efficiently.

In [33], a distributed system, Naiad, is designed specifically for executing data parallel, cyclic dataflow programs. It 
offers the high throughput of batch computing, the low latency of stream computing, and the ability to perform iterative 
and incremental computing. A computational model, timely dataflow, enriches dataflow computation with timestamps that 
represent logical points in the computation and provide the basis for an efficient, lightweight coordination mechanism. 
Many powerful high-level programming models can be built on Naiad’s low-level primitives, enabling such diverse tasks as 
streaming data analysis, iterative machine learning, and interactive graph mining.

In [34], a distributed computing model, discretized streams (D-Streams), is implemented in a system named Spark 
Streaming. D-Streams is designed specifically for fast, often sub-second, recovery from faults and stragglers, without the 
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overhead of replication, in ever-larger scales of data stream computing environments. D-Streams enable a parallel recovery 
mechanism that improves efficiency over traditional replication and backup schemes, and tolerates stragglers. The idea in 
D-Streams is to structure a streaming computation as a series of stateless, deterministic batch computations in small time 
intervals. D-Streams make (1) the state at each timestep fully deterministic given the input data, forgoing the need for 
synchronization protocols, and (2) the dependencies between this state and older data visible at affine granularity.

To summarize, current big data computing schemes are not limited in one or other aspect. Up to now, most of the 
research efforts are in big data batch computing, while the response time of batch computing, at the level of several 
seconds or even minutes, cannot meet the request of most big data applications. However, the research about big data 
stream computing is not enough and not systematic, such as, Storm system employ a round-robin strategy as its task 
scheduling strategy, which is always not efficient and effective. So it needs to pay much attention to stream computing in 
big data and cloud era.

7.2. Performance-oriented data stream scheduling

In distributed stream computing environments, the structure of applications of data streams is usually described as 
DAG. Performance oriented data stream scheduling tries to dynamically schedule recourses for many DAGs according to 
dynamic changes in the volume of the data stream, which is known to be NP-hard. The performance oriented data stream 
scheduling can be further classified into the follow groups [35]: list scheduling algorithms, task duplication-based scheduling 
algorithms, clustering scheduling algorithms, and guided random search scheduling algorithms.

In [36], a two-phase list-based scheduling algorithm, named Hybrid Heuristic-Genetic Scheduling (H2GS) algorithm, for 
data stream scheduling on heterogeneous distributed computing systems, is proposed. The first phase implements a heuristic 
list-based algorithm, named LDCP, to generate a high quality schedule. In the second phase, the LDCP-generated schedule is 
injected into the initial population of a customized genetic algorithm, which proceeds to evolve shorter schedules.

Task duplication is a well-known technique for reducing the necessary communication between the processors. Some 
certain crucial tasks will be duplicated and executed on more than one processor. In [37], a contention-aware task dupli-
cation scheduling algorithm is proposed. It works under the general contention model, and its algorithmic components are 
based on state-of-the-art techniques used in task duplication and contention-aware algorithms.

Data streams are infinite and evolving over time, and do not have any knowledge about the number of clusters. Clustering 
data streams will help overcome the various factors and noise in data streams. In [38], density-based data stream clustering 
algorithms are surveyed. In [39], a data stream clustering algorithm, named SVStream, is proposed. SVStream is based 
on support vector domain description and support vector clustering. The data elements of a stream are mapped into a 
kernel space, and the support vectors are used as the summary information of the historical elements to construct cluster 
boundaries of arbitrary shape. To adapt to both dramatic and gradual changes, multiple spheres are dynamically maintained, 
each describing the corresponding data domain presented in the data stream.

In [40], a Double Molecular Structure-based Chemical Reaction Optimization (DMSCRO) algorithm, for Directed Acyclic 
Group data stream scheduling on heterogeneous computing systems, is developed. In DMSCRO, one molecular structure is 
used to encode the execution order of the tasks in a DAG job, while the other molecular structure to encode the task-
to-computing-node mapping. DMSCRO also designs the necessary elementary chemical reaction operations and the fitness 
function suitable for the scenario of DAG scheduling.

To summarize, current performance oriented data stream scheduling is not limited in one or other aspect. Up to now, 
most of the researches are in static scheduling, all the information about scheduling is estimate and unchanged, and must be 
known in advance. However, when the volume of the data stream has changed, the scheduling may not be a wise strategy. 
If this static scheduling is employed again in this stage, huge fluctuations will occur. In big data stream environments, the 
volume of data stream is always changing.

7.3. Fault tolerance strategy in distributed heterogeneous computing system

In distributed heterogeneous computing, fault tolerance strategy has been widely studied. High system reliability has 
become a key metric for evaluating how good a computing system is. Recently, more and more research works began to 
address the DAG scheduling problem with fault tolerance issue in mind.

In [8], an application reliability analysis model based on Weibull distribution is built, and a reliability-driven earliest 
finish time with duplication scheduling algorithm REFTD is proposed. REFTD incorporates task reliability overhead into 
scheduling. In order to improve system reliability, it duplicates task as if task hazard rate is more than a threshold, and 
it can also reduce the scheduling length of applications in a heterogeneous computing system with arbitrary connected 
networks.

In [9], a distributed scientific workflow scheduling strategy, named dis-DRMED, for maximized reliability under certain 
end-to-end delay bound, is proposed. dis-DRMED considers both the maximum reliability and the minimum end-to-end 
delay in a two-step procedure. In the first step, a scheduling algorithm combining iterative Critical Path search and Layer-
based priority assigning techniques (CPL) is adopted to minimize the end-to-end delay by focusing on the optimal allocation 
of tasks on the critical path. In the second step, tasks on noncritical paths are rescheduled to improve the overall execution 
reliability.
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In [41], a framework for adaptive fault-tolerant workflow execution in the grid environments is proposed. The framework 
can dynamically decide the most appropriate fault tolerance technique with a user-defined rule-based system. The main 
work is done in twofold: the developed framework and the model-based dependability analysis. The purpose in carrying 
out a model-based dependability analysis consists of evaluating the interaction between the framework and the distributed 
grid environment beyond the physical limitations of an empirical evaluation.

In [42], provisioning and job reconfiguration techniques are proposed for adapting to execution environment changes 
when processing data streams on cluster-based deployments. This work targets data intensive applications where the inter-
node transfer latency is significant, and aims to minimize the transfer latency. These techniques are based on a general 
group-based job representation that is commonly found in many distributed data stream processing frameworks.

Existing reliability aware measurement and management mechanism proposed for distributed stream computing sys-
tems cannot be directly implemented for big data stream computing. As they just base on special assumptions, focus on 
maximizing system reliability, or try to balance energy and performance. In contrast, our solution can achieve high fault 
tolerance without affecting the minimum response time. All vertices in DAG will be divided into two groups, vertices on 
all critical path and vertices on non-critical paths. Low response time is only determined by all the vertices on the critical 
path. Furthermore, maximizing the system reliability can be achieved by consolidating recourse for vertices on non-critical 
path. Our solution intends to achieve high fault tolerance and low response time objectives measurement and management 
in big data stream computing environments.

8. Conclusions and future directions

In big data stream computing environments, the data centers are usually composed of tens of thousands of diverse 
sets of computing nodes with different capabilities, and are interconnected with arbitrary network architectures. Failures 
are inevitable due to the inherently unreliable nature of the computing nodes and communication links. It is needed to 
consider fault tolerance in data centers, while maintaining high performance and service level objectives. To achieve reliable 
stream computing in big data computing environments and to address high fault tolerance by carefully choosing the running 
computing nodes and communication links in data centers, it is important to obtain a clear picture of the total reliability of 
the computing nodes and communication links in big data environments. More importantly, it is needed to understand how 
to maximize the system reliability and minimize the response time in data centers, and to deal with the trade-off between 
high fault tolerance and low response time objectives efficiently and effectively.

In this paper, we have covered all the four aspects of FTDG.
(1) Identifying the critical path of a data stream graph at a given data stream throughput, and quantifying the system 

reliability of a data stream graph.
(2) Allocating tasks by the fault tolerance aware heuristic and critical path scheduling mechanism.
(3) Optimizing the task scheduling by reallocating the critical vertices on the critical path of the data stream graph to 

lower the response time and reducing system fluctuations.
(4) Prototype implementation, simulation, and performance evaluation of the proposed FTDG.
In the future, we will focus on the research as follows:
(1) Optimizing the structure of the data stream graph, and providing an efficient data stream graph for each application.
(2) Deploying the FTDG on a real big data stream computing platform.
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