
193

C h a p t e r 11

Key Technologies for Big
Data Stream Computing

Dawei Sun, Guangyan Zhang, Weimin Zheng, and Keqin Li

CONTENTS
11.1 Introduction 194

11.1.1 Stream Computing 195
11.1.2 Application Background 195
11.1.3 Chapter Organization 196

11.2 Overview of a BDSC System 196
11.2.1 Directed Acyclic Graph and Stream Computing 196
11.2.2 System Architecture for Stream Computing 198
11.2.3 Key Technologies for BDSC Systems 199

11.2.3.1 System Structure 199
11.2.3.2 Data Stream Transmission 200
11.2.3.3 Application Interfaces 200
11.2.3.4 High Availability 200

11.3 Example BDSC Systems 202
11.3.1 Twitter Storm 202

11.3.1.1 Task Topology 202
11.3.1.2 Fault Tolerance 203
11.3.1.3 Reliability 203
11.3.1.4 Storm Cluster 204

11.3.2 Yahoo! S4 204
11.3.2.1 Processing Element 205
11.3.2.2 Processing Nodes 205
11.3.2.3 Fail-Over, Checkpointing, and Recovery Mechanism 205
11.3.2.4 System Architecture 206

11.3.3 Microsoft TimeStream and Naiad 206
11.3.3.1 TimeStream 206
11.3.3.2 Naiad 209

11.4 Future Perspective 210

194 ◾ Dawei Sun, Guangyan Zhang, Weimin Zheng, and Keqin Li

ABSTRACT
As a new trend for data-intensive computing, real-time stream computing is gaining
significant attention in the Big Data era. In theory, stream computing is an effective
way to support Big Data by providing extremely low-latency processing tools and
massively parallel processing architectures in real-time data analysis. However, in
most existing stream computing environments, how to efficiently deal with Big Data
stream computing and how to build efficient Big Data stream computing systems
are posing great challenges to Big Data computing research. First, the data stream
graphs and the system architecture for Big Data stream computing, and some related
key technologies, such as system structure, data transmission, application interfaces,
and high availability, are systemically researched. Then, we give a classification of the
latest research and depict the development status of some popular Big Data stream
computing systems, including Twitter Storm, Yahoo! S4, Microsoft TimeStream, and
Microsoft Naiad. Finally, the potential challenges and future directions of Big Data
stream computing are discussed.

11.1 INTRODUCTION
Big Data computing is a new trend for future computing, with the quantity of data grow-
ing and the speed of data increasing. In general, there are two main mechanisms for Big
Data computing, that is, Big Data stream computing (BDSC) and Big Data batch comput-
ing. BDSC is a model of straight-through computing, such as Storm [1] and S4 [2], which
does for stream computing what Hadoop does for batch computing, while Big Data batch
computing is a model of storing then computing, such as the MapReduce framework [3]
open-sourced by the Hadoop implementation [4].

Essentially, Big Data batch computing is not sufficient for many real-time application
scenarios, where a data stream changes frequently over time and the latest data are the most
important and most valuable. For example, when analyzing data from real-time transac-
tions (e.g., financial trades, e-mail messages, user search requests, sensor data tracking),
a data stream grows monotonically over time as more transactions take place. Ideally, a
real-time application environment can be supported by BDSC. Generally, Big Data stream-
ing computing has the following defining characteristics [5,6]. (1) The input data stream is
a real-time data stream and needs real-time computing, and the results must be updated

11.4.1 Grand Challenges 210
11.4.1.1 High Scalability 211
11.4.1.2 High Fault Tolerance 211
11.4.1.3 High Consistency 211
11.4.1.4 High Load Balancing 211
11.4.1.5 High Throughput 212

11.4.2 On-the-Fly Work 212
Acknowledgments 212
References 213

D
ow

nl
oa

de
d

by
 [

G
ua

ng
ya

n
Z

ha
ng

]
at

 1
6:

48
 1

3
Fe

br
ua

ry
 2

01
5

Key Technologies for Big Data Stream Computing ◾ 195

every time the data changes. (2) Incoming data arrive continuously at volumes that far
exceed the capabilities of individual machines. (3) Input streams incur multistaged com-
puting at low latency to produce output streams, where any incoming data entry is ideally
reflected in the newly generated results in output streams within seconds.

11.1.1 Stream Computing

Stream computing, the long-held dream of “high real-time computing” and “high-throughput
computing,” with programs that compute continuous data streams, has opened up the
new era of future computing due to Big Data, which is a data set that is large, fast, dis-
persed, unstructured, and beyond the ability of available hardware and software facilities
to undertake its acquisition, access, analytics, and application in a reasonable amount of
time and space [7,8]. Stream computing is a computing paradigm that reads data from
collections of software or hardware sensors in stream form and computes continuous data
streams, where feedback results should be in a real-time data stream as well. A data stream
is a sequence of data sets, a continuous stream is an infinite sequence of data sets, and par-
allel streams have more than one stream to be processed at the same time.

Stream computing is one effective way to support Big Data by providing extremely low-
latency velocities with massively parallel processing architectures and is becoming the fast-
est and most efficient way to obtain useful knowledge from Big Data, allowing organizations
to react quickly when problems appear or to predict new trends in the near future [9,10].

A Big Data input stream has the characteristics of high speed, real time, and large vol-
ume for applications such as sensor networks, network monitoring, microblogging, web
exploring, social networking, and so on. These data sources often take the form of continu-
ous data streams, and timely analysis of such a data stream is very important as the life
cycle of most data is very short [8,11,12]. Furthermore, the volume of data is so high that
there is not enough space for storage, and not all data need to be stored. Thus, the storing-
then-computing batch computing model does not fit at all. Nearly all data in Big Data
environments have the feature of streams, and stream computing has appeared to solve the
dilemma of Big Data computing by computing data online within real-time constraints
[13]. Consequently, the stream computing model will be a new trend for high-throughput
computing in the Big Data era.

11.1.2 Application Background

BDSC is able to analyze and process data in real time to gain immediate insight, and it is typi-
cally applied to the analysis of a vast amount of data in real time and to processing them at a
high speed. Many application scenarios require BDSC. For example, in financial industries,
Big Data stream computing technologies can be used in risk management, marketing man-
agement, business intelligence, and so on. In the Internet, BDSC technologies can be used in
search engines, social networking, and so on. In the Internet of things, BDSC technologies
can be used in intelligent transportation, environmental monitoring, and so on.

Usually, a BDSC environment is deployed in a highly distributed clustered environ-
ment, as the amount of data is infinite, the rate of the data stream is high, and the results
should be real-time feedback.

D
ow

nl
oa

de
d

by
 [

G
ua

ng
ya

n
Z

ha
ng

]
at

 1
6:

48
 1

3
Fe

br
ua

ry
 2

01
5

196 ◾ Dawei Sun, Guangyan Zhang, Weimin Zheng, and Keqin Li

11.1.3 Chapter Organization

The remainder of this chapter is organized as follows. In Section 11.2, we introduce data
stream graphs and the system architecture for BDSC and key technologies for BDSC systems.
In Section 11.3, we present the system architecture and key technologies of four popular
example BDSC systems, which are Twitter Storm, Yahoo! S4, Microsoft TimeStream, and
Microsoft Naiad. Finally, we discuss grand challenges and future directions in Section 11.4.

11.2 OVERVIEW OF A BDSC SYSTEM
In this section, we first present some related concepts and definitions of directed acyclic
graphs and stream computing. Then, we introduce the system architecture for stream com-
puting and the key technologies for BDSC systems in BDSC environments.

11.2.1 Directed Acyclic Graph and Stream Computing

In stream computing, the multiple continuous parallel data streams can be represented by a
task topology, also named a data stream graph, which is usually described by a directed acyclic
graph (DAG) [5,14–16]. A measurable data stream graph view can be defined by Definition 1.

Definition 1

A data stream graph G is a directed acyclic graph, which is composed of set of a vertices
and a set of directed edges; has a logical structure and a special function; and is denoted
as G = (V(G), E(G)), where V(G) = {v1, v2,…,vn} is a finite set of n vertices, which represent
tasks, and E(G) = {e1,2, e1,3,…,en − 1,n} is a finite set of directed edges, which represent a data
stream between vertices. If ∃ei,j ∈ E(G), then vi, vj ∈ V(G), vi ≠ vj, and 〈vi, vj〉 is an ordered
pair, where a data stream comes from vi and goes to vj.

The in-degree of vertex vi is the number of incoming edges, and the out-degree of vertex
vi is the number of outgoing edges. A source vertex is a vertex whose in-degree is 0, and an
end vertex is a vertex whose out-degree is 0. A data stream graph G has at least one source
vertex and one end vertex.

For the example data stream graph with 11 vertices shown in Figure 11.1, the set of ver-
tices is V = {va, vb,…,vk}, the set of directed edges is E = {ea,c, eb,c,…,ej,k}, the source vertices

vh

vjve

vg
vk

vi

vf

vd

vc

va

vb

FIGURE 11.1 A data stream graph.

D
ow

nl
oa

de
d

by
 [

G
ua

ng
ya

n
Z

ha
ng

]
at

 1
6:

48
 1

3
Fe

br
ua

ry
 2

01
5

Key Technologies for Big Data Stream Computing ◾ 197

are va and vb, and the end vertex is vk. The in-degree of vertex vd is 1, and the out-degree of
vertex vd is 2.

Definition 2

A subgraph sub-G of the data stream graph G is a subgraph consisting of a subset of the
vertices with the edges in between. For vertices vi and vj in the subgraph sub-G and any
vertex v in the data stream graph G, v must also be in the sub-G if v is on a directed path
from vi to vj, that is, ∀vi, vj ∈ V(sub-G), ∀v ∈ V(G), and if v ∈ V (p(vi, vj)), then v ∈ V
(p(sub-G)).

A subgraph sub-G is logically equivalent and can be substituted by a vertex. But reduc-
ing that subgraph to a single logical vertex would create a graph with cycle, not a DAG.

Definition 3

A path p(vu, vv) from vertex vu to vertex vv is a subset of E(p(vu, vv)), which should meet the
conditions ∃ei,k ∈ p(vu, vv) and ek,j ∈ p(vu, vv) for any directed edge ek,l in path p(vu, vv) that
displays the following properties: If k ≠ i, then ∃m, and em,k ∈ p(vu, vv); if i ≠ j, then ∃m, and
el,m ∈ p(vu, vv).

The latency lp(vu, vv) of a path from vertex vu to vertex vv is the sum of latencies of both
vertices and edges on the path, as given by Equation 11.1:

 l v v c c c cp u v v
v V p v v

e v ei

i u v

i j i i j
(,) , , .

((,))
, ,

= + ≥
∈
∑ 0

ee E p v vi j u v, ((,))∈
∑ (11.1)

A critical path, also called the longest path, is a path with the longest latency from a
source vertex vs to an end vertex ve in a data stream graph G, which is also the latency of
data stream graph G.

If there are m paths from source vertex vs to end vertex ve in data stream graph G, then
the latency l(G) of data stream graph G is given by Equation 11.2:

 l G l v v l v v l v vp s e p s e p s ei m
() max (,), (,), , (,) ,= { }2

 (11.2)

where l v vp s ei
(,) is the latency of the ith path from vertex vs to vertex ve.

Definition 4

In data stream graph G, if ∃ei,j from vertex vi to vertex vj, then vertex vi is a parent of vertex
vj, and vertex vj is a child of vertex vi.

D
ow

nl
oa

de
d

by
 [

G
ua

ng
ya

n
Z

ha
ng

]
at

 1
6:

48
 1

3
Fe

br
ua

ry
 2

01
5

198 ◾ Dawei Sun, Guangyan Zhang, Weimin Zheng, and Keqin Li

Definition 5

The throughput t(vi) of vertex vi is the average rate of successful data stream computing in
a Big Data environment and is usually measured in bits per second (bps).

We identify the source vertex vs as in the first level, the children of source vertex vs as in
the second level, and so on, and the end vertex ve as in the last level.

The throughput t(leveli) of the ith level can be calculated by Equation 11.3:

 t level t vi k
k

ni

() ()=
=
∑

1

, (11.3)

where ni is the number of vertices in the ith level.
If data stream graph G has m levels, then the throughput t(G) of the data stream graph G is

the minimum throughput of all the throughput in the m levels, as described by Equation 11.4:

 t(G) = min{t(level1), t(level2),…,t(levelm)}, (11.4)

where t(leveli) is the throughput of the ith level in data stream G.

Definition 6

A topological sort TS G v v vx x xn
() , , ,= ()1 2

 of the vertices V(G) in data stream graph G is a

linear ordering of its vertices, such that for every directed edge e e E Gx x x xi j i j, , ()∈() from vertex
vxi

 to vertex vx j
, vxi

 comes before vx j
 in the topological ordering.

A topological sort is possible if and only if the graph has no directed cycle, that is, it
needs to be a directed acyclic graph. Any directed acyclic graph has at least one topological
sort.

Definition 7

A graph partitioning GP(G) = {GP1, GP2,…,GPm} of the data stream graph G is a topologi-
cal sort–based split of the vertex set V(G) and the corresponding directed edges. A graph
partitioning should meet the nonoverlapping and covering properties, that is, if ∀i ≠ j, i, j

∈ [1, m], then GPi ⋂ GPj = ∅, and GP V Gi
i

m

=
=

()
1

.

11.2.2 System Architecture for Stream Computing

In BDSC environments, stream computing is the model of straight-through computing.
As shown in Figure 11.2, the input data stream is in a real-time data stream form, all

D
ow

nl
oa

de
d

by
 [

G
ua

ng
ya

n
Z

ha
ng

]
at

 1
6:

48
 1

3
Fe

br
ua

ry
 2

01
5

Key Technologies for Big Data Stream Computing ◾ 199

continuous data streams are computed in real time, and the results must be updated also
in real time. The volume of data is so high that there is not enough space for storage, and
not all data need to be stored. Most data will be discarded, and only a small portion of the
data will be permanently stored in hard disks.

11.2.3 Key Technologies for BDSC Systems

Due to data streams’ distinct features of real time, volatility, burstiness, irregularity, and
infinity in a Big Data environment, a well-designed BDSC system always optimizes in sys-
tem structure, data transmission, application interfaces, high availability, and so on [17–19].

11.2.3.1 System Structure
Symmetric structure and master–slave structure are two main system structures for BDSC
systems, as shown in Figures 11.3 and 11.4, respectively.

In the symmetric structure system, as shown in Figure 11.3, the functions of all nodes
are the same. So it is easy to add a new node or to remove an unused node, and to improve
the scalability of a system. However, some global functions such as resource allocation,
fault tolerance, and load balancing are hard to achieve without a global node. In the S4
system, the global functions are achieved by borrowing a distributed protocol zookeeper.

In the master–slave structure system, as shown in Figure 11.4, one node is the master
node, and other nodes are slave nodes. The master node is responsible for global control of
the system, such as resource allocation, fault tolerance, and load balancing. Each slave node

Stream computing

Data stream

StorageHardware

Memory

FIGURE 11.2 A Big Data stream computing environment.

FIGURE 11.3 Symmetric structure.

D
ow

nl
oa

de
d

by
 [

G
ua

ng
ya

n
Z

ha
ng

]
at

 1
6:

48
 1

3
Fe

br
ua

ry
 2

01
5

200 ◾ Dawei Sun, Guangyan Zhang, Weimin Zheng, and Keqin Li

has a special function, and it always receives a data stream from the master node, processes
the data stream, and sends the results to the master node. Usually, the master node is the
bottleneck in the master–slave structure system. If it fails, the whole system will not work.

11.2.3.2 Data Stream Transmission
Push and pull are two main data stream transmissions in a BDSC system.

In a push system, once an upstream node gets a result, it will immediately push the
result data to downstream nodes. When this is done, the upstream data will be immedi-
ately sent to downstream nodes. However, if some downstream nodes are busy or fail, some
data will be discarded.

In a pull system, a downstream node requests data from an upstream node. If some
data need to be further processed, the upstream node will send the data to the requesting
downstream node. When this is done, the upstream data will be stored in upstream nodes
until corresponding downstream nodes make a request. Some data will wait a long time for
further processing and may lose their timeliness.

11.2.3.3 Application Interfaces
An application interface is used to design a data stream graph, a bridge between a user
and a BDSC system. Usually, a good application interface is flexible and efficient for users.
Currently, most BDSC systems provide MapReduce-like interfaces; for example, the Storm
system provides spouts and bolts as application interfaces, and a user can design a data
stream graph using spouts and bolts. Some other BDSC systems provide structured query
language (SQL)-like interfaces and graphical user interfaces.

11.2.3.4 High Availability
State backup and recovery is the main method to achieve high availability in a BDSC sys-
tem. There are three main high-availability strategies, that is, passive standby strategy,
active standby strategy, and upstream backup strategy.

In the passive standby strategy (see Figure 11.5), each primary node periodically sends
checkpoint data to a backup node. If the primary node fails, the backup node takes over
from the last checkpoint. Usually, this strategy will achieve precise recovery.

FIGURE 11.4 Master–slave structure.

D
ow

nl
oa

de
d

by
 [

G
ua

ng
ya

n
Z

ha
ng

]
at

 1
6:

48
 1

3
Fe

br
ua

ry
 2

01
5

Key Technologies for Big Data Stream Computing ◾ 201

In the active standby strategy (see Figure 11.6), the secondary nodes compute all data
streams in parallel with their primaries. Usually, the recovery time of this strategy is the
shortest.

In the upstream backup strategy (see Figure 11.7), upstream nodes act as backups for
their downstream neighbors by preserving data streams in their output queues while their
downstream neighbors compute them. If a node fails, its upstream nodes replay the logged
data stream on a recovery node. Usually, the runtime overhead of this strategy is the lowest.

A comparison of the three main high-availability strategies, that is, passive standby
strategy, active standby strategy, and upstream backup strategy, in runtime overhead and
recovery time is shown in Figure 11.8. The recovery time of the upstream backup strategy
is the longest, while the runtime overhead of the passive standby strategy is the greatest.

ACK

Checkpoint
A B C

B́

FIGURE 11.5 Passive standby. ACK, Acknowledgment.

ACK

Trim

A B C

B́

FIGURE 11.6 Active standby. ACK, Acknowledgment.

ACKTrim

A B C Replay

(a)

A B C

B́

(b)

FIGURE 11.7 Upstream backup. ACK, Acknowledgment.

Passive
standby

Active
standby

Upstream
backup

Recovery time

Ru
nt

im
e o

ve
rh

ea
d

FIGURE 11.8 Comparison of high-availability strategies in runtime overhead and recovery time.

D
ow

nl
oa

de
d

by
 [

G
ua

ng
ya

n
Z

ha
ng

]
at

 1
6:

48
 1

3
Fe

br
ua

ry
 2

01
5

202 ◾ Dawei Sun, Guangyan Zhang, Weimin Zheng, and Keqin Li

11.3 EXAMPLE BDSC SYSTEMS
In this section, the system architecture and key technologies of four popular BDSC sys-
tem instances are presented. These systems are Twitter Storm, Yahoo! S4, Microsoft
TimeStream, and Microsoft Naiad, which are specially designed for BDSC.

11.3.1 Twitter Storm

Storm is an open-source and distributed BDSC system licensed under the Eclipse Public
License. Similar to how Hadoop provides a set of general primitives for doing batch
processing, Storm provides a set of general primitives for doing real-time Big Data com-
puting. The Storm platform has the features of simplicity, scalability, fault tolerance, and
so on. It can be used with any programming language and is easy to set up and operate
[1,20,21].

11.3.1.1 Task Topology
In BDSC environments, the logic for an application is packaged in the form of a task topol-
ogy. Once a task topology is designed and submitted to a system, it will run forever until
the user kills it.

A task topology can be described as a directed acyclic graph and comprises spouts
and bolts, as shown in Figure 11.9. A spout is a source of streams in a task topology and
will read data streams (in tuples) from an external source and emit them into bolts.
Spouts can emit more than one data stream. The processing of a data stream in a task
topology is done in bolts. Anything can be done by bolts, such as filtering, aggrega-
tions, joins, and so on. Some simple functions can be achieved by a bolt, while complex
functions will be achieved by many bolts. The logic should be designed by a user. For
example, transforming a stream of tweets into a stream of trending images requires at
least two steps: a bolt to do a rolling count of retweets for each image and one or more
bolts to stream out the top n images. Bolts can also emit more than one stream. Each
edge in the directed acyclic graph represents a bolt subscribing to the output stream of
some other spout or bolt.

A data stream is an unbounded sequence of tuples that is processed and created in
parallel in a distributed BDSC environment. A task topology processes data streams in
many complex ways. Repartitioning the streams between each stage of the computation is
needed. Task topologies are inherently parallel and run across a cluster of machines. Any

Bolt

Bolt

Bolt

Bolt

Bolt

Bolt

Spout

Spout

FIGURE 11.9 Task topology of Storm.

D
ow

nl
oa

de
d

by
 [

G
ua

ng
ya

n
Z

ha
ng

]
at

 1
6:

48
 1

3
Fe

br
ua

ry
 2

01
5

Key Technologies for Big Data Stream Computing ◾ 203

vertex in a task topology can be created in many instances. All those vertices will simul-
taneously process a data stream, and different parts of the topology can be allocated in
different machines. A good allocating strategy will greatly improve system performance.

A data stream grouping defines how that stream should be partitioned among the
bolt’s tasks; spouts and bolts execute in parallel as many tasks across the cluster. There
are seven built-in stream groupings in Storm, such as shuffle grouping, fields grouping,
all grouping, global grouping, none grouping, direct grouping, and local or shuffle group-
ing; a custom stream grouping to meet special needs can also be implemented by the
CustomStreamGrouping interface.

11.3.1.2 Fault Tolerance
Fault tolerance is an important feature of Storm. If a worker dies, Storm will automati-
cally restart it. If a node dies, the worker will be restarted on another node. In Storm,
Nimbus and the Supervisors are designed to be stateless and fail-fast whenever any unex-
pected situation is encountered, and all state information is stored in a Zookeeper server.
If Nimbus or the Supervisors die, they will restart like nothing happened. This means you
can kill the Nimbus and the Supervisors without affecting the health of the cluster or task
topologies.

When a worker dies, the Supervisor will restart it. If it continuously fails on startup and
is unable to heartbeat to Nimbus, Nimbus will reassign the worker to another machine.

When a machine dies, the tasks assigned to that machine will time out, and Nimbus will
reassign those tasks to other machines.

When Nimbus or Supervisors die, they will restart like nothing happened. No worker
processes are affected by the death of Nimbus or the Supervisors.

11.3.1.3 Reliability
In Storm, the reliability mechanisms guarantee that every spout tuple will be fully pro-
cessed by corresponding topology. They do this by tracking the tree of tuples triggered
by every spout tuple and determining when that tree of tuples has been successfully com-
pleted. Every topology has a “message timeout” associated with it. If Storm fails to detect
that a spout tuple has been completed within that timeout, then it fails the tuple and replays
it later.

The reliability mechanisms of Storm are completely distributed, scalable, and fault
tolerant. Storm uses mod hashing to map a spout tuple ID to an acker task. Since every
tuple carries with it the spout tuple IDs of all the trees they exist within, they know which
acker tasks to communicate with. When a spout task emits a new tuple, it simply sends a
message to the appropriate acker telling it that its task ID is responsible for that spout tuple.
Then, when an acker sees that a tree has been completed, it knows to which task ID to send
the completion message.

An acker task stores a map from a spout tuple ID to a pair of values. The first value is the
task ID that created the spout tuple that is used later on to send completion messages. The
second value is a 64-bit number called the “ack val.” The ack val is a representation of
the state of the entire tuple tree, no matter how big or how small. It is simply the exclusive

D
ow

nl
oa

de
d

by
 [

G
ua

ng
ya

n
Z

ha
ng

]
at

 1
6:

48
 1

3
Fe

br
ua

ry
 2

01
5

204 ◾ Dawei Sun, Guangyan Zhang, Weimin Zheng, and Keqin Li

OR (XOR) of all tuple IDs that have been created and/or acked in the tree. When an acker
task sees that an “ack val” has become 0, then it knows that the tuple tree is completed.

11.3.1.4 Storm Cluster
A Storm cluster is superficially similar to a Hadoop cluster. Whereas on Hadoop, you
run “MapReduce jobs,” on Storm, you run “topologies.” As shown in Figure 11.10,
there are two kinds of nodes on a Storm cluster, that is, the master node and the worker
nodes.

The master node runs Nimbus node, which is similar to Hadoop’s “JobTracker.” In
Storm, Nimbus node is responsible for distributing code around the cluster, assigning tasks
to machines, monitoring for failures, and so on.

Each worker node runs a Supervisor node. The Supervisor listens for work assigned to
its machine and starts and stops worker processes as necessary based on what Nimbus
has assigned to it. Each worker process executes a subset of a topology. Usually, a running
topology consists of many worker processes spread across many machines.

The coordination between Nimbus and the Supervisors is done through a Zookeeper
cluster. Additionally, the Nimbus daemon and Supervisor daemons are fail-fast and state-
less; all states are kept in a Zookeeper server. This means that if you kill the Nimbus or the
Supervisors, they will start back up like nothing has happened.

11.3.2 Yahoo! S4

S4 is a general-purpose, distributed, scalable, fault-tolerant, pluggable platform that allows
programmers to easily develop applications for computing continuous unbounded streams
of Big Data. The core part of S4 is written in Java. The implementation is modular and
pluggable, and S4 applications can be easily and dynamically combined for creating more
sophisticated stream processing systems. S4 was initially released by Yahoo! Inc. in October
2010 and has been an Apache Incubator project since September 2011. It is licensed under
the Apache 2.0 license [2,22–25].

Nimbus

M
aster

Cluster
Slaves

Zookeeper Zookeeper Zookeeper

Supervisor Supervisor Supervisor

Worker

Worker

Worker

Worker

Worker

Worker

... ...
...

...
...

... ...

FIGURE 11.10 Storm cluster.

D
ow

nl
oa

de
d

by
 [

G
ua

ng
ya

n
Z

ha
ng

]
at

 1
6:

48
 1

3
Fe

br
ua

ry
 2

01
5

Key Technologies for Big Data Stream Computing ◾ 205

11.3.2.1 Processing Element
The computing units of S4 are the processing elements (PEs). As shown in Figure 11.11,
each instance of a PE can be identified by four components, that is, functionality, types of
events, keyed attribute, and value of the keyed attribute. Each PE processes exactly those
events that correspond to the value on which it is keyed.

A special class of PEs is the set of keyless PEs, with no keyed attribute or value. This type
of PE will process all events of the type with which they are associated. Usually, the keyless
PEs are typically used at the input layer of an S4 cluster, where events are assigned a key.

11.3.2.2 Processing Nodes
Processing nodes (PNs) are the logical hosts to PEs. Many PEs work in a PE container, as
shown in Figure 11.12. A PN is responsible for event listeners, dispatcher events, and emit-
ter output events. In addition, the routing model, load balancing model, fail-over manage-
ment model, transport protocols, and zookeeper are deployed in a communication layer.

All events will be routed to PNs by S4 according to a hash function. Every keyed PE can
be mapped to exactly one PN based on the value of the hash function applied to the value of
the keyed attribute of that PE. However, keyless PEs may be instantiated on every PN. The
event listener model of a PN will always listen to an event from S4. If an event is allocated
to a PN, it will be routed to an appropriate PE within that PN.

11.3.2.3 Fail-Over, Checkpointing, and Recovery Mechanism
In S4, a fail-over mechanism will provide a high-availability environment for S4. When a
node is dead, a corresponding standby node will be used. In order to minimize state loss
when a node is dead, a checkpointing and recovery mechanism is employed by S4.

Functionality Types of events

Keyed attribute Value of key attribute

FIGURE 11.11 Processing element.

Processing element container

Processing node
Com

m
unication

layer

PE 1 PE 2 PE n...

Event listener dispatcher Emitter

Routing Load balancing

Fail-over management Transport protocols

Zookeeper

FIGURE 11.12 Processing node.

D
ow

nl
oa

de
d

by
 [

G
ua

ng
ya

n
Z

ha
ng

]
at

 1
6:

48
 1

3
Fe

br
ua

ry
 2

01
5

206 ◾ Dawei Sun, Guangyan Zhang, Weimin Zheng, and Keqin Li

In order to improve the availability of the S4 system, S4 system should provide a fail-
over mechanism to automatically detect failed nodes and redirect the data stream to a
standby node. If you have n partitions and start m nodes, with m > n, you get m − n standby
nodes. For instance, if there are seven live nodes and four partitions available, four of the
nodes pick the available partitions in Zookeeper. The remaining three nodes will be avail-
able standby nodes. Each active node consistently receives messages for the partition that it
picked, as shown in Figure 11.13a. When Zookeeper detects that one of active nodes fails, it
will notify a standby node to replace the failed node. As shown in Figure 11.13b, the node
assigned with partition 1 fails. Unassigned nodes compete for a partition assignment, and
only one of them picks it. Other nodes are notified of the new assignment and can reroute
the data stream for partition 1, as shown in Figure 11.13c.

If a node is unreachable after a session timeout, Zookeeper will identify this node as
dead. The session timeout is specified by the client upon connection and is, at minimum,
twice the heartbeat specified in the Zookeeper ensemble configuration.

In order to minimize state loss when a node is dead, a checkpointing and recovery
mechanism is employed by S4. The states of PEs are periodically checkpointed and stored.
Whenever a node fails, the checkpoint information will be used by the recovery mecha-
nism to recover the state of the failed node to the corresponding standby node. Most of the
previous state of a failed node can be seen in the corresponding standby node.

11.3.2.4 System Architecture
In S4, a decentralized and symmetric architecture is used; all nodes share the same func-
tionality and responsibilities (see Figure 11.14). There is no central node with specialized
responsibilities. This greatly simplifies deployment and maintenance.

A pluggable architecture is used to keep the design as generic and customizable as possible.

11.3.3 Microsoft TimeStream and Naiad

TimeStream and Naiad are two BDSC systems of Microsoft.

11.3.3.1 TimeStream
TimeStream is a distributed system designed specifically for low-latency continuous pro-
cessing of big streaming data on a large cluster of commodity machines and is based on

Zookeeper Zookeeper Zookeeper

1 2

3 4

1 2

3 4 1

2

3 4

Active nodes Standby nodes
(a)

Active nodes Standby nodes Active nodes Standby nodes
(b) (c)

FIGURE 11.13 Fail-over mechanism. (a) In working state, (b) under failed state, and (c) after recov-
ery state.

D
ow

nl
oa

de
d

by
 [

G
ua

ng
ya

n
Z

ha
ng

]
at

 1
6:

48
 1

3
Fe

br
ua

ry
 2

01
5

Key Technologies for Big Data Stream Computing ◾ 207

StreamInsight. TimeStream handles an online advertising aggregation pipeline at a rate of
700,000 URLs per second with a 2 s delay [5,26–29].

 1. Streaming DAG

 Streaming DAG is a type of task topology, which can be dynamically reconfigured
according to the loading of a data stream. All data streams in the TimeStream system
will be processed in streaming DAG. Each vertex in streaming DAG will be allocated
to physical machines for execution. As shown in Figure 11.15, streaming function fv
of vertex v is designed by the user. When input data stream i is coming, streaming
function fv will process data stream i, update v’s state from τ to τ′, and produce a
sequence o of output entries as part of the output streams for downstream vertices.

 A sub-DAG is logically equivalent and can be reduced to one vertex or another
sub-DAG. As shown in Figure 11.16, the sub-DAG comprised of vertices v2, v3, v4, and
v5 (as well as all their edges) is a valid sub-DAG and can be reduced to a “vertex” with
i as its input stream and o as its output stream.

 2. Resilient Substitution

 Resilient substitution is an important feature of TimeStream. It is used to dynami-
cally adjust and reconfigure streaming DAG according to the loading change of a

Monitoring

U
ser

Adapter

Legacy support

Name service

U0 U1 U2 U3 Un–1

Resource
m

anagem
ent

S4 cluster

Pnode 1 Pnode 2 Pnode n

FIGURE 11.14 System architecture.

i

v

o o

ƒv τ τ’

FIGURE 11.15 Streaming DAG.

D
ow

nl
oa

de
d

by
 [

G
ua

ng
ya

n
Z

ha
ng

]
at

 1
6:

48
 1

3
Fe

br
ua

ry
 2

01
5

208 ◾ Dawei Sun, Guangyan Zhang, Weimin Zheng, and Keqin Li

data stream. There are three types of resilient substitution in TimeStream. (a) A
vertex is substituted by another vertex. When a vertex fails, a new corresponding
standby vertex is initiated to replace the failed one and continues execution, possibly
on a different machine. (b) A sub-DAG is substituted by another sub-DAG. When the
number of instances of a vertex in a sub-DAG needs to be adjusted, a new sub-DAG
will replace the old one. For example, as shown in Figure 11.17, a sub-DAG comprised
of vertices v2, v3, v4, and v5 implements three stages: hash partitioning, computation,
and union. When the load increases, TimeStream can create a new sub-DAG (shown
on the left), which uses four partitions instead of two, to replace the original sub-
DAG. (c) A sub-DAG is substituted by a vertex. When the load decreases, there is no
need for so many steps to finish a special function, and the corresponding sub-DAG
can be substituted by a vertex, as shown in Figure 11.16.

v1

i

v2

v6v4v3

v5

o

v7

FIGURE 11.16 Streaming DAG and sub-DAG.

v1

Hash partition

Computation

Union

i

v2

v6v4

v5

v3

o

v7

v13

v12v9 v10 v11

v8

FIGURE 11.17 Resilient substitution.

D
ow

nl
oa

de
d

by
 [

G
ua

ng
ya

n
Z

ha
ng

]
at

 1
6:

48
 1

3
Fe

br
ua

ry
 2

01
5

Key Technologies for Big Data Stream Computing ◾ 209

11.3.3.2 Naiad
Naiad is a distributed system for executing data-parallel, cyclic dataflow programs. The
core part is written in C#. It offers high throughput of batch processors and low latency of
stream processors and is able to perform iterative and incremental computations. Naiad is
a prototype implementation of a new computational model, timely dataflow [30].

 1. Timely Dataflow

 Timely dataf low is a computational model based on directed graphs. The data-
f low graph can be a directed acyclic graph, like in other BDSC environments. It
can also be a directed cyclic graph; the situation of cycles in a dataf low graph
is under consideration. In timely dataf low, the time stamps ref lect cycle struc-
ture in order to distinguish data that arise in different input epochs and loop
iterations. The external producer labels each message with an integer epoch and
notifies the input vertex when it will not receive any more messages with a given
epoch label.

 Timely dataflow graphs are directed graphs with the constraint that the vertices
are organized into possibly nested loop contexts, with three associated system-
provided vertices. Edges entering a loop context must pass through an ingress vertex,
and edges leaving a loop context must pass through an egress vertex. Additionally,
every cycle in the graph must be contained entirely within some loop context and
include at least one feedback vertex that is not nested within any inner loop contexts.
Figure 11.18 shows a single-loop context with ingress (I), egress (E), and feedback (F)
vertices labeled.

 2. System Architecture

 The system architecture of a Naiad cluster is shown in Figure 11.19, with a group of
processes hosting workers that manage a partition of the timely dataflow vertices.
Workers exchange messages locally using shared memory and remotely using TCP
connections between each pair of processes.

 A program specifies its timely dataflow graph as a logical graph of stages linked by
typed connectors. Each connector optionally has a partitioning function to control
the exchange of data between stages. At execution time, Naiad expands the logical
graph into a physical graph where each stage is replaced by a set of vertices and each
connector by a set of edges. Figure 11.19 shows a logical graph and a corresponding

Loop context

In OutA I B C E D

F

FIGURE 11.18 Timely dataflow graph.

D
ow

nl
oa

de
d

by
 [

G
ua

ng
ya

n
Z

ha
ng

]
at

 1
6:

48
 1

3
Fe

br
ua

ry
 2

01
5

210 ◾ Dawei Sun, Guangyan Zhang, Weimin Zheng, and Keqin Li

physical graph, where the connector from X to Y has partitioning function H(m) on
typed messages m.

 Each Naiad worker is responsible for delivering messages and notifications to ver-
tices in its partition of the timely dataflow graph. When faced with multiple runnable
actions, workers break ties by delivering messages before notifications, in order to
reduce the amount of queued data.

11.4 FUTURE PERSPECTIVE
In this section, we focus our attention on grand challenges of BDSC and the main work we
will perform in the near future.

11.4.1 Grand Challenges

BDSC is becoming the fastest and most efficient way to obtain useful knowledge from
what is happening now, allowing organizations to react quickly when problems appear or
to detect new trends helping to improve their performance. BDSC is needed to manage the
data currently generated at an ever-increasing rate from such applications as log records or
click-streams in web exploring, blogging, and twitter posts. In fact, all data generated can
be considered as streaming data or as a snapshot of streaming data.

There are some challenges that researchers and practitioners have to deal with in the
next few years, such as high scalability, high fault tolerance, high consistency, high load
balancing, high throughput, and so on [6,9,31,32]. Those challenges arise from the nature
of stream data, that is, data arrive at high speed and must be processed under very strict
constraints of space and time.

Logical graph X Y ZH(m)

X0

X1

Y0

Y1

Z0

Z1

Process 0

TCP/IP network

Worker 2

Worker 3

Process 1

X2

X3

Y2

Y3

Z2

Z3

Worker 0

Worker 1

FIGURE 11.19 System architecture of a Naiad cluster.

D
ow

nl
oa

de
d

by
 [

G
ua

ng
ya

n
Z

ha
ng

]
at

 1
6:

48
 1

3
Fe

br
ua

ry
 2

01
5

Key Technologies for Big Data Stream Computing ◾ 211

11.4.1.1 High Scalability
High scalability of stream computing can expand to support increasing data streams and
meet the quality of service (QoS) of users, or it can shrink to support decreasing data
streams and improve resource utilization. In BDSC environments, it is difficult to achieve
high scalability, as the change of data stream is unexpected. The key is that the software
changes along with the data stream change, grows along with increased usage, or shrinks
along with decreased usage. This means that scalable programs take up limited space and
resources for smaller data needs but can grow efficiently as more demands are placed on
the data stream.

To achieve high scalability in BDSC environments, a good scalable system architecture,
a good effective resource allocation strategy, and a good data stream computing mode are
required.

11.4.1.2 High Fault Tolerance
Highly fault-tolerant stream computing can enable a system to continue operating prop-
erly in the event of the failure of (or one or more faults within) some of its components.
Fault tolerance is particularly sought after in high-availability or life-critical systems. In
BDSC environments, it is difficult to achieve high fault tolerance, as the data stream is infi-
nite and real time, and more importantly, most of the data are useless.

To achieve high fault tolerance in BDSC environments, a good scalable high-fault-
tolerance strategy is needed, as fault tolerance provides additional resources that allow an
application to continue working after a component failure without interruption.

11.4.1.3 High Consistency
Highly consistent stream computing can improve system stability and enhance system
efficiency. In BDSC environments, it is difficult to achieve high consistency, as it is hard to
decide which nodes should be consistent and which data are needed.

To achieve high consistency in BDSC environments, a good system structure is required.
Usually, the master–slave structure is a good choice, as all data are in the master node, and
it is easy to achieve highly consistent states.

11.4.1.4 High Load Balancing
Highly load-balanced stream computing can make a stream computing system self-adaptive
to the changes of data streams and avoid load shedding. In BDSC environments, it is diffi-
cult to achieve high load balancing, as it is impossible to dedicate resources that cover peak
loads 24 h a day, 7 days a week. Traditionally, stream computing systems use load shedding
when the workload exceeds their processing. This employs a trade-off between delivering a
low-latency response and ensuring that all incoming data streams are processed. However,
load shedding is not feasible when the variance between peak and average workload is
high, and the response should always be kept in real time for users.

To achieve high load balancing in BDSC environments, a good distributed computing
environment is needed. It should provide scalable stream computing that automatically

D
ow

nl
oa

de
d

by
 [

G
ua

ng
ya

n
Z

ha
ng

]
at

 1
6:

48
 1

3
Fe

br
ua

ry
 2

01
5

212 ◾ Dawei Sun, Guangyan Zhang, Weimin Zheng, and Keqin Li

streams a partial data stream to a global computing center when local resources become
insufficient.

11.4.1.5 High Throughput
High-throughput stream computing will improve data stream computing ability by run-
ning multiple independent instances of a task topology graph on multiple processors at the
same time. In BDSC environments, it is difficult to achieve high throughput, as it is hard
to decide how to identify the need for a replication subgraph in a task topology graph, to
decide the number of replicas, and to decide the fraction of the data stream to assign to
each replica.

To achieve high throughput in BDSC environments, a good multiple-instance replica-
tion strategy is needed. Usually, the data stream loading of all instances of all nodes in a
task topology graph being equal is a good choice, as the computing ability of all computing
nodes are efficient, and it is easy to achieve high-throughput states.

11.4.2 On-the-Fly Work

Future investigation will focus on the following aspects:

 1. Research on new strategies to optimize a task topology graph, such as subgraph parti-
tioning strategy, subgraph replication strategy, and subgraph allocating strategy, and
to provide a high-throughput BDSC environment

 2. Research on dynamic extensible data stream strategies, such that a data stream can be
adjusted according to available resources and the QoS of users, and provide a highly
load-balancing BDSC environment

 3. Research on the impact of a task topology graph with a cycle, and a corresponding
task topology graph optimize strategy and resource allocating strategy, and provide
a highly adaptive BDSC environment

 4. Research on the architectures for large-scale real-time stream computing environ-
ments, such as symmetric architecture and master–slave architecture, and provide a
highly consistent BDSC environment

 5. Develop a BDSC system with the features of high throughput, high fault tolerance,
high consistency, and high scalability, and deploy such a system in a real BDSC
environment

ACKNOWLEDGMENTS
This work was supported in part by the National Natural Science Foundation of China under
Grant No. 61170008 and Grant No. 61272055, in part by the National Grand Fundamental
Research 973 Program of China under Grant No. 2014CB340402 in part by the National High
Technology Research and Development Program of China under Grant No. 2013AA01A210,
and in part by the China Postdoctoral Science Foundation under Grant No. 2014M560976.

D
ow

nl
oa

de
d

by
 [

G
ua

ng
ya

n
Z

ha
ng

]
at

 1
6:

48
 1

3
Fe

br
ua

ry
 2

01
5

Key Technologies for Big Data Stream Computing ◾ 213

REFERENCES
 1. Storm. Available at http://storm-project.net/ (accessed July 16, 2013).
 2. Neumeyer L, Robbins B, Nair A et al. S4: Distributed stream computing platform, Proc. 10th

IEEE International Conference on Data Mining Workshops, ICDMW 2010, Sydney, NSW,
Australia, IEEE Press, December 2010, pp. 170–177.

 3. Zhao Y and Wu J. Dache: A data aware caching for big-data applications using the MapReduce
framework, Proc. 32nd IEEE Conference on Computer Communications, INFOCOM 2013, IEEE
Press, April 2013, pp. 35–39.

 4. Shang W, Jiang Z M, Hemmati H et al. Assisting developers of Big Data analytics applica-
tions when deploying on Hadoop clouds, Proc. 35th International Conference on Software
Engineering, ICSE 2013, IEEE Press, May 2013, pp. 402–411.

 5. Qian Z P, He Y, Su C Z et al. TimeStream: Reliable stream computation in the cloud, Proc. 8th
ACM European Conference on Computer Systems, EuroSys 2013, Prague, Czech Republic, ACM
Press, April 2013, pp. 1–14.

 6. Umut A A and Yan C. Streaming Big Data with self-adjusting computation, Proc. 2013 ACM
SIGPLAN Workshop on Data Driven Functional Programming, Co-located with POPL 2013,
DDFP 2013, Rome, Italy, ACM Press, January 2013, pp. 15–18.

 7. Demirkan H and Delen D. Leveraging the capabilities of service-oriented decision support
systems: Putting analytics and Big Data in cloud, Decision Support Systems, vol. 55(1), 2013,
pp. 412–421.

 8. Albert B. Mining Big Data in real time, Informatica (Slovenia), vol. 37(1), 2013, pp. 15–20.
 9. Lu J and Li D. Bias correction in a small sample from Big Data, IEEE Transactions on Knowledge

and Data Engineering, vol. 25(11), 2013, pp. 2658–2663.
 10. Tien J M. Big Data: Unleashing information, Journal of Systems Science and Systems Engineering,

vol. 22(2), 2013, pp. 127–151.
 11. Zhang R, Koudas N, Ooi B C et al. Streaming multiple aggregations using phantoms, VLDB

Journal, vol. 19(4), 2010, pp. 557–583.
 12. Hirzel M, Andrade H, Gedik B et al. IBM streams processing language: Analyzing Big Data in

motion, IBM Journal of Research and Development, vol. 57(3/4), 2013, pp. 7:1–7:11.
 13. Dayarathna M and Toyotaro S. Automatic optimization of stream programs via source pro-

gram operator graph transformations, Distributed and Parallel Databases, vol. 31(4), 2013,
pp. 543–599.

 14. Farhad S M, Ko Y, Burgstaller B et al. Orchestration by approximation mapping stream pro-
grams onto multicore architectures, Proc. 16th International Conference on Architectural
Support for Programming Languages and Operating Systems, ASPLOS 2011, ACM Press, March
2011, pp. 357–367.

 15. Schneider S, Hirzel M and Gedik B. Tutorial: Stream processing optimizations, Proc. 7th ACM
International Conference on Distributed Event-Based Systems, DEBS 2013, ACM Press, June
2013, pp. 249–258.

 16. Khandekar R, Hildrum K, Parekh S et al. COLA: Optimizing stream processing applications
via graph partitioning, Proc. 10th ACM/IFIP/USENIX International Conference on Middleware,
Middleware 2009, ACM Press, November 2009, pp. 1–20.

 17. Scalosub G, Marbach P and Liebeherr J. Buffer management for aggregated streaming data
with packet dependencies, IEEE Transactions on Parallel and Distributed Systems, vol. 24(3),
2013, pp. 439–449.

 18. Malensek M, Pallickara S L and Pallickara S. Exploiting geospatial and chronological charac-
teristics in data streams to enable efficient storage and retrievals, Future Generation Computer
Systems, vol. 29(4), 2013, pp. 1049–1061.

 19. Cugola G and Margara A. Processing flows of information: From data stream to complex event
processing, ACM Computing Surveys, vol. 44(3), 2012, pp. 15:1–15:62.

D
ow

nl
oa

de
d

by
 [

G
ua

ng
ya

n
Z

ha
ng

]
at

 1
6:

48
 1

3
Fe

br
ua

ry
 2

01
5

http://storm-project.net

214 ◾ Dawei Sun, Guangyan Zhang, Weimin Zheng, and Keqin Li

 20. Storm wiki. Available at http://en.wikipedia.org/wiki/Storm (accessed July 16, 2013).
 21. Storm Tutorial. Available at https://github.com/nathanmarz/storm/wiki (accessed July 16, 2013).
 22. Chauhan J, Chowdhury S A and Makaroff D. Performance evaluation of Yahoo! S4: A first

look, Proc. 7th International Conference on P2P, Parallel, Grid, Cloud and Internet Computing,
3PGCIC 2012, Victoria, BC, Canada, IEEE Press, November 2012, pp. 58–65.

 23. Simoncelli D, Dusi M, Gringoli F et al. Scaling out the performance of service monitoring appli-
cations with BlockMon, Proc. 14th International Conference on Passive and Active Measurement,
PAM 2013, Hong Kong, China, IEEE Press, March 2013, pp. 253–255.

 24. S4, distributed stream computing platform. Available at http://incubator.apache.org/s4/
(accessed July 16, 2013).

 25. Stream computing StreamBase Yahoo S4 borealis comparis. Available at http://oracle-abc.wiki
dot.com/zh:stream-computing-streambase-yahoo-s4-borealis-comparison (accessed July 16,
2013).

 26. Guo Z Y, Sean M D, Yang M et al. Failure recovery: When the cure is worse than the disease,
Proc. 14th USENIX conference on Hot Topics in Operating Systems, USENIX 2013, Santa Ana
Pueblo, NM, ACM Press, May 2013, pp. 1–6.

 27. Ali M, Chandramouli B, Goldstein J et al. The extensibility framework in Microsoft
StreamInsight, Proc. IEEE 27th International Conference on Data Engineering, ICDE 2011,
Hannover, Germany, IEEE Press, April 2011, pp. 1242–1253.

 28. Chandramouli B, Goldstein J, Barga R et al. Accurate latency estimation in a distributed event
processing system, Proc. IEEE 27th International Conference on Data Engineering, ICDE 2011,
Hannover, Germany, IEEE Press, April 2011, pp. 255–266.

 29. Ali M, Chandramouli B, Fay J et al. Online visualization of geospatial stream data using the
WorldWide telescope, VLDB Endowment, vol. 4(12), 2011, pp. 1379–1382.

 30. Derek G M, Frank M S, Rebecca I et al. Naiad: A timely dataflow system, Proc. the 24th ACM
Symposium on Operating Systems Principles, SOSP 2013, Pennsylvania, ACM Press, November
2013, pp. 439–455.

 31. Garzo A, Benczur A A, Sidlo C I et al. Real-time streaming mobility analytics, Proc. 2013 IEEE
International Conference on Big Data, Big Data 2013, Santa Clara, CA, IEEE Press, October
2013, pp. 697–702.

 32. Zaharia M, Das T, Li H et al. R Discretized streams: Fault-tolerant streaming computation at
scale, Proc. the 24th ACM Symposium on Operating Systems Principles, SOSP 2013, Farmington,
PA, ACM Press, November 2013, pp. 423–438.

D
ow

nl
oa

de
d

by
 [

G
ua

ng
ya

n
Z

ha
ng

]
at

 1
6:

48
 1

3
Fe

br
ua

ry
 2

01
5

http://en.wikipedia.org
https://github.com
http://incubator.apache.org
http://oracle-abc.wikidot.com
http://oracle-abc.wikidot.com

	Key Technologies for Big Data Stream Computing
	Abstract
	11.1 �INTRODUCTION
	11.1.1 �Stream Computing
	11.1.2 �Application Background
	11.1.3 �Chapter Organization

	11.2 �OVERVIEW OF A BDSC SYSTEM
	11.2.1 �Directed Acyclic Graph and Stream Computing
	11.2.2 �System Architecture for Stream Computing
	11.2.3 �Key Technologies for BDSC Systems

	11.3 �EXAMPLE BDSC SYSTEMS
	11.3.1 �Twitter Storm
	11.3.2 �Yahoo! S4
	11.3.3 �Microsoft TimeStream and Naiad

	11.4 �FUTURE PERSPECTIVE
	11.4.1 �Grand Challenges
	11.4.2 �On-the-Fly Work

	Acknowledgments
	References

