
Journal of Network and Computer Applications 216 (2023) 103651

A
1

Contents lists available at ScienceDirect

Journal of Network and Computer Applications

journal homepage: www.elsevier.com/locate/jnca

Efficient congestion control scheme based on caching strategy in NDN
Dapeng Qu a, Jun Wu a, Jiankun Zhang a, Chengxi Gao b,∗, Haiying Shen c, Keqin Li d

a Liaoning University, 66 Chongshan Middle Road, Huanggu District, Shenyang, 110036, Liaoning, China
b Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, 1068 Xueyuan Avenue, University Town, Nanshan
District, Shenzhen, 518055, Guangdong, China
c University of Virginia, Charlottesville, VA 22904, USA
d State University of New York, New Paltz, NY 12561, USA

A R T I C L E I N F O

Keywords:
Named data networking
Caching strategy
Congestion control

A B S T R A C T

As a pioneering network architecture, Named Data Networking (NDN) leverages the content-centric model and
connectionless transmission mode to enhance network capacity. Despite the emergence of numerous congestion
control protocols aimed at improving NDN transmission efficiency, most of these approaches implicitly assume
that each interest packet elicits one single data packet, which significantly restricts network performance.
To address this issue, we introduce C3NDN, a Congestion Control scheme that leverages caching strategy
in NDN. C3NDN formulates a One-Interest-Multiple-Data model to improve network efficiency, and employs
a probabilistic caching strategy to cache popular content at important nodes and optimize the in-network
caching characteristic of NDN. Furthermore, C3NDN incorporates a congestion control algorithm based on the
One-Interest-Multiple-Data model, which considers the bandwidth and delay information of the transmission
path. Additionally, C3NDN implements a marking method that takes full advantage of node cache and reduces
transmission time. Extensive experiments have been conducted to show the performance of C3NDN, and the
results demonstrate that C3NDN can reduce the transmission time by up to 41.68% when compared with the
other congestion control schemes.
1. Introduction

With the rapid development of Internet scale and its diversity,
network application model is evolving from early resource sharing
to current content requirement and distribution. However, current
Internet infrastructure is mainly based on IP address which indicates
end-to-end connection. Therefore, it is difficult for traditional end-to-
end transmission mode to satisfy this change (Vasilakos et al., 2015).
To solve this problem, Named Data Networking (NDN) is proposed. It
changes the semantics of network service from delivering packets to
a given destination to fetching content identified by a given name,
thus helps the Internet evolving from the host-centric model to a
content-oriented model (Zhang et al., 2014).

In NDN, a content requester sends out an interest packet carrying
a name identifying its desired content. The interest packet is routed
towards the content producer based on this name. The content provider
(the content producer or some intermediate routers which cache the
whole content) provides a corresponding data packet which carries
the matching content, and the data packet is forwarded back to the
content requester through the interest packet routing path reversely.

∗ Corresponding author.
E-mail addresses: dapengqu@lnu.edu.cn (D. Qu), wujun1420@163.com (J. Wu), zhangjiankun33@163.com (J. Zhang), chengxi.gao@siat.ac.cn (C. Gao),

hs6ms@virginia.edu (H. Shen), lik@newpaltz.edu (K. Li).

However, if the requested content is too large to be encapsulated into
a single data packet, the provider must divide the content into some
fragments, and encapsulate each fragment into a data packet (Ren et al.,
2016). If all data packets are returned at one time, it easily results in
congestion and packet loss. If only one data packet is returned which is
corresponding to the interest packet, then the requester needs to keep
sending interest packets until receiving the full content, which easily
causes high delay. Therefore, it is necessary to propose an efficient
congestion control scheme which can transmit the all content fragments
from a large content within a short time and without much packet loss,
especially for big data and delay-sensitive applications (e.g., AR/VR) in
NDN.

Besides, as an important characteristic of NDN, in-networking
caching enables some intermediate nodes to cache the content to
shorten the routing paths to the content requester and reduce packet
delivery latency (Din et al., 2018). However, due to the space limit,
the intermediate node can only cache part of the content fragments
instead of the total content. Therefore, the intermediate nodes cannot
fully respond to the received interest packet as a content provider in
vailable online 29 April 2023
084-8045/© 2023 Elsevier Ltd. All rights reserved.

https://doi.org/10.1016/j.jnca.2023.103651
Received 8 June 2022; Received in revised form 9 February 2023; Accepted 19 Ap
ril 2023

https://www.elsevier.com/locate/jnca
http://www.elsevier.com/locate/jnca
mailto:dapengqu@lnu.edu.cn
mailto:wujun1420@163.com
mailto:zhangjiankun33@163.com
mailto:chengxi.gao@siat.ac.cn
mailto:hs6ms@virginia.edu
mailto:lik@newpaltz.edu
https://doi.org/10.1016/j.jnca.2023.103651
https://doi.org/10.1016/j.jnca.2023.103651
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jnca.2023.103651&domain=pdf

Journal of Network and Computer Applications 216 (2023) 103651D. Qu et al.

C

traditional transmission mode in NDN. Thus, how to make use of the
content fragments cached in intermediate nodes is an important issue
for congestion control in NDN, since it can help mitigate congestion by
utilizing the caching which holds some content fragments intermediate
nodes and reducing the total traffic load on the content producer in the
network.

Although there are some existing works which propose congestion
control schemes and caching strategies for NDN, they fall short in
reducing the transmission latency (Siddiqui et al., 2019). The main
shortcomings manifest in the following ways.

• The majority of current congestion control schemes in NDN adopt
One-Interest-One-Data model, in which one data packet is re-
turned for one interest packet. When the content volume is large,
the number of required interest packets is also large, which
results in high bandwidth occupation and latency overhead in the
network.

• Although some works have considered the possibility of using
one interest packet to retrieve multiple data packets, they usually
focus on the single content provider and lack the consideration for
content fragments in in-network caching of intermediate nodes.
As a result, only the nodes which hold the whole content are the
content providers. This will increase the request latency and make
congestion control schemes less effective.

To solve all the problems aforementioned, we propose C3NDN, a
ongestion Control scheme based on Caching strategy in NDN. C3NDN

adopts the One-Interest-Multiple-Data transmission mode to save net-
work bandwidth and improve the transmission efficiency. In the One-
Interest-Multiple-Data transmission mode, interest packets are also used
to collect network information including bandwidth and delay, and
then the content providers update their congestion window sizes to
calculate the number of data packets to be returned for the received in-
terest packet. Moreover, a probabilistic caching strategy (PCS) and the
corresponding cache updating strategy (CUS) which reduces content
fragments redundancy and improves cache efficiency are proposed. For
the congestion control scheme, a marking mechanism is also proposed
to enable anyone which holds a content fragment to respond to the
received interest packet, which distributes the transmission of a large
content to different intermediate nodes and utilizes the caching of the
near nodes to smooth the sending rate of data packets from some
further nodes, then effectively relieves the congestion caused by one
single content provider in traditional transmission mode in NDN.

The main contributions of this work are summarized as follows.

• We propose the One-Interest-Multiple-Data transmission mode to
allow one interest packet to trigger multiple data packets, thus
it only requires a few interest packets to get all fragments from
the corresponding data packets to form a complete content in one
content request, then perform congestion control on the content
provider, therefore saving network bandwidth and improving
content transmission efficiency.

• We propose a congestion control algorithm which collects the
bottleneck link bandwidth and delay information to calculate the
congestion window and sending rate of the content provider. We
also propose a marking scheme, so that the cached content of each
node can be transmitted in an orderly manner, making full use of
the node cache and reducing transmission time.

• To further improve the transmission efficiency of C3NDN, we also
propose a probabilistic caching strategy and the corresponding
cache updating strategy. Each node calculates the caching prob-
ability based on the cache value of the content fragment, the
popularity of the corresponding content, and the node impor-
tance. Moreover, the cache update strategy is executed based on
the fragment retention value and redundancy when the space oc-
cupied by the cached content exceeds the rated threshold, thereby
reducing the redundancy of the cached content and improving the
cache efficiency.
2

• Finally, we conduct extensive experiments to evaluate the per-
formance of C3NDN. Experimental results show that C3NDN has
better transmission performance, including higher transmission
rate and shorter transmission time. For example, C3NDN can
reduce the transmission time by up to 41.68% when compared
with the other congestion control schemes. Moreover, PCS also
achieves a better performance, in terms of cache hit ratio, average
hit counts, and cache replacement ratio.

The rest of this paper is organized as follows. Section 2 summarizes
related works. Section 3 presents the system model and the design
of C3NDN, Section 4 evaluates C3NDN’s performance with extensive
experiments under different scenarios. Finally, Section 5 concludes the
paper.

2. Related work

In recent years, NDN has been popular in both industry and aca-
demic area, and there is a lot of work on NDN to improve network
performance. Next, we summarize related works into two subjects,
namely caching strategy and congestion control schemes.

2.1. Caching strategies in NDN

As a prominent role of NDN, in-network caching has been attracting
plenty of attention. LCE (Leave Copy Everywhere) (Jacobson et al.,
2009) is the original and default caching strategy which caches every-
thing everywhere, namely each node caches each received data packet.
It fully utilizes caching to improve the caching hit ratio and reduce
the transmission latency. However, the limited cache space makes it
infeasible to always get data from the cache in reality, because the node
will update cache very frequently and unnecessarily to accommodate
the new received data packets and the high cache redundancy of
unpopular content cannot contribute to a high utilization. Meanwhile,
these operations introduce a high overhead. LCP (Leave Copy Prob-
ability) (Arianfar et al., 2010) takes a probability calculation before
caching the received content. It reduces cache redundancy and caching
overhead, but the fixed probability setting does not solve the problem
fundamentally, and the characteristic of content and node, such as
content popularity and the node centrality, has not been considered.
CPCCS (compound popular content caching strategy) (Naeem et al.,
2019) divides content into two types, namely OPC (optimal popular
content) and LPC (least popular content) based on the number of
received data packets for each content file. It caches OPC in all inter-
mediate nodes along the routing, and caches LPC only in the one-hop
neighboring node. SDC (spatially dispersed caching) (Kamiyama and
Murata, 2018) disperses content by assigning a binary ID to each router
and limits cache targets at each router to content with names whose
hash value coincides with the router ID. It utilizes the limited cache
resources by avoiding duplicated caching of the same content among
close routers. In Gui and Chen (2020), a cache placement strategy based
on compound popularity (content popularity and node popularity)
which enhances the reuse rate of the data packets is proposed. CCndnS
(Content Caching strategy for NDN with Skip) (Rezazad and Tay, 2020)
breaks a content file into small fragments and spreads them in the
path between content requester and provider, so that the first fragment
should be cached at the router close to the requester and the last one
towards the content provider. In Alhowaidi et al. (2021), a software-
defined, storage-aware routing mechanism that leverages NDN router
cache-states, software defined networking and multipath forwarding
strategies is proposed to improve the efficiency of very large data trans-
fers. For the large data transfers, It presents a comprehensive analysis of
NDN cache management and proposes a novel prefetching mechanism
to improve data transfer performance. CaDaCa (Categorized Data for
Caching) (Herouala et al., 2022) explores the role of data categorization
in enhancing the cache mechanisms in NDN. The popular content

Journal of Network and Computer Applications 216 (2023) 103651D. Qu et al.
requests are categorized to enable in-depth knowledge about users’
behavior. In Iqbal et al. (2022), a caching strategy is proposed to help
source-driven forwarding. It caches diverse contents considering the
gap between successive copies and content availability while admitting
new contents. More caching strategies can be referred to several good
surveys (Ioannou and Weber, 2016; Zhang et al., 2015a; Abdullahi
et al., 2015).

2.2. Congestion control schemes in NDN

Congestion control is always an elementary issue of computer net-
works. Since NDN is receiver-driven, some researchers take congestion
control schemes on the receiver (content requester) and adjust the
sending rate of interest packets to avoid congestion (Muchtar et al.,
2020). For example, ECP (Explicit Control Protocol) (Ren et al., 2015)
detects the network congestion condition proactively, and sends ex-
plicit feedback to the content requester. Then the requester adjusts
the sending rate of interest packets to control the sending rate of
data packets from the content provider, thus to realize the congestion
control. Because NDN adopts a receiver-driven hop-by-hop transport
approach that facilitates in-network caching, traditional methods which
keep a single round trip time (RTT) estimator for a multi-path flow
are insufficient, because each routing path may experience different
round trip times. Thus, CHoPCoP (Zhang et al., 2015b) utilizes explicit
congestion control to deal with the multiple-source and multiple-path
situation in NDN. In Lan et al. (2020), DRL-CCP (RL-based Conges-
tion Control Protocol) which is based on deep reinforcement learning
is proposed. It enables the content requester to automatically learn
the optimal congestion control policy from historical congestion con-
trol experience to adjust of the interest packets sending window size.
In Ye et al. (2020), HbHCM (Hop-byHop Congestion Measurement) and
PAQM (Practical Active Queue Management) are proposed to detect
congestion and generate explicit congestion notification at NDN nodes
by monitoring the change of transmission delays. HbHCM measures the
transmission delay in hop and PAQM converts the delay to notifica-
tion signals to notify the content requesters. The in-network caching
results in that the end-to-end flow control in current Internet cannot be
applied to NDN. Thus, in Lee and Nakazato (2020), a diffusion-based
flow control method for NDN is proposed. RevMax, a gateway-aware
congestion control mechanism, is proposed for the purpose to overcome
the drawbacks of the complexity and compatibility issues of the existing
flow-based and hop-by-hop congestion control mechanisms (Li et al.,
2020). The gateway offers a price for the content requester, and the
requester adjusts the interest packet requesting rate according to the
price. Then the optimal pricing policy for the gateway is formulated
as a revenue maximization problem. In Song and Zhang (2021), the
rate-based approach is analyzed which represents a more promising
direction than existing window-based congestion control solutions. A
BBR(Bottleneck Bandwidth and RTT(Round-trip propagation time)) -
guided congestion control is proposed for bulk data fetching by a
group of users in Hu et al. (2021). It applies RTT filtering and interest
scheduling to improve BBR’s efficiency in NDN. In Ye et al. (2021), a
Network Utility Maximization (NUM) model is proposed to formulate
multi-source and multipath transmission with in-network caches in
NDN. Then a Delay-based Path-specified Congestion Control Protocol
(DPCCP) is presented as a specific instance of the receiver-driven
transmission solutions. DPCCP utilizes queuing delays to measure and
control congestion levels of different bottlenecks. In Wu et al. (2022),
a multi-path congestion control mechanism is proposed. It includes
multi-path discovery and multi-path congestion control. In discovery
process, a path tag is devised to uniquely mark each sub-path in the
forwarding process and a tag-aware forwarding strategy is presented
to discover and manage sub-paths. In congestion control process, some
different metrics, such as packet loss, bandwidth, round trip time,
and path centrality are integrated to assess paths, and the Upper
Confidence Bound (UCB) algorithm is leveraged to select sub-paths
3

Fig. 1. System flow of NDN.

to maximize network throughput. In Hashemi and Bohlooli (2021),
an explicit feedback-based congestion control is proposed to manage
content request sending rate. It employs a per-packet feedback compu-
tation to inform requester from the available resource of paths toward
repositories and provides feedback to the forwarding mechanism of a
router to adjust the sending rate of interest packets to each interface.
In Yang et al. (2022), an Intelligent Edge-Aided Congestion Control
scheme based on Deep Reinforcement Learning is proposed. It provides
a proactive congestion detector which utilizes intermediate routers to
transmit accurate congestion information along the path to content
consumers through the data packets, and divides data packets into
different congestion degrees by a lightweight clustering algorithm to
obtain a reasonable transmission rate. Moreover, it distributes the
estimated bandwidth resources to content consumers with different
transmission needs to maintain fairness.

2.3. Summary of existing work

Although there are plenty of related works, nearly all caching
strategies and congestion control schemes are designed separately, and
congestion control schemes are taken without caching strategies, and
then the in-network caching cannot be fully utilized. On the other hand,
some caching strategies try to decrease content redundancy, which
would influence the ability of intermediate node responding to interest
packets. Different from existing works, our C3NDN and corresponding
PCS can take caching for each content fragment from the viewpoints of
content and nodes, and fully utilize the caching of content fragments
to set the sending rate of data packets to avoid congestion.

3. System design

In this section, we present C3NDN’s design in detail. We first
introduce the model of our system. Then we propose a caching strategy
based on content and node property together with a cache updating
strategy. Finally we propose a congestion control scheme based on the
caching strategy.

3.1. System model

In this paper, NDN can be modeled as a connected graph 𝐺 = (𝑉 ;𝐸),
where 𝑉 =

{

𝑣𝑖|1 ≤ 𝑖 ≤ 𝑁
}

is the set of nodes, and 𝐸 =
{

𝑒𝑖,𝑗 |𝑣𝑖, 𝑣𝑗 ∈ 𝑉 ,
1 ≤ 𝑖; 𝑗 ≤ 𝑁, 𝑖 ≠ 𝑗} is the set of links. 𝑁 is the total number of nodes in
𝐺, and 𝑁 = |𝑉 |. At the same time, the content can be modeled as a set
𝐶, and a content file 𝑐𝑘 ∈ 𝐶, where 1 ≤ 𝑘 ≤ 𝑀 , 𝑀 = |𝐶| is the total
number of content files in NDN. In this paper, we assume that each
node has the same cache size and each content fragment has the same
size, but each content file has different sizes thus can be divided into
different numbers of fragments.

To clarify NDN and be understood easily, a system flow of NDN is
shown in Fig. 1. In NDN, the content requester send out an interest
packet to the network, which mainly consists of the requested content
name and other parameters. When the interest packet traverses through
the network, if the intermediate nodes(like routers) contain partial
content data, they will return the data packet which consists of the

Journal of Network and Computer Applications 216 (2023) 103651D. Qu et al.
Fig. 2. The structure of packets in NDN.

content name, data and other parameters, then send out the interest
packet to content provider. Finally, the content provider returns the
data packets with the remaining data which intermediate nodes fail to
provide.

To support the proposed scheme in this paper, referring to the
basic packet format in NDN, we design the structure of an interest
packet and a data packet shown in Fig. 2 respectively. The field with
shadow are the new ones. In the interest packet, the ‘‘Content Name’’
field indicates the identity of the content data. The ‘‘Selectors’’ field
indicates the preferences like order preference, publisher filter and so
on. The ‘‘Transmission info’’ field indicates the routing and content
information in the whole transmission, such as available bandwidth
and delay, along the routing path from the content requester to the
content provider. ‘‘Sent’’ and ‘‘Lost’’ mean that the content information
including the content fragments can be provided by the upstream nodes
which are along the content requester to the current intermediate node,
and the lost content fragments during the last transmission respectively.
The ‘‘Nonce’’ field is used to detect looping interests. The ‘‘Guiders’’
field indicates the scope interest lifetime and so on. In the data packet,
the ‘‘Content Name’’ field also indicates the identity of the content
data. The ‘‘MetaInfo’’ field indicates the content type, freshness period
and some other meta information. The ‘‘Content Data’’ includes the
data of the requested content. The ‘‘Inventory’’ field means the content
fragments sent by the content provider for the received interest packets.
The ‘‘Signature’’ field indicates the signature type, key locator and so
on. We present the details of our proposed methods in the following
subsections.

To be understood easily, Fig. 3 shows the system workflow of
C3NDN. Because C3NDN is designed for big data and delay-sensitive
applications, for example AR/VR in NDN, the large content will be par-
titioned into some fragments, and each fragment can be encapsulated
into a data packet. Moreover, as the basis of C3NDN, a probabilistic
caching strategy and the corresponding cache updating strategy make
some intermediate node cache some fragments. Thus, when a content
requester sends an interest packet to request the content, if any inter-
mediate nodes have cached some content fragments, they can respond
with these fragments to the received interest packet, although they
cannot provide the whole content. Meanwhile, the intermediate node
forwards the interest packet to require the remaining content fragments
for the whole content. When the content provider receives the interest
packet, it will only return the other content fragments reversely along
the routing path of the interest packet. The cached intermediate node
can utilize the cache store (CS) to smooth the data packet flow to avoid
congestion. Therefore, C3NDN can not only mitigate congestion, but
also reduce content acquirement latency, because it transmits a part of
content fragments from the content provider to the content requester,
while the traditional method needs to transmit all content fragments
4

from the content provider to the content requester.
Fig. 3. Workflow of C3NDN.

3.2. Probabilistic caching strategy (PCS)

Since the content can be divided into multiple fragments, an ef-
fective caching strategy should consider two aspects, namely content
fragment and node. The former contains the content popularity and the
caching property of a content fragment, and the node property reflects
the location of a node in NDN.

3.2.1. Content fragment property
Due to the distributed characteristic, each node has different view-

points of content popularity. Thus, the popularity of content 𝑐𝑗 in node
𝑣𝑖 is calculated by Eq. (1).

𝑝𝑜(𝑣𝑖, 𝑐𝑗) =
𝑛𝑢𝑚(𝑣𝑖, 𝑐𝑗)

𝑚𝑎𝑥(𝑛𝑢𝑚(𝑣𝑖, 𝑐𝑘)),∀𝑐𝑘 ∈ 𝐶
(1)

where 𝑛𝑢𝑚(𝑣𝑖, 𝑐𝑗) is the number of interest packets about content 𝑐𝑗
received by node 𝑣𝑖, and 𝑚𝑎𝑥(𝑛𝑢𝑚(𝑣𝑖, 𝑐𝑘)),∀𝑐𝑘 ∈ 𝐶 is the maximum
number of interest packets about a content file received by node 𝑣𝑖.

Since a content file is divided into multiple fragments, the caching
property of a content fragment can be decided according to the content
fragment ratio and the content fragment caching ratio. The content
fragment ratio measures how easy to cache the whole content for a
single node, which indicates the content’s easiness to be cached within
a single node. Therefore, the larger number of content fragments, the
less easy to cache the whole content for the single node, thus the less
value of content fragment ratio. The content fragment caching ratio
evaluates the percentage of content fragments cached by the node over
the total number of the content fragments, which indicates a node’s
ability to cache a specific content. They are calculated as Eqs. (2) and
(3):

𝑅𝑓 (𝑐𝑗) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

1, 𝑁𝑓𝑟𝑎(𝑐𝑗) ≤ 𝛿𝐿𝑁𝑓𝑟𝑎
𝛿𝐿𝑁𝑓𝑟𝑎
𝛿𝑈𝑁𝑓𝑟𝑎

, 𝑁𝑓𝑟𝑎(𝑐𝑗) > 𝛿𝑈𝑁𝑓𝑟𝑎

𝛿𝐿𝑁𝑓𝑟𝑎
𝑁𝑓𝑟𝑎(𝑐𝑗)

, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

(2)

𝑅𝑓 (𝑣𝑖, 𝑐𝑗) =
𝑁𝑓𝑟𝑎(𝑣𝑖, 𝑐𝑗)
𝑁𝑓𝑟𝑎(𝑐𝑗)

(3)

where 𝑅𝑓 (𝑐𝑗) denotes the content fragment ratio, and 𝛿𝐿𝑁𝑓𝑟𝑎 and 𝛿𝑈𝑁𝑓𝑟𝑎
are two thresholds denoting the lower and upper bounds of the number
of the content fragments. Obviously, the larger the number of the
fragments of a content file, the smaller content fragment ratio. Thus,
when the number of the fragments 𝑁𝑓𝑟𝑎(𝑐𝑗) of content 𝑐𝑗 is small, it is
easy for a node to get all fragments to form a content file, and then the
node will be more willing to cache a content fragment. Here, 𝑁𝑓𝑟𝑎(𝑐𝑗)
is the number of fragments of a whole content 𝑐𝑗 , and 𝑁𝑓𝑟𝑎(𝑣𝑖, 𝑐𝑗) is
the number of fragments of content 𝑐𝑗 held by node 𝑣𝑖. 𝑅𝑓 (𝑣𝑖, 𝑐𝑗) is
the content fragment caching ratio denoting the ratio of the number of
the content fragments cached in a node and the number of the content
fragments. Obviously, the more content fragments are cached in a node,
the larger the 𝑅𝑓 (𝑣𝑖, 𝑐𝑗). Thus, the caching property of a fragment of
content 𝑐𝑗 in node 𝑣𝑖 is calculated by Eq. (4):

𝑐𝑝(𝑣𝑖, 𝑐𝑗) = 𝑚𝑎𝑥(𝑅𝑓 (𝑐𝑗), 𝑅𝑓 (𝑣𝑖, 𝑐𝑗)). (4)

Obviously, the larger the content fragment ratio, the larger the
content fragment caching ratio, and the larger the caching property

Journal of Network and Computer Applications 216 (2023) 103651D. Qu et al.

𝑅

w
a
n
𝑣
o
n
i
a
v
n

𝑑

w

t

𝑃

c
i

3

n
t
a
p

3

n
p

1
f

t
i
w
h
i
i
c
c
n
0

of the content fragment. We use the maximum form to give equal
importance to content fragment ratio and content fragment caching
ratio. Specially, if a node caches a fragment from a content file with
fewer fragments, or a node has cached most of the fragments from a
content file, there will be a higher probability to cache this content
fragment to be able to respond to later content requests.

3.2.2. Node property
The location of a node in NDN has important influence on network

load. We consider degree centrality and eigenvector centrality because
they reflect the number of neighbors and their importance respectively.
Degree centrality is the simplest centrality measure in a graph, which
means the ratio of the degree and the total number of nodes in the
network. Thus, it can evaluate the importance of the node in the
graph. Similarly, Eigenvector centrality is a more sophisticated view
of centrality, which evaluates the node’s ability to connect to other
well-connected nodes. Since it is very hard to get an accurate network
topology practically, we just compare the centralities of a node and
its one-hop neighbors to denote the its relative centrality. The relative
degree centrality and eigenvector centrality of a node are calculated by
Eqs. (5) and (6):

𝑅𝐶𝐷
(𝑣𝑖) =

𝐶𝐷(𝑣𝑖)
𝑚𝑎𝑥(𝐶𝐷(𝑣𝑘))

, 𝑣𝑘 ∈ (𝑁(𝑣𝑖) ∪ 𝑣𝑖) (5)

𝐶𝐸
(𝑣𝑖) =

𝐶𝐸 (𝑣𝑖)
𝑚𝑎𝑥(𝐶𝐸 (𝑣𝑘))

, 𝑣𝑘 ∈ (𝑁(𝑣𝑖) ∪ 𝑣𝑖) (6)

here 𝐶𝐷(𝑣𝑖) is the degree centrality of node 𝑣𝑖, and can be calculated
s the ratio of the number of its one-hop neighbor and the number of
odes in network. 𝑚𝑎𝑥(𝐶𝐷(𝑣𝑘)),
𝑘 ∈ (𝑁(𝑣𝑖) ∪ 𝑣𝑖) denotes the maximum value of the degree centralities
f node 𝑣𝑖 and its all one-hop neighbors. The fraction form makes the
ode’s relative degree centrality a pure decimal and achieves normal-
zation. Similarly, the 𝐶𝐸 (𝑣𝑖) is the eigenvector centrality of node vi,
nd can be calculated as the product of the eigenvector of the adjacent
ector of the network and the corresponding eigenvalues. Thus, the
ode property of 𝑣𝑖 can be calculated by Eq. (7):

(𝑣𝑖) = 𝛾𝐷 × 𝑅𝐶𝐷
(𝑣𝑖) + 𝛾𝐸 × 𝑅𝐶𝐸

(𝑣𝑖) (7)

here 𝛾𝐷, 𝛾𝐸 are two weight factors, 0 ≤ 𝛾𝐷, 𝛾𝐸 ≤ 1, and 𝛾𝐷+𝛾𝐸=1.
They determine the weight between degree centrality and eigenvector
centrality in calculating node’s property.

Because probabilistic caching strategy has been proven to be an
effective and simple way (Naeem et al., 2022), when a node 𝑣𝑖 receives
a new content fragment about content 𝑐𝑗 , we comprehensively consider
he above three factors, and calculate caching probability as Eq. (8):

(𝑣𝑖, 𝑐𝑗) = 𝑑(𝑣𝑖) × 𝑝𝑜(𝑣𝑖, 𝑐𝑗) × 𝑐𝑝(𝑣𝑖, 𝑐𝑗) (8)

Obviously, the more important the node is, the more popular the
ontent is, the higher the caching property is, and the higher probabil-
ty of the node caches the content fragment.

.2.3. Algorithm pseudocode
Algorithm 1 shows the pseudo-code of PCS. When an intermediate

ode receives a data packet, it will calculate the caching property of
his content fragment according to Eq. (4), the popularity of the content
ccording to Eq. (1), the node property according to Eq. (7), the caching
robability based on Eq. (8), and finally take probabilistic caching.

.3. Cache updating strategy (CUS)

Because there is limited space for each node’s caching, the node
eeds to update its caching timely to accommodate new and more
opular contents.
5

Algorithm 1 Pseudocode of PCS
Input: received data packet, 𝐶𝑆 (cache store);
Output: 𝐶𝑆∗;
1: Get the content fragment from the received data packet;
2: Calculate caching property of this content fragment in current node

(Eq. (4));
3: Calculate the popularity of the content in current node (Eq. (1));
4: Calculate node property of current node (Eq. (7));
5: Calculate caching probability 𝑃 (Eq. (8));
6: Generate a random number 𝑟𝑎𝑛_𝑛𝑢𝑚;
7: if 𝑃 > 𝑟𝑎𝑛_𝑛𝑢𝑚 then
8: Cache the content fragment;
9: end if

3.3.1. Content fragment caching property
To choose the appropriate content fragment in cache updating

strategy, each node maintains two properties for caching each content
fragment, namely fragment self caching value and fragment neighbor
caching redundancy. The former means the value of reserving a content
fragment in its own cache. Based on the above analysis in the last
subsection, it is calculated by Eq. (9):

𝑓𝑐 (𝑣𝑖, 𝑐𝑗) = 𝜔𝑝 × 𝑝𝑜(𝑣𝑖, 𝑐𝑗) + 𝜔𝑟 × 𝑅𝑓 (𝑣𝑖, 𝑐𝑗) (9)

where 𝜔𝑝, 𝜔𝑟 are two weight factors, 0 ≤ 𝜔𝑝, 𝜔𝑟 ≤ 1, and 𝜔𝑝+𝜔𝑟 =
. They determine the weight between content popularity and content
ragment caching ratio in calculating content fragment caching value.

The fragment neighbor caching redundancy means the number of
he same content fragments cached in one-hop neighbors. Obviously,
f the same content fragments are cached in two neighboring nodes,
hich will not significantly improve the performance in terms of hitting
op count. Moreover, if the fragment neighbor caching redundancy
s large, namely there are plenty of same content fragments cached
n neighboring nodes, it will reduce the diversity of caching and in-
rease the content requiring latency. To reduce the huge overhead of
ache updating and exchanging information, we define two thresholds,
amely 𝛿𝐿𝐶𝑆 and 𝛿𝑈𝐶𝑆 to determine the cache updating strategy, and
< 𝛿𝐿𝐶𝑆 < 𝛿𝑈𝐶𝑆 < 100%. Only when the ratio of node caching occupation

is larger than the upper threshold 𝛿𝑈𝐶𝑆 , the cache updating strategy is
taken.

3.3.2. Algorithm pseudocode
Algorithm 2 shows the pseudo-code of CUS. When the ratio of node’s

caching occupation 𝛿𝐶𝑆 exceeds the upper threshold 𝛿𝑈𝐶𝑆 , it will take
the cache updating strategy, namely it first updates the neighbor frag-
ment caching redundancy by exchanging Hello packets with neighbors,
and then removes the content fragments with the maximum caching
redundancy until 𝛿𝐶𝑆 is lower than the lower threshold 𝛿𝐿𝐶𝑆 . If two
or more cached content fragments with the same fragment neighbor
caching redundancy, the one with smaller fragment self caching value
will be removed.

3.4. Congestion control scheme based on caching strategy (C3NDN)

Next, we introduce our congestion control scheme based on PCS and
CUS, namely C3NDN.

3.4.1. Congestion control scheme
The basic dataflow of C3NDN is as follows. When an intermediate

node receives an interest packet, it first checks its CS to see if there is
matched content. If yes, a data packet can be sent back to the incoming
interface of the interest packet; otherwise, it checks whether the name
of the interest packet is in PIT (Pending Interest Table) already. If yes,
it adds the incoming interface of the interest packet to the existing

PIT entry; otherwise, it builds a new entry for this interest packet in

Journal of Network and Computer Applications 216 (2023) 103651D. Qu et al.

𝐷

w
l
t
𝑙
t
t
f

𝐵

a

r
r
b

p
H
s
m
(

c
l
w
c
T

𝑐

Algorithm 2 Pseudocode of CUS
Input: 𝐶𝑆∗;
Output: 𝐶𝑆∗∗;
1: if 𝛿𝐶𝑆 > 𝛿𝑈𝐶𝑆 then
2: Update caching redundancy of each cached content fragment by

exchanging Hello packets with neighbors;
3: while 𝛿𝐶𝑆 > 𝛿𝐿𝐶𝑆 do
4: Remove the content fragment with the maximum neighbor

caching redundancy;
5: if two or more cached content fragments with the same

neighbor caching redundancy then
6: Remove the content fragment with smaller fragment self

caching value;
7: end if
8: end while
9: end if

PIT, calculates the available bandwidth for the future data flow, and
then calculates and updates the ‘‘bandwidth’’ and ‘‘delay’’ fields in the
interest packet header. Finally, it forwards the updated interest packet
based on FIB (Forwarding Information Base). The available bandwidth
𝐵𝑑 and delay 𝐷𝑦 are calculated by Eqs. (10) and (11):

𝐵𝑑 =
𝐵 −

∑𝑚
𝑙=1 𝑏𝑙

𝑛 − 𝑚 + 1
, (0 ≤ 𝑚 < 𝑛) (10)

𝑦 = 𝐷𝑦 + 𝑑𝑦 (11)

here 𝐵 is the total link capacity, 𝑛 is the total number of flows in the
ink, 𝑚 is the number of flows whose occupied bandwidth is smaller
han (𝐵∕𝑛) among these 𝑛 flows, 𝑏𝑙 is the occupied bandwidth of the
th flow among these 𝑚 flows. 𝑑𝑦 is the latency from the previous node
o the current node, and 𝐷𝑦 is the latency from the content requester
o the current node. Then we can update the bottleneck bandwidth 𝐵ℎ
or this data flow according to Eq. (12):

ℎ =
{

𝐵𝑑 , 𝐵ℎ = 0
𝑚𝑖𝑛(𝐵ℎ, 𝐵𝑑), 𝐵ℎ ≠ 0

(12)

nd update 𝐵ℎ information in the packet header.
If the current bottleneck bandwidth is 0, namely there is not any

ecording about the Bandwidth of the routing path, 𝐵ℎ is the cur-
ent available bandwidth 𝐵𝑑 , otherwise, it is the minimum of current
ottleneck bandwidth 𝐵ℎ and the available bandwidth 𝐵𝑑 .

In fact, the actual bandwidth and delay values provided by a routing
ath are heavily influenced by the amount of traffic load it transferred.
ow to accurately obtain them is really hard, complex and beyond the

cope of this paper. In fact, these information can be obtained through
ethods like those methods in Javadtalab et al. (2015), Paul et al.

2016) or others.
When the interest packet reaches the content provider, it will first

alculate the congestion window based on the ‘‘bandwidth’’ and ‘‘de-
ay’’ fields in the interest packet header. Then, it generates data packets
ith the cached content, and enables the ‘‘Inventory’’ field to record the

ontent fragments which can be sent based on the congestion window.
he congestion window 𝑐𝑤𝑛𝑑 is calculated according to Eq. (13):

𝑤𝑛𝑑 =
𝐵ℎ ×𝐷𝑦

𝑠𝑖𝑧𝑒
(13)

where 𝑠𝑖𝑧𝑒 is the size of the data packet. Then the content provider
returns the data packets using the bandwidth as 𝐵ℎ, and the data packet
will carry the information about the packet sending rate and id of the
content fragment.

When an intermediate node receives a data packet, it first takes
the PCS as in the above subsection, and then checks and updates the
PIT entry. If the data packet is the last packet for the data flow of the
6

Algorithm 3 Pseudocode of processing a received interest packet
Input: 𝑟𝑒𝑐𝑒𝑖𝑣𝑒𝑑 𝑖𝑛𝑡𝑒𝑟𝑒𝑠𝑡 𝑝𝑎𝑐𝑘𝑒𝑡 ;
Output: 𝐹𝑜𝑟𝑤𝑎𝑟𝑑𝑖𝑛𝑔 𝑖𝑛𝑡𝑒𝑟𝑒𝑠𝑡 𝑝𝑎𝑐𝑘𝑒𝑡 / 𝑆𝑒𝑛𝑑𝑖𝑛𝑔 𝑑𝑎𝑡𝑎 𝑝𝑎𝑐𝑘𝑒𝑡
;
1: Check CS and compare it with the ‘‘Sent" field in packet header;
2: if there are all required content fragments in CS then
3: Calculate 𝑐𝑤𝑛𝑑 (Eq. (13));
4: Generate data packets with the content fragments;
5: Send these data packets based on the 𝑐𝑤𝑛𝑑;
6: Drop the interest packet;
7: else
8: Build a new entry for the interest packet in PIT;
9: Calculate available bandwidth (Eq. (10));

10: Calculate bottleneck bandwidth (Eq. (12));
11: if there is any required content fragment in CS then
12: Calculate 𝑐𝑤𝑛𝑑 (Eq. (13));
13: Generate data packets with the cached content fragments;
14: Send these data packets based on the 𝑐𝑤𝑛𝑑;
15: end if
16: Update the ‘‘bandwidth", ‘‘delay" and ‘‘Sent" fields in interest

packet header;
17: Forward the interest packet based on FIB;
18: end if

required content, it deletes the entry after it forwards the data packet
to the outgoing interface based on the PIT entry; otherwise, it prolongs
the lifetime of this entry. When the content requester receives the data
packet, it counts the received data packets based on the ‘‘Inventory’’
field. If there are still some content fragments to receive, the requester
generates and sends new interest packets to request them. If there
are some data packets missing, namely some data packets cannot be
received before timeout, the requester generates and sends new interest
packets whose ‘‘Lost’’ field identifies these lost content fragments. This
process will continue until all content fragments are received by the
requester.

3.4.2. Marking mechanism
To make full use of in-network caching in NDN, we further propose

a marking mechanism to enable the intermediate node which caches
some content fragments to be a content provider which provides data
packets with these fragments for the received interest packet. Specif-
ically, when an intermediate node caches some content fragments for
the received interest packet, it will first compare the cached fragments
and the ‘‘Sent’’ field in interest packet header, since the ‘‘Sent’’ field
means that the content fragments can be provided by the upstream
nodes to the content requester. It can directly provide some data
packets with these fragments which are cached and not in the ‘‘Sent’’
field. If there are still some missing fragments, that is, some content
fragments cannot be provided by the nodes along the routing path
from the content requester to the current node, then it will calculate
the bandwidth and delay as in the above subsection, modify the cor-
responding fields in interest packet header, and forward the interest
packet based on FIB. If the content required by the interest packet
can be totally provided by intermediate nodes and its previous nodes,
namely the ‘‘Sent’’ field already has all the content fragments, the
interest packet will be dropped.

On the other hand, when the data packet reaches an intermediate
node which still has some fragments to be sent to the content requester,
the node will cache the content fragment in this data packet, and then
send all cached content fragments to this requester orderly. With the
marking mechanism, that is, the intermediate node marking the content
fragments which has been cached in the current node, it fully utilizes
the in-networking caching, reduces the number of content fragments
requested to the subsequent nodes, and saves bandwidth and avoids

potential congestion.

Journal of Network and Computer Applications 216 (2023) 103651D. Qu et al.

;

1
1
1

1

Algorithm 4 Pseudocode of processing a received data packet
Input: 𝑟𝑒𝑐𝑒𝑖𝑣𝑒𝑑 𝑑𝑎𝑡𝑎 𝑝𝑎𝑐𝑘𝑒𝑡 ;
Output: 𝑆𝑒𝑛𝑑𝑖𝑛𝑔 𝑖𝑛𝑡𝑒𝑟𝑒𝑠𝑡 𝑝𝑎𝑐𝑘𝑒𝑡 / 𝐹𝑜𝑟𝑤𝑎𝑟𝑑𝑖𝑛𝑔 𝑑𝑎𝑡𝑎 𝑝𝑎𝑐𝑘𝑒𝑡 / ∅

1: if the current node is the content requester then
2: Check the ‘‘Inventory" field in the data packet header;
3: if there are still some content fragments to be received or some

fragments missing then
4: Generate and Send an interest packet for these content

fragments;
5: end if
6: else
7: if there are some content fragments in transmission then
8: Cache the data packet;
9: Send all cached content fragments to the requester orderly;
0: end if
1: Update corresponding entry in PIT;
2: Forward the data packet to the incoming interface of the entry

in PIT;
3: end if

3.4.3. Algorithm pseudocode
Since C3NDN involves the interactions between interest packets and

data packets, we will provide two algorithms about the process of
receiving them respectively. Algorithm 3 shows the pseudo-codes of
processing a received interest packet. When a node receives an interest
packet, it will check if it has all required content fragment. If so,
we calculate cwnd, and return the corresponding data packets using
the speed based on cwnd, and drop the interest packet. Otherwise,
it will update PIT, and calculate available bandwidth and bottleneck
bandwidth. If the node contains some required content fragment, it
will return corresponding data packets using the speed according to the
updated cwnd. Finally, it updates related fields in the interest packet
header and forwards the interest packet based on FIB. And algorithm
4 shows the pseudo-codes of processing a received data packet. When
the content requester receives a data packet, it will check the missing
fragment and sends out the interest packet. If other nodes receive the
data packets and there are some content fragments in transmission,
they will cache the data packet and send all cached content fragments
to the requester in order. Then, they will update PIT and forward the
data packet.

4. Performance evaluation

In this section, we use the open-source ndnSIM (Mastorakis et al.,
2017) to evaluate the performance of the proposed C3NDN. ndnSIM
implements the NDN protocol stack in the NS3 network simulator.

4.1. Experimental settings

We use two different topologies in our experiments as illustrated in
Fig. 4. One is a dumbbell topology which is widely applied in conges-
tion control research in NDN. There are two content requesters, namely
C1 and C2 and two content providers, namely P1 and P2. The other
is a popular and realistic topology German Research Network (DFN)
topology which is widely applied in NDN research (Qu et al., 2022).
In DFN, there are ten content requesters, namely C1, C2, . . . , C10, two
content providers, namely P1 and P2, and 24 routers. Moreover, there
are 20 contents, namely c1, c2, . . . , c20, and all the odd contents are
in P1, and all the even contents are in P2. The range of the number of
fragments of a content is 1–50, which follows normal distribution with
mean as 25 and standard deviation as 12. The value will be round up
to an integer to make sure that the number of fragments is an integer.
7

The content requests follow zipf-like distribution. Other parameters are
Fig. 4. The network topology.

set as shown in Table 1, and their values are determined based on the
best experimental results from multiple experiments.

For the caching strategy, recall that SDC (Kamiyama and Murata,
2018) is a closely related work. It disperses contents by assigning a
binary ID to each router and limits the cache targets at each router to
content with names whose hash value equals to the router ID. LCE (Ja-
cobson et al., 2009) is the default caching strategy that caches each
received content everywhere in NDN. LCP (Arianfar et al., 2010) is a
simple and effective caching strategy and caches each received content.
Therefore, we choose LCE, LCP and SDC for performance comparison
with our proposed PCS. While for congestion control strategy, recall
that CHoPCoP (Zhang et al., 2015b) which utilizes explicit congestion
control for the multiple-source multiple-path situation. The content
requesters and intermediate routers use AIMD (Additive Increase Mul-
tiplicative Decrease) and RED (Random Early Detection) respectively.
Moreover, considering the One-Interest-One-Data model of CHoPCoP,
we improve it by making content providers change the number of
interest packets to control congestion and name the improved version
of CHoPCoP as CHoPCoP-impro.

To demonstrate the performance comprehensively, we use the fol-
lowing metrics to evaluate and compare the performance of different
schemes in terms of congestion control and caching.

• Transmission Time (TMT). The period from the time of the content
requester sending the first interest packet to the time of receiving
the last data packet.

• Transmission Rate (TMR). The receiving rate of data packets at the
corresponding content requester.

• Number of Packet Loss (NPL). The number of data packets dropped
by the intermediate routers when there is a congestion.

• Queue Length (QEL). The average lengths of the queues in all
involved routers.

Journal of Network and Computer Applications 216 (2023) 103651D. Qu et al.
Table 1
Parameter settings.
Parameter Symbol Value

Bandwidth of each link 𝑏𝑎𝑛𝑑𝑤𝑖𝑑𝑡ℎ 100 Mbps
Delay of each link 𝑑𝑒𝑙𝑎𝑦 10 ms
Default content size - 100 KB
Cache capacity of each node 𝐶𝑆 50 data packets
Data packet size - 1124 Bytes
Interest packet sending rate - 150 packets/s
Bounds of content fragments 𝛿𝐿𝑠_𝑐ℎ, 𝛿𝑈𝑠_𝑐ℎ 10, 40
Bounds of caching replacement 𝛿𝐿𝐶𝑆 , 𝛿𝑈𝐶𝑆 60%, 95%
Fig. 5. TMT comparison of different congestion control schemes.
• Cache Hit Ratio (CHR). The ratio of the number of received
interest packets from the content requesters that hit in current
caches and the total number of received interest packets from the
content requesters.

• Average Hit Count (AHC). The average of the hop counts from
the content requester to the content provider which responds
to the received interest packets (including content provider and
intermediate routers).

• Cache Redundancy Degree (CRD). The average of the number of
involved routers caching the same content fragment in the whole
network.

• Cache Replacement Ratio (CRR). The ratio of the number of the
content fragments being replaced and the total number of content
fragments in the cache.

The former four metrics, namely TMT, TMR, NPL and QEL measure
the overall performance of the proposed C3NDN. Obviously, TMT is
the most important metric to evaluate C3NDN. The latter four metrics,
naming CHR, AHC, CRD and CRR measure the ability of the proposed
PCS and corresponding CUS.

We run each experiment for ten times and report the average.

4.2. Experimental results

We first demonstrate the TMT of our C3NDN, and then comprehen-
sively evaluate C3NDN based on PCS and CUS.

4.2.1. TMT evaluation and analysis
To comprehensively demonstrate the TMT of C3NDN under dif-

ferent conditions, we first set that there is no content cached in the
intermediate node, and test TMT. As shown in Fig. 5, C3NDN consumes
the least transmission time for different content sizes. Moreover, its
advantage over CHoPCoP and CHoPCoP-impro will increase with the
increment of the required content sizes. The reduced TMT reaches to
31.6% and 24.5% over the other two different schemes in dumbbell
topology without other flows respectively, and reaches to 35.3% and
27.2% over the other schemes in DFN with other flows respectively.
8

Second, we further compare TMT when multiple flows share the
bottleneck bandwidth. There are two data flows, namely f1(P1-C1) and
f2(P2-C2) in Dumbbell, and three flows, namely f1(P1-C1), f2(P2-C2)
and f3(P3-C3) in DFN. Flow f1 starts at the beginning, then f2 and f3
(only in DFN) successively start in order every other 5 s. As shown in
Fig. 6, these competing flows in C3NDN have very similar TMT, and
differences among TMT s of different flows in CHoPCoP-impro is in the
middle, and that in CHoPCoP is the largest. The reason is that the early
generated flow usually occupies the more bandwidth, and thus the new
flow consumes more TMT to transmit the required content. C3NDN
considers the bottleneck bandwidth and shares it among different
competing flows.

Lastly, we compare TMT with/without some cached required con-
tent fragments. We put 1/4 required content in R2 in Dumbbell and
R4 in DFN respectively. As shown in Fig. 7, C3NDN and CHoPCoP-
impro take advantages of the cached content fragments and achieve
the reduced transmission delay. C3NDN reduces about 19.7% and
21.6% respectively, and CHoPCoP-impro reduces about 10.3% and
13.8% respectively. While CHoPCoP does not utilize the cached content
fragments, and miscalculates the queue length, and begins the slow
start phase frequently, and TMT increases about 32.9% and 37.5%
respectively.

4.2.2. Evaluation of congestion control
To demonstrate our proposed congestion control scheme compre-

hensively, we first take C3NDN without any caching strategy, and
then test it based on PCS. Fig. 8 demonstrates the QEL and TMR of
three different congestion control schemes with the transmission time.
It is obvious that C3NDN has a much smaller QEL than CHoPCoP
and CHoPCoP-impro. Because the sending windows of CHoPCoP and
CHoPCoP-impro increase additively and decrease multiplicatively, and
the intermediate nodes adjust queue length to control congestion. The
continuous increase of congestion window would contribute to a longer
queue in intermediate nodes, which would give feedback to decrease
the congestion window. The two situations happen alternately, which
causes a continuous oscillation of QEL. CHoPCoP sends the interest
packets whose number equals to the congestion window with one

Journal of Network and Computer Applications 216 (2023) 103651D. Qu et al.
Fig. 6. TMT comparison of different congestion control schemes among competing flows.
Fig. 7. TMT comparison of different congestion control schemes with/without cached required content fragments.
Fig. 8. Performance comparison of different congestion control schemes with transmission time.
time, and plenty of data packets would contribute to the longest QEL.
CHoPCoP-impro adjusts interest packet sending rate based on the rout-
ing path condition to avoid the data packets from piling up to a certain
extent, and gets a shorter QEL. While C3NDN calculates the number of
data packets based on the information of routing paths, and controls
the interest packet sending rate under the available bandwidth of the
whole routing paths, thus achieving the shortest QEL. Meanwhile, the
shorter QEL contributes to the better TMR, thus C3NDN achieves the
highest TMR, CHoPCoP-impro achieves the second TMR, and CHoPCoP
has the worst TMR, as shown in Fig. 8b.

Fig. 9a demonstrates the NPL of three different congestion control
schemes with different content sizes. C3NDN has the least packet
loss. Moreover, with the increase of the transmission content sizes,
its advantages over the other two strategies become larger. When the
transmission content size is 150MB, C3NDN outperforms CHoPCoP and
CHoPCoP-impro by 76.3% and 65.2%, respectively. As analyzed in
the last paragraph, C3NDN has the shortest and stablest QEL which
contributes to the smallest NPL. Fig. 9b demonstrates the TMT of
9

three different congestion control schemes with different transmission
content sizes. Because C3NDN has the least packet loss, it consumes
the least TMT. Moreover, with the increase of the transmission content
sizes, C3NDN’s performance in reducing transmission time becomes
more superior. CHoPCoP sends plenty of interest packets one time,
and CHoPCoP-impro sends interest packets based on the routing path
condition, thus, CHoPCoP-impro gets the second performance in NPL
and TMT, and CHoPCoP has the least one.

We further evaluate the performance of C3NDN with different cache
capacities. As shown in Fig. 10, with the increase of cache capacity,
PCS achieves the best performance, namely the highest TMR and the
least TMT, SDC gets the second best performance, and LCP and LCE
have the third and worst respectively. With the increase of cache
capacity, the performance improvements of SDC over LCP and LCE
become less. When the cache capacity is 250, SDC and LCP achieve
similar performance. When the cache capacity increases further, the
performance of SDC is less than that of LCP. Because SDC bounds
content fragments and the hash of routers ID, namely each router only

Journal of Network and Computer Applications 216 (2023) 103651D. Qu et al.
Fig. 9. Performance comparison of different congestion control schemes with different transmission content sizes.
Fig. 10. Performance comparison of different caching strategies with C3NDN under different cache capacities.
Fig. 11. Performance comparison of different congestion control schemes with different caching strategies.
caches those matched content fragments, and the large cache capacity
cannot bring further performance improvement.

Next, we evaluate the performance of the congestion control
schemes with different caching strategies. As shown in Fig. 11, C3NDN
achieves the highest TMR and finishes the whole transmission with
lower TMT than CHoPCoP and ChoPCoP-impro, no matter what kind
of caching strategy is combined. When there are some cached content
fragments in the transmission path, the cache marking can mark the
cached content fragments in intermediate nodes, make them trans-
mit orderly, and achieve a higher transmission rate. While CHoPCoP
misjudges congestion for caching and enters slow start frequently,
it has a reduced transmission rate. When there are some cached
content fragments in intermediate nodes, ChoPCoP-impro does not
cache received data packets. Then, the queue length of data packets
in intermediate nodes may exceed the threshold, and thus it also gets
10
a reduced transmission rate. Obviously, ChoPCoP-impro is better than
CHoPCoP, since the former uses the One-Interest-Multiple-Data model.
When the congestion control scheme is chosen, PCS achieves the best
performance, SDC achieves the second performance, and LCP and LCE
have the third and worst performance.

4.2.3. Evaluation of caching strategy
The performance comparison of different caching strategies with

different interest packets sending rates is shown in Figs. 12. Obviously,
our proposed PCS achieves the best performance, in terms of AHC
and CRR. It achieves the second best performance and performs worse
than SDC in terms of CHR and CRD. Because we cache a content
fragment from the viewpoint of both node and content, namely the
content fragment with higher popularity will be cached in the node
with larger importance. Each intermediate router caches the received

Journal of Network and Computer Applications 216 (2023) 103651D. Qu et al.
Fig. 12. Performance comparison of different caching strategies with different interest packets sending rates.
content fragment independently, while the intermediate routers in SDC
take caching strategy based on the comprehensive consideration of all
routers. Moreover, we actively replace content fragments with higher
redundancy degree and lower popularity when too much cache store is
occupied. Thus, we can obtain the required content from some inter-
mediate routers with the lowest hops and the most stable caching state.
The independent caching strategy, instead of the cooperative caching
in SDC, makes our proposed strategy have a higher CRD. Furthermore,
with the increase of the interest packets sending rate, the corresponding
data packets will also increase, CUS will be taken more frequently,
since we replace the content fragments with high redundancy degree.
That is, if a content fragment has more duplicated caching, it will have
a higher probability of being taken out. Thus, our proposed PCS and
CUS improve the diversity of cached content, and achieve better CHR
and CRD. For example, when the interest packets sending rate is 50
packets per second, PCS gets 0.312 at CHR, which is lower than 0.350
of SDC, and when the sending rate increases to 300 packets per second,
it becomes 0.347, which is very similar to 0.352 of SDC.

As two classic and simple caching strategies, LCE and LCP cache
received content everywhere or with a fixed probability, but do not
consider the special conditions of nodes and content. Thus, they get
worse performances than SDC and our proposed PCS in the CHR, CRD
and CRR. They are better than SDC only in AHC, because SDC tries to
cache more content and there is less same content along the routing
paths. Thus, SDC needs the highest AHC to get a required content.
While LCE caches each received content and the limited cache space
makes it take caching and replacing operation very frequently. Hence,
it performs worse than LCP in all four metrics.

The performance comparison of different caching strategies with
11

different cache capacities is shown in Figs. 13. The results are very
similar to those in Figs. 12; our proposed PCS achieves the best per-
formance in AHC and CRR, and the second best performance in CRD.
In CHR, when the cache space is small, namely 10, 30, and 50, it
achieves the second best performance which is lower than SDC, while
with the increase of the cache capacity, PCS becomes the best one.
That is because SDC bounds content fragments and the hash of routers
ID, namely each router only caches those matched content fragments,
and the large cache capacity will not bring an obvious increment of
CHR. When the cache capacity is small, its CHR will increase rapidly,
but when it exceeds 60, the CHR will be steady. However, other three
caching strategies benefit from the increase of cache capacity, and
all have a sharp increase. SDC has a lower CRD than PCS with an
independent caching, because SDC uses cooperative caching. Moreover,
LCP and LCE still have the third and the worst performance in all four
metrics, respectively.

5. Conclusion

In this paper, we propose C3NDN, an efficient congestion control
scheme based on caching for NDN, which consists of the caching
strategy PCS, the cache updating strategy CUS, and the congestion
control scheme on top of them. C3NDN proposed the One-Interest-
Multiple-Data model for NDN, in which one interest packet can trigger
multiple data packets, thus saving network bandwidth and improving
transmission efficiency. Then, PCS caches received data packets with
probability to make popular content cached in important nodes, CUS
takes content fragments with less popular and high redundancy out,
and C3NDN adjusts the sending rate of data packets by considering
the bandwidth and delay information of the transmission path to

avoid congestion. Extensive experimental results show that C3NDN can

Journal of Network and Computer Applications 216 (2023) 103651D. Qu et al.

a
t
a
o

C

–
t
J
t
V
e

D

t
D
R
f
t
N
D
g
r
o
U
b

Fig. 13. Performance comparison of different caching strategies with different cache capacities.
D

A

P
N
u
D
P
R
U
M

R

A

A

A

D

G

H

chieve better performance than other schemes in terms of reducing
ransmission time, increasing transmission speed, reducing packet loss
nd so on, and the deep dive experiments also validate the effectiveness
f our congestion control and caching schemes.

RediT authorship contribution statement

Dapeng Qu: Conceptualization, Writing – original draft, Writing
review & editing, Visualization, Supervision, Project administra-

ion, Funding acquisition. Jun Wu: Methodology, Software, Validation.
iankun Zhang: Formal analysis, Investigation, Resources, Data cura-
ion. Chengxi Gao: Writing – original draft, Writing – review & editing,
isualization, Funding acquisition. Haiying Shen: Writing – review &
diting. Keqin Li: Writing – review & editing.

eclaration of competing interest

The authors declare the following financial interests/personal rela-
ionships which may be considered as potential competing interests:
apeng Qu reports financial support was provided by National Key
esearch and Development Program of China. Dapeng Qu reports

inancial support was provided by National Natural Science Founda-
ion of China. Dapeng Qu reports financial support was provided by
atural Science Basic Research Fund of Liaoning Provincial Education
epartment. Dapeng Qu reports financial support was provided by Post-
raduate Education Reform Project of Liaoning Province. Chengxi Gao
eports financial support was provided by the Basic Research Program
f Shenzhen. Haiying Shen reports financial support was provided by
.S. NSF grants. Haiying Shen reports financial support was provided
12

y Microsoft Research Faculty Fellowship.
ata availability

No data was used for the research described in the article.

cknowledgments

This work is supported by National Key Research and Development
rogram of China under Grant No. 2022YFB4500800, the National
atural Science Foundation of China under Grant No. 62032013, Nat-
ral Science Basic Research Fund of Liaoning Provincial Education
epartment under Grant LJC202002, Postgraduate Education Reform
roject of Liaoning Province under Grant LNYJG2022012, the Basic
esearch Program of Shenzhen under Grant JCYJ20220531100804009,
.S. NSF grants under Grants NSF-2206522 and NSF-1822965, and
icrosoft Research Faculty Fellowship under Grant No. 8300751.

eferences

bdullahi, I., Arif, A.S.M., Hassan, S., 2015. Survey on caching approaches in
information centric networking. J. Netw. Comput. Appl. 56 (1), 48—59.

lhowaidi, M., Nadig, D., Hu, B., Ramamurthy, B., Bockelman, B., 2021. Cache
management for large data transfers and multipath forwarding strategies in Named
Data Networking. Comput. Netw. 9 (199), 515–528.

rianfar, S., Nikander, P., Ott, J., 2010. On content-centric router design and
implications. In: Proc. of 2nd Workshop Re-Architect. pp. 1–5.

in, I.U., Hassan, S., Khan, M.K., Guizani, M., Ghazali, O., Habbal, A., 2018. Caching
in information-centric networking: strategies, challenges, and future research
directions. IEEE Commun. Surv. Tutor. 20 (2), 1–34.

ui, Y., Chen, Y., 2020. A cache placement strategy based on compound popularity in
named data networking. IEEE Access 8 (1), 196002–196012.

ashemi, S.N.S., Bohlooli, A., 2021. 3CP: Coordinated congestion control protocol for

named-data networking. IEEE Trans. Netw. Serv. Manag. 3 (18), 3918–3932.

http://refhub.elsevier.com/S1084-8045(23)00070-X/sb1
http://refhub.elsevier.com/S1084-8045(23)00070-X/sb1
http://refhub.elsevier.com/S1084-8045(23)00070-X/sb1
http://refhub.elsevier.com/S1084-8045(23)00070-X/sb2
http://refhub.elsevier.com/S1084-8045(23)00070-X/sb2
http://refhub.elsevier.com/S1084-8045(23)00070-X/sb2
http://refhub.elsevier.com/S1084-8045(23)00070-X/sb2
http://refhub.elsevier.com/S1084-8045(23)00070-X/sb2
http://refhub.elsevier.com/S1084-8045(23)00070-X/sb3
http://refhub.elsevier.com/S1084-8045(23)00070-X/sb3
http://refhub.elsevier.com/S1084-8045(23)00070-X/sb3
http://refhub.elsevier.com/S1084-8045(23)00070-X/sb4
http://refhub.elsevier.com/S1084-8045(23)00070-X/sb4
http://refhub.elsevier.com/S1084-8045(23)00070-X/sb4
http://refhub.elsevier.com/S1084-8045(23)00070-X/sb4
http://refhub.elsevier.com/S1084-8045(23)00070-X/sb4
http://refhub.elsevier.com/S1084-8045(23)00070-X/sb5
http://refhub.elsevier.com/S1084-8045(23)00070-X/sb5
http://refhub.elsevier.com/S1084-8045(23)00070-X/sb5
http://refhub.elsevier.com/S1084-8045(23)00070-X/sb6
http://refhub.elsevier.com/S1084-8045(23)00070-X/sb6
http://refhub.elsevier.com/S1084-8045(23)00070-X/sb6

Journal of Network and Computer Applications 216 (2023) 103651D. Qu et al.
Herouala, A.T., Ziani, B., Kerrache, C.A., el Karim Tahari, A., Lagraa, N., Mas-
torakis, S., 2022. CaDaCa: a new caching strategy in NDN using data categorization.
Multimedia Syst. 4 (19), 4932–4947.

Hu, Y., Serban, C., Wang, L., Afanasyev, A., Zhang, L., 2021. BBR-Inspired Congestion
Control for Data Fetching over NDN. In: Proc. of IEEE Military Communications
Conference. MILCOM, pp. 141–143.

Ioannou, A., Weber, S., 2016. A survey of caching policies and forwarding mechanisms
in information-centric networking. IEEE Commun. Surv. Tutor. 18 (4), 2847–2886.

Iqbal, S.M.A., Asaduzzaman, Hoque, M.M., 2022. A source-driven probabilistic forward-
ing and caching strategy in NDN and SDN-based NDN. Int. J. Commun. Syst. 6 (35),
1–33.

Jacobson, V., Smetters, D.K., Thornton, J.D., Plass, M.F., Briggs, N.H., Braynard, R.L.,
2009. Networking named content. In: Proc. of 5th International Conference on
Emerging Networking Experiments and Technologies (CoNEXT). pp. 1–12.

Javadtalab, A., Semsarzadeh, M., Khanchi, A., Shirmohammadi, S., Yassine, A., 2015.
Continuous one-way detection of available bandwidth changes for video streaming
over best-effort networks. IEEE Trans. Instrum. Meas. 1 (64), 190–203.

Kamiyama, N., Murata, M., 2018. Spatially-dispersed caching in information-centric
networking. In: Proc. of ICC. pp. 1–6.

Lan, D., Tan, X., Lv, J., Jin, Y., Yang, J., 2020. A deep reinforcement learning based
congestion control mechanism for NDN. In: Proc. of IEEE International Conference
on Communications. ICC, pp. 1–6.

Lee, C., Nakazato, H., 2020. Congestion control using diffusion method in Named Data
Networking. In: Proc. of 45th IEEE Conference on Local Computer Networks. LCN,
pp. 333–336.

Li, W., Wang, S., Xu, Y., Lu, S., 2020. Charging on the route: an online pricing
gateway congestion control for ICNs. IEEE Trans. Netw. Serv. Manag. 17 (1),
196002–196012.

Mastorakis, S., Afanasyev, A., Zhang, L., 2017. On the evolution of ndnSIM: an open-
source simulator for NDN experimentation. ACM Comput. Commun. Rev. 47 (3),
19–33.

Muchtar, F., Abdullah, A.H., Al-Adhaileh, M., Zamli, K.Z., 2020. Energy conservation
strategies in Named Data Networking based MANET using congestion control: a
review. J. Netw. Comput. Appl. 15 (152), 1–52.

Naeem, M.A., Nor, S.A., Hassan, S., Kim, B.-S., 2019. Compound popular content
caching strategy in named data networking. Electronics 8 (7), 771–779.

Naeem, M.A., Ullah, R., Meng, Y., Ali, R., Lodhi, B.A., 2022. Caching content on the
network layer: a performance analysis of caching schemes in ICN-based internet of
things. IEEE Internet Things J. 9 (9), 6477–6495.

Paul, A.K., Tachibana, A., Hasegawa, T., 2016. NEXT-FIT: available bandwidth mea-
surement over 4G/LTE networks – a curve-fitting approach. In: Proc. of 30th
International Conference on Advanced Information Networking and Applications.
AINA, pp. 25–32.

Qu, D., Lv, G., Qu, S., Shen, H., Yang, Y., Heng, Z., 2022. An effective and lightweight
countermeasure scheme to multiple network attacks in NDN. IEEE/ACM Trans.
Netw. 2 (30), 515–528.

Ren, Y., Li, J., Shi, S., Li, L., Chang, X., 2015. An interest control protocol for named
data networking based on explicit feedback. In: Proc. of 11th ACM/IEEE Symposium
on Architectures for Networking and Communications Systems. ANCS, pp. 190–200.

Ren, Y., Li, J., Shi, S., Li, L., Wang, G., Zhang, B., 2016. Congestion control in named
data networking – a survey. Comput. Commun. 86 (1), 1–11.

Rezazad, M., Tay, Y., 2020. Decoupling NDN caches via ccndns: design, analysis, and
application. Comput. Commun. 151 (1), 338–354.

Siddiqui, S., Waqas, A., Khan, A., Zareen, F., Iqbal, M.N., 2019. Congestion controlling
mechanisms in content centric networking and named data networking – a
survey. In: Proc. of 2nd International Conference on Computing, Mathematics and
Engineering Technologies (ICoMET). pp. 1–7.

Song, S., Zhang, L., 2021. Exploring rate-based congestion control in NDN. In: Proc. of
8th ACM Conference on Information-Centric Networking. ICN, pp. 141–143.

Vasilakos, A., Li, Z., Simon, G., You, W., 2015. Information centric network: research
challenges and opportunities. IEEE Commun. Mag. 52 (1), 1–10.

Wu, F., Yang, W., Muhua Sun, J.R., Lyu, F., 2022. Multi-path selection and congestion
control for NDN: An online learning approach. IEEE Trans. Netw. Serv. Manag. 4
(19), 1977–1989.

Yang, J., Chen, Y., Xue, K., Han, J., Li, J., Wei, D.S.L., Sun, Q., Lu, J., 2022. IEACC: An
intelligent edge-aided congestion control scheme for named data networking with
deep reinforcement learning. IEEE Trans. Netw. Serv. Manag. 4 (19), 4932–4947.

Ye, Y., Lee, B., Flynn, R., Xu, J., Fang, G., Qiao, Y., 2021. Delay-based network
utility maximization modelling for congestion control in Named Data Networking.
IEEE/ACM Trans. Netw. 5 (29), 2184–2197.

Ye, Y., Lee, B., Qiao, Y., 2020. Hop-by-hop congestion measurement and practical active
queue management in NDN. In: Proc. of IEEE Global Communications Conference.
GLOBECOM, pp. 1–6.

Zhang, L., Afanasyev, A., Burke, J., Jacobson, V., Claffy, k., Crowley, P., Papadopou-
los, C., Wang, L., Zhang, B., 2014. Named data networking. ACM SIGCOMM
Comput. Commun. Rev. 44 (3), 66–73.

Zhang, M., Luo, H., Zhang, H., 2015a. A survey of caching mechanisms in
information-centric networking. IEEE Commun. Surv. Tutor. 17 (3), 1473—1499.

Zhang, F., Zhang, Y., Reznik, A., Liu, H., Qi, C., Xu, C., 2015b. Providing explicit con-
gestion control and multi-homing support for content-centric networking transport.
Comput. Commun. 69 (1), 69–78.
13
Dapeng Qu received the B.S. degree from the Department
of Mathematics, Central South University, in 2003, the M.S.
degree from the Department of Information Science and
Technology, Central South University, in 2006, and the
Ph.D. degree from the Department of Information Science
and Technology, Northeastern University, in 2012. He is
currently an Associate Professor and an Advisor for master
candidates with the College of Information, Liaoning Uni-
versity, China. He has published over 50 academic articles
in several journals and conference proceedings. His research
interests include future Internet and computer networks.

Jun Wu is currently pursuing the M.E. degree from
the College of Information, Liaoning University, China.
Her research interests include future Internet and social
networks.

Jiankun Zhang received the M.S. degree in computer
science and technology from Liaoning University, China, in
2021. His research interests include congestion control and
future Internet.

Chengxi Gao (Member, IEEE) is an assistant professor at
Shenzhen Institute of Advanced Technology (SIAT), Chinese
Academy of Sciences (CAS). Before joining CAS, he was
a research associate in City University of Hong Kong. He
received his Ph.D. degree from the Department of Computer
Science, City University of Hong Kong, and his B.S. and M.S.
degrees from the Department of Computer Science, North-
eastern University, China. His research interests include data
center networking and distributed machine learning system.

Haiying Shen (Senior Member, IEEE) received the B.S.
degree in computer science and engineering from Tongji
University, China, in 2000, and the M.S. and Ph.D. degrees
in computer engineering from Wayne State University in
2004 and 2006, respectively. She is currently an Associate
Professor with the Department of Computer Science, Univer-
sity of Virginia. Her research interests include distributed
computer systems, cloud and edge computing, machine
learning, big data, and cyber–physical systems. She is a
Microsoft Faculty Fellow of 2010 and a Senior Member of
IEEE.

Keqin Li (Fellow, IEEE) is a SUNY Distinguished Pro-
fessor of computer science with the State University of
New York. He is also a National Distinguished Professor
with Hunan University, China. His current research inter-
ests include cloud computing, fog computing and mobile
edge computing, energy-efficient computing and commu-
nication, embedded systems and cyber–physical systems,
heterogeneous computing systems, big data computing,
high-performance computing, CPU–GPU hybrid and coop-
erative computing, computer architectures and systems,
computer networking, machine learning, intelligent and soft
computing. He has authored or coauthored over 840 journal
articles, book chapters, and refereed conference papers, and
has received several best paper awards. He is currently an
associate editor of the ACM Computing Surveys and the
CCF Transactions on High Performance Computing. He has
served on the editorial boards of the IEEE Transactions on
Parallel and Distributed Systems, the IEEE Transactions on
Computers, the IEEE Transactions on Cloud Computing, the
IEEE Transactions on Services Computing, and the IEEE
Transactions on Sustainable Computing. He is an IEEE
Fellow.

http://refhub.elsevier.com/S1084-8045(23)00070-X/sb7
http://refhub.elsevier.com/S1084-8045(23)00070-X/sb7
http://refhub.elsevier.com/S1084-8045(23)00070-X/sb7
http://refhub.elsevier.com/S1084-8045(23)00070-X/sb7
http://refhub.elsevier.com/S1084-8045(23)00070-X/sb7
http://refhub.elsevier.com/S1084-8045(23)00070-X/sb8
http://refhub.elsevier.com/S1084-8045(23)00070-X/sb8
http://refhub.elsevier.com/S1084-8045(23)00070-X/sb8
http://refhub.elsevier.com/S1084-8045(23)00070-X/sb8
http://refhub.elsevier.com/S1084-8045(23)00070-X/sb8
http://refhub.elsevier.com/S1084-8045(23)00070-X/sb9
http://refhub.elsevier.com/S1084-8045(23)00070-X/sb9
http://refhub.elsevier.com/S1084-8045(23)00070-X/sb9
http://refhub.elsevier.com/S1084-8045(23)00070-X/sb10
http://refhub.elsevier.com/S1084-8045(23)00070-X/sb10
http://refhub.elsevier.com/S1084-8045(23)00070-X/sb10
http://refhub.elsevier.com/S1084-8045(23)00070-X/sb10
http://refhub.elsevier.com/S1084-8045(23)00070-X/sb10
http://refhub.elsevier.com/S1084-8045(23)00070-X/sb11
http://refhub.elsevier.com/S1084-8045(23)00070-X/sb11
http://refhub.elsevier.com/S1084-8045(23)00070-X/sb11
http://refhub.elsevier.com/S1084-8045(23)00070-X/sb11
http://refhub.elsevier.com/S1084-8045(23)00070-X/sb11
http://refhub.elsevier.com/S1084-8045(23)00070-X/sb12
http://refhub.elsevier.com/S1084-8045(23)00070-X/sb12
http://refhub.elsevier.com/S1084-8045(23)00070-X/sb12
http://refhub.elsevier.com/S1084-8045(23)00070-X/sb12
http://refhub.elsevier.com/S1084-8045(23)00070-X/sb12
http://refhub.elsevier.com/S1084-8045(23)00070-X/sb13
http://refhub.elsevier.com/S1084-8045(23)00070-X/sb13
http://refhub.elsevier.com/S1084-8045(23)00070-X/sb13
http://refhub.elsevier.com/S1084-8045(23)00070-X/sb14
http://refhub.elsevier.com/S1084-8045(23)00070-X/sb14
http://refhub.elsevier.com/S1084-8045(23)00070-X/sb14
http://refhub.elsevier.com/S1084-8045(23)00070-X/sb14
http://refhub.elsevier.com/S1084-8045(23)00070-X/sb14
http://refhub.elsevier.com/S1084-8045(23)00070-X/sb15
http://refhub.elsevier.com/S1084-8045(23)00070-X/sb15
http://refhub.elsevier.com/S1084-8045(23)00070-X/sb15
http://refhub.elsevier.com/S1084-8045(23)00070-X/sb15
http://refhub.elsevier.com/S1084-8045(23)00070-X/sb15
http://refhub.elsevier.com/S1084-8045(23)00070-X/sb16
http://refhub.elsevier.com/S1084-8045(23)00070-X/sb16
http://refhub.elsevier.com/S1084-8045(23)00070-X/sb16
http://refhub.elsevier.com/S1084-8045(23)00070-X/sb16
http://refhub.elsevier.com/S1084-8045(23)00070-X/sb16
http://refhub.elsevier.com/S1084-8045(23)00070-X/sb17
http://refhub.elsevier.com/S1084-8045(23)00070-X/sb17
http://refhub.elsevier.com/S1084-8045(23)00070-X/sb17
http://refhub.elsevier.com/S1084-8045(23)00070-X/sb17
http://refhub.elsevier.com/S1084-8045(23)00070-X/sb17
http://refhub.elsevier.com/S1084-8045(23)00070-X/sb18
http://refhub.elsevier.com/S1084-8045(23)00070-X/sb18
http://refhub.elsevier.com/S1084-8045(23)00070-X/sb18
http://refhub.elsevier.com/S1084-8045(23)00070-X/sb18
http://refhub.elsevier.com/S1084-8045(23)00070-X/sb18
http://refhub.elsevier.com/S1084-8045(23)00070-X/sb19
http://refhub.elsevier.com/S1084-8045(23)00070-X/sb19
http://refhub.elsevier.com/S1084-8045(23)00070-X/sb19
http://refhub.elsevier.com/S1084-8045(23)00070-X/sb20
http://refhub.elsevier.com/S1084-8045(23)00070-X/sb20
http://refhub.elsevier.com/S1084-8045(23)00070-X/sb20
http://refhub.elsevier.com/S1084-8045(23)00070-X/sb20
http://refhub.elsevier.com/S1084-8045(23)00070-X/sb20
http://refhub.elsevier.com/S1084-8045(23)00070-X/sb21
http://refhub.elsevier.com/S1084-8045(23)00070-X/sb21
http://refhub.elsevier.com/S1084-8045(23)00070-X/sb21
http://refhub.elsevier.com/S1084-8045(23)00070-X/sb21
http://refhub.elsevier.com/S1084-8045(23)00070-X/sb21
http://refhub.elsevier.com/S1084-8045(23)00070-X/sb21
http://refhub.elsevier.com/S1084-8045(23)00070-X/sb21
http://refhub.elsevier.com/S1084-8045(23)00070-X/sb22
http://refhub.elsevier.com/S1084-8045(23)00070-X/sb22
http://refhub.elsevier.com/S1084-8045(23)00070-X/sb22
http://refhub.elsevier.com/S1084-8045(23)00070-X/sb22
http://refhub.elsevier.com/S1084-8045(23)00070-X/sb22
http://refhub.elsevier.com/S1084-8045(23)00070-X/sb23
http://refhub.elsevier.com/S1084-8045(23)00070-X/sb23
http://refhub.elsevier.com/S1084-8045(23)00070-X/sb23
http://refhub.elsevier.com/S1084-8045(23)00070-X/sb23
http://refhub.elsevier.com/S1084-8045(23)00070-X/sb23
http://refhub.elsevier.com/S1084-8045(23)00070-X/sb24
http://refhub.elsevier.com/S1084-8045(23)00070-X/sb24
http://refhub.elsevier.com/S1084-8045(23)00070-X/sb24
http://refhub.elsevier.com/S1084-8045(23)00070-X/sb25
http://refhub.elsevier.com/S1084-8045(23)00070-X/sb25
http://refhub.elsevier.com/S1084-8045(23)00070-X/sb25
http://refhub.elsevier.com/S1084-8045(23)00070-X/sb26
http://refhub.elsevier.com/S1084-8045(23)00070-X/sb26
http://refhub.elsevier.com/S1084-8045(23)00070-X/sb26
http://refhub.elsevier.com/S1084-8045(23)00070-X/sb26
http://refhub.elsevier.com/S1084-8045(23)00070-X/sb26
http://refhub.elsevier.com/S1084-8045(23)00070-X/sb26
http://refhub.elsevier.com/S1084-8045(23)00070-X/sb26
http://refhub.elsevier.com/S1084-8045(23)00070-X/sb27
http://refhub.elsevier.com/S1084-8045(23)00070-X/sb27
http://refhub.elsevier.com/S1084-8045(23)00070-X/sb27
http://refhub.elsevier.com/S1084-8045(23)00070-X/sb28
http://refhub.elsevier.com/S1084-8045(23)00070-X/sb28
http://refhub.elsevier.com/S1084-8045(23)00070-X/sb28
http://refhub.elsevier.com/S1084-8045(23)00070-X/sb29
http://refhub.elsevier.com/S1084-8045(23)00070-X/sb29
http://refhub.elsevier.com/S1084-8045(23)00070-X/sb29
http://refhub.elsevier.com/S1084-8045(23)00070-X/sb29
http://refhub.elsevier.com/S1084-8045(23)00070-X/sb29
http://refhub.elsevier.com/S1084-8045(23)00070-X/sb30
http://refhub.elsevier.com/S1084-8045(23)00070-X/sb30
http://refhub.elsevier.com/S1084-8045(23)00070-X/sb30
http://refhub.elsevier.com/S1084-8045(23)00070-X/sb30
http://refhub.elsevier.com/S1084-8045(23)00070-X/sb30
http://refhub.elsevier.com/S1084-8045(23)00070-X/sb31
http://refhub.elsevier.com/S1084-8045(23)00070-X/sb31
http://refhub.elsevier.com/S1084-8045(23)00070-X/sb31
http://refhub.elsevier.com/S1084-8045(23)00070-X/sb31
http://refhub.elsevier.com/S1084-8045(23)00070-X/sb31
http://refhub.elsevier.com/S1084-8045(23)00070-X/sb32
http://refhub.elsevier.com/S1084-8045(23)00070-X/sb32
http://refhub.elsevier.com/S1084-8045(23)00070-X/sb32
http://refhub.elsevier.com/S1084-8045(23)00070-X/sb32
http://refhub.elsevier.com/S1084-8045(23)00070-X/sb32
http://refhub.elsevier.com/S1084-8045(23)00070-X/sb33
http://refhub.elsevier.com/S1084-8045(23)00070-X/sb33
http://refhub.elsevier.com/S1084-8045(23)00070-X/sb33
http://refhub.elsevier.com/S1084-8045(23)00070-X/sb33
http://refhub.elsevier.com/S1084-8045(23)00070-X/sb33
http://refhub.elsevier.com/S1084-8045(23)00070-X/sb34
http://refhub.elsevier.com/S1084-8045(23)00070-X/sb34
http://refhub.elsevier.com/S1084-8045(23)00070-X/sb34
http://refhub.elsevier.com/S1084-8045(23)00070-X/sb35
http://refhub.elsevier.com/S1084-8045(23)00070-X/sb35
http://refhub.elsevier.com/S1084-8045(23)00070-X/sb35
http://refhub.elsevier.com/S1084-8045(23)00070-X/sb35
http://refhub.elsevier.com/S1084-8045(23)00070-X/sb35

	Efficient congestion control scheme based on caching strategy in NDN
	Introduction
	Related Work
	Caching Strategies in NDN
	Congestion Control Schemes in NDN
	Summary of Existing Work

	System Design
	System Model
	Probabilistic Caching Strategy (PCS)
	Content fragment property
	Node property
	Algorithm pseudocode

	Cache Updating Strategy (CUS)
	Content fragment caching property
	Algorithm pseudocode

	Congestion Control Scheme based on Caching strategy (C3NDN)
	Congestion control scheme
	Marking Mechanism
	Algorithm pseudocode

	Performance Evaluation
	Experimental Settings
	Experimental Results
	TMT evaluation and analysis
	Evaluation of congestion control
	Evaluation of caching strategy

	Conclusion
	CRediT authorship contribution statement
	Declaration of Competing Interest
	Data availability
	Acknowledgments
	References

