
2524 IEEE TRANSACTIONS ON NETWORK SCIENCE AND ENGINEERING, VOL. 11, NO. 3, MAY/JUNE 2024

FTOP: An Efficient Flow Table Overflow Preventing
System for Switches in SDN

Dan Tang , Zhiqing Zheng , Keqin Li , Fellow, IEEE, Chao Yin , Wei Liang ,
and Jiliang Zhang , Senior Member, IEEE

Abstract—The Software-Defined Networking (SDN) is a new
network framework widely adopted in data center networks that
decouples the control plane from data plane to make network man-
agement easier. In SDN, OpenFlow is a mainstream southbound
communication protocol for controllers and network devices. In an
OpenFlow-supported SDN network, the control plane establishes
connections with switches and installs flow entries in their flow
tables to direct packet forwarding. Since the flow table built with the
ternary content addressable memory (TCAM) has limited space, it
is possible to overflow by Denial-of-Service attacks or Flash Crowds
(FCs). In this article, we present FTOP, an eviction-based system to
capture anomalies and prevent flow table overflow from Low-rate
Flow Table Overflow (LFTO) attacks and FCs. FTOP has four
modules: Predictor, Detector, Mitigator, and Preventer. Predictor
monitors network traffic and produces estimation of the flow count.
Detector calculates features of all flows and detects LFTO attacks.
Mitigator calculates features of each flow and evicts malicious rules.
Preventer calculates the significance score for each flow and evicts
the low-scored flows. We introduce random forest classifiers in
attack detection and mitigation. Simulation results demonstrate
the effectiveness of FTOP in preventing flow table overflow, which
proves FTOP a practical solution.

Index Terms—Kalman filtering, low-rate flow table overflow
attack, random forest, software-defined networking.

I. INTRODUCTION

SOFTWARE-defined Networking (SDN) is a merging net-
work framework that brings centralized control, direct pro-

grammability, and programmable configuration through making
the control plane and data plane independent of each other [1]. In
contrast to a traditional network architecture, SDN’s data plane
devices merely act on instructions from the control plane in order

Manuscript received 12 January 2023; revised 11 June 2023; accepted 13
July 2023. Date of publication 21 July 2023; date of current version 30 April
2024. This work was supported in part by the National Key R&D Program of
China under Grant 2020YFB1713400, in part by the National Natural Science
Foundation of China under Grant 62122023, and in part by the Science and
Technology Key Projects of Changsha City under Grant kq2208038. Rec-
ommended for acceptance by Dr. He Huang. (Corresponding author: Jiliang
Zhang.)

Dan Tang, Zhiqing Zheng, and Jiliang Zhang are with the Hunan University,
Changsha 410012, China (e-mail: dtang@hnu.edu.cn; zhengzq@hnu.edu.cn;
zhangjiliang@hnu.edu.cn).

Keqin Li is with the State University of New York, New York, NY 10018
USA, and also with Hunan University, Changsha 410012, China (e-mail:
lik@newpaltz.edu).

Chao Yin is with the Jiujiang University, Jiujiang 332006, China (e-mail:
david_yin@jju.edu.cn).

Wei Liang is with the Hunan University of Science and Technology, Xiangtan
411199, China (e-mail: wliang@hnust.edu.cn).

Digital Object Identifier 10.1109/TNSE.2023.3297650

to forward packets, leaving sophisticated network operations
like routing to the control plane.

To realize communications between the control plane and
the data plane, many protocols have been proposed, such as
the Extensible Message and Presence Protocol (XMPP) [2] and
OpenFlow [3]. OpenFlow is now the most well-known south-
bound protocol that defines the flow table for packet forwarding
and allows users to directly access and manipulate the network
devices on the data plane.

SDN has benefited greatly from its innovation architecture,
however, the OpenFlow could present a number of security
risks [4]. Since OpenFlow utilizes flow tables to store essential
information relevant to network configurations, the OpenFlow
switch becomes a major target. Moreover, the network relies on
the switches to make modifications on flow rules according to
the controller’s commands all the time, making switch security
an even more important issue [5]. Physical switches typically
store flow entries in the ternary content addressable memory
(TCAM), which allows for wire-speed packet forwarding. The
flow table can only install limited flow rules by virtue of the
high cost of TCAM [6], rendering it vulnerable to Flow Table
Overflow (FTO) attacks [7] and Flash Crowds (FCs).

In this article, we study two scenarios that lead to flow table
overflow: the Low-rate FTO (LFTO) attacks and FCs. The LFTO
attack is a low-volume attack that sends a small number of
mismatched packets to trigger massive malicious rules instal-
lation and eventually leading to unavailable to install new rules
on the flow table. Different from LFTO attacks, FCs refer to a
variety of legitimate users accessing the service within a short
period of time, resulting in an effect similar to Denial of Service
attacks [8].

A multitude of proposed solutions by researchers aim to
prevent flow table overflow, however, it is important to note that
these solutions are not exempt from the following limitations:
� Coarse-grained matching: Most flow rule aggregation-

based solutions assign specific rules for big flows while
aggregating the rules for small flows into a default rule [9],
leading to coarse-grained matching for packets of small
flows [10].

� Only Focus on a single scenario: Most solutions only focus
on a single scenario, as some of them work on improving
flow table utilization under a normal network [11], [12]
and they fail to prevent overflow under FTO attacks, while
others only consider the attack scenario and may be unable
to prevent overflow under normal network [13].

2327-4697 © 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: HUNAN UNIVERSITY. Downloaded on May 01,2024 at 12:49:29 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0002-0062-0213
https://orcid.org/0000-0002-9324-8392
https://orcid.org/0000-0001-5224-4048
https://orcid.org/0000-0003-1915-1901
https://orcid.org/0000-0002-5074-1363
https://orcid.org/0000-0002-8698-3217
mailto:dtang@hnu.edu.cn
mailto:zhengzq@hnu.edu.cn
mailto:zhangjiliang@hnu.edu.cn
mailto:lik@newpaltz.edu
mailto:david_yin@jju.edu.cn
mailto:wliang@hnust.edu.cn

TANG et al.: FTOP: AN EFFICIENT FLOW TABLE OVERFLOW PREVENTING SYSTEM FOR SWITCHES IN SDN 2525

� Unable to address the root causes of attacks: Some solu-
tions are based on attack flow migration, which routes the
packets matched to flow rules stored in switches with insuf-
ficient memory resources to those switches with sufficient
memory resources so that the flow entries will be stored in
the switch which is not likely to overflow [14]. However,
the migration mechanism is unable to fundamentally miti-
gate FTO attacks and may lead to multiple switches being
overflowed [15].

In response to these issues, we propose FTOP, an online
system to prevent flow table overflow in two scenarios: LFTO
attacks and FCs. FTOP consists of four modules: Predictor,
Detector, Mitigator, and Preventer. The core idea of FTOP is to
prevent overflow with minimal evicting operations to the victim
flow table. FTOP relies on Mitigator and Preventer to complete
the eviction of malicious and less-important flow rules. Due
to the high computation overhead of Mitigator and Preventer,
we design Predictor and Detector to monitor the flow table
and send alarms to activate Mitigator and Preventer only if
the flow table may overflow. Predictor generates an estimate
of the flow count for the next time stamp and activates De-
tector if the estimation exceeds the threshold. When Detector
is activated, it polls the flow table and calculates features, and
inputs them into the detection classifier. When the LFTO attack
is confirmed, Mitigator will identify malicious rules and add
these rules to an evict list. Otherwise, Preventer will be triggered
to calculate significance score for each flow rule and evict the
rules with a low significance score. With these four modules,
FTOP can mitigate flow table overflow under the two scenarios
effectively. We use Kalman filtering to predict the flow count
for the next time stamp, and implement two random forest
(RF) classifiers to achieve attack detection and malicious flow
identification.

To assess the feasibility of FTOP, we performed four set of
simulations on a virtual SDN network. For LFTO attack scenar-
ios, deploying FTOP can detect attacks and identify malicious
rules with an accuracy rate of up to 98%, and reduce the propor-
tion of attack rules to 20.66%, which is more than 35% higher
than existing methods. For FCs scenarios, deploying FTOP can
reduce Table_Full messages to 411, which is more than 29%
higher than existing methods. In brief, our contributions are as
follows:
� We mitigate flow table overflow caused by both LFTO

attacks and FCs, which appears to be the first solution of
its kind.

� We propose an eviction-based system that only evicts
malicious rules and a small number of small flows, the
simulation results show that eviction operations do not add
packet matching issues and maintain fine-grained packet
matching.

� We design Detector and Mitigator to mitigate LFTO at-
tacks and Preventer to prevent being overflowed by FCs,
ensuring the security of the flow table under both attack
scenarios and normal scenarios.

� We mitigate LFTO attacks by removing malicious flows
from the flow table rather than aggregating or migrating,

effectively reducing the proportion of malicious flows in
the network.

This article is segmented into the following sections, arranged
in the following manner. Section II provides background in-
formation on SDN and threat models. Section III discusses
related work. In Section IV, we introduce techniques related
to FTOP. Section V presents our countermeasure, FTOP, which
mitigates LFTO attacks and prevents overflow caused by FCs.
Section VI evaluates the offline and online performance of FTOP
through simulations, and the last section, Section VII, provides
the conclusion.

II. BACKGROUND

A. SDN Framework

SDN, which is originated from Standford University’s Clean
Slate project and was proposed by Professor N. Mckeow, revo-
lutionizes network configuration and management by separating
the tightly-coupled control and data plane in traditional net-
working devices, resulting in programmatically efficient net-
work management. The application, control, and data plane are
three vertically dividing planes that make up a typical SDN
framework, according to ONF. Specifically, the control plane
controls routing via OpenFlow and provides an interface to the
north for developers to design and deploy their own functions
and applications. The data plane, on the other hand, processes
traffic solely in accordance with the instructions generated by the
connected controller. Finally, the application plane comprises of
applications that implement services through the network.

B. OpenFlow Protocol and the Data Plane

The OpenFlow protocol which is first proposed in 2008 and
has now been updated to OpenFlow v1.5 is one of the most
commonly used SDN southbound interface protocols. Through
it, the control plane can direct data plane to perform packet
forwarding and processing by a series of control events and
decisions to add flow entries to the switches.

In the data plane, the flow table is a key data structure that
enables the switches to forward and process incoming packets.
A flow table consists of flows that direct the forwarding and
processing of the matched packets. Each flow contains six
components, which are match field, priority, instruction field,
timeouts, and cookies. The most important parts are the match
field and the instruction field. The match field specifies the
packets that can match a flow, while the instruction field specifies
how to handle matching packets. Fig. 1 illustrates how the data
plane and control plane communicate with each other. When a
data packet reaches a switch, the switch first parses its header
and matches it with the flow entries in the flow table. If the packet
matches a flow entry, the switch will execute the actions from
the instruction field and specifies the output port for forwarding;
Otherwise, the switch will send a Packet_In event to the control
plane for further processing and routing instructions, and then
the controller that is connected to the switch will reply with

Authorized licensed use limited to: HUNAN UNIVERSITY. Downloaded on May 01,2024 at 12:49:29 UTC from IEEE Xplore. Restrictions apply.

2526 IEEE TRANSACTIONS ON NETWORK SCIENCE AND ENGINEERING, VOL. 11, NO. 3, MAY/JUNE 2024

Fig. 1. The communication between the control plane and the data plane.

Fig. 2. The model of an LFTO attack.

a Flow_Mod event which defines the adding, modifying and
removing of flow entries.

C. Threat Model

In this article, we discuss two kinds of data plane threats,
which are LFTO attacks and FCs.

Different from the high-volume DDoS attack which over-
whelm the resources of the switch’s flow table immediately,
the low-rate attack overflow the flow table in a more concealed
way. The first low rate DoS attack targeting SDN switches
is Slow-TCAM attack proposed by T. A. Pascoal et al. in
2017 [16]. Attackers recuit massive bots that each bot sends a
well-constructed packet to the target switch without IP spoofing.
In this article we study the LFTO attack proposed by Tang
et al. [13]. The attacker sends specially designed data packets to
the targeted switch and caused its flow table to install massive
flow rules, and resends the packets during each idle_timeout to
prevent being evicted. Fig. 2 depicts the model of the LFTO
attack, which is characterized by three parameters: period (P),
step (S), and maximum attack strength (MAS). P represents
the attack period, which is intentionally set shorter than the
idle_timeout to avoid eviction by the timeout mechanism. S
indicates the growth of attack packets between adjacent periods
(Ps). With the progression of the attack’s duration, the number of

malicious flow entries stored in the flow table rapidly increases,
as determined by the parameter S. MAS represents the maximum
quantity of malicious rules the attacker can generate. To overflow
the flow table during each P, MAS must exceed the rest of the
targeted flow table’s resources. To make the attack more random
and disordered, the P and S can be set to random. LFTO attacks
cause the flow table to fail to install flow rules for legitimate
new flows, so unmatched flows are forwarded to the controller,
potentially causing saturation attacks to the control plane. In
addition, due to the low attack rate of LFTO attack, the growth
of attack flow entries is obviously lower than that of legitimate
flow, which is difficult to be detected.

FCs refers to a phenomenon in which massive legitimate users
access a service at the same time for a period of time, resulting in
service performance degradation or even paralysis. In contrast
to DDoS attacks, Flash Crowds traffic has a widely dispersed
source IP distribution and packet size distribution. Different
from the LFTO attack, the growth rate of flow rules is faster
when there is flash congestion on the network, and the number
of matched packets and bytes is larger, which does not have
the effect of overflowing the flow table with small-sized data
packets. Although Flash Crowd is non-malicious, it can still
cause network performance degradation, so we hope to design
an anti-overflow system that can mitigate the impact of it.

III. RELATED WORK

In the past few years, there has been a growing body of
research focused on investigating security issues within the SDN
framework. In the section, we present relevant previous work
that includes studies on attacks to the data plane and techniques
for detecting and mitigating FTO attacks.

Attacks to the Data Plane: According to the literature [17],
data plane attacks have three major types. The first one is the
Denial-of-Service (DoS) attack. Attackers are able to monopo-
lize the bandwidth between the controller and the switch [18],
overflow the switch’s flow table [19], occupy the bottleneck
links in data plane [20], [21], [22], and consume the controller’s
available resources by Packet_In flooding [23]. The second one
is topology poisoning attacks. The attackers can disrupt the
controller’s control ability of the entire network by constructing
Link Layer Discovery Protocol (LLDP) packets to create fake
links between SDN switches that are nonexistent to [24]. The
third one is side-channel attacks. The attackers can estimate
network configurations, such as flow table capacity [25] and
communication records of switches [26] from the processing
time of the controllers.

Mitigating Flow Table Overflow Attacks: Solutions to flow ta-
ble overflow attacks can be categorized into four kinds, which are
aggregation-based solutions, eviction-based solutions, timeout-
based solutions, and migration-based solutions.

Aggregation refers to the use of a single flow rule to match
multiple flows, effectively reducing the quantity of rules in the
flow table. This kind of methods usually aggregate small flows
and reserve specific rules for big flows [9], [27], some of them
store important rules in TCAM while keeping less important
rules in SRAM [11]. This kind of methods has lower fine-grained

Authorized licensed use limited to: HUNAN UNIVERSITY. Downloaded on May 01,2024 at 12:49:29 UTC from IEEE Xplore. Restrictions apply.

TANG et al.: FTOP: AN EFFICIENT FLOW TABLE OVERFLOW PREVENTING SYSTEM FOR SWITCHES IN SDN 2527

packet matching, and may lose small flows and increase the
delay. In addition, this kind of methods are only practical for
dealing with flow table overflow under normal network environ-
ments and are not capable of mitigating overflow from malicious
users [28].

Timeout-based methods use adaptive algorithms to calculate
the optimal idle_timeout [12], [29], or hard_timeout [30], [31] to
evict the expired rules in the flow table. Similar to aggregation-
based methods, the timeout-based methods can only prevent
overflow under normal network conditions.

Migration-based methods need to adding routing rules to mi-
grate the flow rules from a switch with sufficient resources [14],
[32], [33]. This kind of methods may influence the routing of the
entire network, leading to low versatility and deployability [28].

Eviction-based methods usually work by eliminating some
chosen flow entries to release space for the installation of new
rules. The eviction strategy of this type of methods can be
divided into active eviction and passive eviction. Algorithms
commonly used for passive eviction include least recently used
(LRU) [34], first in first out (FIFO) [35], and random replace-
ment [36]. Passive eviction fails to identify malicious rules, and
therefore may mistakenly delete legitimate big flows causing
higher network load. Active eviction often removes the flows
with the least importance which are predicted to match the least
packets in the future [37], [38], or the flows which are confirmed
as malicious flows [39], [40], [41]. The current active eviction
method mainly identifies small flows that match fewer packets
and deletes them, and the accuracy is not high due to the dynamic
network. In conclusion, existing eviction-based methods rarely
target malicious rules, so most of the eviction rules are legitimate
small flows, which cannot well mitigate flow table overflow
attacks. In addition, eviction leads to higher communication
overhead, which may influence traffic forwarding [42].

In this work, our goal is to develop a lightweight and ef-
fective system for preventing flow table overflow. We expect
it can mitigate LFTO attacks and prevent being overflowed in
a normal network, so we combine active and passive eviction
strategies to achieve that goal with the least modifications on
the switch. We simulated FTOP and evaluated its performance
against the native overflow policies of OpenFlow (REFUSE
and EVICT [43]), and three existing schemes from literature
(SIFT [16], TableGuard [41], and SFTOGuard [13]). The simu-
lation results demonstrate that FTOP outperforms all five meth-
ods in both LFTO attack and FCs scenarios.

IV. THE PREDICTING AND ATTACK MITIGATION TECHNIQUES

This section introduces the techniques used in FTOP, namely
Kalman Filtering and Random Forest.

A. Kalman Filtering

The Kalman filtering (KF) algorithm [44] proposed by Rudolf
E. Kálmán in 1960, is a one-step state estimator generates
estimates of unknown variables. Over these decades, the KF al-
gorithm has been making contributions to numerous fields [45],
and has been applied to attack detection problems [46]. Since

Fig. 3. The workflow of a KF estimator.

the KF algorithm has low memory consumption and fast cal-
culation speed, we utilizes it for flow count prediction. The
attack detection will not be carried out only if the prediction
result indicates that the flow table may be overflowed, which
effectively reduces the system overhead [47] while maintaining
high-quality anti-overflow service for switches.

As shown in Fig. 3, the KF estimator consists of two phases,
which are the predicting and updating phase.

The predicting phase utilizes the previously estimated state of
the observed variable to estimate current state of the observed
variable. Firstly, the estimator estimates the current state X̂t|t−1

using the estimated previous state Xt−1|t−1 as follows:

X̂t|t−1 = FtXt−1|t−1 +Btut, (1)

where Ft denotes the state transition model, ut denotes the
control vector, Bt denotes the control-input model applied to
ut. Then, the estimator generates the estimate covariance P̂t|t−1

as follows:

P̂t|t−1 = FtPt−1|t−1F
T
t +Qt, (2)

where FT
t is the transpose of Ft, and Qt is the covariance of the

process noise.
The updating phase updates estimates from the predicting

phase once the measurements at time t are observed.
Firstly, the estimator updates the state estimate of time t the

Kalman gain K as follows:

Xt|t = X̂t|t−1 +Ktỹt, (3)

where ỹt is given by

ỹt = zt −HtX̂t|t−1, (4)

where zt is the observation of the true state Xt. Finally, the
estimated covariance Pt|t is obtained by

Pt|t = (1−KtHt)P̂t|t−1. (5)

B. Random Forest Algorithm

For building our detection and mitigation models, we use
the RF algorithm, which is an ensemble learning algorithm.
Fig. 4 depicts a simplified RF workflow. The RF algorithm
operates classification, regression, and other tasks by combining
a multitude of individual decision trees (DTs). Each DT in the
RF algorithm provides a class prediction, and the class with
the majority vote is the prediction of the RF model. Due to the
low correlation between DTs, the individual errors from the DTs

Authorized licensed use limited to: HUNAN UNIVERSITY. Downloaded on May 01,2024 at 12:49:29 UTC from IEEE Xplore. Restrictions apply.

2528 IEEE TRANSACTIONS ON NETWORK SCIENCE AND ENGINEERING, VOL. 11, NO. 3, MAY/JUNE 2024

Fig. 4. The workflow of RF algorithm.

Fig. 5. System workflow.

will not influence the prediction result of the entire model, which
brings high accuracy, good tolerance for outliers, and the ability
to avoid overfitting.

V. SYSTEM DESIGN

A. System Overview

We first introduce the general overview of FTOP in this
section, and then introduce each modules in brief. We define
in this work that preventing overflow refers to preventing flow
table usage from reaching more than 98%. As is shown in Fig. 5,
FTOP has four modules, namely Predictor, Detector, Mitigator,
and Preventer. Predictor polls the quantity of the flow entries
and produces the estimated quantity of flow entries at time t+1
with a KF estimator. If the estimate is larger than the threshold,
Detector will be triggered. Detector first polls the flow table
of the monitored switch and extracts its features for detection.
Then, the module uses a trained RF classifier to confirm whether
the monitored switch is been attacked. If the attacks occur,
Mitigator is activated and traverses the flow entries. The flow
rules which are identified as malicious rules by the mitigation
model will be added to an evict list to be evicted. Preventer is
active at all time to prevent flow tables overflowed by legitimate
rules. With these four modules, FTOP can prevent flow table
overflow under two circumstances, which are the LFTO attacks
and FCs.

Algorithm 1: Predict the Number of Flow Rules.

B. Predictor Module

Algorithm 1 illustrates the workflow of Predictor. Firstly,
the module polls the switch at Δt seconds interval, obtains the
flow count and collects it into the sliding window flowCount.
Secondly, it feeds flowCount to a KF estimator to produce
estimations of the hidden state at the current time stamp. Then,
the estimator predicts the state Estimate and calculate the covari-
ance next_covariance at the next time stamp with the previous
estimate and covariance. Finally, the status of the flow table is
confirmed with a threshold TH. If the Estimate exceeds TH,
Predictor considers that the flow table may overflow, and the
status is set to unsafe to activate Detector. The TH is given by

TH =

{
αTH counter = 2
TH0 counter = 0, 1

(6)

where counter counts the times that Detector detects LFTO
attacks and counter = 2 denotes Detector detects LFTO attacks
twice continuously, α is set to 0.7, and TH0 is set to 80% of the
flow table capacity.

We define the initial value for TH to 80% of the flow table
is that it is likely to be overflowed with less than 20% available
space. The sampling interval Δt is set to 1 s. To implement the
KF estimator, we use pykalman [48]. With Predictor, the system
turns to attack detection only if the flow table is likely to be
overflowed, which effectively reduces the system overhead.

C. Detector Module

The workflow of Detector is shown in Algorithm 2. It detects
whether flow table overflow attacks are launched and activates
other modules to maintain flow table availability. To detect
LFTO attacks, Detector first polls the switch’s flow table to
obtain the features of the flow table, which are packet numbers

Authorized licensed use limited to: HUNAN UNIVERSITY. Downloaded on May 01,2024 at 12:49:29 UTC from IEEE Xplore. Restrictions apply.

TANG et al.: FTOP: AN EFFICIENT FLOW TABLE OVERFLOW PREVENTING SYSTEM FOR SWITCHES IN SDN 2529

Fig. 6. Flow table features under normal conditions and LFTO attacks.

Algorithm 2: Detect LFTO Attacks.

pkt, bytes byte, number of flow rules numrules, and average
packet number avgpkt. The average packet number is given by

avgpkt =
pkt

numrule
, (7)

where numrules is the number of flow rules. Then, the features
for detection are served as the input of the detection classification
model to determine switch’s status. If the model determines that
LFTO attacks occur, the counter will be incremented by 1, and
Mitigator will be activated to identify and evict malicious rules.
Otherwise counter will be set to 0.

Fig. 6 shows the flow table features under flow table overflow
attacks and without attacks. As shown in the figure, the above
features are able to well distinguish between the flow table under
normal conditions and LFTO attacks. The orange line denotes
the displayed features under attacks while the blue line stands
for normal conditions. As shown in Fig. 6(a), under normal
network, numrules does not exceed 1500 while that is obviously
larger under LFTO attacks. As the attack lasting time grows,
numrules increases stepwise, which is in line with the attack
model discussed in Section II. Since we modified the source
port of attack packets to overflow the flow table with minimum
packets, pkt and byte under LFTO attacks are much smaller than
those under normal network, as shown in Fig. 6(b) and 6(c). In
Fig. 6(d), under LFTO attacks, massive attack flows are added
to the flow table that only match a minor quantity of packets

and rules for legitimate packets can not be installed, leading to a
low avgpkt since pkt declines and numrules increases. Therefore,
the LFTO attacks can overflow the flow table with a small cost,
which sends the least quantity of packets to construct a large
quantity of flow entries.

With Detector, FTOP can confirm whether the flow table is
overflowed by legitimate users or malicious attacks. If it is over-
flowed by legitimate flow entries, Preventer will be triggered
to evict small flow rules which are less important to free the
flow table space. If the flow table is overflowed by attackers,
Mitigator will be triggered to identify malicious rules and evict
them.

D. Mitigation Module

Mitigator is activated when Detector sends the being attacked
signal to it. Firstly, this module requests the switch for detailed
flow table information, which includes every flow entry in the
switch’s flow table. Then, it traverses the obatined flow rules,
extracts the features of each rule, and enters the features into the
RF classifier which is trained to identify malicious rules. If a
flow rule is identified as a malicious rule, it will be added to an
evict list and later deleted. Finally, if the quantity of flow rules
still exceeds TH, Preventer will be activated.

The features extracted are the number of packets pkt, bytes
byte, source and destination ports, source and destination IPs,
average packet arrival interval (APAI), and average packet size
(APS). APAI is given by

APAI =
pkt

duration
, (8)

where duration is the valid time of the flow entry.
Fig. 7 shows the above features of attack rules and benign

rules. Since the LFTO attacks have a short attack period, the
APAI of a malicious rule is much larger than that of a benign
rule. To overflow the flow table, the attacker sends a major
quantity of unmatched data packets with randomized ports to
the targeted switch to trigger the installation of massive flow
rules corresponding to the malicious packets. We can see that
the selected features can well distinguish between the attack
flows and the legitimate flows.

With Mitigator, FTOP can identify malicious flows with high
accuracy, which enables FTOP to achieve precise mitigation
from attackers and has the least impact on the matching of
legitimate packets.

Authorized licensed use limited to: HUNAN UNIVERSITY. Downloaded on May 01,2024 at 12:49:29 UTC from IEEE Xplore. Restrictions apply.

2530 IEEE TRANSACTIONS ON NETWORK SCIENCE AND ENGINEERING, VOL. 11, NO. 3, MAY/JUNE 2024

Fig. 7. Mitigation features of the attack flows and benign flows.

E. Preventer Module

Preventer is activated under two circumstances, which is 1)
Predictor predicts that the estimated quantity of flow entris at
the next time stamp will exceed the threshold TH and Detector
confirms no LFTO attacks, and 2) Mitigator evicts the malicious
flow entries identified by our mitigation model and after this
process, the quantity of flow entries still exceeds TH. This
module has two main steps. Firstly, the module traverses all the
flow entries in the switch’s flow table, calculate the significance
score (ss) of each rule. The formula of ss is given by

ssi =
θ

α+ β
× nxi∑n

i=1 xi
+

β

θ + β
× nyi∑n

i=1 yi
, (9)

where xi is the number of packets that the flow rule i matches,
yi is the quantity of bytes that rulei matches, θ and β are the
coefficient of variation of x and y.

The coefficient of variation (CV) is a statistical measure that
expresses the degree of variation relative to its mean value. It is
calculated as the ratio of the standard deviation to the average
value of the data and has been frequently utilized for weight
assignment. The larger CV of a feature indicates that this feature
carries more information than other features and is of greater
significance, and thus the weight of the feature is given a greater
value. For the two features, the quantity of pkt and the quantity of
byte, we do not manually set the fixed weights, but use their CVs
to produce self-adaptive weights, which makes the ss always
useful to measure whether the flow rule is taking up significant
amounts of network capacity and can not be evicted.

Fig. 8 shows the distribution of ss. It is evident that the flows
which match more packets and bytes have higher ss, with an
average of 64.72, and we regard these flows as big flows that
take on heavier data transfer task that should not be evicted. For
legitimate small flows and attack flows, the average ss is 0.52.
These flows are with less significance and have little influence on
the network if they are evicted. Once the significance score (ss)
of all flow entries have been calculated, the module proceeds
by sorting the rules according to their respective scores and
subsequently removing the ones with the lowest scores. This
process is aimed at ensuring that the flow table usage after the
mitigation is reduced to a level that is below the predetermined
threshold TH, thereby effectively managing the excess flow
entries and optimizing the switch’s performance and overall
performance of the SDN network.

Fig. 8. Distribution of ss of the flow rules.

VI. EVALUATION

A. Simulations Setup

The simulation environment specifications for our experi-
ments were an Intel Core i5-7500 CPU @ 3.40 GHz, 64-bit
operating system with 32 GB RAM. We installed Mininet [49]
version 2.3.0d6 and Ryu controller [50] version 4.34 on Ubuntu
version version 18.04.3 LTS. The switches in the topology are
all OpenvSwitch version 2.5.9, and we followed the OpenFlow
version 1.3 protocol.

We tested our system with the dumbbell topology, which is
shown in Fig. 9. The topology contains 2 switches, 4 hosts, and
5 links. The link bandwidth between switches is 1 Gbps, and the
link bandwidth between switches and hosts is 10 Gbps. And the
flow table space of S1 is set to 3500, which denotes S1 can install
no more than 3500 flow rules. The idle_timeout of all flow rules
is set to 10 s, which means a flow rule will be evicted if it matches
no packet after the given idle_timeout. To ensure interconnection
between hosts, IP addresses of switches and hosts are all under
the 10.0.0.0/12 network segment. Additionally, all the switches
are connected to an Ryu controller. h3 is an attacker and sends
malicious packets with spoofed IPs to h4 the server. h1 sends
legitimate packets to the network.

To evaluate the effectiveness of FTOP, four groups of sim-
ulations were conducted using various parameters, as shown
in Table I. The parameter T of every attack launched in each
group is a random value within the range in the cells, and t is
the average time from the initiation of attacks to the overflow

Authorized licensed use limited to: HUNAN UNIVERSITY. Downloaded on May 01,2024 at 12:49:29 UTC from IEEE Xplore. Restrictions apply.

TANG et al.: FTOP: AN EFFICIENT FLOW TABLE OVERFLOW PREVENTING SYSTEM FOR SWITCHES IN SDN 2531

Fig. 9. Network topology for evaluation.

TABLE I
PARAMETERS SETTING IN EACH SIMULATION GROUP

of the switch’s flow table in each set of simulations. The first
three groups of simulations are used to verify whether FTOP is
effective for LFTO attacks and the fourth group of simulations is
used to confirm whether the method is effective for FTO attacks
from FCs.

B. Dataset

Attack traffic: We use Python Scapy to generate the LFTO
attack on h3 and send the packets to h4 to overflow the flow
tables of S1.

Background traffic: Real-world network traffic trace IMC-
10 [51], [52] is used for evaluation. The benign traffic for our
experiments was obtained from the pt1 of univ2 trace from the
IMC dataset, while we filled the remaining load of the packets
with the anonymous trace. To replay the trace, we utilized
tcpreplay [53]. The legitimate packets were sent from h1 to h4.
For each trace, the playback time is 3600 s, and the speed is
1000 pps. To simulate FTO attacks from FCs, we replayed the
trace from h2 to h4, the packet replay rate of which is 2000pps.

Dataset: To build a dataset for detection, we polled S1’s flow
table every 1 s and collected the number of flow rules to build a
raw dataset. Then, to label the raw dataset, we defined the label
of positive samples as “1” and negative samples as “0”. The
detection dataset contains 17838 samples, where 8980 of them
are positive samples. To build a dataset for mitigation, we first
sampled the flow table of S1 every 10 s and collected each flow
rule in the flow table to build a raw dataset, where 10 s is the
idle timeout of the flow rules. Then, we labeled the data, where
“1” stands for positive sample data, and “0” stands for negative

TABLE II
RESULTS OF OFFLINE DETECTION

sample data. The mitigation dataset has 237143 samples in total,
where 162005 of them are positive.

C. Evaluation Metric

So as to appraise the efficiency of our designed system,
we adopt six metrics, which are Accuracy, Precision, Recall,
F-score, False Positive Rate (FPR), and Matthews correlation
coefficient (MCC). The formulas to calculate these six metrics
are given by

Acc =
TP + TN

TP + TN + FP + FN
. (10)

Precision =
TP

TP + FP
. (11)

Recall =
TP

TP + FN
. (12)

F -score =
Recall × Precision

Recall + Precision
× 2. (13)

FPR =
FP

TN + FP
. (14)

where TP, FP, TN, FN represent true positives, false positives,
true negatives, and false negatives, respectively.

It can be inferred from their equations that higher Accuracy,
Recall, Precision, and MCC values correspond to superior clas-
sification performance, while a lower FPR value denotes a lower
probability of error.

D. Performance of the Proposed System

Offline Detection Evaluation: We conducted offline detection
evaluation before we deployed FTOP to SDN switches. To show
the effectiveness of the detection method utilized in FTOP,
we compared it with five machine learning algorithms imple-
mented with scikit-learn, which are Adaptive Boosting (Ad-
aBoost), Gradient Boosting (GB), Extreme Gradient Boosting
(XGBoost), Support Vector Machine (SVM), K-Nearest Neigh-
bors (KNN), and. All the parameters of these machine learning
algorithms are default, and the results are shown in Table II. It
can be seen from the table that RF has the best classification
performance and performs well among the six metrics, and can
better identify whether the flow table is overflowed by malicious
flows.

Offline Malicious Flows Identification: We also conducted
offline malicious flows identification before we deployed FTOP
to switches. It evaluates that the selected flow rule features and
the RF classifier can effectively identify malicious flow rules. We

Authorized licensed use limited to: HUNAN UNIVERSITY. Downloaded on May 01,2024 at 12:49:29 UTC from IEEE Xplore. Restrictions apply.

2532 IEEE TRANSACTIONS ON NETWORK SCIENCE AND ENGINEERING, VOL. 11, NO. 3, MAY/JUNE 2024

TABLE III
OFFLINE MALICIOUS FLOW CLASSIFICATION

Fig. 10. The number of flow rules under four set of simulations.

compared the RF classifier with five machine learning methods
implemented using scikit-learn, all parameters are default val-
ues, the results are displayed in Table III. It is evident from the
table that the RF model outperforms other classification models
in offline mitigation evaluation.

Online Mitigation Effect: We evaluated the online mitigation
effect of FTOP from three perspectives: the quantity of all the
flow entries, controller events, and the proportion of malicious
rules.

1) numrules: We recorded the distribution of the quantity of all
flow entries in the four simulation groups, both with and without
FTOP deployed. The results are shown in Table I and Fig. 10.
Since the Detector module is activated only if the estimate
produced by the Predictor module exceeds the threshold TH,
the numrules of the flow table with and without FTOP deployed
shows no difference at the early stage of being overflowed.
When the predicted value exceeds TH, Detector is triggered,
and Mitigator evicts the identified malicious rules to achieve
mitigation for LFTO attacks. However, because of the delay of
eviction rules, the number of evicted rules is less than the newly
added malicious rules, leading to a certain increase of numrules.
Although the flow table may still overflow with FTOP deployed,
in the two circumstances of LFTO attacks and FTO attacks from
FCs, the average numrules is significantly lower than without

Fig. 11. Proportion of Pm in each simulation group.

FTOP, indicating that FTOP can effectively alleviate flow table
overflow caused by attacks and benign users.

2) Malicious flows proportion: The malicious flow entries
proportion Pm describes the ratio of malicious rules to the
overall flow entries. We compared the Pm with and without
FTOP deployed under four sets of simulation parameters and
the results are shown in Fig. 11. When LFTO attacks occurred,
Pm increases sharply. With FTOP deployed, the rate of evicting
rules is lower than that of adding new malicious rules, leading
to an increase of Pm, but it is still significantly lower than that
without FTOP, which provides strong evidence that FTOP can
effectively identify malicious rules, evict the identified rules to
reduce the impact of LFTO attacks. Under FCs, Pm is zero,
and Mitigator cannot identify malicious rules. The mitigation of
overflow is completed by the Preventer module.

3) The number of control messages: Control messages are a
good reflection of network status. We use two types of control
messages to represent flow table status, which are Packet_In
message and Table_Full message. Packet_In messages can well
represent the matching of the packets. If the packet does not
have a matching flow entry, the switch will generate a Packet_In
event and send it to the control plane. The number of Table_Full
messages can well reflect the extent of switch’s flow table
overflow. When the switch is adding flow rules according to
the Flow_Mod events from the controllers, if the flow table is
overflowed and cannot provide space for new entries, the switch
will send Table_Full messages to controllers, indicating that the
flow table has no space to install a single flow rule and forward
the corresponding packets. We compared the quantity of the two
types of control messages mentioned above with and without
FTOP deployed under four sets of simulation parameters and
the results are shown in Fig. 12. We can see that the quantity of
Packet_In messages does not increase significantly with FTOP
deployed in the two cases, indicating that the eviction of ma-
licious rules does not affect the matching of legitimate packets

Authorized licensed use limited to: HUNAN UNIVERSITY. Downloaded on May 01,2024 at 12:49:29 UTC from IEEE Xplore. Restrictions apply.

TANG et al.: FTOP: AN EFFICIENT FLOW TABLE OVERFLOW PREVENTING SYSTEM FOR SWITCHES IN SDN 2533

Fig. 12. The number of control messages under LFTO attacks and FCs.

and the number of Table_Full messages is significantly reduced,
it can be seen that FTOP can effectively alleviate the flow table
overflow while affecting packets matching as little as possible.

Impact of the threshold: Our system includes one key param-
eter: α, which adjusts the threshold TH to determines when the
system will starts detection and mitigation. We use counter to
record the the urgency of mitigation. If the counter is greater
than 2, it means that the Detector has determined that the switch
is attacked by LFTO twice in a row. Since Mitigator will expel

Fig. 13. The comparison of mitigate effect under LFTO attacks with different
thresholds.

all the attack flow entries which are stored chronically in the
switch’s flow table every time it’s determined that an attack has
been detected, two consecutive detection results of 1 indicate
that the attack has entered the outbreak stage, and the threshold
needs to be lowered for earlier detection.

To know how α influences the performance of FTOP, we set
three values for it, which are 0.7, 0.8 and 0.9, and we evaluate
the performance from two aspects, which are number of eviction
rules and the number of Table_Full message count.

Fig. 13 shows the mitigation effect of the three α values in
LFTO attack FCs scenarios. The dark blue bar symbolizes the
mean number of rule evictions in the LFTO attack scenario, and
the light blue bar symbolizes the mean number of rule evictions
in the FCs scenario, where the mean rule eviction refers to the
mean number of rules deleted by a single eviction operation.
It can be seen that the bigger the α, the bigger the average
quantity of evictions. This is because the greater the threshold,
the higher the Pm during mitigation, and the more rules need to
be evicted, but the overflow is also easier. As the alpha increases,
the number of Table_Full messages also increases, which means
that the number of overflows has increased. Therefore, we set
alpha to 0.7, which can enable detection and mitigation earlier
and effectively prevent flow table overflows.

System latency: The latency of FTOP includes four parts, the
processing time of Predictor, Detector, Mitigator, and Preven-
ter. We recorded the processing time of these four modules with
the attack parameters shown in Table I, and the processing time
of each module are illustrated in Fig. 14.

Fig. 14(a) displays the processing time of Predictor and
Detector. Fig. 14(b) shows the processing time of Mitigator
and Preventer. Predictor can mostly complete the predicting
on flow count of the next time stamp in 0.061 s, with a median
of 0.053 s. Detector can complete attack detection in 0.047 s,
with a median of 0.042 s. For flow eviction, Mitigator completes
mitigation with an average of 0.543 s, and Preventer processes
with an average time of 1.680 s. The reason why Mitigator and
Preventer takes longer to process is that the ovs command needs
to be operated once for each flow to be deleted, and after an attack
is detected, thousands of flows need to be deleted each time

Authorized licensed use limited to: HUNAN UNIVERSITY. Downloaded on May 01,2024 at 12:49:29 UTC from IEEE Xplore. Restrictions apply.

2534 IEEE TRANSACTIONS ON NETWORK SCIENCE AND ENGINEERING, VOL. 11, NO. 3, MAY/JUNE 2024

TABLE IV
RESULTS OF COMPARATIVE EVALUATION UNDER LFTO ATTACKS

Fig. 14. Processing time of each module of FTOP.

Fig. 15. The comparison of system overhead.

Mitigator is activated. Consequently, the latency of the entire
system is between 1 3 seconds, with an average of 2.297 s.

System consumption: We tested the overhead of FTOP, and
the results are presented in Fig. 15. With LFTO deployed, the
mean CPU usage increased by only approximately 18% within
one minute (the remaining CPU consumption in the figure is
attributed to network simulation scripts to fill the background
traffic and software), and the memory usage was as low as
129 MB. As a result, the system consumption of FTOP is
accepctable.

E. Performance Comparison

We compared FTOP with OpenFlow native overflow policies:
EVICT and REFUSE, and three relevant methods from the
literature.The methods selected for comparative experiments
include SIFT [16] (source code at [54]), TableGuard [41] and
SFTOGuard [13]. Table IV displays the experimental results
under LFTO attacks scenario and Table V displays the results
under FCs. The duration of each experiment is 600 s, with a

TABLE V
RESULTS OF COMPARATIVE EVALUATION UNDER FCS

table size of 3500. The total overflow count calculates how many
times the flow table has been overflowed during each simulation
process; the earliest overflow time is the shortest time that is
required for the first flow table overflow to occur.

It can be seen from Table IV that FTOP effectively mitigates
LFTO attacks, mainly reflected in significantly reducing the
quantity of malicious attack flow entries stored in the flow table.
Specifically, FTOP reduced the average Pm to 20.66%, outper-
forming other five methods. This also significantly alleviate the
average flow table usage to 50.56%. For control messages, the
number of Table_Full messages generated by using SFTOGuard
is less than that of FTOP, that is, using SFTOGuard can better
prevent overflow, but the proportion of attack flow is higher
when using SFTUGuard, indicating that SFTOGuard drives out a
major quantity of benign flow entries to prevent overflow, which
tremendously affects normal user behaviors.

Table V shows the comparative simulation results under FCs.
From the Table, we can see that FTOP can significantly mitigate
the overflow caused by benign users. FTOP significantly reduces
the flow table occupation to 67.18%. It also has excellent per-
formance in preventing overflow, and the total overflow time
is 18 s, which is lower than other methods. In addition, the
earliest overflow time of FTOP is 56 s and the number of
Table_Full messages is much smaller than other methods, which
means FTOP outperforms other methods in mitigating flow table
overflow caused by legitimate users.

VII. CONCLUSION

In this article, we propose FTOP to mitigate flow table
overflow in both LFTO attack and FCs scenarios. FTOP can
significantly protect SDN switches against FTO attacks from at-
tackers and FCs by continuously estimating flow rule count using

Authorized licensed use limited to: HUNAN UNIVERSITY. Downloaded on May 01,2024 at 12:49:29 UTC from IEEE Xplore. Restrictions apply.

TANG et al.: FTOP: AN EFFICIENT FLOW TABLE OVERFLOW PREVENTING SYSTEM FOR SWITCHES IN SDN 2535

Kalman Filtering, detecting LFTO attacks with random forest
model, mitigating LFTO attacks by removing malicious flows,
removing less important flows to prevent being overflowed by
FCs. Our simulation results indicate that FTOP successfully
mitigates flow table overflow by 65% compared to OpenFlow’s
native strategies and 35% compared to three existing schemes.

However, there are still questions that require further inves-
tigation. The first question is how to detect and mitigate flow
table overflow in large-scale SDN networks with high-levels of
traffic and complex network topologies. The second is the coor-
dination and communication problems that exist in distributed
mitigation. Switches on a link may have different prediction or
detection results. If there is no unified control logic, agreed flow
rules may be repeatedly deleted and installed. In the future, we
will implement LFTO attacks and FCs in large-scale network
to verify the effectiveness of FTOP and design a centralized
mitigation control module to process the flow table information
of each switch, and provide mitigation strategies for switches
that need mitigation.

REFERENCES

[1] W. Xia, Y. Wen, C. H. Foh, D. Niyato, and H. Xie, “A survey on
software-defined networking,” IEEE Commun. Surveys Tuts., vol. 17, no. 1,
pp. 27–51, Firstquarter 2015.

[2] P. Saint-Andre, “Extensible messaging and presence protocol (XMPP):
Core,” 2011. [Online]. Available: http://xmpp.org/rfcs/rfc6120.html

[3] N. McKeown et al., “OpenFlow: Enabling innovation in campus net-
works,” ACM SIGCOMM Comput. Commun. Rev., vol. 38, no. 2,
pp. 69–74, 2008.

[4] W. Li, W. Meng, and L. F. Kwok, “A survey on OpenFlow-based software
defined networks: Security challenges and countermeasures,” J. Netw.
Comput. Appl., vol. 68, pp. 126–139, 2016.

[5] B. Yuan, C. Lin, D. Zou, L. T. Yang, and H. Jin, “Detecting malicious
switches for a secure software-defined tactile internet,” ACM Trans. Inter-
net Technol., vol. 21, no. 4, pp. 1–23, 2021.

[6] R. Biswas and J. Wu, “Traffic engineering to minimize the number of
rules in SDN datacenters,” IEEE Trans. Netw. Sci. Eng., vol. 8, no. 2,
pp. 1467–1477, Apr.-Jun. 2021.

[7] R. Kandoi and M. Antikainen, “Denial-of-service attacks in OpenFlow
SDN networks,” in Proc. IFIP/IEEE Int. Symp. Integr. Netw. Manage.,
2015, pp. 1322–1326.

[8] S. Yu, W. Zhou, W. Jia, S. Guo, Y. Xiang, and F. Tang, “Discriminating
DDoS attacks from flash crowds using flow correlation coefficient,” IEEE
Trans. Parallel Distrib. Syst., vol. 23, no. 6, pp. 1073–1080, Jun. 2012.

[9] Y. Zhou et al., “Raze policy conflicts in SDN,” J. Netw. Comput. Appl.,
vol. 199, 2022, Art. no. 103307.

[10] B. Isyaku, M. S. Mohd Zahid, M. Bte Kamat, K. Abu Bakar, and F. A.
Ghaleb, “Software defined networking flow table management of Open-
Flow switches performance and security challenges: A survey,” Future
Internet, vol. 12, no. 9, 2020, Art. no. 147.

[11] Y. Zhou, K. Chen, J. Zhang, J. Leng, and Y. Tang, “Exploiting the vulner-
ability of flow table overflow in software-defined network: Attack model,
evaluation, and defense,” Secur. Commun. Netw., vol. 2018, pp. 1–15, 2018.

[12] F. Haq, A. Naaz, T. P. K. Bantupalli, and K. Kataoka, “DRL-FTO: Dynamic
flow rule timeout optimization in SDN using deep reinforcement learning,”
in Proc. Asian Internet Eng. Conf., 2021, pp. 41–48.

[13] D. Tang, D. Zhang, Z. Qin, Q. Yang, and S. Xiao, “SFTO-guard: Real-time
detection and mitigation system for slow-rate flow table overflow attacks,”
J. Netw. Comput. Appl., vol. 213, 2023, Art. no. 103597.

[14] R. Al-quraan and A. Alma’aitah, “A secure switch migration scheduling
based on prediction for load balancing in SDN,” in Proc. IEEE 12th Int.
Conf. Inf. Commun. Syst., 2021, pp. 364–370.

[15] J. Xu, L. Wang, C. Song, and Z. Xu, “Proactive mitigation to table-overflow
in software-defined networking,” in Proc. IEEE Symp. Comput. Commun.,
2018, pp. 00719–00725.

[16] T. A. Pascoal, Y. G. Dantas, I. E. Fonseca, and V. Nigam, “Slow TCAM
exhaustion DDoS attack,” in Proc. 32nd IFIP Int. Conf. ICT Syst. Secur.
Privacy Protection, 2017, pp. 17–31.

[17] S. Gao, Z. Li, B. Xiao, and G. Wei, “Security threats in the data plane
of software-defined networks,” IEEE Netw., vol. 32, no. 4, pp. 108–113,
Jul./Aug. 2018.

[18] M. Rahouti, K. Xiong, N. Ghani, and F. Shaikh, “SYNGuard: Dynamic
threshold-based SYN flood attack detection and mitigation in software-
defined networks,” IET Netw., vol. 10, no. 2, pp. 76–87, 2021.

[19] Y. Qian, W. You, and K. Qian, “OpenFlow flow table overflow attacks
and countermeasures,” in Proc. IEEE Eur. Conf. Netw. Commun., 2016,
pp. 205–209.

[20] D. Tang, Y. Yan, S. Zhang, J. Chen, and Z. Qin, “Performance and features:
Mitigating the low-rate TCP-targeted DoS attack via SDN,” IEEE J. Sel.
Areas Commun., vol. 40, no. 1, pp. 428–444, Jan. 2022.

[21] D. Tang, S. Zhang, Y. Yan, J. Chen, and Z. Qin, “Real-time detection
and mitigation of LDoS attacks in the SDN using the HGB-FP algorithm,”
IEEE Trans. Serv. Comput., vol. 15, no. 6, pp. 3471–3484, Nov./Dec. 2022.

[22] D. Tang, S. Wang, B. Liu, W. Jin, and J. Zhang, “GASF-IPP: Detection
and mitigation of LDoS attack in SDN,” IEEE Trans. Serv. Comput., early
access, Apr. 13, 2023, doi: 10.1109/TSC.2023.3266757.

[23] Y. Yu, L. Guo, Y. Liu, J. Zheng, and Y. Zong, “An efficient SDN-based
DDoS attack detection and rapid response platform in vehicular networks,”
IEEE Access, vol. 6, pp. 44570–44579, 2018.

[24] S. Hong, L. Xu, H. Wang, and G. Gu, “Poisoning network visibility in
software-defined networks: New attacks and countermeasures,” in Proc.
Netw. Distrib. Syst. Secur., 2015, pp. 8–11.

[25] F. Shoaib, Y.-W. Chow, and E. Vlahu-Gjorgievska, “Preventing timing
side-channel attacks in software-defined networks,” in Proc. IEEE Asia-
Pacific Conf. Comput. Sci. Data Eng., 2021, pp. 1–6.

[26] S. Liu, M. K. Reiter, and V. Sekar, “Flow reconnaissance via timing attacks
on SDN switches,” in Proc. IEEE 37th Int. Conf. Distrib. Comput. Syst.,
2017, pp. 196–206.

[27] N. Saha, S. Misra, and S. Bera, “Q-Flag: QoS-aware flow-rule aggregation
in software-defined IoT networks,” IEEE Internet Things J., vol. 9, no. 7,
pp. 4899–4906, Apr. 2022.

[28] D. Tang, Y. Yan, C. Gao, W. Liang, and W. Jin, “LtRFT: Mitigate the low-
rate data plane DDoS attack with learning-to-rank enabled flow tables,”
IEEE Trans. Inf. Forensics Secu., vol. 18, pp. 3143–3157, 2023.

[29] S. K. Noh, M. Kang, and M. Park, “Protection against flow table overflow
attack in software defined networks,” in Proc. IEEE Int. Conf. Inf. Netw.,
2021, pp. 486–490.

[30] Y. Kanizo, D. Hay, and I. Keslassy, “Palette: Distributing tables in
software-defined networks,” in Proc. IEEE Conf. Comput. Commun., 2013,
pp. 545–549.

[31] A. Panda, S. S. Samal, A. K. Turuk, A. Panda, and V. C. Venkatesh, “Dy-
namic hard timeout based flow table management in OpenFlow enabled
SDN,” in Proc. IEEE Int. Conf. Vis. Towards Emerg. Trends Commun.
Netw., 2019, pp. 1–6.

[32] N. Aljeri and A. Boukerche, “An efficient heuristic switch migration
scheme for software-defined vehicular networks,” J. Parallel Distrib.
Comput., vol. 164, pp. 96–105, 2022.

[33] B. Yuan, D. Zou, S. Yu, H. Jin, W. Qiang, and J. Shen, “Defending against
flow table overloading attack in software-defined networks,” IEEE Trans.
Serv. Comput., vol. 12, no. 2, pp. 231–246, Mar./Apr. 2019.

[34] E.-D. Kim, Y. Choi, S.-I. Lee, and H. J. Kim, “Enhanced flow table
management scheme with an LRU-based caching algorithm for SDN,”
IEEE Access, vol. 5, pp. 25555–25564, 2017.

[35] F. Stajano et al., “Controlling your neighbour’s bandwidth for fun and
for profit (transcript of discussion),” in Proc. 25th Int. Workshop Secur.
Protoc. XXV, 2017, pp. 224–231.

[36] B. Isyaku, K. B. A. Bakar, F. A. Ghaleb, and S. Sulaiman, “Performance
evaluation of flowtable eviction mechanisms for software defined networks
considering traffic flows variabilities,” in Proc. IEEE 12th Symp. Comput.
Appl. Ind. Electron., 2022, pp. 71–75.

[37] B.-S. Lee, R. Kanagavelu, and K. M. M. Aung, “An efficient flow cache al-
gorithm with improved fairness in software-defined data center networks,”
in Proc. IEEE 2nd Int. Conf. Cloud Netw., 2013, pp. 18–24.

[38] G. Huang and H. Y. Youn, “Proactive eviction of flow entry for SDN based
on hidden Markov model,” Front. Comput. Sci., vol. 14, no. 4, pp. 1–10,
2020.

[39] M. Zhang, J. Bi, J. Bai, Z. Dong, Y. Li, and Z. Li, “FTGuard: A priority-
aware strategy against the flow table overflow attack in SDN,” in Proc.
SIGCOMM Posters Demos, 2017, pp. 141–143.

Authorized licensed use limited to: HUNAN UNIVERSITY. Downloaded on May 01,2024 at 12:49:29 UTC from IEEE Xplore. Restrictions apply.

http://xmpp.org/rfcs/rfc6120.html
https://dx.doi.org/10.1109/TSC.2023.3266757

2536 IEEE TRANSACTIONS ON NETWORK SCIENCE AND ENGINEERING, VOL. 11, NO. 3, MAY/JUNE 2024

[40] H. Luo, W. Li, Y. Qian, and L. Dou, “Mitigating SDN flow table overflow,”
in Proc. IEEE 42nd Annu. Comput. Softw. Appl. Conf., 2018, pp. 821–822.

[41] D. Kong, C. Wu, Y. Shen, X. Chen, H. Liu, and D. Zhang, “TableGuard:
A novel security mechanism against flow table overflow attacks in SDN,”
in Proc. IEEE Glob. Commun. Conf., 2022, pp. 4167–4172.

[42] R. Challa, Y. Lee, and H. Choo, “Intelligent eviction strategy for efficient
flow table management in OpenFlow switches,” in Proc. IEEE NetSoft
Conf. Workshops, 2016, pp. 312–318.

[43] “Open vswitch,” 2022. [Online]. Available: https://www.openvswitch.org/
support/dist-docs/ovs-ofctl.8.html

[44] R. E. Kalman, “A new approach to linear filtering and prediction prob-
lems,” Trans. ASME- J. Basic Eng., vol. 82, pp. 35–45, 1960.

[45] W. Liang, J. Long, K.-C. Li, J. Xu, N. Ma, and X. Lei, “A fast defogging
image recognition algorithm based on bilateral hybrid filtering,” ACM
Trans. Multimedia Comput. Commun. Appl., vol. 17, no. 2, pp. 1–16, 2021.

[46] A. S. L. V. Tummala and R. K. Inapakurthi, “A two-stage kalman filter for
cyber-attack detection in automatic generation control system,” J. Modern
Power Syst. Clean Energy, vol. 10, no. 1, pp. 50–59, Jan. 2022.

[47] X. Li et al., “Online internet anomaly detection with high accuracy: A fast
tensor factorization solution,” in Proc. IEEE Conf. Comput. Commun.,
2019, pp. 1900–1908.

[48] “pykalman,” 2012. [Online]. Available: https://pykalman.github.io/
[49] “Mininet,” 2022. [Online]. Available: http://mininet.org/
[50] “Ryu controller,” 2011. [Online]. Available: https://github.com/faucetsdn/

ryu/
[51] T. Benson, A. Akella, and D. A. Maltz, “Network traffic characteristics of

data centers in the wild,” in Proc. 10th ACM SIGCOMM Conf. Internet
Meas., 2010, pp. 267–280.

[52] “Data set for IMC 2010 data center measurement,” 2010. [Online]. Avail-
able: http://pages.cs.wisc.edu/tbenson/IMC10_Data.html

[53] “Tcpreplay,” 2014. [Online]. Available: https://github.com/appneta/
tcpreplay/

[54] “sift defense code,” 2017. [Online]. Available: https://github.com/
tuliopascoal/sift-defense

Dan Tang received the B.S., M.S., and Ph.D. de-
grees from the Huazhong University of Science and
Technology, Wuhan, China. He is currently an As-
sociate Professor with Hunan University, Changsha,
China. His research interests include network secu-
rity, denial-of-service attack detection and preven-
tion, intrusion detection, and prevention system, with
a focus on developing innovative solutions to address
the challenges facing these fields.

Zhiqing Zheng received the B.S. degree in infor-
mation security from Hunan University, Changsha,
China, in 2021. She is currently a Postgraduate Stu-
dent majoring in computer science and technology
with Hunan University and her supervisor is Dr. Dan
Tang. Her research interests include SDN data plane
security, cyber-attack detection, and Internet of Vehi-
cles. She is currently working on online system for
detecting and mitigating low-rate denial-of-service
attacks under SDN environment.

Keqin Li (Fellow, IEEE) is currently a SUNY Distin-
guished Professor with the State University of New
York, Albany, NY, USA, and National Distinguished
Professor with Hunan University, Changsha, China.
His research focuses on advanced computing sys-
tems. He is actively involved in research related to
Big Data computing, energy-efficient computing and
communication, CPU-GPU hybrid and cooperative
computing, heterogeneous computing systems, high-
performance computing, computer architectures and
systems, computer networking, and machine learn-

ing. Through his innovative research, he is dedicated to advancing the field of
computer science and contributing to the development of cutting-edge technolo-
gies.

Chao Yin received the bachelor’s, master’s, and doc-
toral degrees from the Huazhong University of Sci-
ence and Technology, Wuhan, China. He is currently
an Associate Professor with Jiujiang University, Jiu-
jiang, China. His research interests include informa-
tion security, Big Data analysis, cloud storage, and
erasure codes. With his expertise in these areas, Dr.
Yin is committed to advancing the field of computer
science and contributing to the development of novel
solutions to address the challenges in these fields.

Wei Liang received the Doctor of Philosophy degree
from Hunan University, Changsha, China. From 2014
to 2016, he was a Postdoctoral Scholar with Lehigh
University, Bethlehem, PA, USA. He is currently a
Professor with the Hunan University of Science and
Technology, Xiangtan, China. His research interests
include embedded system protection, blockchain se-
curity, wireless sensor networks, and network security
protection.

Jiliang Zhang (Senior Member, IEEE) is currently a
Full Professor with the College of Integrated Circuits,
Hunan University, Changsha, China. He is the Vice
Dean of the College of Integrated Circuits, Hunan
University and the Secretary-General of CCF Fault-
Tolerant Computing Professional Committee. He has
authored more than 80 technical papers in leading
journals and conferences. His research interests in-
clude hardware security, integrated circuit design,
and intelligent system. He was the recipient of the
CCF Integrated Circuit Early Career Award and CCF

Distinguished Speaker, and the winner of Excellent Youth Fund of the NSFC.
He is the Program Committee Member for a number of well-known conferences
such as DAC, ASP-DAC, GLSVLSI, and FPT.

Authorized licensed use limited to: HUNAN UNIVERSITY. Downloaded on May 01,2024 at 12:49:29 UTC from IEEE Xplore. Restrictions apply.

https://www.openvswitch.org/support/dist-docs/ovs-ofctl.8.html
https://www.openvswitch.org/support/dist-docs/ovs-ofctl.8.html
https://pykalman.github.io/
http://mininet.org/
https://github.com/faucetsdn/ryu/
https://github.com/faucetsdn/ryu/
http://pages.cs.wisc.edu/tbenson/IMC10_Data.html
https://github.com/appneta/tcpreplay/
https://github.com/appneta/tcpreplay/
https://github.com/tuliopascoal/sift-defense
https://github.com/tuliopascoal/sift-defense

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 900
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00111
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 1200
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00083
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00063
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

