
IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 22, NO. 3, MAY/JUNE 2025 2855

PLUTO: A Robust LDoS Attack Defense System
Executing at Line Speed

Dan Tang , Boru Liu , Keqin Li , Fellow, IEEE, Sheng Xiao , Wei Liang , and Jiliang Zhang

Abstract—The Low-Rate Denial of Service (LDoS) attack poses a
significant threat to Internet services. Exploiting vulnerabilities in
adaptive mechanisms embedded within network protocols, LDoS
attacks are covert and exhibit legal behavior, making defense chal-
lenging. Existing LDoS attack solutions cannot perform real-time
LDoS attack defense at line speed. With the emergence of P4, users
can program the per-packet processing logic of the P4 switch,
which offers us the chance to propose PLUTO, the first data
plane-aware LDoS attack defense system built upon the P4 switch,
possessing line-speed execution capacity. To meet the resource
constraints of the P4 switch, we propose the time window-based
pre-inference strategy to detect LDoS attacks and the time-limited
per-flow state management to filter the LDoS attack flows. For the
practical deployment, we develop the P4 Function Tool to extend
the P4 primitives for more function operations. We also adopt
an encoding-based mapping method to deploy the pre-inference
model. Furthermore, we develop the async-updated hash table for
quickly filtering LDoS attack flows. Compared with the baseline,
PLUTO reduces the equal error rate (EER) by 27.96% and the
average mitigation response time by 12.749 s, increasing the AUC
by 1.83%, the F1 Score by 7.27%, and the Recall by 9.58%.

Index Terms—Attack defense, data plane-aware, LDoS attacks,
line-speed execution, P4.

I. INTRODUCTION

NOWADAYS, the Internet is extensively utilized for real-
world communication, making its security concerns crit-

ically important. Denial of service (DoS), one of the most
common cyber attacks, remains a significant threat to Inter-
net services. While traditional DoS attacks exploit brute force
(e.g., link flooding) to continuously exhaust network resources,
low-rate denial of service (LDoS) attacks send intermittent burst

Received 27 April 2023; revised 5 October 2024; accepted 19 December 2024.
Date of publication 25 December 2024; date of current version 15 May 2025.
This work was supported in part by the National Natural Science Foundation
of China under Grant 62472153 and in part by the Natural Science Founda-
tion General Project of Chongqing under Grant CSTB2022NSCQ-MSX1378.
(Corresponding author: Jiliang Zhang.)

Dan Tang is with the College of Computer Science and Electronic Engineer-
ing, Hunan University, Changsha 410012, China, and also with the Research
Institute of Hunan University in Chongqing, Chongqing 401120, China (e-mail:
Dtang@hnu.edu.cn).

Boru Liu and Sheng Xiao are with the College of Computer Science and
Electronic Engineering (CSEE), Hunan University (HNU), Changsha 410012,
China (e-mail: liuboru@hnu.edu.cn; xiaosheng@hnu.edu.cn).

Keqin Li is with the Department of Computer Science, State University of
New York, New Paltz, NY 12561 USA (e-mail: lik@newpaltz.edu).

Wei Liang is with the School of Computer Science and Engineering, Hunan
University of Science and Technology (HNUST), Xiangtan 411199, China (e-
mail: wliang@hnust.edu.cn).

Jiliang Zhang is with the College of Semiconductors (College of Integrated
Circuits), Hunan University, Changsha 410012, China (e-mail: zhangjiliang@
hnu.edu.cn).

Digital Object Identifier 10.1109/TDSC.2024.3522104

TABLE I
COMPARING THE EXISTING LDOS ATTACK SOLUTIONS

traffic with much smaller overheads. In particular, the LDoS at-
tacks mainly exploit vulnerabilities in the adaptive mechanisms
embedded within network protocols (e.g., congestion control
mechanism in TCP and request-response mechanism in HTTP,
etc.), ultimately achieving malicious occupation of network re-
sources. In 2009, LDoS attacks forced numerous websites in Iran
to shut down [1]. On May 13th, 2022, the crucial government and
institution sites in Italy suffered from LDoS attacks, resulting in
a website outage for one hour at least [2]. In particular, Italy
CERT has highlighted that LDoS attacks can evade traditional
DoS attack solutions and pose significant challenges to defense.

Concretely, the difficulty in defending against LDoS attacks
arises from their three characteristics:

1) Legal behavior: Instead of brute force, LDoS attacks
exploit negative feedback from the adaptive mechanisms
of network protocols, legally seizing network resources.

2) Concealment: Since the burst traffic sent by LDoS attacks
is transient, it can be easily confused with the short-term
burst traffic generated by benign applications [3]. Addi-
tionally, the average rate of LDoS attack traffic is low,
which makes it can evade long-term detection.

3) Invisible: LDoS attacks can directly interfere with the
adaptive mechanism, i.e., the congestion control mecha-
nism in TCP, through the end-to-end path. In this scenario,
the attack traffic is invisible to the victim hosts. As a result,
LDoS attacks can evade detection on the victim side.

To feasibly detect LDoS attacks, existing solutions adopt
in-network traffic analysis through traffic mirroring or network
function virtualization (NFV). In particular, NFV mainly em-
ploys the software-defined networking (SDN) [8], [9] or the
software-defined middlebox (SDM). Table I reviews and com-
pares these solutions.

For the solutions utilizing traffic mirroring or SDN (e.g.,
Kitsune [4], HGB-FP [5], and P&F [6]), they cannot achieve
line-speed execution, thus they are unable to offer real-time de-
tection and timely mitigation within high-throughput networks.
Besides, the SDM-based solutions, e.g., Whisper, can execute at

1545-5971 © 2024 IEEE. All rights reserved, including rights for text and data mining, and training of artificial intelligence and similar technologies.
Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: HUNAN UNIVERSITY. Downloaded on August 19,2025 at 14:13:05 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0002-0062-0213
https://orcid.org/0009-0007-3865-0315
https://orcid.org/0000-0001-5224-4048
https://orcid.org/0000-0003-1081-0739
https://orcid.org/0000-0002-5074-1363
https://orcid.org/0000-0001-8712-2964
mailto:Dtang@hnu.edu.cn
mailto:liuboru@hnu.edu.cn
mailto:xiaosheng@hnu.edu.cn
mailto:lik@newpaltz.edu
mailto:wliang@hnust.edu.cn
mailto:zhangjiliang@hnu.edu.cn
mailto:zhangjiliang@hnu.edu.cn

2856 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 22, NO. 3, MAY/JUNE 2025

line speed by taking advantage of Intel data plane development
kits (DPDK). However, limited by the isolation effect from
virtualization, they cannot directly interfere with the ongoing
traffic for LDoS attack mitigation.

Aiming for line-speed detection and mitigation needs, the
P41 switch emerged in the context of the programmable data
plane (PDP). The P4 switch exhibits three significant advan-
tages: (i) Programmable: The P4 switch supports customizing
data plane-aware network functions, enabling the deployment
of LDoS attack solutions. (ii) Per-packet Processing Mode.
The P4 switch can apply user-defined processing logic to each
packet, which provides fine-grained detection and fast mitigation
response against LDoS attacks. (iii) Line-speed Execution. The
LDoS attack solutions can be executed at line speed in the P4
switch. In particular, Intel Tofino 1 supports line-speed execution
up to 6.5 Tbps.

To this end, we propose PLUTO, the first LDoS attack defense
system (ADS) built upon the P4 switch, exhibiting line-speed
execution capacity.

Data Plane-aware Design: To achieve resource friendliness
with the P4 switch, we design the LDoS ADS by proposing:

i) time window-based pre-inference strategy,
ii) time-limited per-flow state management (TPSM).
Using the time window-based pre-inference strategy, we an-

alyze the features of aggregate flow in time window units to
determine whether the network is experiencing LDoS attacks.
Note that, we only maintain one group of states relevant to the
aggregate flow, which is significantly lightweight for the P4
switch. Additionally, we adopt ensemble learning (EL) algo-
rithms to train the pre-inference model and extract both time
domain and time-frequency domain features from the aggregate
flow, achieving robust pre-inference.

Furthermore, if and only if the pre-inference result indicates
LDoS attacks have occurred, we enable the TPSM to handle all
arrival flows for the Flow-based Attacker Filtering. In particular,
within the concept of TPSM, we limit the activation time for
per-flow state management, reducing the flow scale that the P4
switch handles. This allows us to practically conduct the Flow-
based Attacker Filtering under the resource constraints of the P4
switch. In addition, based on the outlier behavior exhibited by
LDoS attacks, we configure a prior rule for per-flow verification,
filtering LDoS attack flows quickly.

Deployment Challenge: To actually deploy our LDoS ADS
on the P4 switch, we implement the following three modules: (i)
P4 Function Tool, (ii) Pre-inference Model Mapping, and (iii)
Flow-based Attacker Filtering.

To compute features in the P4 switch, we develop the P4
Function Tool which extends P4 to support more function oper-
ations. In particular, the P4 Function Tool is a generic module
for diverse P4 programming. In its design, we utilize the binary
matching (BM) task to establish the function mapping, and we
propose the scope reduction to implement function operations in
a memory-friendly manner. Notably, we address four challenges
when performing scope reduction in the P4 switch, including: (i)
computing the most significant bit index, (ii) the variable-length
shift, (iii) the precise scaling, and (iv) the modulo operation.

To achieve the Pre-inference Model Mapping in the P4 switch,
we utilize tree-based EL algorithms for training. Meanwhile, we
adopt an encoding-based mapping method [10], converting tree
models to the longest prefix matching (LPM) task and the ternary
matching (TM) task. Specifically, we merge multiple tree models

1P4 refers to Programming Protocol-independent Packet Processors

into a single model and prune it to fit the resource constraints of
the P4 switch.

To conduct the Flow-based Attacker Filtering, we explore
the flow scale in real-world traffic, pre-allocating reasonable
and acceptable memory for the TPSM. Besides, we propose the
deterministic data structure, i.e., the async-update hash table,
to apply prior rule-based per-flow verification in per-packet
processing mode. Additionally, we adopt the memory-friendly
approximate data structure, i.e., blocked bloom filter, to build a
blocklist enabled throughout LDoS ADS runtime.

Evaluation: First, we compare the P4 Function Tool to the
baseline. Results indicate that the P4 Function Tool significantly
decreases the TCAM usage by an average of 94.52% and ex-
hibits more stable and smaller relative errors. Second, we use
a real-world topology and real-world traffic datasets to evalu-
ate the detection and mitigation performance of the PLUTO.
Compared with the traditional solution, the PLUTO reduces the
equal error rate (EER) by 27.96% and the average mitigation
response time by 12.749 s, increasing the area under ROC curve
(AUC) by 1.83%, the F1 Score by 7.27%, and the Recall by
9.58%.

In conclusion, our paper has four main contributions:
� We present PLUTO, the first LDoS attack defense system

built up on the P4 switch, achieving robust detection and
mitigation at line speed.

� We propose the time window-based pre-inference strategy
and the time-limited per-flow state management, ensuring
the PLUTO is resource-friendly for the P4 switch.

� We develop the P4 Function Tool by using the binary
matching task and the scope reduction, providing function
operations for generic P4 programming.

� We develop async-update hash table, a P4-based data
structure, enabling the Flow-based Attacker Filtering in
per-packet processing mode.

The remainder of this paper is structured as follows. Section II
introduces the threat model of LDoS attacks, concurrently out-
lining both the background and related works of P4. Section III
shows the high-level design of PLUTO. Further design details
are presented in both Sections IV and V. Meanwhile, the imple-
mentation of PLUTO is provided in Section VI. Additionally,
Section VII demonstrates the experimental configurations and
results within the evaluation of PLUTO. Section VIII discusses
the potential limitation of PLUTO. Lastly, Section IX reviews
this paper overall.

II. BACKGROUND

In this section, we introduce the threat model of LDoS attacks
and provide a summary of the background and related works on
P4.

A. Threat Model of LDoS Attacks

Our ADS mainly focuses on the LDoS attacks that target
the congestion control mechanism in TCP. Note that, our ADS
supports both detection and mitigation for LDoS attacks.

On a macro level, LDoS attacks periodically send pulse
traffic to cause the network congestion which is reflected in
packet loss events, e.g., packet timeouts or 3-duplicate ACKs.
After the congestion control mechanism responds to these
events, it reduces the congestion windows and even increase the
retransmission timeout (RTO) intervals. As a result, the available
TCP bandwidth shrinks repeatedly.

The model and damage of LDoS attacks are illustrated in
Fig. 1, where the CUBIC [11] is the default congestion avoidance

Authorized licensed use limited to: HUNAN UNIVERSITY. Downloaded on August 19,2025 at 14:13:05 UTC from IEEE Xplore. Restrictions apply.

TANG et al.: PLUTO: A ROBUST LDOS ATTACK DEFENSE SYSTEM EXECUTING AT LINE SPEED 2857

Fig. 1. The Damage (a) and Model (b) of LDoS Attacks under CUBIC.

Fig. 2. The Protocol-Independent Switch Architecture (PISA).

algorithm in Linux systems. There are three key parameters
relevant to LDoS attacks: attack period (T), burst duration (L),
and attack intensity (R). Here, T refers to the time interval
between two adjacent pulses, L indicates the duration for sending
a pulse, and R represents the bandwidth of the pulse traffic.
Consequently, the LDoS attack flow exhibits a periodic burst
behavior, i.e., the ”null frequency” behavior defined in [12].
During each T, the LDoS attack flow only appears for the time
of L and remains silent for the rest of the T.

Additionally, LDoS attacks synchronize the attack period (T)
with the RTO (generally T is smaller than the RTO). Since RTO
is a dynamically adjusted value, attackers set the attack period
(T) to the lower bound of RTO (denoted as minRTO), which is
set to 1 s according to RFC 2988 [13]. In addition, to effectively
shield the packet transmission, the burst duration (L) must be
larger than the round-trip time (RTT), and the attack intensity
(R) must reach the bottleneck link bandwidth.

B. The Background of P4

Programming Protocol-independent Packet Processors (P4)
was first released in 2014 [14]. It is a hardware description
language (HDL) for programming the P4-supported network
devices, i.e., the P4 targets, achieving customized per-packet
processing. Concretely, the P4 targets involve the P4 switch,
NetFPGA, and the SmartNIC, etc.

Domain-specific Architecture: As shown in Fig. 2, P4 targets
build upon the protocol-independent switch architecture (PISA),
which is based on the reconfigurable match/action table (RMT)
architecture. Within the PISA, the per-packet processing logic
is divided into the ingress and egress pipelines. Each pipeline is
organized into three kinds of P4 programmable blocks: (i) Packet

parser. This block can extract headers from a packet. (ii) Match-
action units (MAUs). These blocks contains the resources, in-
cluding the memory and ALUs, to execute match/action tasks.
They can serially update the packet header vector (PHV) which
is formed by both the header and metadata of a packet. Besides,
one physical MAU corresponds to one logical MAU Stage in P4.
(iii) Packet deparser. This block can assemble the updated PHV
and the original payload as a packet. Commonly, to program a
P4 target, there are four principles:

1) Each MAU can only execute once per packet, thus a
register in P4 can only be accessed once.

2) Within an MAU, there should be no data dependencies
between ALUs, so each field of a PHV can only be
modified once in each MAU Stage.

3) Each MAU updates a PHV in match/action mode, thus the
per-packet processing logic in P4 is presented as a series
of match/action tasks. Concretely, P4 supports the default
matching (DM) task, the longest prefix matching (LPM)
task, the exact matching (EM) task, the ternary matching
(TM) task, and the binary matching (BM) task. Here, the
BM task refers to the register index-based matching.

4) Different P4 targets have different P4 target architectures,
while a P4 target architecture declares the support range
of P4 primitives and the P4 code style.

P4 Switch: The P4 switch is one of the P4 targets executing at
line speed. Currently, the Intel tofino switch is the state-of-the-art
P4 switch based on ASIC hardware, supporting line-speed exe-
cution capacity up to 6.5 Tbps. Its P4 target architecture is the
Tofino native architecture (TNA) [15] which declares that the
Intel tofino can only support limited P4 primitives, including
the addition, the subtraction, and the common bit operations.
Besides, Intel Tofino has limited hardware resources and only
supports up to 12 MAU stages [16], 120 MB SRAM, and 6.2 MB
TCAM per pipeline. Additionally, the software development
environment (SDE) of commercial Intel Tofino is not open
source.

In contrast, the Behavioral Model v2 (BMv2) switch [17] is an
open source P4 switch simulated by the software, its P4 target
architecture, i.e., the V1Model, is fully public. Consequently,
the BMv2 provides a convenient and economical platform for
the P4 development.

C. P4-Related Works

We review existing P4-related works into four aspects.
(1) In-network ML Inference: In-network ML inference pro-

vides the foundation for achieving diverse network functions.
Associate works can be divided into per-packet and per-flow
ML inference. Concretely, Planter [10], Mousika [18], and
Taurus [19] all execute per-packet ML inference. Notably, Tau-
rus [19] integrates the existing P4 switch with other hardware to
support more ML algorithms. In contrast, both NetBeacon [20]
and Flowrest [21] conduct per-flow ML inference. In particular,
NetBeacon [20] adopts multi-phase inference for each flow.
Additionally, the work in [22] provides an approach for both
per-packet and per-flow ML inference. FlowLens [23] presents a
compact flow-level feature representation with less information
loss. Brain-on-Switch [24] deploys a precision-loss RNN on the
P4 switch for per-flow inference.

However, utilizing per-packet features to execute ML in-
ference is lack of robustness [20]. Meanwhile, per-flow ML
inference will occupy extensive stateful memory to manage
per-flow states continuously.

(2) In-network Security Threat Defense: The P4 switch can
defend security threats online at line speed. For the DDoS

Authorized licensed use limited to: HUNAN UNIVERSITY. Downloaded on August 19,2025 at 14:13:05 UTC from IEEE Xplore. Restrictions apply.

2858 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 22, NO. 3, MAY/JUNE 2025

Fig. 3. The Overview of PLUTO.

attacks, Poseidon [25] implements encapsulated primitives for
customizing defense strategies. Both the work in [26] and Eu-
clid [27] compute the entropy of IP in the P4 switch for detect-
ing DDoS attacks. Besides, Jaqen [28] prototypes a rule-based
DDoS attack defense system with high sensitivity via the P4
switch.

For the variant of DDoS attacks, ACC-Turbo [29] uses a
clustering algorithm to defend against pulse-wave DDoS attacks,
which exploit different brute-force attack vectors to send pe-
riodic pulses. Pulse-wave DDoS attacks are similar to LDoS
attacks in periodic pulses, but LDoS attacks do not achieve
sufficient traffic surge to fill a cluster, which greatly reduces the
accuracy of ACC-Turbo in identifying them, as shown in Fig. 4.
Both Ripple [30] and Mew [31] present solutions with efficient
distributed resource utilization, defending link-flooding DDoS
attacks.

Besides, both P4DDPI [32] and FAPM [33] focus on using
P4 to address the leak of DNS privacy. And the work in [34]
builds P4-based solution against the abuse of TCP. NetHCF [35]
improves existing strategies to counter the IP-spoofing.

(3) Operation Extension for P4: The limited P4 primitives
cannot support function operations with real number operands.
The work in [36] presents an ideal P4 solutions for computing
function operations. But it cannot be realistically deployed on
the P4 hardware switch which involves limited MAU Stages.
While the work in [37] (denoted as FlexSwitchLib) introduces
a practical approach which adopts the longest prefix encoding,
achieving function operations in P4 hardware switch. Moreover,
FPISA [38] tries to use P4 for conducting float-point real number
operations. However, due to the resource isolation of MAUs,
FPISA [38] only achieves float-point addition on the the P4
hardware switch, i.e., the Intel Tofino, ultimately.

(4) In-network Measurements: The programmability of the
P4 switch enables it to perform the in-network measurement
by some crafted designed data structures or algorithms. Both
CL-MU [30] and SketchLib [39] implement advanced data
structures for in-network measuring and monitoring. Notably,
CL-MU [30] can adapt to messy traffic distribution. IMap [40]
designs a in-network scanning tool by P4. BeauCoup [41]
proposes a parallel data structure, executing multiple queries
with one memory access. In addition, Thanos [42] presents
an algorithm for maintaining the flow table of the P4 switch.
Gallium [43] develops a tool to analyze an optimal strategy for
offloading appropriate in-network measurement subprocesses to
the P4 switch.

Fig. 4. The Detection Effect of ACC-Turbo on LDoS attacks and Pulse-wave
DDoS attacks.

III. OVERVIEW OF PLUTO

As shown in Fig. 3, our design of PLUTO includes two levels,
namely data plane-aware design and ADS deployment.

Data Plane-aware Design: Since there exist extensive arrival
flows in a network, e.g., a backbone network, the limited re-
sources in the P4 switch cannot support persistent per-flow
state management. To this end, we propose a window-based
lightweight pre-inference strategy. It detects the presence of
LDoS attacks from a macro perspective without maintaining
per-flow states. In detail, on the one hand, we take the time
window as the inference unit and adopt the ensemble learning
(EL) method to analyze the features of the aggregate flow.
Therefore, in the P4 switch, we only need to maintain one group
of states corresponding to the aggregate flow. On the other hand,
with the advantage of per-packet processing mode in the data
plane, we can sample fine-grained statistics about the aggregate
flow, resulting in more efficient inferences against LDoS attacks.

Besides, if and only if the pre-inference determines that
an LDoS attack has occurred in the network, we enable the
time-limited per-flow state management (TPSM) to conduct the
Flow-based Attacker Filtering. In the filtering strategy, leverag-
ing the periodic burst behavior typical of LDoS attack flows,
we configure a relevant prior rule to verify whether a flow is
an LDoS attack flow. The identified flows will be added to the
blocklist and prohibited from passing.

ADS Deployment: To practically achieve our data plane-aware
design of PLUTO on the P4 switch, we take measures to address
the deployment challenges.

To compute statistical features in the P4 switch, we propose
P4 Function Tool, a generic P4 module, which extends P4 to
support more function operations. In its design, we use the binary
matching (BM) task to establish function mapping. Meanwhile,
we apply the scope reduction to practically implement the
P4 Function Tool in a memory-friendly manner. Notably, the
implementation of P4 Function Tool strictly meets the

Authorized licensed use limited to: HUNAN UNIVERSITY. Downloaded on August 19,2025 at 14:13:05 UTC from IEEE Xplore. Restrictions apply.

TANG et al.: PLUTO: A ROBUST LDOS ATTACK DEFENSE SYSTEM EXECUTING AT LINE SPEED 2859

limitations of the P4 hardware switch, including the limited
MAU Stages and the limited P4 primitives. In Section V-A,
we will introduce the challenges faced and countermeasures
employed during the implementation of the P4 Function Tool.

Besides, we adopt tree-based EL algorithms to build pre-
inference model. And we leverage an encoding-based solution to
convert the model into the LPM task and the TM task, achieving
the pre-inference strategy in the P4 switch. Notably, we merge
multiple tree models into a single model and prune it to reduce
the usage of MAU Stages and TCAM. The corresponding details
will be given in Section V-B.

Additionally, with the time-limited per-flow state manage-
ment (TPSM), we design a P4-based deterministic data structure,
called async-update hash table, to achieve the Flow-based At-
tacker Filtering in the P4 switch. Meanwhile, we use a resource-
friendly approximate data structure, i.e., blocked bloom filter, to
implement the blocklist within the P4 switch. In Section V-C,
we will clarify the process of Flow-based Attacker Filtering.

IV. DATA PLANE-AWARE DESIGN

In this section, we introduce the details corresponding to our
data plane-aware design for PLUTO.

A. Window-Based Pre-Inference

Since the resources in the P4 switch is limited, we cannot uti-
lize it to persistently handle large-scale arrival flows. To this end,
we introduce a window-based lightweight pre-inference strategy
within our data plane-aware design. Notably, the pre-inference
only analyzes the ongoing aggregate flow in the network, thus
we only need to maintain one group of states about the aggregate
flow in the P4 switch.

We sample the ongoing aggregate flow in units of Sampling
Window (SW), where SW is the window on the time scale and its
size is denoted as SSW. The sampling record in an SW involves
two statistics on aggregate flow, i.e., TCP traffic bytes (AggrTB)
and overall traffic bytes (AggrB).

Furthermore, we perform the feature extraction and the pre-
inference in units of Detecting Window (DW). Here, the DW is
a sequence containing consecutive SDW sampling records, and
SDW represents the size of DW. Therefore, the time consumed
by each pre-inference is (SSW · SDW).

Additionally, benefiting from the per-packet processing mode
of the P4 switch, we can configure the SWs with tiny time scale
to obtain fine-grained statistics on aggregate flow, resulting in
more efficient pre-inferences.

B. Time-Limited Per-Flow State Management

When the pre-inference determines that an LDoS attack has
occurred within the network, we will activate the TPSM in the
P4 switch to filter out LDoS attack flows. In the filtering strategy,
based on the outlier behavior exhibited by the LDoS attack flow,
i.e., the periodic burst behavior, we configure a relevant prior
rule for per-flow verification. This prior rule states that ”a flow
is identified as an LDoS attack flow if its arrival packets exhibit
a periodic burst pattern.” The identified flows will be added to
the blocklist, and their arrival packets will be dropped directly.
In Section V-C, we will introduce how to verify the prior rule in
the P4 switch. In contrast, when pre-inference determines that
no LDoS attack has occurred on the network, the P4 switch will
continue to maintain only one group of states about the aggregate
flow.

C. Feature Engineering Against LDoS Attacks

Since the Flow-based Attacker Filtering is enabled based on
pre-inference results, the robustness of pre-inference determines
the mitigation performance of PLUTO. Therefore, we select fea-
tures extracted from DW according to two aspects: the network
performance and the traffic pattern.

In particular, after extracting all sampling records in a DW,
there are two sequences, one for TCP traffic bytes (AggrTB) and
one for overall traffic bytes (AggrB).

Network Performance: LDoS attacks damage the available
TCP bandwidth within the victim network. Therefore, we extract
time domain statistical features from the sequence of AggrTB,
reflecting whether the network performance is deteriorated by
LDoS attacks.

Traffic Pattern: When LDoS attacks are launched, the ”null
frequency” behavior exhibited in the attack traffic will interfere
with the original traffic pattern composition. Therefore, we
convert the sequence of AggrB into the time-frequency domain
and utilize the frequency components to indirectly represent the
different patterns among the aggregate traffic. Furthermore, we
extract statistical features of frequency components to reflect
whether the traffic pattern composition is affected by LDoS
attacks.

However, the restricted P4 primitives of the P4 switch make
feature computation challenging. To this end, we propose the
P4 Function Tool in Section V-A for computing features in
the P4 switch. And we present the implementation of feature
computation in Section VI-B.

V. ADS DEPLOYMENT

In this section, we design the following three modules to
make our data plane-aware design compatible with the P4 switch
features: the P4 Function Tool, the Pre-inference Model Map-
ping, and the Flow-based Attacker Filtering. In each module, we
propose solutions to address deployment challenges and issues.

A. P4 Function Tool

To unlock the potential of computing extensive features (e.g.,
entropy, and variance) with P4, we design the P4 Function Tool,
a generic module to extend P4 with more function operations
including Logarithm (Log2(x)), Square Root (Sqrt(x)), Sine
(Sin(x)), Cosine(Cos(x)), and Exponent (2x). Note that, the P4
Function Tool only utilizes basic P4 primitives supported by the
P4 hardware switch, e.g., the Intel Tofino. Meanwhile, it meets
the limitation of MAU Stages in the Intel Tofino, i.e., up to 12
MAU Stages.

1) P4 Function Tool Overview: Bit String Format for Real
Numbers: We adopt the fixed-point (FP) format to represent real
numbers within the function operations.

Given a real number variable, we add a suffix ’_fp’ to its
variable symbol to indicate its FP format. For example, the FP
format of the real number x is indicated as x_fp, and x can be
converted to x_fp by:

x_fp = �x � FRAC_WIDTH� (1)

Here, FRAC_WIDTH is the bit width of the fractional por-
tion, while the bit width of the integer portion is indicated as
INT_WIDTH. We present the portions of x_fp in Fig. 5, and
Table II shows their descriptions.

Design Ideas: We conduct the binary matching (BM) task to
establish the function mapping. Concretely, assuming that one
of the objective functions we need to achieve in P4 is f(x), we

Authorized licensed use limited to: HUNAN UNIVERSITY. Downloaded on August 19,2025 at 14:13:05 UTC from IEEE Xplore. Restrictions apply.

2860 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 22, NO. 3, MAY/JUNE 2025

Fig. 5. Fixed-point Format.

TABLE II
DESCRIPTIONS OF THE FP FORMAT PORTIONS

Fig. 6. P4 Pseudocode for Conducting Binary Matching Task.

Fig. 7. Mapping Reduction.

use the Register and RegisterAction externs to conduct a BM
task, as shown in Fig. 6. Each entry of registerfunction stores
an indice-value pair with FP format, i.e., (x_fp, f(x)_fp):

f(x)_fp = fetch_register_function[x_fp] (2)

Thus we can take x_fp as the indice and execute the
RegisterAction, i.e., fetchregisterfunction, to obtain f(x)_fp.

However, since the function domain D(f) is significantly
wide and even includes negative values, we cannot directly use
D(f) as the matching scope (MS) of BM task. To this end,
We propose the scope reduction to investigate a non-negative
narrow matching scope (NNMS) to conduct the BM task. There
are two categories of scope reduction: mapping reduction and
direct reduction.

Mapping Reduction: We denote the mapping reduction pro-
cess (MRP) of f(x) as:

MRP(f(x)) =MR(portionstr, f
′(xp), g) (3)

In this context, portionstr indicates a specific portion of the
given x_fp, and we denote the potion’s bit string as xp. Notably,
the numeric value of xp is normalized. In addition, f ′(xp) is
a constructed function with respect to xp, and g is a mapping
which satisfies the following relation:

f(x)_fp =g(f ′(xp)_fp) (4)

As shown in Fig. 7, there are three steps in MRP(f(x)). We
utilize xp_fp as the register indice, thus the NNMS of current
BM task is [0, 1). Additionally, we replace the original objective
function f(x) with f ′(xp) for the BM task. As a result, we first
derive f ′(xp)_fpby the BM task and further employ the mapping
g to indirectly obtain f(x)_fp.

Direct Reduction: We perform direct reduction on f(x) when
it exhibits properties of parity, periodicity, and symmetry. The

Fig. 8. Direct Reduction.

direct reduction process of f(x) is denoted as:

DRP(f(x)) =DR (p, t, a, s). (5)

Here, symbol t represents the period of f(x). Symbol a indicates
that the symmetry axis of f(x) is located at x = a. Symbol p is
a boolean indicating the parity of f(x), where ′0′ corresponds
to an even function, and ′1′ corresponds to an odd function.
Symbol s is another boolean indicating the symmetry type of
f(x), where ′0′ represents axial symmetry, and ′1′ represents
center symmetry.

There are five steps inDRP(f(x)), as illustrated in Fig. 8. We
convert x_fp to x′′′_fp and utilize x′′′_fp as the register indice,
thus the NNMS of current BM task is [0, a). Consequently, after
deciding the sign bit of f(x)_fp based on p and s, we directly
obtain f(x)_fp by the BM task.

Logarithm and Square Root: We perform the mapping reduc-
tion on both Log2(x) and sqrt(x) according to:

Mantissanorm = x_fp[MSbi − 1]/21 + · · ·+ x_fp[0]/2MSbi

(6)

Log2(x_fp)_fp = (MSbi)_fp + [Log2(1 +Mantissanorm)]_fp
(7)

Sqrt(x_fp)_fp = 2MSbi/2

·[Sqrt(1 +Mantissanorm)]_fp (8)

Log2(x)_fp = Log2(x_fp)_fp− (FRAC_WIDTH)_fp
(9)

Sqrt(x)_fp = Sqrt(x_fp)_fp � (FRAC_WIDTH/2)
(10)

Thus the MRPs of Log2(x) and sqrt(x) are respectively:

MRP(Log2(x)) = MR(′ Mantissa′,

Log2(Mantissanorm + 1), g0) (11)

MRP(Sqrt(x)) = MR(′Mantissa′,

Sqrt(Mantissanorm + 1), g1) (12)

Besides, the two mappings g0 and g1 are respectively:

g0(x_fp) = x_fp + (MSbi)_fp− (FRAC_WIDTH)_fp

(13)

g1(x_fp) = (x_fp � 2(MSbi+FRAC_WIDTH)//2))

·
(√

2
)MSbi&1

(14)

Sine and Cosine: We perform the direct reduction on both
Sin(x) and Cos(x), their DRPs are respectively:

DRP(Sin(x)) = DR (1, 2π, π, 1),DRP(Cos(x))

= DR (0, 2π, π, 0) (15)

Authorized licensed use limited to: HUNAN UNIVERSITY. Downloaded on August 19,2025 at 14:13:05 UTC from IEEE Xplore. Restrictions apply.

TANG et al.: PLUTO: A ROBUST LDOS ATTACK DEFENSE SYSTEM EXECUTING AT LINE SPEED 2861

Fig. 9. P4 Pseudocode for Computing MSbi.

TABLE III
LONGEST PREFIX MATCHING TABLE FOR COMPUTING MSbi

Exponent: We perform the mapping reduction on 2x by:

2x_fp =

{
(2|x|_frac)_fp � |x|_int, x ≥ 0

(1/2|x|_frac)_fp � |x|_int, x < 0
(16)

Thus the MRP of 2x is:

MRP(2x) =

{
MR(′x_frac′, 2|x|_frac, g2), x ≥ 0

MR(′x_frac′, 1/2|x|_frac, g2), x < 0
(17)

Here, the mapping g2 is:

g2(x_fp) = (x ≥ 0) ? (x_fp � |x|_int) : (x_fp � |x|_int)
(18)

Overall: We apply the MRPs and DRPs shown in (11), (12),
(15), and (17), achieving the function operations (i.e., Log2(x),
Sqrt(x), Sin(x), Cos(x), and 2x) in P4.

2) Challenge: However, due to the limitations of P4 prim-
itives and MAU Stages, there exist four challenges when we
practically applying the MRPs and DRPs: (i) the computation
of MSbi, (ii) the variable-length shift, (iii) the precise scaling,
(iv) the modulo operation. To overcome these challenges, we
propose the following countermeasures.

Computation of MSbi: Existing methods for computing
MSbi, e.g., iteration, bisection, or [26], require more than twelve
MAU Stages. Instead, we use a longest prefix matching (LPM)
task and consume one MAU Stage to achieve the computation
of MSbi in P4, as shown in Fig. 9.

We pre-install an LPM table, i.e., the cal_msb_i_table, by
L LPM entries, as shown in Table III. For entryLPM

i , its match
value is set to 0, its prefix length is set to i, and its parameter p0 is
set to (L− i− 1)_fp. We use the given x_fp as the matching key
of cal_msb_i_table, and the relevant MSbi_fp is the parameter
p0 in the matched LPM entry.

For instance, consider the case where L = 8, for the
bit string 00010101, it matches to entryLPM

3 , thus its
MSbi_fp is set to the parameter p0 of entryLPM

3 , where
p0 = (L− 3− 1)_fp = (4)_fp.

Variable-length Shift: We employ an exact matching (EM)
task and consume one MAU Stage to achieve variable-length
shift in P4, as depicted in Fig. 10. We encapsulate L actions
and pre-install L EM entries in an exact matching table, i.e., the
variablelenshifttable. For entryEM

i , its match value is set to i and
its action is set to shift_i(). We use a variable shift_len as the
matching key, and the matched action will shift the given x_fp
by shift_len.

Precise Scaling: Although the Intel Tofino supports the
MathUnit extern for approximate scaling, it uses only the high-
est four bits of an operand to perform a scaling, resulting in
significant errors. To perform a precise scaling in P4, we expand

Fig. 10. P4 Pseudocode for Variable-length Shift.

Fig. 11. P4 Pseudocode for Precise Scaling.

the scaling factor into MAX_EXP_N terms based on the valid
binary weights that are equal to 1. Besides, for the power of each
term, its absolute value is less than L. We denote a scaling as
Scal (σ, ·), where σ is the scaling factor. Take Scal (2π, op_fp)
as an example, when L = 32, we have:

Scal(2π, op_fp) ≈ (22 + 21 + 2−2 + · · ·+ 2−26) · op_fp

≈ (op_fp · 22) + (x_fp · 21) + op_fp
22

+ · · ·+ op_fp
226

(19)

In this case, MAX_EXP_N is 15. As shown in Fig. 11, we en-
capsulate fixed-length shifts and additions into the five actions,
and we apply these actions as default matching (DM) tasks, thus
we consume five MAU Stages to achieve Scal (2π, x_fp) in P4.
Notably, due to the limited 12 MAU Stages, we only achieve the
precise scaling with L = 32.

Modulo Operation: If the modulo is not a power of 2, we
utilize the precise scaling along with an LPM task to achieve
the modulo operation in P4. In line with our solution for the
precise scaling, we only consider the case where L = 32 to
achieve modulo operation in P4. We denote a modulo op-
eration as MOD(λ, ·), where λ is the modulo value. Take
MOD(λ, op_fp) as an example, we convert this modulo op-
eration into two phases of scaling:

quo = �Scal (1/2π, op_fp) � FRAC_WIDTH� (20)

rem_fp = x_fp%(2π)_fp = op_fp− Scal (2π, quo_fp) (21)

However, due to the limited precision of FP format, the scaling in
P4 still exhibits tiny errors. In particular, within (20), The modulo
operation cannot tolerate any error of quo which seriously skews
its result, i.e., rem_fp.

To obtain the precise result of rem_fp, we propose a manner
with three steps. First, since the error caused by the scaling is
inevitable, we instead perform a fuzzy scaling to compute quo
within (20), which reduces the usage of MAU Stages in the
P4 switch. In the fuzzy scaling, we expand 1/2π into EXP_N
terms, where EXP_N < MAX_EXP_N.

Second, we further correct rem_fp by conducting an LPM
task. We denote the error of quo asΔq, andΔq can be quantified
by �rem_fp/2π�. Assuming that there exists max Δq, we can
infer the scope of rem_fp is Srem:

rem_fp ∈ Srem = [0, (MaxΔq + 1) · (2π)_fp] (22)
Authorized licensed use limited to: HUNAN UNIVERSITY. Downloaded on August 19,2025 at 14:13:05 UTC from IEEE Xplore. Restrictions apply.

2862 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 22, NO. 3, MAY/JUNE 2025

Fig. 12. P4 Pseudocode for Correcting Error Remainder.

TABLE IV
THE USAGE OF LPM ENTRIES AND MAU STAGES UNDER DIFFERENT EXP_N

Besides, we can infer the correcting value for a given rem_fp is
h(rem_fp):

h(rem_fp) = �rem_fp/2π� · (2π)_fp, rem_fp ∈ Srem (23)

Furthermore, since h(rem_fp) behaves as a staircase function,
we can directly transform it into an LPM task. As shown in
Fig. 12. Here, rem_fp serves as the matching key, andh(rem_fp)
corresponds to the parameter p0 in the matched LPM entry. We
can apply an LPM table, i.e., the correct_rem_table, to obtain
the precise result of rem_fp.

Third, as shown in Table IV, we present the usage of both
LPM entries and MAU Stages under different EXP_N. Due to
the limited TCAM of the Intel Tofino, we take EXP_N = 8 to
perform the fuzzy scaling. As a result, we consume nine MAU
Stages to implement the modulo operation in P4.

3) P4 Function Tool Implementation: In this section, we
introduce how to implement each function operation in the P4
switch.

Logarithm and Square Root: We consume three MAU
Stages to implement MRP(Log2(x)) and ten MAU Stages
to implement MRP(Sqrt(x)). As depicted in Fig. 7, both
MRP(Log2(x)) and MRP(Sqrt(x)) involve three steps.

In the first step, we allocate one MAU Stage to apply the
cal_msb_i_table shown in Fig. 9. In particular, we can merge
the computation of Mantissa into the action, i.e., set_msb_i.
Besides, corresponding to Table III, we extend entryLPM

i with
a new parameter p1 which is equal to 2(L−i−1). Additionally, we
use another MAU Stage to apply the variablelenshifttable shown
in Fig. 10, aligning the width of Mantissa to FRAC_WIDTH.
Notably, we adopt MSbi as the shift_len.

In the second step, we use one MAU Stage to execute the
RegisterAction, i.e., fetchregisterfunction shown in Fig. 6.

In the third step, on the one hand, to compute the map-
ping g0 as defined in (13), we initially compute a temporary
value of ((MSbi)_fp− (FRAC_WIDTH)_fp) by the action,
i.e., set_msb_i. And subsequently, we incorporate this tem-
porary value with the BM task result within the execution of
fetchregisterfunction. Therefore, we do not use additional MAU
Stages to compute the mapping g0.

On the other hand, to compute the mapping g1 de-
scribed in (14), we use one MAU Stage to apply another
variablelenshifttable, left-shifting the BM task result by MSbi.
Additionally, leveraging the P4 pseudocode as shown in Fig. 11,
we consume 5 MAU Stages to apply the precise scaling within
the MRP(Sqrt(x)), i.e., Scal (

√
2, ·).

Overall, the P4 pseudocode of both MRP(Log2(x)) and
MRP(Sqrt(x)) is presented in Fig. 13.

Sine and Cosine: We consume twelve MAU Stages to im-
plement DRP(Sin(x)) or DRP(Cos(x)) in P4, each of them

Fig. 13. P4 Pseudocode for Logarithm and Square Root.

Fig. 14. P4 Pseudocode for Sine and Cosine.

involves five steps, as shown in Fig. 8. Within their implemen-
tation, we merge the second and third steps by defining the
following staircase function H(rem_fp):

H(rem_fp) =

{
h(rem_fp), rem_fp−h(rem_fp) < (π)_fp
h(rem_fp) + (π)_fp, Others

(24)

Within the DRP(Sin(x)) or DRP(Cos(x)), we substitute
h(rem_fp) described in (23) with H(rem_fp) to achieve the
modulo operation, i.e., MOD(2π, .). As a result, we can apply
the correctremtable presented in Fig. 12 to finish both the second
and third steps.

However, achieving the initial three steps consumes twelve
MAU Stages, thus we use the Mirror extern to generate a
mirrored packet. This packet will re-enter the ingress pipeline
and consume one MAU Stage to finish remaining two steps. Note
that, Mirror extern does not cause delays for the original packet.
Overall, the P4 pseudocode of DRP(Sin(x)) is demonstrated in
Fig. 14.

Exponent: We consume three MAU Stages to implement
DRP(2x) in P4. Note that, we conduct two distinct BM tasks
corresponding to the cases of x ≥ 0 and x < 0 respectively.
Under each case, we apply the variablelenshifttable to left-shift
or right-shift the BM task result. The P4 pseudocode ofDRP(2x)
is shown in Fig. 15.

4) Overflow: As shown in Table V, we compute the accept-
able operand scope of each function operation. We can configure
the hyper-parameters includingFRAC_WIDTH andL to avoid
operand overflow. For instance, when we configure L as 32 and
FRAC_WIDTH as 10, P4 Function Tool can accept the max
operand is 2,097,151. However, when we increase L to 64, the
max operand can reach 9,007,199,254,740,991, which is hard
to overflow.

Authorized licensed use limited to: HUNAN UNIVERSITY. Downloaded on August 19,2025 at 14:13:05 UTC from IEEE Xplore. Restrictions apply.

TANG et al.: PLUTO: A ROBUST LDOS ATTACK DEFENSE SYSTEM EXECUTING AT LINE SPEED 2863

Fig. 15. P4 Pseudocode for Exponent.

TABLE V
THE ACCEPTABLE OPERAND SCOPE OF EACH FUNCTION OPERATION

Fig. 16. Encoding-based Mapping.

B. Pre-Inference Model Mapping

To robustly deploy the pre-inference strategy on the P4 switch,
we use tree-based EL algorithms to train multiple tree mod-
els as the pre-inference model. Specifically, we select three
state-of-the-art tree-based EL algorithms, i.e., XGBoost (XGB),
RandomForests (RF), and LightGBM (LGBM). The reasons
why we choose the tree-based EL algorithms include two points:
(i) they do not require normalizing input features; (ii) their
inference process is consistent with the match/action task.

However, there are two challenges when actually deploying
tree models on the P4 hardware switch, i.e., the Intel Tofino: (i)
deploying the tree model by the direct mapping will consume
multiple MAU Stages, for example, a tree model with a depth of
4 will consume 4 MAU Stages. (ii) summarizing the inference
results of multiple tree models will consume additional MAU
Stages, for example, 4 tree models will consumes 2 additional
MAU Stages. Therefore, to reduce the consumption of MAU
Stages, we adopt an encoding-based mapping method [10] to
deploy the tree model on the P4 switch. Besides, we also
merge multiple tree models into a single tree model, avoiding
the process of summarizing inference results. Additionally, we
prune the merged tree model to further decrease the usage of
TCAM.

Encoding-based Mapping Method: This method includes bi-
nary feature encoding and ternary path encoding. As the tree
model T shown in Fig. 16, we first take the f0 as an example to
show the feature encoding process. Since each partition value
occupies 1 encoding bit, we use 2 bits for encoding f0 which
has 2 partition values. Concretely, when the f0 is less than a
certain partition value (parti′), the encoding bit of the parti′
is 1, otherwise it is 0. Since the feature encoding process can

Fig. 17. Merging Two Inference Paths from Different Tree Models.

be abstracted as a staircase function, we use the LPM task to
implement the feature encoding in the P4 switch.

In addition, as shown in Fig. 16, we take the yellow path as an
example to show the path encoding process. Since the tree model
T contains 3 features and each feature exhibits 2 partition values,
we use a total of 6 bits to encode each path. In the yellow path,
f0 is partitioned twice, and f0 is smaller than its two partition
values, so the f0 is encoded as 11. f1 is not used for partitioning,
thus f1 is encoded as ∗∗. additionally, f2 is only partitioned by
the value of 4246, so the encoding of f2 is 1∗. In summary, the
ternary encoding of the yellow path is 11 ∗ ∗1∗.

In the P4 switch, we use a TM task to implement the inference
process of the tree model, i.e., the path matching. Each path
corresponds to a TM entry. The ternary encoding of a path is
the match value in the TM entry, and the inference result is the
parameter in the TM entry.

Merging Tree Models: For two tree models T0 and T1, their
path sets are {Pi

0} and {Pj
1} respectively. Given any i and j,

we try to merge Pi
0 and Pj

1. We first indicate the two paths as
several feature intervals. Next, we intersect the relevant feature
intervals. If and only if all intersection results are not empty
sets, Pi

0 and Pj
1 are merged successfully. As shown in Fig. 17,

we present a path merging case. Finally, for each merged path,
we compute the summarized inference result offline and use it
as the parameter of the TM entry.

Pruning: Since the TPSM is initiated only when the pre-
inference result is positive, we prune the tree paths with negative
inference results.

Overall: We deploy the pre-inference model by only 2 MAU
Stages, one for the feature encoding and one for the path
matching.

C. Flow-Based Attacker Filtering

When pre-inference determines that an LDoS attack has
occurred within the network, we will enable time-limited per-
flow state management (TPSM) for the Flow-based Attacker
Filtering. Concretely, we need to verify that whether a flow
complies with the prior rule, i.e., ”a flow is identified as an LDoS
attack flow if its arrival packets exhibit a periodic burst pattern.”
However, when deploying the Flow-based Attacker Filtering on
the P4 hardware switch, we need to counter the two issues: (i)
How large of a hash array (register) should we pre-allocate for
the TPSM? (ii) How can we verify that a flow complies with the
prior rule in per-packet processing mode?

Solution for the 1st Issue: We explore the scale of flows in a
real backbone network. Note that, consistent with Whisper, we
identify the flow by the source IP. We explore the mitigation
response time of existing LDoS ADS, we set the activation
time of TPSM to 1 minute, which is significantly sufficient
for mitigating LDoS attacks. As shown in Fig. 18, we con-
duct statistics on the real-world traffic collected by the MAWI
Working Group [44] on the backbone network from 2022.7.1 to
2022.7.31. The results show that the scale of flows in 1 minute

Authorized licensed use limited to: HUNAN UNIVERSITY. Downloaded on August 19,2025 at 14:13:05 UTC from IEEE Xplore. Restrictions apply.

2864 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 22, NO. 3, MAY/JUNE 2025

Fig. 18. The Scale of Flows in the Real-world Backbone Network.

Algorithm 1: Flow-Based Attacker Filtering.

fluctuates around 60,000. Therefore, while ensuring that the load
factor of the hash array does not exceed 50%, the size of the
hash array we created is 217, which is smaller compared with
Mew [31] (size is 140000).

Solution for the 2nd Issue: We propose the async-update hash
table (AUHT), i.e., a deterministic data structure, serving as a
container for executing the prior rule verification. It contains one
variable CWglobal

id , and three hash arrays with the size of 217:
CWflow

id [], bytesflowconsec[], and numflow
null [].

Within the AUHT, we count the per-flow traffic bytes in units
of Counting Window (CW), where CW is the window on the
time scale and its size is SCW. In the per-packet processing
mode, we cannot uniformly update the states of all flows when
a CW is completed. Therefore, we update the states of each
flow asynchronously via its arrival packets. Concretely, we
use CWglobal

id to store the global CW id. Meanwhile, we use
CWflow

id [] to store the CW id of each flow. Next, for an arrival
packet belonging to the flow F, when CWflow

id [F] is not equal to
CWglobal

id , we update the states ofF and synchronizeCWflow
id [F]

to CWglobal
id .

Based on the AUHT, we can verify whether a flow satisfies
the prior rule, i.e., ”a flow is identified as an LDoS attack
flow if its arrival packets exhibit a periodic burst pattern.” We
utilize bytesflowconsec[] to store the accumulated traffic bytes under
consecutive CWs for each flow. When a packet belonging to
the flow F arrives, if CWglobal

id − CWflow
id [F] ≤ 1, we consider

the accumulation of bytesflowconsec[F] is not completed. On the
contrary, we take out bytesflowconsec[F] as the burst traffic bytes of
F, i.e., bytesburst. And we reset bytesflowconsec[F].

In addition, we use numflow
null [] to store the number of con-

secutive null CWs for each flow. When a packet belong-
ing to the flow F arrives, we check whether numflow

null [F] and
(CWglobal

id − CWflow
id [F]) are equal. If so, we determine that

the flow F is periodic and set a variable, i.e., isPeriodic, to 1.
Then we update numflow

null [F] to (CWglobal
id − CWflow

id [F]).

To this end, in the per-packet processing mode, when a
packet belonging to the flow F arrives, we obtain the variables
bytesburst and isPeriodic to determine whether F conforms to
the prior rule. When bytesburst is greater thanBURST_TH and
isPeriodic is 1, the F is determined to be an LDoS attack flow
and added to the blocklist. Overall, the process of Flow-based
Attacker Filtering is shown in Algorithm 1.

VI. IMPLEMENTATION

Considering that the software development kit (SDK) of the
Intel Tofino series P4 switch is not open source, and PLUTO
does not utilize externs (e.g., MathUnit) specifically designed
for the Intel Tofino, we implement a prototype of PLUTO on the
Behavioral Model v2 (BMv2) switch.

In particular, the implementation of our PLUTO prototype
meets the hardware resource constraints of the Intel Tofino 1,
i.e., each pipeline only has 12 MAU stages, 120 MB SRAM,
and 6.2 MB TCAM. Meanwhile, we present the P4 pseudocode
of PLUTO in TNA style, indicating that PLUTO can be deployed
on the Intel Tofino.

We take about 1,500 lines of P416 code to implement the
switch pipeline as shown in Fig. 19. Besides, we take about
5,000 lines of C++ code to implement a code generator for
P4 Function Tool, it generate relevant P416 code for selected
function operations. Additionally, we take about 600 lines of
Python code to implement both the training and mapping of the
pre-inference model.

In the previous Section V-A3, we have presented the imple-
mentation of each function operation in P4 Function Tool. In this
Section, we introduce the remained implementation including
the following aspects: 1) time window; 2) feature computation
utilizing P4 Function Tool; 3) Pre-inference Model Mapping;
4) Flow-based Attacker Filtering and blocklist. 5) local CPU
control logic. Note that, we configure the FRAC_WIDTH to
10 within the feature computation. The MAU Stage numbers
marked in all P4 pseudocodes are consistent with Fig. 19.

A. Time Window

Take the Sampling Window (SW) as an example, as shown in
Fig. 20, we utilize a register with one entry, i.e., the register_sw,
to store the end timestamp of each SW. When a packet arrival
timestamp exceeds the value stored in the register_sw, we update
the register_sw to the packet arrival timestamp plus the value of
SSW. Meanwhile, we set the flag, i.e., sw_completed, to 1.

B. Feature Computation

During the DWk, i.e., the k-th DW, we indicate the two
sequences about AggrTB and AggrB respectively as:

DWk[0]=< Aggr0TB,Aggr
1
TB, . . .,Aggr

i
TB, . . .,Aggr

SDW−1
TB >

(25)

DWk[1] =< Aggr0B,Aggr
1
B, . . .,Aggr

i
B, . . .,Aggr

SDW−1
B >

(26)

Here, AggriTB and AggriB are both sampled by the SWk,i, i.e.,
the i-th SW in the DWk.

On one hand, the time domain statistical features we ex-
tract from DWk[0] include information entropy and mean. On
the other hand, we apply discrete wavelet transform (DWT)
to DWk[1] and obtain the high-frequency and low-frequency

Authorized licensed use limited to: HUNAN UNIVERSITY. Downloaded on August 19,2025 at 14:13:05 UTC from IEEE Xplore. Restrictions apply.

TANG et al.: PLUTO: A ROBUST LDOS ATTACK DEFENSE SYSTEM EXECUTING AT LINE SPEED 2865

Fig. 19. The Per-packet Processing Pipeline of PLUTO.

component sequences, i.e., Freqhigh and Freqlow:

Freqhigh=< Comp0high, . . .,Compjhigh, . . .,Comp
(SDW/2)−1
high >

(27)

Freqlow =< Comp0low, . . .,Compjlow, . . .,Comp
(SDW/2)−1
low >

(28)

Here, Compjhigh and Compjhigh are computed by:[
Compjhigh
Compjlow

]
=

[
fh[0] fh[1]

fl[0] fl[1]

]
·
[

Aggr2jB
Aggr2j+1

B

]
(29)

Note that, fh and fl are both 2D vectors, acting as high-pass and
low-pass filters respectively. Furthermore, we separately extract
the variances from Freqhigh and Freqlow.

1) Discrete Wavelet Transform: To facilitate conducting the
DWT in the P4 switch, we setSDW to the power of 2. Meanwhile,
we set f0 and f1 to < 0.5, 0.5 > and < 0.5,−0.5 > respectively.
Therefore, we can use fixed-length shift to compute (29). As
shown in Fig. 21, we present the P4 pseudocode for the DWT.

When computing the j-th pair of frequency components, we
need to utilize both Aggr2jB and Aggr2j+1

B . When SWk,2j is
completed, we use the register_freq_cmp_term0 to store the
value of (Aggr2jB � 1). When SWk,2j+1 is completed, we fetch
the value of register_freq_cmp_term0 and compute the value of

Authorized licensed use limited to: HUNAN UNIVERSITY. Downloaded on August 19,2025 at 14:13:05 UTC from IEEE Xplore. Restrictions apply.

2866 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 22, NO. 3, MAY/JUNE 2025

Fig. 20. P4 Pseudocode for Time Window.

Fig. 21. P4 Pseudocode for Conducting the DWT.

(Aggr2j+1
B � 1). Furthermore, by the sum and difference of the

two values, we obtain the Compjhigh and Compjlow respectively.
2) Statistical Feature Computation: Since we can compute

the mean through fixed-length shift, we will focus on introducing
the computation of both information entropy and variance in the
P4 switch by utilizing our P4 Function Tool.

Information Entropy: We compute the information entropy of
the DWk[0] and indicate it as IE(AggrTB):

IE(AggrTB) = IE0 − (IE1 / IE0) (30)

IE0 =

SDW∑
i=0

AggriTB, IE
1 =

SDW∑
i=0

[log2(Aggr
i
TB) ·AggriTB]

(31)

We utilize the register_ie0 and register_ie1 to store the stateful
variables, i.e., IE0 and IE1 respectively. When the SWk,i is
completed, we update both register_ie0 and register_ie1. In
particular, with our P4 Function Tool, we utilize the function
operations including the Logarithm and Exponent to compute
the value of [log2(Aggr

i
TB) ·AggriTB]:

log2(Aggr
i
TB) ·AggriTB = 2[log2(AggriTB)+log2(log2(AggriTB))]

(32)

When the DWk is completed, we compute the value of
(IE1 / IE0) as 2[log2(IE

1)−log2(IE
0)]. As shown in Fig. 22, we

demonstrate the P4 pseudocode for computing the information
entropy. Notably, constrained by the 12 MAU stages, when the
DWk is completed, we generate a mirrored packet and emit it to
the loopback port. This packet will re-enter the ingress pipeline
to finish computing (30) and execute the pre-inference.

Variance: We compute the variances of Freqhigh and Freqlow
respectively. Take the variance of Freqhigh as an example, to

Fig. 22. P4 Pseudocode for Conducting the Information Entropy.

Fig. 23. P4 Pseudocode for Conducting the Variance.

compute it, we have:

Var(Freqhigh) = V0 − (V1)2,NC = (SDW/2)− 1 (33)

V0 =
2

SDW

NC∑
j=0

(Compjhigh)
2,

V 1 =
2

SDW

NC∑
j=0

Compjhigh (34)

We use the register_sum_square_hf and register_sum_hf
saparately to store stateful variables, i.e., V0 and V1. Besides,
we update the two register when an SW is completed. By the P4
Function Tool, we use the Logarithm and Exponent to compute
the values of both (Compjhigh)

2 and (V1)2:

(Compjhigh)
2 = 22·log2(Compj

high), (V1)2 = 22·log2(V
1) (35)

As shown in Fig. 23, we present the P4 pseudocode of computing
the variance. Notably, for the BM task of Logarithm, we amplify
the value stored in the register entry by a factor of two offline.
Besides, the computation of (33) is finished by the mirrored
packet mentioned before.

C. Pre-Inference Model Mapping

We utilize four LPM tasks to separately encode four extracted
features, including the information entropy of DWk[0], the
mean of DWk[0], the variance of Freqhigh, and the variance of
Freqlow. Besides, for executing the inference, we leverage a TM
task containing four keys to conduct the joint matching. Each
key corresponds to a feature code. The relevant P4 pseudocode
is demonstrated in Fig. 24.

D. Flow-Based Attacker Filtering and Blocklist

When the pre-inference result is 1, we will enable the TPSM
for 1 minute to apply the AUHT. We implement the Counting

Authorized licensed use limited to: HUNAN UNIVERSITY. Downloaded on August 19,2025 at 14:13:05 UTC from IEEE Xplore. Restrictions apply.

TANG et al.: PLUTO: A ROBUST LDOS ATTACK DEFENSE SYSTEM EXECUTING AT LINE SPEED 2867

TABLE VI
RELATIVE ERROR STATISITCS OF P4 FUNCTION TOOL AND BASELINE

Fig. 24. P4 Pseudocode for Pre-inference Model Mapping.

Window(CW) as the same with the SW and adopt the CRC32
as the hashing algorithm. Each hash array (32-bit register) in
the AUHT contains 217 entries. Therefore, the AUHT occupies
1.573 MB SRAM. Besides, we use registerf ilterendts as the
timer, it stores the end timestamp of the TPSM. When the packet
arrival timestamp exceeds the end timestamp, the TPSM will
shut down.

In addition, we implement the blocklist based on the blocked
bloom filter. We split the one-hash-array bloom filter into two 1-
bit registers. Each register contains 220 entries, thus the blocked
bloom filter occupies 0.262 MB SRAM.

E. Local CPU Control Logic

At the very beginning of the runtime PLUTO prototype, the
local CPU of the P4 switch is responsible for 1) pre-installing
table entries and pre-write register entries for computing the
Logarithm and Exponent, 2) pre-installing table entries for exe-
cuting the pre-inference model.

VII. EVALUATION

In this section, we evaluate the performance of PLUTO. The
experimental results will answer the issues below:

1) Does the P4 Function Tool have lower errors and TCAM
usage compared with the baseline? (Section VII-A)

2) Does PLUTO have stronger detection performance and
lower mitigation response time compared with the base-
line? (Section VII-B)

A. P4 Function Tool Evaluation

Baseline: We use the state-of-the-art solution for achieving
function operations in P4, namely Flex Switch Libs [37], as the
baseline. This solution uses the longest prefix encoding (LPE)
to achieve function operations in the P4 switch. Here, the width
of LPE is indicated asm. We compare the P4 Function Tool with

the Flex Switch Libs under the configurations of m = 6, m = 8,
and m = 10 respectively.

Experimental Setup: To facilitate the accuracy evaluation for
the P4 Function Tool, we use C++ to implement the match/action
mode of the P4 switch. Based on this, we employ the C++
program to evaluate the accuracy of P4 Function Tool by using
extensive 32-bit and 64-bit input data respectively. For 32-bit
input data, we set FRAC_WIDTH to 10. For 64-bit input data,
we set FRAC_WIDTH to 12. We enter the data in the stride of
(2 + 2−FRAC_WIDTH), starting from the minimal value to the
maximum value demonstrated in Table V. Notably, for 64-bit
input data, since its scope is too wide, the stride is expanded to
2 · stride + 1 after every 2FRAC_WIDTH input rounds.

Accuracy Comparison: As shown in Table VI, we measure the
relative errors (REs) caused by the P4 Function Tool to evaluate
its accuracy. We use extensive input data (32-bit input data and
64-bit input data) for the RE measurement. We compute the RE
statistics including mean (μ), standard deviation (σ). The results
of RE statistics indicate that the accuracy of our P4 Function Tool
is higher than the Flex Switch Libs overall. Additionally, we
measure the RE distribution of the P4 Function Tool. According
to the three-sigma principle, we set the confidence interval (CI)
as [0, μ+ 3σ]. Notably, for both Sin and Cos, the relevant RE
distribution of the baseline significantly deviates from a normal
Gaussian distribution, thus we uniformly set the CI as [0, 15] for
the two functions.

As shown in Fig. 25, we demonstrate the RE distribution
within the CI. For four different functions (Log2, Sqrt, Sin, and
Cos), the REs caused by the P4 Function Tool are overall more
stable and closer to zero compared with the baseline.

Notably, the baseline utilizes the LPE to implement the
function operations, except for the Exponent (2x). For 2x, the
baseline uses an exact matching task to achieve it, resulting in
the same accuracy as the P4 Function Tool when computing 2x.
Therefore, for 2x, we compare only the memory usage between
the P4 Function Tool and the baseline. Additionally, although the
accuracy of Flex Switch Libs (m=10) is close to the Function
Tool in several cases, the TCAM usage of Flex Switch Libs
(m=10) is significantly higher than the P4 Function Tool, which
we will demonstrate in the following content.

Memory Usage Comparison: As shown in Table VII, we
present the memory (SRAM and TCAM) usage of the P4
Function Tool. Compared with the baseline, the P4 Function
Tool significantly reduces the usage of expensive TCAM by an
average of 90.51% for 32-bit input data and 98.53% for 64-bit
input data. In addition, the P4 Function Tool occupies less than
0.053% of the total SRAM (120 MB for Intel Tofino).

Authorized licensed use limited to: HUNAN UNIVERSITY. Downloaded on August 19,2025 at 14:13:05 UTC from IEEE Xplore. Restrictions apply.

2868 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 22, NO. 3, MAY/JUNE 2025

Fig. 25. RE Distribution within Confidence Interval.

TABLE VII
MEMORY USAGE OF P4 FUNCTION TOOL AND BASELINE

B. Detection and Mitigation Evaluation

Baselines: To evaluate the performance improvement of de-
tection and mitigation brought by PLUTO, we establish three
baselines:
� P&F: It is an SDN-based solution for defending LDoS

attacks. It adopts the time window as units to analyze
whether a flow table entry corresponds to an LDoS attack
flow. We prototype P&F by the Ryu 4.34 [45] based on its
relevant paper [6].

� Whisper: It is an Intel DPDK-based system [7] for detecting
malicious traffic. We build its open source project and only
tune its hyper-parameters for acceptable performance.

� NetBeacon: It is a P4-based per-flow ML inference solu-
tion [20]. We configure its task to distinguish LDoS attack

Fig. 26. The Network Topology of Epoch.

flows from other flows. To deploy it on the BMv2 switch,
we convert its open source P416 codes from the TNA style
to the V1Model style.

Testbed: We build a testbed consisting of Ubuntu 20.04 LTS
operating system (Linux 5.4.0), one Intel Xeon E5-2680 v4
CPU (32 GB RAM and 16 cores), as well as one Intel I210
NIC (1 Gbps, one port with 4 RX queues, and supporting Intel
DPDK).

With our testbed, we utilize the network container Mininet
2.3.0 [46] to run a real-world network topology, evaluating
the detection and mitigation performance of PLUTO, P&F,
and NetBeacon. Since Whisper is a virtualization module in
a software-defined middlebox, it cannot interfere with traffic
for mitigation. Therefore, we only evaluate its detection perfor-
mance by an end-to-end approach. We utilize the testbed for
deploying Whisper and use another server for generating traffic.

Real-world Topology: As shown in Fig. 26, we utilize a real-
world network topology named Epoch for evaluating [47]. It is
included in the Internet Topology Zoo dataset [48].

In this topology, each city is represented by a switch. The links
between a local user and a city switch, i.e., the local links, have
a bandwidth of 1 Gbps and a delay of 0 ms. In addition, the links
connecting any two cities, i.e., the city links, have a bandwidth
of 1 Gbps. And their respective link delays are marked in Fig. 26.
In the following content, we use the city name to represent its
revalant switch.

Within our evaluation, we assume there are attackers in the
Palo Alto city, they launch LDoS attacks targeting the local users
in the Vienna city. As a result, the available TCP bandwidth in
the red link is deteriorated.

To defend against LDoS attacks, we deploy the prototype of
PLUTO and the baselines (P&F and NetBeacon) for the Palo
Alto. Concretely, Under the cases of PLUTO and NetBeacon,
Palo Alto is a BMv2 switch, and we load the compiled file of P4
code to it. Under the case of P&F, Palo Alto is an OpenvSwitch
connected to a Ryu controller where the program of P&F is
running.

Real-world Traffic Dataset: We replay the real-world traffic
datasets, which are collected from the WIDE MAWI Gigabit
backbone network [44], as the background traffic in the city link
between Palo Alto and Vienna.

Within our evaluation, we establish multiple traffic scenarios
with different TCP packet proportions. As shown in Table VIII,
we analyze the TCP packet proportion in the real-world traffic
datasets collected from 2022.7.1 to 2022.7.31. The TCP packet
proportion fluctuates from 0.55 to 0.85.

By Increasing the TCP packet proportion according to the
step of 0.1, we select the traffic datasets of the 23 rd day, the
8th day, the 3 rd day, the 18th day, and the 17th day to establish

Authorized licensed use limited to: HUNAN UNIVERSITY. Downloaded on August 19,2025 at 14:13:05 UTC from IEEE Xplore. Restrictions apply.

TANG et al.: PLUTO: A ROBUST LDOS ATTACK DEFENSE SYSTEM EXECUTING AT LINE SPEED 2869

TABLE VIII
THE PROPORTION OF TCP PACKETS IN REAL-WORLD TRAFFIC DATASETS [44]

Fig. 27. The Measurement of Round-trip Time in Epoch Network.

TABLE IX
CONFIGURATION OF LDOS ATTACK PARAMETERS

five traffic scenarios. Their TCP packet proportions are 0.553,
0.611, 0.7, 0.793, and 0.851 respectively.

LDoS Attack Setup: LDoS attacks contain three parameters:
attack period, attack intensity, and burst duration. Based on the
recommendation of [12], the attack period should be set as
minRTO which is default to 1s according to RFC 2988 [13];
the attack intensity should reach the bottleneck link bandwidth
(45Mbps); and the burst duration should cover the RTT of the
bottleneck link.

To set the burst duration, as shown in Fig. 27, we measure
the RTT of the link connecting Palo Alto to Vienna (the red
link in Fig. 26), 500 times. In this context, the average RTT is
212 ms, and most RTTs are short than 250 ms. Therefore, for
the detection testing, we set the burst duration in steps of 4 ms
between the interval, i.e., [212 ms, 248ms]; for the mitigation
testing, we set the burst duration in steps of 4 ms between the
interval, i.e., [214 ms, 250ms]. All groups of the LDoS attack
parameter are shown in Table IX.

In addition, we utilize an IP pool of size 72, and the source
IP of an LDoS attack packet is randomly generated from the
IP pool. Therefore, the byte rate of each LDoS attack flow is
0.625 Mbps.

Feature Record Collection of PLUTO: In each traffic scenario,
we set up a normal scenario (without LDoS attacks) and an attack
scenario (with LDoS attacks) to separately obtain benign and
malicious feature records for training the pre-inference model.
Notably, each feature record contains the statistical features
extracted from a DW.

In normal scenarios, we only replay the real-world traffic
dataset as background traffic. In particular, since the real-world
traffic dataset is recorded offline, its TCP traffic is stateless.
Therefore, in the attack scenario, to ensure LDoS attacks are

TABLE X
NUMBER OF BENIGN AND MALICIOUS FEATURE RECORDS

effective, we only replay the UDP traffic in the real-world traffic
dataset. Meanwhile, we utilize the Iperf to send multiple TCP
flows with connection states, filling the original TCP bandwidth.
Additionally, we utilize the ten groups of LDoS attack param-
eters, listed in Table IX (focusing on the column of Detection
Testing), to launch LDoS attacks in the attack scenario.

We collect feature records under different combinations of
SSW and SDW. Here, SSW ∈ {1ms, 1.5ms, 2ms, 2.5ms} and
SDW ∈ {23, 24, 25, 26}. We indicate each combination as the
format of (SSW, SDW).

With each case of (SSW, SDW), we collect feature records
under five traffic scenarios respectively. For each traffic scenario,
we take 400s to collect benign feature records in the normal
scenario. Additionally, we take 60s to collect malicious feature
records under each group of LDoS attacks. After a group of
LDoS attacks stops, we spend 20s collecting benign feature
records. Overall, we spend 800s and 600s separately collecting
malicious and benign feature records. As shown in Table X, we
present the number of benign and malicious feature records in
each case of (SSW, SDW).

Detection Performance of PLUTO: Refering to Section V-B,
we adopt three different tree-based EL algorithm to train pre-
inference model. We compare the detection performance be-
tween them by four metrics: 1) Recall, 2) the area under ROC
curve (AUC), 3) F1 Score, and 4) equal error rate (EER).

With each case of (SSW, SDW), we utilize the relavant col-
lected feature records to train and test the pre-inference model.
We split all feature records into training records and testing
records based on the ratio of 1:1. As shown in Fig. 28, we present
the measured metrics of the pre-inference model under different
cases of (SSW, SDW).

When SDW increases to 25, the detection performance of
PLUTO reaches an acceptable level. As SDW increases to 26, the
detection performance does not improve significantly, or even
decreases slightly.

In addition, for the three tree-based EL algorithms, XGB
has the optimal metrics of AUC (0.9579), F1 Score (0.9632),
and EER (0.0421). Its higher F1 Score indicates that it has
a strong ability to classify both benign and malicious feature
records. While LGBM has the optimal Recall (0.9792). Since
its Recall is significantly higher than its F1 Score, LGBM has a
stronger classification ability for malicious feature records than
for benign feature records.

Overall, with appropriate configuration, PLUTO can achieve
AUC (0.9579), F1 Score (0.9632), EER (0.0421), and Recall
(0.9792), the best.

Detection Performance Comparison: We measure the detec-
tion performance of baselines (P&F, Whisper, and NetBeacon)
under the same five traffic scenarios. Notably, we use the same

Authorized licensed use limited to: HUNAN UNIVERSITY. Downloaded on August 19,2025 at 14:13:05 UTC from IEEE Xplore. Restrictions apply.

2870 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 22, NO. 3, MAY/JUNE 2025

Fig. 28. Detection Performance of PLUTO under Different Tree-based EL
Algorithms.

TABLE XI
DETECTION PERFORMANCE COMPARISON

ten groups of LDoS attack parameter, listed in Table IX (focusing
on the column of Detection Testing), to launch LDoS attacks.

As shown in Table XI, we present detection performance
comparison between PLUTO and baselines. Overall, compared
with baselines, PLUTO improves AUC by an average of 1.83%,
F1 Score by an average of 7.27%, and Recall by an average of
9.58%, and meanwhile, PLUTO reduces EER by an average of
27.96%.

Flow-based Attacker Filtering Setup: On one hand, we need
to set SCW to a value smaller than the burst duration of LDoS
attacks. We consider that the burst duration is greater than the
RTT, which means that the lower bound of burst duration is twice
the bottleneck link delay (39.41 ms). Therefore, we set SCW to
40 ms.

On the other hand, we assume an extreme case that a single
burst send by attack flow contains at least one MTU. This means
that the burst bytes is at least 1500 Bytes. As a result, we set
BURST_TH to 1500.

Mitigation Performance Comparison: We compare the mit-
igation performance of PLUTO and baselines (P&F and Net-
Beacon) under the five traffic scenarios. As listed in Table IX
(focusing on the column of Mitigation Testing), we use the ten

Fig. 29. The Measurement of Mitigation Response Time.

TABLE XII
RESOURCE CONSUMPTION PER PIPELINE IN PLUTO PROTOTYPE

groups of LDoS attack parameter to launch LDoS attacks. Each
group of LDoS attacks is launched three times.

We measure the mitigation response time (MRT) for PLUTO
and baselines. Concretely, MRT is the duration from the time
LDoS attacks are launched to the time network returns to normal.

As shown in Fig. 29, we present the CDF with respect
to MRT. Compared with P&F, the average MRT of PLUTO
is significantly faster by 12.749 s, which benefits from the
line-speed execution capacity of PLUTO. In addition, the data
plane-aware design included in PLUTO, that is, activating TPSM
for the Flow-based Attacker Filtering based on pre-inference
results does not delay the attack mitigation compared with the
traditional per-flow ML inference, i.e., NetBeacon. In particular,
the average MRT of PLUTO is 0.268 s faster compared with
NetBeacon, which benefits from the robust feature engineering
for pre-inference.

Resource Consumption: As shown in Table XII, we measure
the resource consumption of PLUTO, including the memory
(TCAM and SRAM) usage, as well as the maximum number
of parallel operations and table lookups in an MAU Stage.
Measurement results indicate that PLUTO is resource-friendly
to the P4 hardware switch, i.e., the Intel Tofino.

VIII. LIMITATION AND DISCUSSION

A. Occupation of Loopback Port Bandwidth

Since the P4 hardware switch, i.e., Intel Tofino has limited
MAUs, PLUTO mirrors the packets and directs them to the loop-
back port, executing the rest process of LDoS attack detection.
In particular, PLUTO outputs a mirrored packet to the loopback
port only when a DW is completed, and each DW lasts the
time of (SSW · SDW). Meanwhile, referring to Section VII-B,
the minimum SSW and SDW set by PLUTO are 1 ms and 23

respectively. Therefore, PLUTO delivers packets to the loopback
port at a maximum packet rate of 125 packets/s. Assuming that
the size of each mirrored packet is MTU, i.e., 1500 Bytes, the
bandwidth of the loopback port occupied by PLUTO is 1.5
Mbps. This is much smaller than the bandwidth of a single port
in Intel Tofino (100 Gbps). Therefore, PLUTO does not let the
loopback port become a bottleneck.

Authorized licensed use limited to: HUNAN UNIVERSITY. Downloaded on August 19,2025 at 14:13:05 UTC from IEEE Xplore. Restrictions apply.

TANG et al.: PLUTO: A ROBUST LDOS ATTACK DEFENSE SYSTEM EXECUTING AT LINE SPEED 2871

B. Resource Redundancy in Function Operations

Within the P4 switch, a single MAU Stage can only be
accessed once and the resources between different MAU Stages
are isolated, thus the P4 Function Tool cannot reuse the tables
and registers created for function operations. Each function
operation has its independent tables and registers, which results
in resource redundancy. Fortunately, referring to Section VII-A,
the P4 Function Tool has a lightweight memory footprint. In Intel
Tofino, a single function operation uses no more than 0.02% and
0.053% of the total TCAM and SRAM, respectively.

C. Scalability Analysis

The data plane-aware design proposed by PLUTO is a generic
P4 design, containing the window-based pre-inference strategy
and the time-limited per-flow state management. This design
can be applied to a wide range of low-rate security threat
solutions which is built through the resource-constrained P4
switch. In addition, although the P4 Function Tool only pro-
vides five basic function operations, their combination can
achieve more complex operations. In Section VI-B2, we use
the Logarithm and Exponent supported by the P4 Function
Tool to compute multiplication, division, and power functions in
the P4 switch.

IX. CONCLUSION

In this paper, based on the advantage of P4, we present
PLUTO, a data plane-aware LDoS attack defense system built
upon the P4 switch, defending LDoS attack at line speed. Within
the data plane-aware design of PLUTO, we first propose the
time window-based pre-inference strategy. We only maintain
one group of states relevant to the aggregate flow for detecting
LDoS attack at a macro level, thus the overhead incurred is
significantly lightweight for the P4 switch. Besides, to further
reduce the flow scale which the P4 siwtch handles, we propose
the time-limited per-flow state management for conducting the
Flow-based Attacker Filtering only when the pre-inference re-
sults indicates an LDoS attack occurs.

Furthermore, to practically deploy PLUTO on the P4 switch,
we implement three modules: the P4 Function Tool, the Pre-
inference Model Mapping, and the Flow-based Attacker Filter-
ing. Here, the P4 Function Tool utilizes the scope reduction,
achieving common function operations to compute extensive
features in the P4 switch. The Pre-inference Model Mapping
adopts an encoding-based mapping methods to deploy the pre-
inference model on the P4 switch. In addition, the Flow-based
Attacker Filtering leverages a P4-based deterministic data struc-
ture, i.e., the async-update hash table, to efficiently filter LDoS
attack flows in the per-packet processing mode of the P4 switch.
Compared with the baseline, we evaluate PLUTO from two
aspects: 1) the accuracy and memory usage of the P4 Function
Tool, and 2) the detection and mitigation performance. In future
work, we will further optimize the details of PLUTO to make it
adaptable to more security threats.

REFERENCES

[1] Websites in Iran shut down due to LDoS attacks, 2009. [Online]. Available:
https://www.okta.com/identity-101/slowloris/

[2] Government and institution websites in Italy down for at least
one hour due to LDoS attacks, 2022. [Online]. Available: https:
//www.bleepingcomputer.com/news/security/italian-cert-hacktivists-
hit-govt-sites-in-slow-http-ddos-attacks/

[3] D. Tang, X. Wang, X. Li, P. Vijayakumar, and N. Kumar, “AKN-FGD:
Adaptive Kohonen network based fine-grained detection of LDoS attacks,”
IEEE Trans. Dependable Secure Comput., vol. 20, no. 1, pp. 273–287,
Jan./Feb. 2023.

[4] Y. Mirsky, T. Doitshman, Y. Elovici, and A. Shabtai, “Kitsune: An ensem-
ble of autoencoders for online network intrusion detection,” in Proc. Netw.
Distrib. Syst. Secur. Symp., 2018, pp. 1–15.

[5] D. Tang, S. Zhang, Y. Yan, J. Chen, and Z. Qin, “Real-time detection
and mitigation of LDoS attacks in the SDN using the HGB-FP algo-
rithm,” IEEE Trans. Services Comput., vol. 15, no. 6, pp. 3471–3484,
Nov./Dec. 2022.

[6] D. Tang, Y. Yan, S. Zhang, J. Chen, and Z. Qin, “Performance and features:
Mitigating the low-rate TCP-targeted DoS attack via SDN,” IEEE J. Sel.
Areas Commun., vol. 40, no. 1, pp. 428–444, Jan. 2022.

[7] C. Fu, Q. Li, M. Shen, and K. Xu, “Realtime robust malicious traffic
detection via frequency domain analysis,” in Proc. 2021 ACM SIGSAC
Conf. Comput. Commun. Secur., 2021, pp. 3431–3446.

[8] D. Tang, S. Wang, B. Liu, W. Jin, and J. Zhang, “GASF-IPP: Detection
and mitigation of LDoS attack in SDN,” IEEE Trans. Services Comput.,
vol. 16, no. 5, pp. 3373–3384, Sep./Oct. 2023.

[9] D. Tang, Z. Zheng, X. Wang, S. Xiao, and Q. Yang, “PeakSAX: Real-time
monitoring and mitigation system for LDoS attack in SDN,” IEEE Trans.
Netw. Service Manag., vol. 20, no. 3, pp. 3686–3698, Sep. 2023.

[10] C. Zheng and N. Zilberman, “Planter: Seeding trees within switches,” in
Proc. SIGCOMM 2021 Poster Demo Sessions, 2021, pp. 12–14.

[11] S. Ha, I. Rhee, and L. Xu, “CUBIC: A new TCP-friendly high-speed TCP
variant,” ACM SIGOPS Operating Syst. Rev., vol. 42, no. 5, pp. 64–74,
2008.

[12] A. Kuzmanovic and E. W. Knightly, “Low-rate TCP-targeted denial of
service attacks: The shrew vs. the mice and elephants,” in Proc. ACM
SIGCOMM Conf., 2003, pp. 75–86.

[13] RFC 2988, 2000. [Online]. Available: https://www.rfc-editor.org/rfc/
rfc2988

[14] P. Bosshart et al., “P4: Programming protocol-independent packet proces-
sors,” ACM SIGCOMM Comput. Commun. Rev., vol. 44, no. 3, pp. 87–95,
2014.

[15] Public Tofino native architecture, 2021. [Online]. Available: https://github.
com/barefootnetworks/Open-Tofino/blob/master/PUBLIC_Tofino-
Native-Arch.pdf

[16] Arista 7170 multi-function programmable networking, 2020. [On-
line]. Available: https://www.arista.com/assets/data/pdf/Whitepapers/
7170_White_Paper.pdf

[17] Behavioral model, (n.d.). [Online]. Available: https://github.com/p4lang/
behavioral-model

[18] G. Xie, Q. Li, Y. Dong, G. Duan, Y. Jiang, and J. Duan, “Mousika: Enable
general in-network intelligence in programmable switches by knowl-
edge distillation,” in Proc. 2022 IEEE Conf. Comput. Commun., 2022,
pp. 1938–1947.

[19] T. Swamy, A. Rucker, M. Shahbaz, I. Gaur, and K. Olukotun, “Tau-
rus: A data plane architecture for per-packet ML,” in Proc. 27th ACM
Int. Conf. Architectural Support Program. Lang. Operating Syst., 2022,
pp. 1099–1114.

[20] G. Zhou, Z. Liu, C. Fu, Q. Li, and K. Xu, “An efficient design of intelligent
network data plane,” in Proc. USENIX Secur. Symp., 2023, pp. 6203–6220.

[21] A. T.-J. Akem, M. Gucciardo, and M. Fiore, “Flowrest: Practical flow-level
inference in programmable switches with random forests,” in Proc. 2023
IEEE Conf. Comput. Commun., 2023, pp. 1–10.

[22] B. M. Xavier, R. S. Guimarães, G. Comarela, and M. Martinello, “Pro-
grammable switches for in-networking classification,” in Proc. 2021 IEEE
Conf. Comput. Commun., 2021, pp. 1–10.

[23] D. Barradas, N. Santos, L. Rodrigues, S. Signorello, F. M. Ramos, and A.
Madeira, “FlowLens: Enabling efficient flow classification for ML-based
network security applications,” in Proc. Netw. Distrib. Syst. Secur. Symp.,
2021, pp. 1–18.

[24] J. Yan et al., “Brain-on-Switch: Towards advanced intelligent network data
plane via NN-driven traffic analysis at line-speed,” in Proc. USENIX Symp.
Netw. Syst. Des. Implementation, 2024, pp. 419–440.

[25] M. Zhang et al., “Poseidon: Mitigating volumetric DDoS attacks with
programmable switches,” in Proc. Netw. Distrib. Syst. Secur. Symp., 2020,
pp. 1–18.

[26] D. Ding, M. Savi, and D. Siracusa, “Tracking normalized network traffic
entropy to detect DDoS attacks in P4,” IEEE Trans. Dependable Secure
Comput., vol. 19, no. 6, pp. 4019–4031, Nov./Dec. 2022.

[27] A. da Silveira Ilha, Â. C. Lapolli, J. A. Marques, and L. P. Gaspary,
“Euclid: A fully in-network, P4-based approach for real-time DDoS attack
detection and mitigation,” IEEE Trans. Netw. Service Manag., vol. 18,
no. 3, pp. 3121–3139, Sep. 2021.

Authorized licensed use limited to: HUNAN UNIVERSITY. Downloaded on August 19,2025 at 14:13:05 UTC from IEEE Xplore. Restrictions apply.

https://www.okta.com/identity-101/slowloris/
https://www.bleepingcomputer.com/news/security/italian-cert-hacktivists-hit-govt-sites-in-slow-http-ddos-attacks/
https://www.bleepingcomputer.com/news/security/italian-cert-hacktivists-hit-govt-sites-in-slow-http-ddos-attacks/
https://www.bleepingcomputer.com/news/security/italian-cert-hacktivists-hit-govt-sites-in-slow-http-ddos-attacks/
https://www.rfc-editor.org/rfc/rfc2988
https://www.rfc-editor.org/rfc/rfc2988
https://github.com/barefootnetworks/Open-Tofino/blob/master/PUBLIC_Tofino-Native-Arch.pdf
https://github.com/barefootnetworks/Open-Tofino/blob/master/PUBLIC_Tofino-Native-Arch.pdf
https://github.com/barefootnetworks/Open-Tofino/blob/master/PUBLIC_Tofino-Native-Arch.pdf
https://www.arista.com/assets/data/pdf/Whitepapers/7170_White_Paper.pdf
https://www.arista.com/assets/data/pdf/Whitepapers/7170_White_Paper.pdf
https://github.com/p4lang/behavioral-model
https://github.com/p4lang/behavioral-model

2872 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 22, NO. 3, MAY/JUNE 2025

[28] Z. Liu et al., “Jaqen: A high-performance switch-native approach for
detecting and mitigating volumetric DDoS attacks with programmable
switches,” in Proc. USENIX Secur. Symp., 2021, pp. 3829–3846.

[29] A. G. Alcoz, M. Strohmeier, V. Lenders, and L. Vanbever, “Aggregate-
based congestion control for pulse-wave DDoS defense,” in Proc. ACM
SIGCOMM Conf., 2022, pp. 693–706.

[30] S. Kim, C. Jung, R. Jang, D. Mohaisen, and D. Nyang, “A robust counting
sketch for data plane intrusion detection,” in Proc. Netw. Distrib. Syst.
Secur. Symp., 2023, pp. 1–17.

[31] H. Zhou, S. Hong, Y. Liu, X. Luo, W. Li, and G. Gu, “Mew: Enabling large-
scale and dynamic link-flooding defenses on programmable switches,” in
Proc. IEEE Symp. Secur. Privacy, 2022, pp. 1625–1639.

[32] A. AlSabeh, E. Kfoury, J. Crichigno, and E. Bou-Harb, “P4DDPI: Securing
P4-programmable data plane networks via DNS deep packet inspection,”
in Proc. Netw. Distrib. Syst. Secur. Symp., 2022, pp. 1–7.

[33] D. Tang, X. Wang, K. Li, C. Yin, W. Liang, and J. Zhang, “FAPM: A fake
amplification phenomenon monitor to filter DRDoS attacks with P4 data
plane,” IEEE Trans. Netw. Service Manag., vol. 21, no. 6, pp. 6703–6715,
Dec. 2024.

[34] A. Laraba, J. François, S. R. Chowdhury, I. Chrisment, and R. Boutaba,
“Mitigating TCP protocol misuse with programmable data planes,” IEEE
Trans. Netw. Service Manag., vol. 18, no. 1, pp. 760–774, Mar. 2021.

[35] M. Zhang et al., “NetHCF: Filtering spoofed IP traffic with programmable
switches,” IEEE Trans. Dependable Secure Comput., vol. 20, no. 2,
pp. 1641–1655, Mar./Apr. 2023.

[36] D. Ding, M. Savi, and D. Siracusa, “Estimating logarithmic and exponen-
tial functions to track network traffic entropy in P4,” in Proc. IEEE/IFIP
Netw. Operations Manage. Symp., 2020, pp. 1–9.

[37] N. K. Sharma, A. Kaufmann, T. Anderson, A. Krishnamurthy, J. Nelson,
and S. Peter, “Evaluating the power of flexible packet processing for
network resource allocation,” in Proc. USENIX Symp. Netw. Syst. Des.
Implementation, 2017, pp. 67–82.

[38] Y. Yuan et al., “Unlocking the power of inline floating-point operations
on programmable switches,” in Proc. USENIX Symp. Netw. Syst. Des.
Implementation, 2022, pp. 683–700.

[39] H. Namkung, Z. Liu, D. Kim, V. Sekar, and P. Steenkiste, “Sketch-
Lib: Enabling efficient sketch-based monitoring on programmable
switches,” in Proc. USENIX Symp. Netw. Syst. Des. Implementation, 2022,
pp. 743–759.

[40] G. Li et al., “IMap: Fast and scalable in-network scanning with pro-
grammable switches,” in Proc. USENIX Symp. Netw. Syst. Des. Imple-
mentation, 2022, pp. 667–681.

[41] X. Chen, S. Landau-Feibish, M. Braverman, and J. Rexford, “BeauCoup:
Answering many network traffic queries, one memory update at a time,”
in Proc. ACM SIGCOMM Conf., 2020, pp. 226–239.

[42] V. Shrivastav, “Programmable multi-dimensional table filters for line rate
network functions,” in Proc. ACM SIGCOMM Conf., 2022, pp. 649–662.

[43] K. Zhang, D. Zhuo, and A. Krishnamurthy, “Gallium: Automated soft-
ware middlebox offloading to programmable switches,” in Proc. ACM
SIGCOMM Conf., 2020, pp. 283–295.

[44] MAWI working group traffic archive, 2022. [Online]. Available: http://
mawi.wide.ad.jp/mawi/

[45] Ryu SDN controller, 2017. [Online]. Available: https://github.com/
faucetsdn/ryu/

[46] Mininet, 2022. [Online]. Available: http://mininet.org/
[47] D. Tang, Y. Yan, C. Gao, W. Liang, and W. Jin, “LtRFT: Mitigate the low-

rate data plane DDoS attack with learning-to-rank enabled flow tables,”
IEEE Trans. Inf. Forensics Security, vol. 18, pp. 3143–3157, 2023.

[48] The Internet topology zoo, 2013. [Online]. Available: http://www.
topology-zoo.org/index.html

[49] Tofino feature summary, 2021. [Online]. Available: https:
//opennetworking.org/wp-content/uploads/2021/05/2021-P4-WS-
Vladimir-Gurevich-Slides.pdf

Dan Tang received the BS, MS, and PhD degrees
from the Huazhong University of Science and Tech-
nology, in 2014. He is now an associate professor
with the College of Computer Science and Electronic
Engineering (CSEE), Hunan University (HNU). His
research interests include network security, informa-
tion security, and programmable network.

Boru Liu received the BS degree from the College
of Computer Science and Electronic Engineering
(CSEE), Hunan University. He is currently working
toward the MS degree with CSEE, Hunan University.
He is currently a senior with the College of Computer
Science and Electronic Engineering (CSEE), Hunan
University (HNU), Changsha, China. He is majoring
in computer science and technology and his research
focuses on programmable data plane and cyberspace
security.

Keqin Li (Fellow, IEEE) is a SUNY distinguished
professor of computer science with the State Univer-
sity of New York and also a national distinguished
professor with Hunan University. His current research
interests include cloud computing, fog computing and
mobile edge computing, energy-efficiency computing
and communication, embedded systems and cyber-
physical systems, heterogeneous computing systems,
Big Data computing, high-performance computing,
CPU-GPU hybrid and cooperative computing, com-
puter architectures and systems, computer network-

ing, machine learning, intelligent, and soft computing.

Sheng Xiao received the PhD degree from the Uni-
versity of Massachusetts, Amherst, in 2013. He is
an associate professor with the College of Computer
Science and Electronic Engineering (CSEE) Hunan
University (HNU), Changsha, China. His research
interests include communication security, high per-
formance computing, and data visualization.

Wei Liang received the PhD degree in computer
science and technology from Hunan University, in
2013. He was a postdoctoral scholar with Lehigh
University, Bethlehem, PA, USA, during 2014 to
2016. He is currently a professor with the School of
Computer Science and Engineering, Hunan Univer-
sity of Science and Technology. His research interests
include blockchain security technology, network se-
curity protection, embedded system and hardware IP
protection, fog computing, and security management
in wireless sensor networks.

Jiliang Zhang received the PhD degree in com-
puter science and technology from Hunan University,
Changsha, China, in 2015. From 2013 to 2014, he
worked as a research scholar with the Maryland Em-
bedded Systems and Hardware Security Lab, Univer-
sity of Maryland, College Park. He is currently a full
professor with Hunan University. He is the director
of Chip Security Institute of Hunan University, and
the secretary-general of CCF Fault-Tolerant Com-
puting Professional Committee. His current research
interests include hardware security, integrated circuit

design, and intelligent system.

Authorized licensed use limited to: HUNAN UNIVERSITY. Downloaded on August 19,2025 at 14:13:05 UTC from IEEE Xplore. Restrictions apply.

http://mawi.wide.ad.jp/mawi/
http://mawi.wide.ad.jp/mawi/
https://github.com/faucetsdn/ryu/
https://github.com/faucetsdn/ryu/
http://mininet.org/
http://www.topology-zoo.org/index.html
http://www.topology-zoo.org/index.html
https://opennetworking.org/wp-content/uploads/2021/05/2021-P4-WS-Vladimir-Gurevich-Slides.pdf
https://opennetworking.org/wp-content/uploads/2021/05/2021-P4-WS-Vladimir-Gurevich-Slides.pdf
https://opennetworking.org/wp-content/uploads/2021/05/2021-P4-WS-Vladimir-Gurevich-Slides.pdf

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 900
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00111
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 1200
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00083
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00063
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

