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a b s t r a c t

To achieve high energy efficiency and low response time in big data stream computing
environments, it is required to model an energy-efficient resource scheduling and
optimization framework. In this paper, we propose a real-time and energy-efficient
resource scheduling and optimization framework, termed the Re-Stream. Firstly, the
Re-Stream profiles a mathematical relationship among energy consumption, response
time, and resource utilization, and obtains the conditions to meet high energy efficiency
and low response time. Secondly, a data stream graph is modeled by using the distributed
stream computing theories, which identifies the critical path within the data stream graph.
Such a methodology aids in calculating the energy consumption of a resource allocation
scheme for a data stream graph at a given data stream speed. Thirdly, the Re-Stream allo-
cates tasks by utilizing an energy-efficient heuristic and a critical path scheduling mecha-
nism subject to the architectural requirements. This is done to optimize the scheduling
mechanism online by reallocating the critical vertices on the critical path of a data stream
graph to minimize the response time and system fluctuations. Moreover, the Re-Stream
consolidates the non-critical vertices on the non-critical path so as to improve energy effi-
ciency. We evaluate the Re-Stream to measure energy efficiency and response time for big
data stream computing environments. The experimental results demonstrate that the Re-
Stream has the ability to improve energy efficiency of a big data stream computing system,
and to reduce average response time. The Re-Stream provides an elegant trade-off between
increased energy efficiency and decreased response time effectively within big data stream
computing environments.

� 2015 Elsevier Inc. All rights reserved.
1. Introduction

1.1. Background and motivation

Big data, which is too large, changing too fast, and too dispersed, is beyond the ability of available hardware and software
facilities to undertake their acquisition, access, analytics, and/or application in a reasonable amount of time and space. Big
data stream computing relies on programs that compute continuous data streams. Providing fast big data processing with
large-scale parallel architectures, stream computing is becoming the fastest and most efficient solution to obtain useful
singhua.
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knowledge from big data. This allows organizations to react quickly when problems appear or to predict new trends
[9,17,33,42]. Big data stream characterizes high-speed, real-time, and large-volumes of input data from applications. The
data can be structured, unstructured, or of both types. Data sources of all such applications often take the form of continuous
data streams. Moreover, many data streams from different data sources may form a mixture of the data types that may be
incompatible. During the data stream processing, the data fusion phase is very complex, and is completely different from the
process of the composition of the massive data streams [8,27,42]. In the current stream computing environments, high per-
formance and service level objectives are considered as the main issues, while energy efficiency is ignored.

To achieve energy-efficient stream computing, it is important to obtain a clear picture of the total energy consumption
within big data environments. However, the current state of the art does not directly address the complex tradeoff between
energy consumption and response time [3,5,8,37]. This justifies the importance of modeling an energy-efficient resource
scheduling and optimization framework for big data stream computing environments.

Our work is motivated by the following observations.

(1) Existing resource scheduling strategies are inefficient.
In existing big data stream computing systems (e.g., the Storm system and the S4 system), the desirable architecture is
under consideration, while highly efficient resource scheduling strategy is ignored. For example, the instance number
of task topology in the Storm system is statically set by users, cannot adapts to the change of data stream dynamically.
The round-robin strategy is employed to allocate resources when a task topology is submitted to the system.
Obviously, a resource scheduling strategy with the feature of elasticity and adaptively to changes of data stream is
in need. The authors of [37] also tried to solve this problem. However, their solution only focuses on response time,
while many factors are not considered, such as initial scheduling, critical path of task topology.

(2) The factor of energy efficiency is not considered.
At present, high energy efficiency is not considered in designing a big data stream computing system. For example, in
the Storm system, some resources may be in low utility for a long time, while the system is in the high power state. It
may not waste too much energy for a small-scale system. However, it may waste too much energy in big data stream
computing environments, which are usually composed of several thousand computing nodes. Energy consumption is
linearly associated with resource utilization. Resource consolidation is a major way for energy saving. Some energy
saving technologies, such as resources consolidation, dynamic voltage and frequency scaling technology, should be
considered in big data stream computing systems. In current big data stream computing systems, such optimization
technologies are not considered.

So we try to achieve high energy efficiency and low response time in a big data stream computing environment. Our
approach is partially inspired by the following ideas.

(1) Dynamic Voltage and Frequency Scaling (DVFS).
DVFS has been used to scale up or scale down the input voltage and operational frequency of processors. It is an effec-
tive way to reduce energy consumption. The lower the power state is, the greater the energy savings is [25,26,41].
However, the execution time also becomes longer. As shown in Fig. 1(a), when the task runs in a higher power state,
the execution time is shorter and the task is finished in advance of deadline. When the task is finished, the machine
works in an idle state, some energy is also required. As shown in Fig. 1(b), when the task runs in a lower power state,
the execution time is longer but without causing the task to go beyond the deadline. By finishing task just in time, less
energy is needed.
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Fig. 1. Dynamic voltage and frequency scaling.
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(2) Critical path in a directed acyclic graph (DAG).
In a DAG, the response time is determined by the latency of critical path in the DAG. As shown in Fig. 2, in a real-time
stream computing environment, rescheduling all vertices to improve the response time is not a wise choice. That will
affect the online running of the DAG seriously. Rescheduling one or a few vertices is better than rescheduling all ver-
tices. Rescheduling the heaviest vertex, i.e., vertex 35, is also not a good choice. The response time is determined by the
latency of critical path (10–21–25–12) of the DAG, while vertex 35 is not on the critical path. Vertex 25 is on critical
path (10–21–25–12) of the DAG. If we reschedule vertex 25, the computing time is reduced from 25 ms to 20 ms.
Accordingly, the response time of the DAG will also be reduced by 5 ms. However, if the computing time of vertex
25 is reduced form 25 ms to 15 ms, the response time of the DAG will be reduced by 6 ms instead of by 10 ms.
This is because critical path varies and new critical path (10–35–5–12) will determine response time of the DAG.

All those observations can be used to optimize the real-time and energy-efficient scheduling framework. Motivated by
aforementioned observations, in this paper, we design all four aspects of Re-Stream by conducting the following investigation.

(1) Profiling the mathematical relationship between energy consumption, response time, and resource utilization in big
data stream computing, obtaining the conditions to meet the high energy efficiency, and low response time objectives.

(2) Modeling data stream graph in big data stream computing environments by referring to the distributed stream com-
puting theories, identifying the critical path in a data stream graph, and getting energy consumption of an allocation
scheme for a data stream graph at a special data stream speed.

(3) Allocating tasks by the energy efficient heuristic and the critical path scheduling mechanism subject to the constraints
of tasks’ architectural requirements, and optimizing the scheduling mechanism online by reallocating the critical
vertices on critical path of data stream graph to minimize response time and system fluctuations, and consolidating
non-critical vertices on non-critical path to maximize the energy efficiency.

(4) Implementing our approach, and evaluating it in big data stream computing environments for both energy efficiency
and response time.

1.2. Contributions

Our contributions are summarized as follows:

(1) Formal definitions of data stream graph, big data stream computing architecture, and high energy efficiency and low
response time in quantitative perspective, and systematical profiling of the mathematical relationship between energy
consumption, response time, and resource utilization in big data stream computing environments.

(2) Systematic investigation in computation of nodes, communication among nodes, and allocating tasks by energy effi-
cient heuristic and critical path scheduling mechanism subject to the constraints of tasks’ architectural requirements.

(3) Identification of the critical path of a data stream graph at a given data stream throughput, and optimization of the
scheduling mechanism online by reallocating the critical vertices on critical path of data stream graph to minimize
response time and system fluctuations.

(4) Quantification of energy consumption of an allocation scheme for a data stream graph at a given data stream speed,
and consolidation of non-critical vertices on non-critical path to maximize the energy efficiency.

(5) Prototype implementation, simulation, and performance evaluation of the proposed Re-Stream, which can provide a
trade-off between high energy efficiency and low response time objectives efficiently and effectively in big data
stream computing environments.
Fig. 2. Directed acyclic graph.
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1.3. Paper organization

The remainder of this paper is organized as follows. In Section 2, a series of definitions of data stream graph and data
stream graph scheduling model in big data stream computing environments are presented. Section 3 presents system archi-
tecture, workflow, critical vertex model, and energy consumption model of the Re-Stream. Section 4 focuses on the schedul-
ing algorithm of the Re-Stream in a real big data stream computing platform. Section 5 shows the experimental environment,
parameters setup, and experimental results of the Re-Stream. Section 6 reviews the related works on big data stream com-
puting, performance aware data stream scheduling, and energy aware data stream scheduling. Finally, conclusions and
future work are given in Section 7.

2. Problem statement

In big data stream computing environments, the stream application is partitioned into a set of sub-task wherein each sub-
task depends on the results of executions of other sub-tasks, and is described into Data Stream Graph (DSG), which is
described by directed acyclic graph (DAG). All those DSGs will be submitted to data center. To precisely reflect these factors
in scheduling, optimizing, and evaluating DSG for big data stream computing, some related definitions are defined below
[8,14,15,22,26,35].

2.1. Data stream graph

A stream is a sequence of data sets. A continuous stream is an infinite sequence of data sets, and the parallel streams are
more than one stream to be processed at the same time. A stream computing is a program that computes continuous data
streams. In stream computing, the multiple continuous parallel data streams can be processed by DSG, and is described by
DAG. A measurable DSG view can be defined by Definition 1.

Definition 1 (DSG). A DSG G is a directed acyclic graph, composed of vertices set and directed edges set, has a logical
structure and special function, and denoted as G ¼ V Gð Þ; E Gð Þð Þ, where V Gð Þ ¼ v1;v2; . . . ;vnf g is a finite set of n vertices, that
represent sub-tasks, and E Gð Þ ¼ e1;2; e1;3; . . . ; en�i;n

� �
is a finite set of directed edges, that represent execution precedence

between vertices. If 9ei;j 2 E Gð Þ, then v i; v j 2 V Gð Þ, v i – v j, and v i; v j
� �

is a ordered pair, where data stream come from v i, and
go to v j.

The vertex v i is characterized by a five-tuple v i ¼ idv i
; f v i

; cv i
; iv i

; ov i

� �
, where idv i

is the identification of vertex v i, f v i
is the

function of vertex v i, cv i
is the computation cost of vertex v i; iv i

is the input data stream for vertex v i, ov i
is the output data

stream for vertex v i.
The vertex v i represents a task composed of a set of instructions, which will change iv i

by f v i
to ov i

with cv i
, that is

ov i
¼ f v i

iv i

� 	
. The function of DSG G is achieved by all n vertices, that is O ¼ FðIÞ, where O, F, and I are output data steam,

function of DSG G, and input data steam, respectively.
The directed edge ei;j is the directed communication link from vertex v i to v j, and is characterized by a tuple, that is

ei;j ¼ idei;j
; cei;j

;
� �

, where idei;j
is the identification of directed edge ei;j, cei;j

is the communication cost of directed edge ei;j from

connected vertex v i to v j, if v i and v j run on the same computing node, then cei;j
¼ 0.

The in-degree of vertex v i is the number of incoming edges, and the out-degree of vertex v i is the number of outgoing
edges. The source vertex is the vertex whose in-degree is zero, and the end vertex is the vertex whose out-degree is zero.
A DSG G has at least one source vertex and one end vertex.

The scenario of a DSG with eleven vertices is shown in Fig. 3, where the vertices set V ¼ va;vb; . . . ;vkf g, the directed edges
E ¼ ea;c; eb;c; . . . ; ej;k

� �
, the source vertices are va and vb, and the end vertex is vk, the in-degree of vertex vd is one, the out-

degree of vertex vd is two.
DSG G can be further divide into two groups, data stream logical graph and data stream instance graph. The data stream

logical graph reflects the logical structure of a data steam graph G, and each vertex of G only has one instance. However, the
data stream instance graph is actually deployed graph on a set of computing nodes, and some vertex may have many
instances to eliminate the bottleneck and split the data stream. As shown in Fig. 4, the Storm source code is the main part
to achieve TOP_N computing function, the corresponded logical graph is shown in Fig. 5(a), and the instance graph is shown
in Fig. 5(b), where vertex va is parallelized into four instances, vertex vb and vertex vc are parallelized into three instances. In
our work, we optimize the logical and instance graphs. As the DSG G can be allocated to computing nodes for execution and
dynamically reconfigured the number of vertex at runtime.

Definition 2 (sub-graph). A sub-graph sub-G of the DSG G is the sub graph consisting of a subset of the vertices with the
edges in between. For any vertices v i and v j in the sub-graph sub-G and any vertex v in DSG G, v must also be in the sub-G if v
is on a directed path from v i to v j, that is 8v i;v j 2 V sub� Gð Þ, 8v 2 V Gð Þ, if v 2 V p v i;v j

� 	� 	
, then v 2 V p sub� Gð Þð Þ.
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Fig. 4. Storm source code.
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A sub-graph sub-G is logically equivalent and can be substituted by a vertex. But reducing that sub-graph to a single logi-
cal vertex would create a graph with cycle, not a DAG.

The scenario of a DSG is shown in Fig. 3, which is an example of DSG consisting of eleven vertices, with va being a source
vertex, and vk being a result vertex. The sub-graph vd, v f , vg and v i, as well as all their edges, is a valid sub-graph, The sub-
graph ve, vh and v j also is a valid sub-graph, but the sub-graph vd, v f and v i is not a valid sub-graph as vg is on the path from
vd to v i, but not part of the sub-graph.

Definition 3 (Path). A path p vu;vvð Þ from vertex vu to vertex vv is a subset of E p vu;vvð Þð Þ should meet conditions:
9k; ei;k 2 p vu;vvð Þ; ek;j 2 p vu;vvð Þ, for any directed edge ek;l in path p vu;vvð Þ displays the properties: if k – i, then 9m, and
em;k 2 p vu;vvð Þ; if i – j, then 9m, and el;m 2 p vu;vvð Þ.
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The latencies lp vu;vvð Þ of a path from vertex vu to vertex vv is the sum of latencies of both vertices and edges on the path,
as given by Eq. (1):
lp vu;vvð Þ ¼
X

v i2V p vu ;vvð Þð Þ
cv i

cVpree



 þ
X

ei;j2E p vu ;vvð Þð Þ
cei;j

cEpree



 ; cv i
; cei;j

P 0: ð1Þ
If there are m paths from source vertex v s to end vertex ve in DSG G, then the latencies l Gð Þ of DSG G is given by Eq. (2):
l Gð Þ ¼max lp1
vs;veð Þ; lp2

v s; veð Þ; . . . ; lpm
v s;veð Þ

� �
: ð2Þ
where lpi
v s;veð Þ is the latencies of the ith path from vertex v s to vertex ve.

According to (1),
l Gð Þ ¼max

X
v i2V p1 vu ;vvð Þð Þ

cv i
cVpree



 þ
X

ei;j2E p1 vu ;vvð Þð Þ
cei;j

cEpree



 ;

X
v i2V p2 vu ;vvð Þð Þ

cv i
cVpree



 þ
X

ei;j2E p2 vu ;vvð Þð Þ
cei;j

cEpree



 ;

. . . ;X
v i2V pm vu ;vvð Þð Þ

cv i
cVpree



 þ
X

ei;j2E pm vu ;vvð Þð Þ
cei;j

cEpree





8>>>>>>>>><
>>>>>>>>>:

9>>>>>>>>>=
>>>>>>>>>;
: ð3Þ
In DSG G, if 9ei;j from vertex v i to vertex v j, then vertex v i is a parent of vertex v j, and vertex v j is a child of vertex v i.

Definition 4 (Topological Sort (TS)). A TS Gð Þ ¼ vx1 ;vx2 ; . . . ;vxn

� 	
of the vertices V Gð Þ in DSG G is a linear ordering of its

vertices such that for every directed edge exi ;xj (exi ;xj 2 E Gð ÞÞ from vertex vxi to vertex vxj , vxi comes before vxj in the
topological ordering.

A TS is possible if and only if the graph has no directed cycles, that is, it is need to be a DAG. Any DAG has at least one
topological ordering.

In the scenario of a DSG shown in Fig. 3, vb;va;vc;vd; ve;vh;v f ;vg ;v i;v j;vk

� 	
is a valid TS.

Definition 5 (Graph Partitioning (GP)). A GP Gð Þ ¼ GP1;GP2; . . . ;GPmf g of the DSG G is a TS based split the vertex set V Gð Þ and
correspond direct edges. A graph partitioning should meet non-overlapping and covering properties, that is if DSG is split
into m sub graphs, 8i – j,i; j 2 1;m½ �, then GPi \ GPj ¼ ø, and

Sm
i¼1GPi ¼ V Gð Þ.

In the scenario of a DSG shown in Fig. 3, GP Gð Þ ¼ GP1;GP2;GP3;GP4;GP5f g, and GP1 ¼ vb;va;vcf g, GP2 ¼ vd;vef g,
GP3 ¼ vh; v f ;vg

� �
, GP4 ¼ v i;v j

� �
, GP5 ¼ vkf g is a valid graph partitioning. However, GP Gð Þ ¼ GP1;GP2;GP3;GP4f g, and

GP1 ¼ vb;va;vcf g, GP2 ¼ vc;vd;vef g, GP3 ¼ vh;v f ; vg
� �

, GP4 ¼ v i;v j
� �

is not a valid graph partitioning, as GP1 \ GP2 – ø,

which does not meet the non-overlapping properties, and
S4

i¼1GPi – V Gð Þ, and also does not meet the covering properties.

2.2. Data stream graph scheduling

A DSG scheduling system consists of a user broker, scheduling broker, and data centers. A scheduling broker is the data
center central managing broker. Some specific features of a DSG scheduling system can be described as follows.

Let U ¼ u1;u2; . . . ;umf g be a user set composed of m users, Gs ¼ Gs1;Gs2; . . . ;Gsmf g be a set of DSGs of the user set U, and

Gsj ¼ Gj1 ;Gj1 ; . . . ;Gjmj

n o
be a sub-set of DSGs of the jth user uj, where mj is the number of DSGs of the jth user uj, and Gsk is the

kth DSG submitted to the scheduling broker through a user interface and independent of the other users. The scheduling
broker schedules them to the appropriate computing nodes on data center. If u0 has two DSGs, then Gs0 ¼ G01 ;G02

� �
, and

m0 ¼ 2.
For simplicity, we assume that the DSG are non-interruptible, which means that as DSG starts its schedule, it cannot be

interrupted until all vertices in this graph are completely allocated in data center.
Let DC ¼ cn1; cn2; . . . ; cnnf g be a data center composed of n computing nodes, which are running in the form of virtual

machines on physical machines. All those computing nodes are fully connected by an underlying communication subsystem.
The computation can be overlapped with communication. A computing node cnk is characterized by a five-tuple
cnk ¼ cidk; cfk; cbwk; cpk; cmkð Þ, where cidk, cfk, cbwk, cpk, and cmk are the computing node identification, failure probability,
network bandwidth, processing capacity, and memory of computing node cnk, respectively. The processing capacity cpk is
characterized by the frequency of CPU, and cpk can vary from cpmin

k to cpmax
k with the help of Dynamic Voltage Scaling

(DVS), where 0 < cpmin
k < cpmax

k .

The scheduling probability matrix of vertices in DSG is Pn�m ¼
p11 . . . p1m

..

. . .
. ..

.

pn1 . . . pnm

0
B@

1
CA, where pij is the probability that vertex v j

in a DSG is submitted to computing node cni, pij P 0, and
Pn

i¼0pij ¼ 1. To keep computing node cni in the serviceability state,
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cni should meet the constraint defined by (4), and the data center DC should meet the constraint which is defined by (5), so
that tasks will not be generated exceed the rate at which tasks can be processed.
Xm

j¼0

pij � cdrj 6 cpi � 1� cfið Þ: ð4Þ

Xn

i¼0

Xm

j¼0

pij � cdrj 6
Xn

i¼0

cpi � 1� cfið Þ: ð5Þ
where cdrj is the data stream arrive rate of vertex v j on computing node cnk.
The DSG scheduling model of allocate DSGs to computing nodes in data center can be defined by Definition 6.

Definition 6 (DSG scheduling model). Let the DSG scheduling model Gm of a big data stream computing system be
represented by a four-tuple Gm ¼ U;DC;Of ;Hð Þ, where U ¼ u1;u2; . . . ;umf g is a user set composed of m users, and each user
may request service independently with each other. DC ¼ cn1; cn2; . . . ; cnnf g is a data center composed of n computing nodes,
which are running in the form of virtual machines on physical machines. For each DSG, Of is an objective function for
scheduling each DSG in big data computing environment, which is defined according to (6),
Of l Gð Þ; en Gð Þð Þ ¼min en Gð Þ l Gð Þjð Þ and min l Gð Þð Þ: ð6Þ
so as to maximize the energy efficiency and minimize response time, and achieved by the real-time energy-efficient
resource scheduling and optimization framework Re-Stream, and H is an algorithm which achieves all those optimal
strategies.

The min l Gð Þð Þ can be achieved by minimum the critical path of DSG G, as critical path is the longest path of G. that is,
min l Gð Þð Þ ¼min max lp1
vs;veð Þ; . . . ; lpm

v s; veð Þ
� �� 	

: ð7Þ
The min en Gð Þð Þ is the energy consumption of all computing nodes to run all those vertices in DSG G. It will be achieved by
consolidating vertices running on non-critical path, and dynamically adjusting the voltage of the computing nodes running
those vertices on non-critical path, with the prerequisite that those energy strategies do not affect the minimum the
response time of DSG G.
min en Gð Þð Þ ¼
X

8 v ij j2V Gð Þ
en cnj
� 	

� xij; ð8Þ
subject to,
xij ¼
1; if v i running on cnj;

0; otherwise:

�
ð9Þ
If one vertex v i or many vertices running on a computing node cnj, then only one en cnj
� 	

is calculated in DSG G, and
denoted as v ij j.

3. Overview of the Re-Stream framework

In this section, we focus our attention on Re-Stream in a big data stream computing environment. The overview of the Re-
Stream framework includes system architecture, workflow description, critical path model, and energy consumption model
[10,12,13,18,21,23,30].

3.1. System architecture

The system architecture of Re-Stream is composed of four spaces. These are hardware space, Storm space, graph space,
and user space as shown in Fig. 6.

In the hardware space, one or many data centers are distributed in different geographical locations. In each data center,
multiple computing nodes provide hardware infrastructure for big data stream computing.

In the Storm space, performance aware dynamic scheduling of critical vertices model and energy aware dynamic schedul-
ing of non-critical vertices model are employed to support real-time energy-efficient resource scheduling and optimization
objectives based on the open source Storm platform [31]. The performance aware dynamic scheduling of critical vertices
model is used to minimize the response time of a special DSG. The energy aware dynamic scheduling of non-critical vertices
model is used to minimize energy consumption while maintaining the corresponding response time.

In the graph space, one or many DSGs can be created according to the source codes, which are designed and submitted by
user. Each DSG represents a special user application at one time. All those DSGs can concurrently running.

In the user space, one or many users can design and submit application at any time, any where, and by any way in the
world on demand of the data center.



Fig. 6. Re-Stream system architecture.
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Definition 7 (DSG optimizing cycle). A DSG optimizing cycle can be divided into four phases, profiling, quantifying, modeling,
and evaluating as shown in Fig. 7. Periodically running through these four phases is able to establish a kind of in-time
feedback, and to allow fast adaption to real-time changing big data stream computing environment.

In the profiling phase, it is desired to profile a mathematical relationship between energy consumption, response time,
and resource utilization, and to obtain the conditions that meet the high energy efficiency and low response time.

In the modeling phase, it is desired to model DSG in big data stream computing environments by referring to the dis-
tributed stream computing theories that identifies the critical path in DSG, and getting energy consumption of an allocation
scheme for a DSG at a special data stream speed.

In the scheduling phase, it is desired to schedule task by energy efficient heuristic critical path scheduling mechanism
subject to the constraints of tasks’ architectural requirements, and online optimization of the scheduling mechanism by per-
formance aware dynamic scheduling of critical vertices on critical path of DSG to minimize response time and system
fluctuations. It helps to consolidate non-critical vertices on non-critical path by energy aware dynamic scheduling to maxi-
mize the energy efficiency that meets high energy efficiency and low response times.

At last, in the evaluating phase, it is desired to evaluate the high energy efficiency and low response time, and to consider
high energy efficiency and low response time.

3.2. Workflow description

To achieve high energy efficiency and low response time objectives, we employ Re-Stream based on the Storm platform.
To maximize energy efficiency without affecting the minimized response time, all vertices in DSG are divided into two
profiling

scheduling

modelingevaluating

Fig. 7. DSG optimizing cycle.
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groups, vertices on critical path, and vertices on non-critical path. Minimal response time is determined by vertices on criti-
cal path. Moreover, maximizing the energy efficiency can be achieved by consolidation recourse for vertices on non-critical
path.

In the first phase, the computation cost of each vertex and the communication cost of each edge in each DSG are esti-
mated in the currently data stream environments, the critical path and critical vertex can be calculated. When the DSG is
first placement, a critical path based earliest completion time priority scheduling strategy is employed, in which computing
cost and communication cost are under consideration. In this strategy, the vertex on critical path will be priority schedule to
the earliest completion computing node only if its predecessors have been scheduled. If predecessors of this vertex have not
been scheduled, then predecessors will be prior scheduled to the earliest completion computing node based on a topology
sort. Hereafter, when arrival rate of data stream changes, the response time may also be changed, and then a critical vertex
on critical path of a DSG is selected and scheduled to a new computing node to achieve minimum response time and system
fluctuations. The energy consumed is estimated for all computing nodes.

In the second phase, an energy model is employed to estimate the energy consumption of each computing node in the
currently data stream environments. An energy aware scheduling of non-critical vertices is employed to maximize the
energy efficiency without increasing the response time of currently DSG. Usually, the more vertices of a DSG, the higher
energy efficiency achieved along with, the lower CUP utilization of each computing node, and the higher energy efficiency.

The Re-Stream operates online in big data stream computing environments. To the best of our knowledge, no research
have been done to tradeoff energy efficiency and response time for DSG in big data stream computing. The workflow of
Re-Stream is shown in Fig. 8, which is a schematic for showing the workflow of Re-Stream. To show vertex instance running
on different threads, processes, or computing nodes, it is intended to reflect the communication cost among threads, among
process, and among computing nodes are not in the same levels, as usually, the communication cost among threads is the
least, the communication cost among process is medium, the communication cost among computing nodes is the most. The
resources and tasks on different computing nodes are different, so the computation cost of different computing nodes are
different. The communication cost and computation cost are very important factors for Re-Stream. More details are pre-
sented in the remainder of this section. The algorithm implication of Re-Stream is presented in the next section.

3.3. Critical path model

In a big data stream computing environment, for a DSG G, the computation cost matrix Cvn�m ¼
cv1 ;cn1 . . . cv1 ;cnm

..

. . .
. ..

.

cvn ;cn1 . . . cvn ;cnm

0
B@

1
CA, is a

n�m matrix, where each computation cost cv i ;cnj
(is described by second) is the time required when running vertex v i on
applications

Data stream

Computing Node 1 Computing Node 2

scheduling

Data stream

Computing Node 1 Computing Node 2

optimizing

minimize response time

maximize energy efficiency

A working process

A vertex instance
running on a thread

Data tuple

Fig. 8. Re-Stream workflow.
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computing node cnj, and is related with the time complex degree tv i
(is described by million instructions) of the tasks in ver-

tex v i, the input data rate irv i
(is described by million bit per second) of vertex v i in the system, and the processing ability pcnj

(is described by million instructions per second) of the computing node cnj, and can be described as (10):
cv i ;cnj
¼ Fcv tv i

; irv i
;pcnj

� �
: ð10Þ
For each data tuple, computation cost cv i ;cnj
is calculated by (11):
cv i ;cnj
¼ irv i

pcnj

: ð11Þ
The communication cost cei;j
of directed edge ei;j is the time required when transmission data stream from vertex v i to v j.

If v i and v j run on the same computing node, then cei;j
¼ 0. However, if v i and v j run on different computing nodes, then cei;j

will be affected by many factors, For example, the long lei;j
between two computing nodes, the bandwidth bei;j

of the network,
the data rate rei;j

on the directed edge ei;j, and can be described as (12):
cei;j
¼ Fce lei;j

; bei;j
; rei;j

� �
: ð12Þ
For each data tuple, communication cost cei;j
can be simple calculated by (13):
cei;j
¼

0; if v i and v j run on the same computing node;
rei;j

bei;j
; otherwise:

8<
: ð13Þ
ESTv i ;cnj
and EFTv i ;cnj

are the earliest start time and the earliest finish time of vertex v i run on computing node cnj, respec-
tively. For the source vertex v s, the earliest start time ESTvs on any computing nodes are shown as (14):
ESTvs ;cnany ¼ 0: ð14Þ
The earliest finish time EFTvs is the finish time of run source vertex v s on the computing node with the best processing
ability pcnj

, as shown in (15):
EFTvs ;cnpbest
¼ cv i ;cnpbest

: ð15Þ
For the other vertex in DAG, the earliest start time can be calculated from the source vertex v s. To calculate ESTv i ;cnj
, all

immediate predecessor vertices of v i must have been scheduled.
ESTv i ;cnj
¼ max tidle

v i ;cnj
; tdata

vpred ;cnj

n o
; ð16Þ
where tidle
v i ;cnj

is the earliest time at which computing node cnj is ready for use, tdata
vpred ;cnj

is the time at which all input data of

immediate predecessor vertices of vertex v i will be ready on computing nodes cnj, and can be calculated by (17):
tdata
vpred ;cnj

¼ max
vpred2pred v ið Þ

EFTvpred
þ cepred;i

n o
; ð17Þ
where pred v ið Þ is the set of immediate predecessor vertices of vertex v i.
The earliest finish time EFTv i ;cnj

of vertex v i run on computing node cnj can be calculated by (18):
EFTv i ;cnj
¼ ESTv i ;cnj

þ cv i ;cnj
: ð18Þ
LSTv i ;cnj
is the latest start time of vertex v i run on computing node cnj, which can be calculated by traversing the DSG G in a

topology sort but in the reverse direction. For the end vertex ve, the latest start time LSTve ;cnj
on computing nodes cnj equal to

the earliest start time ESTve ;cnj
on computing nodes cnj, that is.
LSTve ;cnj
¼ ESTve ;cnj

: ð19Þ
For the other vertex in DAG, the latest start time can be calculated from the end vertex ve, where is the time at which the
latest time of all output data of immediate successor vertices of vertex v i, and can be calculated by (20):
LSTv i ;cnj
¼ min

vsucc2succ v ið Þ
LSTvsucc � cei;succ

n o
� cv i ;cnj

; ð20Þ
where succ v ið Þ is the set of immediate successor vertices of vertex v i.
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Definition 8 (Critical path, CP). Also called the longest path, CP is a path having the longest latencies from source vertex vs to
end vertex ve in DSG G, all vertices on CP with the feature of earliest start time EST equal to latest start time LST .

The response time of a DSG G is also determined by the CP, which equal to the earliest finish time EFTve of end vertex ve.

Definition 9 (Critical vertex, CV). In a big data stream computing environment, CV is a vertex on the critical path, CP, of the
DSG G. To the currently situation, if the data stream rate change, the allocating of vertices is not a good choice, moving CV to a
new best fit computing node, the maximum reduce response time will be achieved.

The reduced time Dtcv of reschedule CV can be calculated by (21):
Dtcv ¼min CPafter � CPbefore



 

; cvcv ;cnafter
� cvcv ;cnbefore




 


n o
: ð21Þ
where CPafter , CPbefore cvcv ;cnafter
, and cvcv ;cnbefore

are the CP after reschedule CV, the CP before reschedule CV, the computation cost
of CV on before reschedule computing node cnbefore, and the computation cost of CV on after reschedule computing node
cnbefore, respectively.

In an online big data stream computing environment, when the data stream rate changes, the computation cost of each
vertex and the communication cost of each edge will also be changed. Reschedule all vertices are not a good choice, as those
entire data stream will be lost. The history allocated information is not considered, huge system fluctuations is unavoidable.
In Re-Stream, during the first placement of DSG, a critical path based earliest completion time priority placement strategy is
employed. Hereafter, when arrival rate of data stream is changed, the response time can be improved significantly. A critical
vertex on critical path of a DAG is selected and scheduled to a new best fit computing node to achieve minimum response
time and system fluctuations.

3.4. Energy consumption model

The energy consumption Ecni
of the ith computing node cni at a data center can be calculated by power consumption

Pcni
liðtÞ
� 	

during the time interval [t0, tn�1] of the ith computing node cnj at the data center, as shown in (22).
Ecni
¼
Z tn�1

t0

Pcni
li tð Þ
� 	

dt: ð22Þ
where power consumption Pcni
li tð Þ
� 	

during the time interval [t0, tn�1] of the ith computing node cni at the data center can
be represented by (23),
Pcni
li tð Þ
� 	

¼ Pidl
cni

li tð Þ
� 	

þ Pspd
cni

li tð Þ
� 	

: ð23Þ
where Pidl
cni

li tð Þ
� 	

is the power consumption when the ith computing node cni at the data center in the idle state, Pspd
cni

li tð Þ
� 	

is the power consumption spreading between idle and full utilized, and li tð Þ 2 0;1½ � is load factor on the ith computing
node cni at the data center, which changes over time. In today’s data centers, load factor li tð Þ is usually in the range
of [0.1, 0.5].

According to [5], the power consumption Pcni
li tð Þ
� 	

is mostly determined by the CPU, memory, disk storage and network
interfaces. For simplicity, it is calculated by the power consumption of CPU. Meanwhile, the power consumption of applica-
tion of DVFS [18] on the CPU is almost a linear power-to-frequency relationship for a computing node. So,
Pidl
cni

li tð Þ
� 	

¼ a � Pcni
maxð Þ;a 2 0;1½ �;

Pspd
cni

li tð Þ
� 	

¼ 1� að Þ � Pcni
maxð Þ � li tð Þ;li tð Þ 2 0;1½ �:

(
ð24Þ
where Pcni
maxð Þ is the maximum power consumption when the ith computing node cni at the data center in the fully utilized

state, a 2 0;1½ � is an adjustable parameter between Pidl
cni

li tð Þ
� 	

and Pspd
cni

li tð Þ
� 	

, which is determined by the specific computer
architecture.

The energy consumption Ecni
of the ith computing node cni at the data center can be further described by Theorem 1.

Theorem 1. If the time interval t0; tn�1½ � can be further divided into t0; t1; . . . ; tn�1½ �; 8 tk; tkþ1½ �; k 2 0;1; . . . ;n� 1½ �, and
li t 2 tk; tkþ1½ �ð Þ � lik

2 0;1½ �, where lik
is a constant, and does not change over time, then energy consumption Ecni can be

calculated by (25),
Ecni
¼ a � Pcni

maxð Þ
� 	

� tn�1 � t0ð Þ þ 1� að Þ � Pcni
maxð Þ

� 	
�
Xn�1

k¼1

lik�1
� tk � tk�1ð Þ

� �
: ð25Þ
Proof. The power consumption Pcni li tð Þ
� 	

can be divided into two parts, Pidl
cni

li tð Þ
� 	

and Pspd
cni

li tð Þ
� 	

. Therefore,
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Ecni
¼
Z tn�1

t0

Pcni
li tð Þ
� 	

dt ¼
Z tn�1

t0

Pidl
cni

li tð Þ
� 	

þ Pspd
cni

li tð Þ
� 	� �

dt

¼
Z tn�1

t0

Pidl
cni

li tð Þ
� 	

dt þ
Z tn�1

t0

Pspd
cni

li tð Þ
� 	

dt

¼
Z tn�1

t0

a � Pcni
maxð Þdt þ

Z tn�1

t0

1� að Þ � Pcni
maxð Þ � li tð Þdt

¼ a � Pcni
maxð Þ

� 	
� tn�1 � t0ð Þ þ

Z tn�1

t0

1� að Þ � Pcni
maxð Þ � li tð Þdt
When the time interval t0; tn�1½ � is divided into n� 1 constant time interval t0; t1; . . . ; tn�1½ �, 8 tk; tkþ1½ �, i 2 0;1; . . . ;n� 1½ �,
li t 2 tk; tkþ1½ �ð Þ � lik

2 0;1½ �, and lik
is a constant, then we obtain,
Ecni
¼ a � Pcni

maxð Þ
� 	

� tn�1 � t0ð Þ þ
Z tn�1

t0

1� að Þ � Pcni
maxð Þ � li tð Þdt

¼ a � Pcni
maxð Þ

� 	
� tn�1 � t0ð Þ þ

Z t1

t0

1� að Þ � Pcni
maxð Þ � li0

� �
dt þ

Z t2

t1

1� að Þ � Pcni
maxð Þ � li1

� �
dt þ . . .

þ
Z tn�1

tn�2

1� að Þ � Pcni
maxð Þ � lin�2

� �
dt

¼ a � Pcni
maxð Þ

� 	
� tn�1 � t0ð Þ þ 1� að Þ � Pcni

maxð Þ � li0

� �
� t1 � t0ð Þ þ 1� að Þ � Pcni

maxð Þ � li1

� �
� t2 � t1ð Þ þ . . .

þ 1� að Þ � Pcni
maxð Þ � lin�2

� �
� tn�1 � tn�2ð Þ

¼ a � Pcni
maxð Þ

� 	
� tn�1 � t0ð Þ þ

Xn�1

k¼1

1� að Þ � Pcni
maxð Þ � lik�1

� �
� tk � tk�1ð Þ

� �

¼ a � Pcni
maxð Þ

� 	
� tn�1 � t0ð Þ þ 1� að Þ � Pcni

maxð Þ
� 	

�
Xn�1

k¼1

lik�1
� tk � tk�1ð Þ

� �
:

The proof ends. h
Lemma 1 (System energy consumption). System energy consumption Esys is the quantitative denotation of energy consump-
tion of a big data stream computing environment. If a big data stream computing environment, a data centers composed of
num computer nodes. The system energy consumption Esys during the time interval [t0, tn�1] can be quantified by (26):
Esys ¼
Xnum�1

i¼0

Ecni
: ð26Þ
The maximum power consumption Pcni
maxð Þ of the ith computing node cni at the data center in the fully utilized state can

be directly measured, according to (25), we have,
Esys ¼
Xnum�1

i¼0

a � Pcni
maxð Þ

� 	
� tn�1 � t0ð Þ þ 1� að Þ � Pcni

maxð Þ
� 	

�
Xn�1

k¼0

lik�1
� tk � tk�1ð Þ

� � !
:

4. Scheduling algorithm

In this section, we focus our attention on the scheduling algorithm of the Re-Stream in a real big data stream computing
platform, Storm. The scheduling algorithm includes first placement of DSG algorithm, performance aware dynamic schedul-
ing of critical vertices algorithm, energy aware dynamic scheduling of non-critical vertices algorithm, and the main schedul-
ing algorithm. All those scheduling algorithms can be implemented by rewrite the IScheduler interface of Storm platform
[2,31].

4.1. First placement of DSG

When a DSG is first placed to computing nodes, a critical path based earliest completion time priority placement strategy
is employed, in which computing cost and communication cost are considered. In this strategy, the vertices on critical path
will be placed, in a high priority, onto the earliest completion computing node only if its predecessors have been placed, if
predecessors of this vertex have not been placed, the predecessors will be prior placed to the earliest completion computing
node based on a topology sort.

The first placement of DSG algorithm is described in Algorithm 1.
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Algorithm 1. First placement of DSG algorithm.

1. Input: DSG G, capacity ability vector of computing nodes in data center, and the computation cost matrix Cvn�m .
2. Output: Vertices schedule result on computing nodes.
3. if DSG G or computing nodes is null then
4. Return null.
5. end if
6. Sort all vertices topologically in DSG G.
7. Calculate the earliest start time EST and the latest start time LST of each vertex in DSG G by (16) and (20).
8. Determine the critical path CP DSG G according to Definition 8.
9. for each vertex on critical path CP of DSG G do

10. if vertex v i with the feature of in degree is zero then
11. Select vertex v i as the will be selected vertex v sel.
12. else
13. Select an immediate predecessor vertex of vertex v i as the will be selected vertex v sel.
14. end if
15. Calculate the earliest finish time EFTv i

of vertex v i on all remaining available computing nodes.
16. Schedule vertex v sel to the earliest finish computing nodes cnj.
17. Refresh the capacity ability of computing nodes cnj.
18. Refresh the in degree of the immediate successor vertices of vertex v sel.
19. Recalculate the earliest start time EST and the latest start time LST of each vertex in DSG G by (16) and (20).
20. Refresh the critical path CP of the DSG G according to Definition 8.
21. end for
22. return final Vertices schedule strategy on computing nodes.

The input of first placement algorithm are DSG G, capacity ability vector of computing nodes in data centers, and the
computation cost matrix Cvn�m . The output is vertices schedule result on computing nodes. Step 9 to step 21 schedule vertices
to computing nodes by critical path based earliest completion time priority scheduling strategy, in which computing cost
and communication cost are under consideration.
4.2. Performance aware dynamic scheduling of critical vertices

When arrival rate of data stream is changed, the response time may also be changed. A critical vertex on critical path of a
DSG is selected and scheduled to a new computing node to achieve minimum response time and system fluctuations.

The performance aware dynamic scheduling of critical vertices algorithm is described in Algorithm 2.

Algorithm 2. Performance aware dynamic scheduling of critical vertices algorithm.

1. Input: DSG G, capacity ability vector of computing nodes in data centers, vertex and computing node relation-
ship, and the new input data rate irv i

.
2. Output: Vertices reschedule result on computing nodes.
3. Calculate the earliest start time EST and the latest start time LST of each vertex in DSG G by (16) and (20).
4. Determine the critical path CP DSG G according to Definition 8.
5. Definition maximum reduced time Dtmax

cvmax
¼ 0.

6. for each vertex on critical path CP of DSG G do
7. Fetch a vertex v i.
8. for each immediate predecessor or successor vertex of vertex v i do
9. Try to reschedule vertex v i to computing nodes of the immediate predecessor or successor vertices with the

constraint of remaining available capacity ability is enough.
10. Calculate this new reduced time Dtnew

cv i
.

11. if the new reduced time Dtnew
cv i

is bigger than Dtmax
cvmax

then
12. Dtmax

cvmax
¼ Dtnew

cv i
.

13. cvmax ¼ v i.
14. cnmax ¼ cntry

v i
.

15. end if
16. end for
17. end for
18. Recalculate critical vertex cvmax to the computing node cnmax.
19. return final Vertices schedule strategy on computing nodes.



The input of performance aware dynamic scheduling of critical vertices algorithm are DSG G, capacity ability vector of

computing nodes in data centers, vertex and computing node relationship, and the new input data rate irv i

. The output is
vertices reschedule result on computing nodes. Step 6 to step 17 determine a critical vertex cvmax on critical path of a
DAG and scheduled to a target computing node cnmax.
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4.3. Energy aware dynamic scheduling of non-critical vertices

An energy model is employed to estimate the energy consumption of each computing node in the current data stream
environments. An energy-efficient consolidation of non-critical vertices on non-critical path strategy is employed to maxi-
mize the energy efficiency without disturbing the response time of the current DSG. Usually, the more the vertices of a DSG,
the higher the energy efficiency will be achieved. The lower the CUP utilization of each computing node, the higher the
energy efficiency will be achieved.

The energy aware dynamic scheduling of non-critical vertices algorithm is described in Algorithm 3.

Algorithm 3. Energy aware dynamic scheduling of non-critical vertices algorithm.

1. Input: DSG G, capacity ability vector of computing nodes in data centers, and vertices schedule result on comput-
ing nodes.

2. Output: Vertices reschedule result on computing nodes and system energy consumption Esys.
3. Sort all vertices topologically in DSG G.
4. Calculate the EST and the LST of each vertex in DSG G by (16) and (20).
5. Determine the critical path CP DSG G according to Definition 8.
6. Sort computing nodes by the remaining available capacity ability in increasing order.
7. for each computing node in data centers do
8. if no vertex running on computing node cn is vertex on critical path CP then
9. Identify computing node cn as the energy-aware computing node.

10. end If
11. end for
12. for each energy-aware computing node in data centers do
13. Identify energy-aware computing node cn as reschedule computing node.
14. for each vertex running on energy-aware computing node cn do
15. Try to reschedule vertex v i to computing nodes of running the immediate predecessor or successor vertices

with the constraint of remaining available capacity ability is enough.
16. Calculate the length of critical path, CP, after reschedule vertex v i

17. if the length of critical path, CP, after reschedule vertex v i is bigger than before reschedule then
18. Identify energy-aware computing node cn as un-reschedule computing node.
19. end if
20. end for
21. if energy-aware computing node cn is reschedule computing node then
22. Schedule all vertices running on energy-aware computing node cn to the corresponds computing nodes of

running the immediate predecessor or successor vertices with the constraint of remaining available capacity abil-
ity is enough

23. end if
24. end for
25. Calculate the energy consumption of each computing node by (25).
26. Calculate system energy consumption Esys by (26).
27. return final Vertices schedule strategy on computing nodes and system energy consumption Esys.

The input of energy aware dynamic scheduling of non-critical vertices algorithm are DSG G, capacity ability vector of
computing nodes in data centers, and vertices schedule result on computing nodes. The output are vertices reschedule result
on computing nodes and system energy consumption Esys. Step 7 to step 11 identify the energy-aware computing nodes. Step
12 to step 24 reschedule all vertices running on non-critical vertex based computing nodes, and maximize the energy effi-
ciency while not increasing the response time of current DSG.
4.4. Main scheduling algorithm

To achieve high energy efficiency and low response time objectives in big data stream computing environments, we
employ Re-Stream in Storm platform. To maximize energy efficiency without affecting the minimization of response time,
all vertices in DSG are divided into two groups, vertices on critical path, and vertices on non-critical path. Minimal response



106 D. Sun et al. / Information Sciences 319 (2015) 92–112
time is determined by all the vertices on critical path. Moreover, maximizing energy efficiency can be achieved by consol-
idation recourse for vertices on non-critical path.

The main scheduling algorithm of Re-Stream is described in Algorithm 4.

Algorithm 4. Main scheduling algorithm.

1. Input: DSG G, capacity ability vector of computing nodes in data centers, and data rate of data stream in real-
time.

2. Output: Real-time energy efficiency and response time objectives.
3. Evaluate the most commonly data rate in a big data stream computing environments.
4. Calculate the computation cost of each vertex running on each computing node, relevant communication cost of

the each edge between corresponding vertices, and get the computation cost matrix Cvn�m .
5. First place vertices of DSG to compute nodes in data center by Algorithm 1.
6. Monitor the real-time rate of data stream in the input interface.
7. while rnew � roldj j > Dr do
8. Recalculate the computation cost of each vertex running on each node under the new data rate, and relevant

communication cost of the each edge between corresponding two vertices, and get the computation cost matrix
Cvn�m .

9. Real-time dynamic scheduling critical vertex on critical path (CP) to achieve a new low response time objective
by Algorithm 2.

10. Real-time dynamic scheduling vertex on non-critical path to achieve a new high energy efficiency objective by
Algorithm 3.

11. Recalculate the response time of DSG by (18) and the system energy consumption Esys of data center by (26).
12. end while
13. return real-time energy efficiency and response time objectives.

The input of main scheduling algorithm are DSG G, capacity ability vector of computing nodes in data centers, and data
rate of data stream in real-time. The outputs are real-time energy efficiency and response time objectives. Step 7 to step 12
real-time adjust vertices scheduling strategy according to the change of rate of data stream, and to maximize the energy effi-
ciency and minimize response time, to achieve high energy efficiency and low response time objectives trade off in big data
stream computing environments.
5. Performance evaluation

To evaluate the performance of the proposed Re-Stream, experimental environment and parameter set are firstly dis-
cussed in this section, followed by the precise experimental evaluation results.

5.1. Experimental environment and parameter setup

Storm platform [2,6,28,31] is used in the simulation environment, which is a parallel, distributed, and fault-tolerant
system. It is designed to fill the gap of providing a platform that supports real-time data stream computing on clusters of
horizontally scalable commodity machines.

16 virtual machines are created in a data center in the simulation environment. Each virtual machine is a dual 4-core Intel
Xeon 3 Ghz 32 bit 32 GB Memory, 1 Gbps network interface. Each machine runs Linux Ubuntu Server 13.04. The following
software components were used: Java 1.7 OpenJDK Runtime Environment, ZeroMQ 2.1.7, Zookeeper 3.4.5, JZMQ, Python
2.7.2, unzip and Kestrel 2.3.4. Storm 0.8.1 is used.

Moreover, a critical path sensitive DSG is submitted to the data centers, as shown in Fig. 9, the length of critical path is
significantly longer than other paths. The length of each tuple is considered as a random number within the range of [1000,
2000] KI.

5.2. Experimental results

The experimental set up contained two evaluation parameters: response time and system energy consumption Esys.

(1) Response Time (RT). The response time of a DSG is determined by the critical path of that DSG. RT can be calculated by
EST of the last vertex on critical path, as show in (18). RT can also be counted by Storm UI, which is providing by Storm
platform.
As shown in Fig. 10, when the rate of data stream is unchanged over time, the response time of DSG in Fig. 10 is also
fixed at certain stable level. For example, when the input rate of data stream is 10 tuple/s, 20 tuple/s, 50 tuple/s, the
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response time is 96 ms, 97 ms, and 126 ms, respectively.
As shown in Fig. 11, when the rate of data stream is changed over time, e.g., the input rate of data stream is 10 tuple/s
in interval [0,300] second, 20 tuple/s in interval [300,400] second, 50 tuple/s in interval [400,500] second, the
corresponding response time is also changed over data stream. Compared with the default scheduling, round-robin
strategy, in Storm platform, our Re-Stream has a better RT.

(2) System energy consumption. System energy consumption Esys reflects the total energy consumption of the data center to
process the same data stream by a DSG. Esys can be calculated by summing the energy consumption of each computing
node, that run the vertices of the DSG. The energy consumption of each computing node can be calculated by (25).
Fig. 9. Critical path sensitive DSG.

Fig. 10. Response time of DSG in Fig. 9 with stable data stream rate.

Fig. 11. Response time of DSG in Fig. 9 with changeable data stream rate.



Fig. 12. System energy consumption of DSG in Fig. 9 with stable data stream rate 50 tuple/s.

Fig. 13. System energy consumption of DSG in Fig. 9 with changeable data stream rate from 10 to 50 tuple/s.
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As shown in Fig. 12, when the rate of data stream is stable at 50 tuple/s, the computing nodes employed by Re-Stream to
process data stream is reduced compared with that employed by the default scheduling, round-robin strategy, in the Storm
platform. The corresponding energy consumption of DSG in Fig. 9 by Re-Stream is also smaller than that of Storm platform,
the longer the more obvious.

As shown in Fig. 13, when the rate of data stream is changed over time, e.g., the input rate of data stream is 10 tuple/s in
interval [0,150] second, 20 tuple/s in interval [150,300] second, 50 tuple/s in interval [300,400] second, the corresponding
computing node and energy consumption are also changed over data stream. Compared with the default scheduling, round-
robin strategy, in the Storm platform, our Re-Stream requires less computing nodes to process the data stream of DSG in
Fig. 9 with less energy consumption.

6. Related work

In this section, three broad categories of related work are presented: big data stream computing, performance aware data
stream scheduling, and energy aware data stream scheduling.

6.1. Big data stream computing

Big data stream computing is a new trend for future computing with the quantity of data growing. In general, there are
two main mechanisms for big data computing, big data stream computing and big data batch computing. Big data stream
computing is model of straight through computing, such as S4 [20], Storm [31], while big data bath computing is model
of store then computing, such as MapReduce framework [40], open sourced by the Hadoop implementation [24].
However, those big data batch computing are not adequate for supporting big data stream computing.
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In [19], a distributed system, Naiad, was designed specifically for executing cyclic dataflow programs in parallel. It offers
the high throughput of batch computing, the low latency of stream computing, and the ability to perform iterative and incre-
mental computing. A computational model, timely dataflow, enriches dataflow computation with timestamps that represent
logical points in the computation and provide the basis for an efficient, lightweight coordination mechanism. Many powerful
high-level programming models can be built on Naiad’s low-level primitives enabling such diverse tasks as streaming data
analysis, iterative machine learning, and interactive graph mining.

In [22], a distributed-system infrastructure, TimeStream, has been designed specifically for reliable low-latency continuous
computing of big streaming data on large clusters. The big streaming data has the following characteristics: (1) high volumes –
the incoming data arrives continuously at volumes that far exceed the capabilities of individual machines; (2) low latency –
input streams incur multi-staged computing at low latency to produce output streams. A powerful abstraction, resilient
substitution, serves as a uniform foundation for handling failure recovery and dynamic reconfiguration correctly and efficiently.

In [39], a distributed computing model, discretized streams (D-Streams), is implemented in a system, named Spark
Streaming. D-Streams is designed specifically for fast, often sub-second, recovery from faults and stragglers, without the
overhead of replication, in larger scales data stream computing environments. D-Streams enable a parallel recovery mecha-
nism that improves efficiency over traditional replication and backup schemes, and tolerates stragglers, the ideal in D-
Streams is to structure a streaming computation as a series of stateless, deterministic batch computations on small time
intervals. D-Streams make (1) the state at each time step fully deterministic given the input data, forgoing the need for syn-
chronization protocols, and (2) the dependencies between this state and older data visible at affine granularity.

To summarize, current big data computing schemes are not limited in one or other aspect. Up to now, most of the research
is done in big data batch computing, while the response time of batch computing at the level of several seconds or even min-
utes, which cannot meet the request of most of big data. However, the research about big data stream computing is not
enough and systematic. For example, Storm system employs round-robin strategy as its task scheduling strategy, which is
not efficient and effective always. Therefore, it needs to pay more attention to stream computing in big data and cloud era.

6.2. Performance aware data stream scheduling

In distributed stream computing environments, the structure of data stream is described as DAG. Performance oriented
data stream scheduling is trying to dynamically schedule recourse for many DAGs according the dynamic changes in the vol-
ume of data stream, which is NP-hard. These performance oriented data stream scheduling can be further classified into the
following groups [32]: list scheduling algorithm, task duplication-based scheduling algorithm, clustering scheduling algo-
rithm, and guided random search scheduling algorithm.

Data streams are infinite and evolving over time, and do not have any knowledge about the number of clusters. Clustering
data streams will help overcome the various factors and noise in data streams. In [1], a density-based data streams clustering
algorithms is surveyed. In [36], a data stream clustering algorithm, SVStream, is proposed. SVStream is based on support vec-
tor domain description and support vector clustering. The data elements of a stream are mapped into a kernel space, and the
support vectors are used as the summary information of the historical elements to construct cluster boundaries of arbitrary
shape. To adapt to both dramatic and gradual changes, multiple spheres are dynamically maintained, each describing the
corresponding data domain presented in the data stream.

In [7], a two-phase list-based scheduling algorithm, known as Hybrid Heuristic-Genetic Scheduling (H2GS) algorithm, for
data stream scheduling on heterogeneous distributed computing systems, is proposed. The first phase implements a heuris-
tic list-based algorithm, named LDCP, to generate a high quality schedule. In the second phase, the LDCP-generated schedule
is injected into the initial population of a customized genetic algorithm, which proceeds to evolve shorter schedules.

Task duplication is a technique to reduce the necessary communication between the processors. Some crucial tasks will
be duplicated and executed on more than one processors. In [29], a contention-aware task duplication scheduling algorithm
is proposed. It works under the general contention model, and its algorithmic components are based onstate-of-the-art tech-
niques used in task duplication and contention-aware algorithms.

In [38], a Double Molecular Structure-based Chemical Reaction Optimization (DMSCRO) algorithm, for directed acyclic
group data stream scheduling on heterogeneous computing systems, is developed. In DMSCRO, one molecular structure is
used to encode the execution order of the tasks in a DAG job, while the other molecular structure to encode the task-to-com-
puting-node mapping. DMSCRO also designs the necessary elementary chemical reaction operations and the fitness function
suitable for the scenario of DAG scheduling.

To summarize, current performance oriented data stream scheduling are not limited in one or other aspect. Up to now,
most of the researches are done in static scheduling. All the information about scheduling is estimated, unchanged, and must
be in advance. However, when the volume of data stream is changed, the scheduling may not be a wise strategy. If static
scheduling is employed in the new station, huge fluctuations will occur. In big data stream environments, the volume of data
stream is changed.

6.3. Energy aware data stream scheduling

In distributed stream computing datacenter, energy savings is becoming a common trend. Energy consumption has
become a key metric for evaluating how good a computing system is. Evaluations and comparisons of different energy-aware
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scheduling techniques were surveyed in [11,34,41]. Generally, energy aware data stream scheduling can be classified into
the following three groups: hardware-based energy aware data stream scheduling (Dynamic Power Management and
Dynamic Voltage/Frequency Scaling), software-based energy aware data stream scheduling (virtual machine consolidation),
and application-based energy aware data stream scheduling (task duplication).

In [4], an energy-aware DAG scheduling, EADAGS, on heterogeneous processors is proposed. EADAGS combines Dynamic
Voltage Scaling (DVS) with Decisive Path Scheduling (DPS) to achieve the twin objectives of minimizing finish time and
energy consumption. In the first phase, after DPS is run on the DAG to provide a low finish time, the energy consumed is
estimated for all processors. In the second phase, voltage scaling is applied during slack times to reduce energy while main-
taining the schedule length.

In [12], an Energy-aware Task Consolidation (ETC) technique is proposed. ETC achieves energy-aware task consolidation
by restricting CPU use below a specified peak threshold. ETC does energy-aware task consolidation by consolidating tasks
amongst virtual clusters. In addition, the energy cost model considers network latency when a task migrates to another vir-
tual cluster.

In [16], a model for estimating the energy consumption of each virtual machine, a virtual machine scheduling algorithm
that provides computing resources according to the energy budget of each virtual machine, is proposed. Those schemes are
implemented in the Xen virtualization system.

In [43], two energy-efficient duplication-based scheduling algorithms, Energy-Aware Duplication (EAD) and Performance-
Energy Balanced Duplication (PEBD), are proposed. The idea of conserving energy is to immediately turn processors to the
lowest voltage once no task is waiting or no task is ready for execution. This policy ensures that tasks can be executed as fast
as possible. Meanwhile, tasks on the critical path will be duplicated under the condition that no significant energy overhead is
introduced by the replicas. Duplications can avoid the performance degradation caused by waiting messages. The rationale
behind this approach is twofold. First, energy overhead incurred by task replicas could be offset by energy savings in inter-
connects and by shortening schedule length. Second, the overall performance is improved by the virtue of replicas.

Existing energy efficient measurement and management mechanism proposed for distributed stream computing system
cannot be directly implemented for big data stream computing. As they just base on specific assumptions, focus on minimiz-
ing energy consumption, or try to balance energy and performance. In contrast, our solution can save energy consumption
without affecting minimization of response time. All vertices in DAG are divided into two groups, vertices on critical path,
and vertices on non-critical path. Low response time is only determined by all the vertices on critical path. Moreover, mini-
mizing energy consumption costs can be achieved by consolidation recourse for vertices on non-critical path. Our solution
intends to achieve high throughput objectives measurement and management in big data stream computing environments.

7. Conclusions and future work

High energy efficiency issue is one of the major obstacles for opening up the new era of green stream computing. To achieve
green stream computing in big data environments, it is important to obtain a clear picture of the total energy consumption in
big data environments. Importantly, it is needed to understand how to minimize energy consumption in data centers, and to
deal with the high energy efficiency and low response time objectives is missing in most existing research. This justifies the
importance of modeling an energy efficient resource scheduling and optimization framework for big data stream computing
environments, so as to maximize energy efficiency and minimize response time, and to achieve high energy efficiency and low
response time objectives measurement and management in big data stream computing environments.

In this paper, we covered all four aspects of Re-Stream by answering the following questions:

(1) Profiling the mathematical relationship between energy consumption, response time, and resource utilization in big
data stream computing, and obtaining the conditions to meet the high energy efficiency and low response time
objectives.

(2) Modeling DSG in big data stream computing environments by referring to the distributed stream computing theories,
identifying the critical path in DSG, and getting energy consumption of an allocation scheme for a DSG at a special data
stream speed.

(3) Allocating tasks by the energy efficient heuristic critical path scheduling mechanism subject to the constraints of tasks’
architectural requirements, and online optimizing the scheduling mechanism by reallocating the critical vertices on
critical path of DSG to minimize response time and system fluctuations, and consolidating non-critical vertices on
non-critical path to maximize the energy efficiency, to meet high energy efficiency and low response time.

(4) Evaluating the high energy efficiency and low response time objectives in big data stream computing environments,
and considering both high energy efficiency and low response time.

Our contributions are summarized as follows:

(1) Formal definitions of task topology, big data stream computing architecture, and high energy efficiency and low
response time in quantitative perspective, and systematic profiling of the mathematical relationship between energy
consumption, response time, and resource utilization in big data stream.
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(2) Systematic investigation in computation of nodes, communication among nodes, and allocation of tasks by the energy
efficient heuristic critical path scheduling mechanism subject to the constraints of tasks’ architectural requirements.

(3) Identification of the critical path of a DSG at a special data stream throughput, and online optimization of scheduling
mechanism by reallocating the critical vertices on critical path of DSG to minimize response time and system
fluctuations.

(4) Quantification of energy consumption of an allocation scheme for a DSG at a special data stream speed, and consol-
idation of non-critical vertices on non-critical path to maximize the energy efficiency, to meet high energy efficiency
objective.

(5) Prototype implementation, simulation, and performance evaluation of the proposed Re-Stream, that can construct
high energy efficiency and low response time trade-off effectively in big data stream computing environments.

Future works will focus on the following:

(1) Optimizing the structure of DSG, and providing an efficient DSG for each application, and providing a dynamical
instance of each vertex.

(2) Examining the efficiency and effectiveness of Re-Stream in real big data stream computing environments.
(3) Developing a complete green stream computing framework based on Re-Stream as a part of big data stream comput-

ing services to satisfy the high energy efficiency and low response time objectives.
(4) Deploying the Re-Stream on real big data stream computing environments.
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