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ABSTRACT
As a new trend for data-intensive computing, real-time stream computing is gaining 
significant attention in the Big Data era. In theory, stream computing is an effective 
way to support Big Data by providing extremely low-latency processing tools and 
massively parallel processing architectures in real-time data analysis. However, in 
most existing stream computing environments, how to efficiently deal with Big Data 
stream computing and how to build efficient Big Data stream computing systems 
are posing great challenges to Big Data computing research. First, the data stream 
graphs and the system architecture for Big Data stream computing, and some related 
key technologies, such as system structure, data transmission, application interfaces, 
and high availability, are systemically researched. Then, we give a classification of the 
latest research and depict the development status of some popular Big Data stream 
computing systems, including Twitter Storm, Yahoo! S4, Microsoft TimeStream, and 
Microsoft Naiad. Finally, the potential challenges and future directions of Big Data 
stream computing are discussed.

11.1  INTRODUCTION
Big Data computing is a new trend for future computing, with the quantity of data grow-
ing and the speed of data increasing. In general, there are two main mechanisms for Big 
Data computing, that is, Big Data stream computing (BDSC) and Big Data batch comput-
ing. BDSC is a model of straight-through computing, such as Storm [1] and S4 [2], which 
does for stream computing what Hadoop does for batch computing, while Big Data batch 
computing is a model of storing then computing, such as the MapReduce framework [3] 
open-sourced by the Hadoop implementation [4].

Essentially, Big Data batch computing is not sufficient for many real-time application 
scenarios, where a data stream changes frequently over time and the latest data are the most 
important and most valuable. For example, when analyzing data from real-time transac-
tions (e.g., financial trades, e-mail messages, user search requests, sensor data tracking), 
a data stream grows monotonically over time as more transactions take place. Ideally, a 
real-time application environment can be supported by BDSC. Generally, Big Data stream-
ing computing has the following defining characteristics [5,6]. (1) The input data stream is 
a real-time data stream and needs real-time computing, and the results must be updated 
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every time the data changes. (2) Incoming data arrive continuously at volumes that far 
exceed the capabilities of individual machines. (3) Input streams incur multistaged com-
puting at low latency to produce output streams, where any incoming data entry is ideally 
reflected in the newly generated results in output streams within seconds.

11.1.1  Stream Computing

Stream computing, the long-held dream of “high real-time computing” and “high-throughput 
computing,” with programs that compute continuous data streams, has opened up the 
new era of future computing due to Big Data, which is a data set that is large, fast, dis-
persed, unstructured, and beyond the ability of available hardware and software facilities 
to undertake its acquisition, access, analytics, and application in a reasonable amount of 
time and space [7,8]. Stream computing is a computing paradigm that reads data from 
collections of software or hardware sensors in stream form and computes continuous data 
streams, where feedback results should be in a real-time data stream as well. A data stream 
is a sequence of data sets, a continuous stream is an infinite sequence of data sets, and par-
allel streams have more than one stream to be processed at the same time.

Stream computing is one effective way to support Big Data by providing extremely low-
latency velocities with massively parallel processing architectures and is becoming the fast-
est and most efficient way to obtain useful knowledge from Big Data, allowing organizations 
to react quickly when problems appear or to predict new trends in the near future [9,10].

A Big Data input stream has the characteristics of high speed, real time, and large vol-
ume for applications such as sensor networks, network monitoring, microblogging, web 
exploring, social networking, and so on. These data sources often take the form of continu-
ous data streams, and timely analysis of such a data stream is very important as the life 
cycle of most data is very short [8,11,12]. Furthermore, the volume of data is so high that 
there is not enough space for storage, and not all data need to be stored. Thus, the storing-
then-computing batch computing model does not fit at all. Nearly all data in Big Data 
environments have the feature of streams, and stream computing has appeared to solve the 
dilemma of Big Data computing by computing data online within real-time constraints 
[13]. Consequently, the stream computing model will be a new trend for high-throughput 
computing in the Big Data era.

11.1.2  Application Background

BDSC is able to analyze and process data in real time to gain immediate insight, and it is typi-
cally applied to the analysis of a vast amount of data in real time and to processing them at a 
high speed. Many application scenarios require BDSC. For example, in financial industries, 
Big Data stream computing technologies can be used in risk management, marketing man-
agement, business intelligence, and so on. In the Internet, BDSC technologies can be used in 
search engines, social networking, and so on. In the Internet of things, BDSC technologies 
can be used in intelligent transportation, environmental monitoring, and so on.

Usually, a BDSC environment is deployed in a highly distributed clustered environ-
ment, as the amount of data is infinite, the rate of the data stream is high, and the results 
should be real-time feedback.
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11.1.3  Chapter Organization

The remainder of this chapter is organized as follows. In Section 11.2, we introduce data 
stream graphs and the system architecture for BDSC and key technologies for BDSC systems. 
In Section 11.3, we present the system architecture and key technologies of four popular 
example BDSC systems, which are Twitter Storm, Yahoo! S4, Microsoft TimeStream, and 
Microsoft Naiad. Finally, we discuss grand challenges and future directions in Section 11.4.

11.2  OVERVIEW OF A BDSC SYSTEM
In this section, we first present some related concepts and definitions of directed acyclic 
graphs and stream computing. Then, we introduce the system architecture for stream com-
puting and the key technologies for BDSC systems in BDSC environments.

11.2.1  Directed Acyclic Graph and Stream Computing

In stream computing, the multiple continuous parallel data streams can be represented by a 
task topology, also named a data stream graph, which is usually described by a directed acyclic 
graph (DAG) [5,14–16]. A measurable data stream graph view can be defined by Definition 1.

Definition 1

A data stream graph G is a directed acyclic graph, which is composed of set of a vertices 
and a set of directed edges; has a logical structure and a special function; and is denoted 
as G = (V(G), E(G)), where V(G) = {v1, v2,…,vn} is a finite set of n vertices, which represent 
tasks, and E(G) = {e1,2, e1,3,…,en − 1,n} is a finite set of directed edges, which represent a data 
stream between vertices. If ∃ei,j ∈ E(G), then vi, vj ∈ V(G), vi ≠ vj, and 〈vi, vj〉 is an ordered 
pair, where a data stream comes from vi and goes to vj.

The in-degree of vertex vi is the number of incoming edges, and the out-degree of vertex 
vi is the number of outgoing edges. A source vertex is a vertex whose in-degree is 0, and an 
end vertex is a vertex whose out-degree is 0. A data stream graph G has at least one source 
vertex and one end vertex.

For the example data stream graph with 11 vertices shown in Figure 11.1, the set of ver-
tices is V = {va, vb,…,vk}, the set of directed edges is E = {ea,c, eb,c,…,ej,k}, the source vertices 

vh

vjve

vg
vk

vi

vf

vd

vc

va

vb

FIGURE 11.1 A data stream graph.
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are va and vb, and the end vertex is vk. The in-degree of vertex vd is 1, and the out-degree of 
vertex vd is 2.

Definition 2

A subgraph sub-G of the data stream graph G is a subgraph consisting of a subset of the 
vertices with the edges in between. For vertices vi and vj in the subgraph sub-G and any 
vertex v in the data stream graph G, v must also be in the sub-G if v is on a directed path 
from vi to vj, that is, ∀vi, vj ∈ V(sub-G), ∀v ∈ V(G), and if v ∈ V (p(vi, vj)), then v ∈ V 
(p(sub-G)).

A subgraph sub-G is logically equivalent and can be substituted by a vertex. But reduc-
ing that subgraph to a single logical vertex would create a graph with cycle, not a DAG.

Definition 3

A path p(vu, vv) from vertex vu to vertex vv is a subset of E(p(vu, vv)), which should meet the 
conditions ∃ei,k ∈ p(vu, vv) and ek,j ∈ p(vu, vv) for any directed edge ek,l in path p(vu, vv) that 
displays the following properties: If k ≠ i, then ∃m, and em,k ∈ p(vu, vv); if i ≠ j, then ∃m, and 
el,m ∈ p(vu, vv).

The latency lp(vu, vv) of a path from vertex vu to vertex vv is the sum of latencies of both 
vertices and edges on the path, as given by Equation 11.1:

 l v v c c c cp u v v
v V p v v

e v ei

i u v

i j i i j
( , ) , , .

( ( , ))
, ,

= + ≥
∈
∑ 0

ee E p v vi j u v, ( ( , ))∈
∑  (11.1)

A critical path, also called the longest path, is a path with the longest latency from a 
source vertex vs to an end vertex ve in a data stream graph G, which is also the latency of 
data stream graph G.

If there are m paths from source vertex vs to end vertex ve in data stream graph G, then 
the latency l(G) of data stream graph G is given by Equation 11.2:

 l G l v v l v v l v vp s e p s e p s ei m
( ) max ( , ), ( , ), , ( , ) ,= { }2

  (11.2)

where l v vp s ei
( , )  is the latency of the ith path from vertex vs to vertex ve.

Definition 4

In data stream graph G, if ∃ei,j from vertex vi to vertex vj, then vertex vi is a parent of vertex 
vj, and vertex vj is a child of vertex vi.
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Definition 5

The throughput t(vi) of vertex vi is the average rate of successful data stream computing in 
a Big Data environment and is usually measured in bits per second (bps).

We identify the source vertex vs as in the first level, the children of source vertex vs as in 
the second level, and so on, and the end vertex ve as in the last level.

The throughput t(leveli) of the ith level can be calculated by Equation 11.3:

 t level t vi k
k

ni

( ) ( )=
=
∑

1

, (11.3)

where ni is the number of vertices in the ith level.
If data stream graph G has m levels, then the throughput t(G) of the data stream graph G is 

the minimum throughput of all the throughput in the m levels, as described by Equation 11.4:

 t(G) = min{t(level1), t(level2),…,t(levelm)}, (11.4)

where t(leveli) is the throughput of the ith level in data stream G.

Definition 6

A topological sort TS G v v vx x xn
( ) , , ,= ( )1 2


 of the vertices V(G) in data stream graph G is a 

linear ordering of its vertices, such that for every directed edge e e E Gx x x xi j i j, , ( )∈( ) from vertex 
vxi

 to vertex vx j
, vxi

 comes before vx j
 in the topological ordering.

A topological sort is possible if and only if the graph has no directed cycle, that is, it 
needs to be a directed acyclic graph. Any directed acyclic graph has at least one topological 
sort.

Definition 7

A graph partitioning GP(G) = {GP1, GP2,…,GPm} of the data stream graph G is a topologi-
cal sort–based split of the vertex set V(G) and the corresponding directed edges. A graph 
partitioning should meet the nonoverlapping and covering properties, that is, if ∀i ≠ j, i, j 

∈ [1, m], then GPi ⋂ GPj = ∅, and GP V Gi
i

m

=
=

( )
1


.

11.2.2  System Architecture for Stream Computing

In BDSC environments, stream computing is the model of straight-through computing. 
As shown in Figure 11.2, the input data stream is in a real-time data stream form, all 
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continuous data streams are computed in real time, and the results must be updated also 
in real time. The volume of data is so high that there is not enough space for storage, and 
not all data need to be stored. Most data will be discarded, and only a small portion of the 
data will be permanently stored in hard disks.

11.2.3  Key Technologies for BDSC Systems

Due to data streams’ distinct features of real time, volatility, burstiness, irregularity, and 
infinity in a Big Data environment, a well-designed BDSC system always optimizes in sys-
tem structure, data transmission, application interfaces, high availability, and so on [17–19].

11.2.3.1  System Structure
Symmetric structure and master–slave structure are two main system structures for BDSC 
systems, as shown in Figures 11.3 and 11.4, respectively.

In the symmetric structure system, as shown in Figure 11.3, the functions of all nodes 
are the same. So it is easy to add a new node or to remove an unused node, and to improve 
the scalability of a system. However, some global functions such as resource allocation, 
fault tolerance, and load balancing are hard to achieve without a global node. In the S4 
system, the global functions are achieved by borrowing a distributed protocol zookeeper.

In the master–slave structure system, as shown in Figure 11.4, one node is the master 
node, and other nodes are slave nodes. The master node is responsible for global control of 
the system, such as resource allocation, fault tolerance, and load balancing. Each slave node 

Stream computing

Data stream

StorageHardware

Memory

FIGURE 11.2 A Big Data stream computing environment.

FIGURE 11.3 Symmetric structure.
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has a special function, and it always receives a data stream from the master node, processes 
the data stream, and sends the results to the master node. Usually, the master node is the 
bottleneck in the master–slave structure system. If it fails, the whole system will not work.

11.2.3.2  Data Stream Transmission
Push and pull are two main data stream transmissions in a BDSC system.

In a push system, once an upstream node gets a result, it will immediately push the 
result data to downstream nodes. When this is done, the upstream data will be immedi-
ately sent to downstream nodes. However, if some downstream nodes are busy or fail, some 
data will be discarded.

In a pull system, a downstream node requests data from an upstream node. If some 
data need to be further processed, the upstream node will send the data to the requesting 
downstream node. When this is done, the upstream data will be stored in upstream nodes 
until corresponding downstream nodes make a request. Some data will wait a long time for 
further processing and may lose their timeliness.

11.2.3.3  Application Interfaces
An application interface is used to design a data stream graph, a bridge between a user 
and a BDSC system. Usually, a good application interface is flexible and efficient for users. 
Currently, most BDSC systems provide MapReduce-like interfaces; for example, the Storm 
system provides spouts and bolts as application interfaces, and a user can design a data 
stream graph using spouts and bolts. Some other BDSC systems provide structured query 
language (SQL)-like interfaces and graphical user interfaces.

11.2.3.4  High Availability
State backup and recovery is the main method to achieve high availability in a BDSC sys-
tem. There are three main high-availability strategies, that is, passive standby strategy, 
active standby strategy, and upstream backup strategy.

In the passive standby strategy (see Figure 11.5), each primary node periodically sends 
checkpoint data to a backup node. If the primary node fails, the backup node takes over 
from the last checkpoint. Usually, this strategy will achieve precise recovery.

FIGURE 11.4 Master–slave structure.
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In the active standby strategy (see Figure 11.6), the secondary nodes compute all data 
streams in parallel with their primaries. Usually, the recovery time of this strategy is the 
shortest.

In the upstream backup strategy (see Figure 11.7), upstream nodes act as backups for 
their downstream neighbors by preserving data streams in their output queues while their 
downstream neighbors compute them. If a node fails, its upstream nodes replay the logged 
data stream on a recovery node. Usually, the runtime overhead of this strategy is the lowest.

A comparison of the three main high-availability strategies, that is, passive standby 
strategy, active standby strategy, and upstream backup strategy, in runtime overhead and 
recovery time is shown in Figure 11.8. The recovery time of the upstream backup strategy 
is the longest, while the runtime overhead of the passive standby strategy is the greatest.

ACK

Checkpoint
A B C

B́

FIGURE 11.5 Passive standby. ACK, Acknowledgment.

ACK

Trim

A B C

B́

FIGURE 11.6 Active standby. ACK, Acknowledgment.

ACKTrim

A B C Replay

(a)

A B C

B́

(b)

FIGURE 11.7 Upstream backup. ACK, Acknowledgment.
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FIGURE 11.8 Comparison of high-availability strategies in runtime overhead and recovery time.
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11.3  EXAMPLE BDSC SYSTEMS
In this section, the system architecture and key technologies of four popular BDSC sys-
tem instances are presented. These systems are Twitter Storm, Yahoo! S4, Microsoft 
TimeStream, and Microsoft Naiad, which are specially designed for BDSC.

11.3.1  Twitter Storm

Storm is an open-source and distributed BDSC system licensed under the Eclipse Public 
License. Similar to how Hadoop provides a set of general primitives for doing batch 
processing, Storm provides a set of general primitives for doing real-time Big Data com-
puting. The Storm platform has the features of simplicity, scalability, fault tolerance, and 
so on. It can be used with any programming language and is easy to set up and operate 
[1,20,21].

11.3.1.1  Task Topology
In BDSC environments, the logic for an application is packaged in the form of a task topol-
ogy. Once a task topology is designed and submitted to a system, it will run forever until 
the user kills it.

A task topology can be described as a directed acyclic graph and comprises spouts 
and bolts, as shown in Figure 11.9. A spout is a source of streams in a task topology and 
will read data streams (in tuples) from an external source and emit them into bolts. 
Spouts can emit more than one data stream. The processing of a data stream in a task 
topology is done in bolts. Anything can be done by bolts, such as filtering, aggrega-
tions, joins, and so on. Some simple functions can be achieved by a bolt, while complex 
functions will be achieved by many bolts. The logic should be designed by a user. For 
example, transforming a stream of tweets into a stream of trending images requires at 
least two steps: a bolt to do a rolling count of retweets for each image and one or more 
bolts to stream out the top n images. Bolts can also emit more than one stream. Each 
edge in the directed acyclic graph represents a bolt subscribing to the output stream of 
some other spout or bolt.

A data stream is an unbounded sequence of tuples that is processed and created in 
parallel in a distributed BDSC environment. A task topology processes data streams in 
many complex ways. Repartitioning the streams between each stage of the computation is 
needed. Task topologies are inherently parallel and run across a cluster of machines. Any 

Bolt

Bolt

Bolt

Bolt

Bolt

Bolt

Spout

Spout

FIGURE 11.9 Task topology of Storm.
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vertex in a task topology can be created in many instances. All those vertices will simul-
taneously process a data stream, and different parts of the topology can be allocated in 
different machines. A good allocating strategy will greatly improve system performance.

A data stream grouping defines how that stream should be partitioned among the 
bolt’s tasks; spouts and bolts execute in parallel as many tasks across the cluster. There 
are seven built-in stream groupings in Storm, such as shuffle grouping, fields grouping, 
all grouping, global grouping, none grouping, direct grouping, and local or shuffle group-
ing; a custom stream grouping to meet special needs can also be implemented by the 
CustomStreamGrouping interface.

11.3.1.2  Fault Tolerance
Fault tolerance is an important feature of Storm. If a worker dies, Storm will automati-
cally restart it. If a node dies, the worker will be restarted on another node. In Storm, 
Nimbus and the Supervisors are designed to be stateless and fail-fast whenever any unex-
pected situation is encountered, and all state information is stored in a Zookeeper server. 
If Nimbus or the Supervisors die, they will restart like nothing happened. This means you 
can kill the Nimbus and the Supervisors without affecting the health of the cluster or task 
topologies.

When a worker dies, the Supervisor will restart it. If it continuously fails on startup and 
is unable to heartbeat to Nimbus, Nimbus will reassign the worker to another machine.

When a machine dies, the tasks assigned to that machine will time out, and Nimbus will 
reassign those tasks to other machines.

When Nimbus or Supervisors die, they will restart like nothing happened. No worker 
processes are affected by the death of Nimbus or the Supervisors.

11.3.1.3  Reliability
In Storm, the reliability mechanisms guarantee that every spout tuple will be fully pro-
cessed by corresponding topology. They do this by tracking the tree of tuples triggered 
by every spout tuple and determining when that tree of tuples has been successfully com-
pleted. Every topology has a “message timeout” associated with it. If Storm fails to detect 
that a spout tuple has been completed within that timeout, then it fails the tuple and replays 
it later.

The reliability mechanisms of Storm are completely distributed, scalable, and fault 
tolerant. Storm uses mod hashing to map a spout tuple ID to an acker task. Since every 
tuple carries with it the spout tuple IDs of all the trees they exist within, they know which 
acker tasks to communicate with. When a spout task emits a new tuple, it simply sends a 
message to the appropriate acker telling it that its task ID is responsible for that spout tuple. 
Then, when an acker sees that a tree has been completed, it knows to which task ID to send 
the completion message.

An acker task stores a map from a spout tuple ID to a pair of values. The first value is the 
task ID that created the spout tuple that is used later on to send completion messages. The 
second value is a 64-bit number called the “ack val.” The ack val is a representation of 
the state of the entire tuple tree, no matter how big or how small. It is simply the exclusive 
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OR (XOR) of all tuple IDs that have been created and/or acked in the tree. When an acker 
task sees that an “ack val” has become 0, then it knows that the tuple tree is completed.

11.3.1.4  Storm Cluster
A Storm cluster is superficially similar to a Hadoop cluster. Whereas on Hadoop, you 
run “MapReduce jobs,” on Storm, you run “topologies.” As shown in Figure 11.10, 
there are two kinds of nodes on a Storm cluster, that is, the master node and the worker 
nodes.

The master node runs Nimbus node, which is similar to Hadoop’s “JobTracker.” In 
Storm, Nimbus node is responsible for distributing code around the cluster, assigning tasks 
to machines, monitoring for failures, and so on.

Each worker node runs a Supervisor node. The Supervisor listens for work assigned to 
its machine and starts and stops worker processes as necessary based on what Nimbus 
has assigned to it. Each worker process executes a subset of a topology. Usually, a running 
topology consists of many worker processes spread across many machines.

The coordination between Nimbus and the Supervisors is done through a Zookeeper 
cluster. Additionally, the Nimbus daemon and Supervisor daemons are fail-fast and state-
less; all states are kept in a Zookeeper server. This means that if you kill the Nimbus or the 
Supervisors, they will start back up like nothing has happened.

11.3.2  Yahoo! S4

S4 is a general-purpose, distributed, scalable, fault-tolerant, pluggable platform that allows 
programmers to easily develop applications for computing continuous unbounded streams 
of Big Data. The core part of S4 is written in Java. The implementation is modular and 
pluggable, and S4 applications can be easily and dynamically combined for creating more 
sophisticated stream processing systems. S4 was initially released by Yahoo! Inc. in October 
2010 and has been an Apache Incubator project since September 2011. It is licensed under 
the Apache 2.0 license [2,22–25].

Nimbus

M
aster

Cluster
Slaves

Zookeeper Zookeeper Zookeeper

Supervisor Supervisor Supervisor

Worker

Worker

Worker

Worker

Worker

Worker

... ...
...

...
...

... ...

FIGURE 11.10 Storm cluster.
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11.3.2.1  Processing Element
The computing units of S4 are the processing elements (PEs). As shown in Figure 11.11, 
each instance of a PE can be identified by four components, that is, functionality, types of 
events, keyed attribute, and value of the keyed attribute. Each PE processes exactly those 
events that correspond to the value on which it is keyed.

A special class of PEs is the set of keyless PEs, with no keyed attribute or value. This type 
of PE will process all events of the type with which they are associated. Usually, the keyless 
PEs are typically used at the input layer of an S4 cluster, where events are assigned a key.

11.3.2.2  Processing Nodes
Processing nodes (PNs) are the logical hosts to PEs. Many PEs work in a PE container, as 
shown in Figure 11.12. A PN is responsible for event listeners, dispatcher events, and emit-
ter output events. In addition, the routing model, load balancing model, fail-over manage-
ment model, transport protocols, and zookeeper are deployed in a communication layer.

All events will be routed to PNs by S4 according to a hash function. Every keyed PE can 
be mapped to exactly one PN based on the value of the hash function applied to the value of 
the keyed attribute of that PE. However, keyless PEs may be instantiated on every PN. The 
event listener model of a PN will always listen to an event from S4. If an event is allocated 
to a PN, it will be routed to an appropriate PE within that PN.

11.3.2.3  Fail-Over, Checkpointing, and Recovery Mechanism
In S4, a fail-over mechanism will provide a high-availability environment for S4. When a 
node is dead, a corresponding standby node will be used. In order to minimize state loss 
when a node is dead, a checkpointing and recovery mechanism is employed by S4.

Functionality Types of events

Keyed attribute Value of key attribute

FIGURE 11.11 Processing element.
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FIGURE 11.12 Processing node.
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In order to improve the availability of the S4 system, S4 system should provide a fail-
over mechanism to automatically detect failed nodes and redirect the data stream to a 
standby node. If you have n partitions and start m nodes, with m > n, you get m − n standby 
nodes. For instance, if there are seven live nodes and four partitions available, four of the 
nodes pick the available partitions in Zookeeper. The remaining three nodes will be avail-
able standby nodes. Each active node consistently receives messages for the partition that it 
picked, as shown in Figure 11.13a. When Zookeeper detects that one of active nodes fails, it 
will notify a standby node to replace the failed node. As shown in Figure 11.13b, the node 
assigned with partition 1 fails. Unassigned nodes compete for a partition assignment, and 
only one of them picks it. Other nodes are notified of the new assignment and can reroute 
the data stream for partition 1, as shown in Figure 11.13c.

If a node is unreachable after a session timeout, Zookeeper will identify this node as 
dead. The session timeout is specified by the client upon connection and is, at minimum, 
twice the heartbeat specified in the Zookeeper ensemble configuration.

In order to minimize state loss when a node is dead, a checkpointing and recovery 
mechanism is employed by S4. The states of PEs are periodically checkpointed and stored. 
Whenever a node fails, the checkpoint information will be used by the recovery mecha-
nism to recover the state of the failed node to the corresponding standby node. Most of the 
previous state of a failed node can be seen in the corresponding standby node.

11.3.2.4 System Architecture
In S4, a decentralized and symmetric architecture is used; all nodes share the same func-
tionality and responsibilities (see Figure 11.14). There is no central node with specialized 
responsibilities. This greatly simplifies deployment and maintenance.

A pluggable architecture is used to keep the design as generic and customizable as possible.

11.3.3  Microsoft TimeStream and Naiad

TimeStream and Naiad are two BDSC systems of Microsoft.

11.3.3.1  TimeStream
TimeStream is a distributed system designed specifically for low-latency continuous pro-
cessing of big streaming data on a large cluster of commodity machines and is based on 

Zookeeper Zookeeper Zookeeper

1 2

3 4

1 2

3 4 1

2

3 4

Active nodes Standby nodes
(a)

Active nodes Standby nodes Active nodes Standby nodes
(b) (c)

FIGURE 11.13 Fail-over mechanism. (a) In working state, (b) under failed state, and (c) after recov-
ery state.
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StreamInsight. TimeStream handles an online advertising aggregation pipeline at a rate of 
700,000 URLs per second with a 2 s delay [5,26–29].

 1. Streaming DAG

 Streaming DAG is a type of task topology, which can be dynamically reconfigured 
according to the loading of a data stream. All data streams in the TimeStream system 
will be processed in streaming DAG. Each vertex in streaming DAG will be allocated 
to physical machines for execution. As shown in Figure 11.15, streaming function fv 
of vertex v is designed by the user. When input data stream i is coming, streaming 
function fv will process data stream i, update v’s state from τ to τ′, and produce a 
sequence o of output entries as part of the output streams for downstream vertices.

  A sub-DAG is logically equivalent and can be reduced to one vertex or another 
sub-DAG. As shown in Figure 11.16, the sub-DAG comprised of vertices v2, v3, v4, and 
v5 (as well as all their edges) is a valid sub-DAG and can be reduced to a “vertex” with 
i as its input stream and o as its output stream.

 2. Resilient Substitution

 Resilient substitution is an important feature of TimeStream. It is used to dynami-
cally adjust and reconfigure streaming DAG according to the loading change of a 

Monitoring

U
ser

Adapter

Legacy support

Name service

U0 U1 U2 U3 Un–1

Resource
m

anagem
ent

S4 cluster

Pnode 1 Pnode 2 Pnode n

FIGURE 11.14 System architecture.
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FIGURE 11.15 Streaming DAG.
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data stream. There are three types of resilient substitution in TimeStream. (a) A 
vertex is substituted by another vertex. When a vertex fails, a new corresponding 
standby vertex is initiated to replace the failed one and continues execution, possibly 
on a different machine. (b) A sub-DAG is substituted by another sub-DAG. When the 
number of instances of a vertex in a sub-DAG needs to be adjusted, a new sub-DAG 
will replace the old one. For example, as shown in Figure 11.17, a sub-DAG comprised 
of vertices v2, v3, v4, and v5 implements three stages: hash partitioning, computation, 
and union. When the load increases, TimeStream can create a new sub-DAG (shown 
on the left), which uses four partitions instead of two, to replace the original sub-
DAG. (c) A sub-DAG is substituted by a vertex. When the load decreases, there is no 
need for so many steps to finish a special function, and the corresponding sub-DAG 
can be substituted by a vertex, as shown in Figure 11.16.

v1

i

v2

v6v4v3

v5

o

v7

FIGURE 11.16 Streaming DAG and sub-DAG.
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FIGURE 11.17 Resilient substitution.
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11.3.3.2  Naiad
Naiad is a distributed system for executing data-parallel, cyclic dataflow programs. The 
core part is written in C#. It offers high throughput of batch processors and low latency of 
stream processors and is able to perform iterative and incremental computations. Naiad is 
a prototype implementation of a new computational model, timely dataflow [30].

 1. Timely Dataflow

 Timely dataf low is a computational model based on directed graphs. The data-
f low graph can be a directed acyclic graph, like in other BDSC environments. It 
can also be a directed cyclic graph; the situation of cycles in a dataf low graph 
is under consideration. In timely dataf low, the time stamps ref lect cycle struc-
ture in order to distinguish data that arise in different input epochs and loop 
iterations. The external producer labels each message with an integer epoch and 
notifies the input vertex when it will not receive any more messages with a given 
epoch label.

  Timely dataflow graphs are directed graphs with the constraint that the vertices 
are organized into possibly nested loop contexts, with three associated system-
provided vertices. Edges entering a loop context must pass through an ingress vertex, 
and edges leaving a loop context must pass through an egress vertex. Additionally, 
every cycle in the graph must be contained entirely within some loop context and 
include at least one feedback vertex that is not nested within any inner loop contexts. 
Figure 11.18 shows a single-loop context with ingress (I), egress (E), and feedback (F) 
vertices labeled.

 2. System Architecture

 The system architecture of a Naiad cluster is shown in Figure 11.19, with a group of 
processes hosting workers that manage a partition of the timely dataflow vertices. 
Workers exchange messages locally using shared memory and remotely using TCP 
connections between each pair of processes.

  A program specifies its timely dataflow graph as a logical graph of stages linked by 
typed connectors. Each connector optionally has a partitioning function to control 
the exchange of data between stages. At execution time, Naiad expands the logical 
graph into a physical graph where each stage is replaced by a set of vertices and each 
connector by a set of edges. Figure 11.19 shows a logical graph and a corresponding 

Loop context

In OutA I B C E D

F

FIGURE 11.18 Timely dataflow graph.
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physical graph, where the connector from X to Y has partitioning function H(m) on 
typed messages m.

  Each Naiad worker is responsible for delivering messages and notifications to ver-
tices in its partition of the timely dataflow graph. When faced with multiple runnable 
actions, workers break ties by delivering messages before notifications, in order to 
reduce the amount of queued data.

11.4  FUTURE PERSPECTIVE
In this section, we focus our attention on grand challenges of BDSC and the main work we 
will perform in the near future.

11.4.1  Grand Challenges

BDSC is becoming the fastest and most efficient way to obtain useful knowledge from 
what is happening now, allowing organizations to react quickly when problems appear or 
to detect new trends helping to improve their performance. BDSC is needed to manage the 
data currently generated at an ever-increasing rate from such applications as log records or 
click-streams in web exploring, blogging, and twitter posts. In fact, all data generated can 
be considered as streaming data or as a snapshot of streaming data.

There are some challenges that researchers and practitioners have to deal with in the 
next few years, such as high scalability, high fault tolerance, high consistency, high load 
balancing, high throughput, and so on [6,9,31,32]. Those challenges arise from the nature 
of stream data, that is, data arrive at high speed and must be processed under very strict 
constraints of space and time.

Logical graph X Y ZH(m)

X0

X1

Y0

Y1

Z0

Z1

Process 0

TCP/IP network

Worker 2

Worker 3

Process 1

X2

X3

Y2

Y3

Z2

Z3

Worker 0

Worker 1

FIGURE 11.19 System architecture of a Naiad cluster.
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11.4.1.1  High Scalability
High scalability of stream computing can expand to support increasing data streams and 
meet the quality of service (QoS) of users, or it can shrink to support decreasing data 
streams and improve resource utilization. In BDSC environments, it is difficult to achieve 
high scalability, as the change of data stream is unexpected. The key is that the software 
changes along with the data stream change, grows along with increased usage, or shrinks 
along with decreased usage. This means that scalable programs take up limited space and 
resources for smaller data needs but can grow efficiently as more demands are placed on 
the data stream.

To achieve high scalability in BDSC environments, a good scalable system architecture, 
a good effective resource allocation strategy, and a good data stream computing mode are 
required.

11.4.1.2  High Fault Tolerance
Highly fault-tolerant stream computing can enable a system to continue operating prop-
erly in the event of the failure of (or one or more faults within) some of its components. 
Fault tolerance is particularly sought after in high-availability or life-critical systems. In 
BDSC environments, it is difficult to achieve high fault tolerance, as the data stream is infi-
nite and real time, and more importantly, most of the data are useless.

To achieve high fault tolerance in BDSC environments, a good scalable high-fault-
tolerance strategy is needed, as fault tolerance provides additional resources that allow an 
application to continue working after a component failure without interruption.

11.4.1.3  High Consistency
Highly consistent stream computing can improve system stability and enhance system 
efficiency. In BDSC environments, it is difficult to achieve high consistency, as it is hard to 
decide which nodes should be consistent and which data are needed.

To achieve high consistency in BDSC environments, a good system structure is required. 
Usually, the master–slave structure is a good choice, as all data are in the master node, and 
it is easy to achieve highly consistent states.

11.4.1.4  High Load Balancing
Highly load-balanced stream computing can make a stream computing system self-adaptive 
to the changes of data streams and avoid load shedding. In BDSC environments, it is diffi-
cult to achieve high load balancing, as it is impossible to dedicate resources that cover peak 
loads 24 h a day, 7 days a week. Traditionally, stream computing systems use load shedding 
when the workload exceeds their processing. This employs a trade-off between delivering a 
low-latency response and ensuring that all incoming data streams are processed. However, 
load shedding is not feasible when the variance between peak and average workload is 
high, and the response should always be kept in real time for users.

To achieve high load balancing in BDSC environments, a good distributed computing 
environment is needed. It should provide scalable stream computing that automatically 
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streams a partial data stream to a global computing center when local resources become 
insufficient.

11.4.1.5  High Throughput
High-throughput stream computing will improve data stream computing ability by run-
ning multiple independent instances of a task topology graph on multiple processors at the 
same time. In BDSC environments, it is difficult to achieve high throughput, as it is hard 
to decide how to identify the need for a replication subgraph in a task topology graph, to 
decide the number of replicas, and to decide the fraction of the data stream to assign to 
each replica.

To achieve high throughput in BDSC environments, a good multiple-instance replica-
tion strategy is needed. Usually, the data stream loading of all instances of all nodes in a 
task topology graph being equal is a good choice, as the computing ability of all computing 
nodes are efficient, and it is easy to achieve high-throughput states.

11.4.2  On-the-Fly Work

Future investigation will focus on the following aspects:

 1. Research on new strategies to optimize a task topology graph, such as subgraph parti-
tioning strategy, subgraph replication strategy, and subgraph allocating strategy, and 
to provide a high-throughput BDSC environment

 2. Research on dynamic extensible data stream strategies, such that a data stream can be 
adjusted according to available resources and the QoS of users, and provide a highly 
load-balancing BDSC environment

 3. Research on the impact of a task topology graph with a cycle, and a corresponding 
task topology graph optimize strategy and resource allocating strategy, and provide 
a highly adaptive BDSC environment

 4. Research on the architectures for large-scale real-time stream computing environ-
ments, such as symmetric architecture and master–slave architecture, and provide a 
highly consistent BDSC environment

 5. Develop a BDSC system with the features of high throughput, high fault tolerance, 
high consistency, and high scalability, and deploy such a system in a real BDSC 
environment
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