
Theoretical Computer Science 543 (2014) 46–51
Contents lists available at ScienceDirect

Theoretical Computer Science

www.elsevier.com/locate/tcs

An approximation algorithm based on game theory for

scheduling simple linear deteriorating jobs

Kenli Li a,∗, Chubo Liu a, Keqin Li a,b

a College of Information Science and Engineering, Hunan University, National Supercomputing Center in Changsha, Changsha, 410082, China
b Department of Computer Science, State University of New York, New Paltz, NY 12561, USA

a r t i c l e i n f o a b s t r a c t

Article history:
Received 5 August 2013
Received in revised form 2 May 2014
Accepted 28 May 2014
Communicated by D.-Z. Du

Keywords:
Approximation algorithm
Non-cooperative game theory
Price of anarchy
Simple linear deterioration

We consider the scheduling of simple linear deteriorating jobs on parallel machines
from a new perspective based on game theory. In scheduling, jobs are often controlled
by independent and selfish agents, in which each agent tries to select a machine for
processing that optimizes its own payoff while ignoring the others. We formalize this
situation as a game in which the players are job owners, the strategies are machines,
and a player’s utility is inversely proportional to the total completion time of the
machine selected by the agent. The price of anarchy is the ratio between the worst-
case equilibrium makespan and the optimal makespan. In this paper, we design a game
theoretic approximation algorithm A and prove that it converges to a pure-strategy Nash
equilibrium in a linear number of rounds. We also derive the upper bound on the price of
anarchy of A and further show that the ratio obtained by A is tight. Finally, we analyze
the time complexity of the proposed algorithm.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

It is a classical problem to schedule jobs with fixed processing times. However, there are many situations in which
the processing time of a job increases with the delay of the starting time. Examples can be found in fire fighting, steel
production, financial management [1,2], where delay in dealing with a job results in an increasing effort to complete the
job. Such problems are generally known as scheduling with deterioration effect. The reader is referred to Kunnathur and
Gupta [1], and Mosheiov [2,3] for motivations to model job deterioration in such a manner.

Scheduling of deteriorating jobs was initiated by Browne and Yechiali [4], Gupta and Gupta [5]. They defined a linear
deteriorating job as a job whose actual processing time linearly increases when its starting time postpones. More precisely,
the processing time of job J i is expressed as pi = ai + biti , where ai is the basic processing time, bi (> 0) the deteriorating
rate, and ti the starting time. They showed that scheduling jobs in a non-decreasing order of ai/bi minimizes the makespan.
Mosheiov [2] further introduced the concept of simple linear deteriorating job in which pi = biti . Several polynomial time
algorithms were proposed for the objective to minimize makespan, flow time, total completion time, total general comple-
tion time, and so on. Yu and Wong [6] proposed an algorithm DSDR (Delayed Smallest Deteriorating Rate) to minimize the
total general completion time. The above research focused on a single machine for linear deteriorating jobs scheduling.

With respect to simple linear deteriorating jobs scheduling on m parallel machines, the problem becomes more compli-
cated. Mosheiov [3] proved that the makespan minimization problem is strongly NP-hard even for a two-machine case. An

* Corresponding author.
E-mail addresses: lkl@hnu.edu.cn (K. Li), liuchubo@hnu.edu.cn (C. Liu), lik@newpaltz.edu (K. Li).
http://dx.doi.org/10.1016/j.tcs.2014.05.023
0304-3975/© 2014 Elsevier B.V. All rights reserved.

http://dx.doi.org/10.1016/j.tcs.2014.05.023
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/tcs
mailto:lkl@hnu.edu.cn
mailto:liuchubo@hnu.edu.cn
mailto:lik@newpaltz.edu
http://dx.doi.org/10.1016/j.tcs.2014.05.023
http://crossmark.crossref.org/dialog/?doi=10.1016/j.tcs.2014.05.023&domain=pdf

K. Li et al. / Theoretical Computer Science 543 (2014) 46–51 47
asymptotically optimal heuristic algorithm was given in that paper. Ji and Cheng studied the problem in [7] to minimize
the total completion time and they further [8] showed that the problems to minimize makespan, total machine load, and
total completion time are strongly NP-hard with an arbitrary number of machines and NP-hard in the ordinary sense with
a fixed number of machines. They proved the non-existence of polynomial time approximation algorithm with a constant
ratio when the number of machines is arbitrary for the former two problems, and then proposed two similar fully polyno-
mial time approximation schemes (FPTAS). Miao, Zhang and Cao [9] considered the makespan minimization problem with
simple linear deteriorating function (i.e., pi = biti), and also proposed an FPTAS. For more results on the scheduling of linear
deteriorating jobs, the reader is referred to [10–14].

In this paper, we consider the scheduling of simple linear deteriorating jobs on m parallel machines from a new perspec-
tive based on game theory. Each job is regarded as a player and we propose an algorithm A . We prove that the proposed
algorithm is a potential game and converges to a Nash equilibrium in a linear number of rounds. The price of anarchy of the
algorithm is (1 + bmax)

m−1
m , where bmax is the maximum deteriorating rate of all jobs. We further show that the price of

anarchy obtained by A is tight. Finally, we analyze the time complexity of the algorithm, which is Θ(n log(n)) where n is
the number of jobs to be scheduled.

The rest of the paper is organized as follows. In Section 2, we formally define the problem and give some necessary
notations for the discussion. In Section 3, we introduce the concept of non-cooperative game theory and consider the
scheduling problem in a game way. In Section 4, we present an approximation algorithm and analyze its properties. We
conclude the paper and suggest some interesting topics for future research in the last section.

2. Problem statement and notations

There are a set of n simple linear deteriorating jobs � = { J1, J2, . . . , Jn}, which are simultaneously available at time t0, to
be scheduled on m (> 0) identical parallel machines. Once a job has been processed, it cannot be interrupted by any other
job until it is finished. For each job J i , its actual processing time is pi = biti , where bi (> 0) and ti are its deteriorating rate
and starting time respectively. We assume that t0 > 0, since otherwise if t0 = 0, it is trivial that the makespan is equal to 0
due to pi = 0 (i ∈ {1, . . . , n}). The objective is to minimize the makespan, i.e., the completion time of the last finished job.
We denote the problem as Pm|pi = biti |Cmax.

Denote by M j (j ∈ {1, . . . , m}) the j-th machine in the system. Let C[i] be the completion time of the i-th job on a
machine. It is noted that C[i+1] = t[i+1] + p[i+1] = t[i+1](1 + b[i+1]) = C[i](1 + b[i+1]). Thus, by induction, we have

C[i] = t0

i∏
j=1

(1 + b[j]),

for every i ≥ 1 on this machine.
Given a schedule, let n j (j ∈ {1, . . . , m}) be the number of jobs scheduled on machine M j . Then n j ∈ {1, . . . , n} for

j ∈ {1, . . . , m} and
∑

n j = n. Denote C j the completion time of the last finished job on M j . We obtain

C j = t0

n j∏
i=1

(1 + b[i]).

Our goal is to minimize the makespan, i.e., Cmax = max j=1,...,m(C j). Since t0 > 0 is an extraneously given constant, we
assume without loss of generality that t0 = 1.

3. Non-cooperative game theory

Game theory studies the problems in which players try to maximize their returns. In this section, we formulate the
problem Pm|pi = biti |Cmax as a non-cooperative game among the players. As described in [15], a non-cooperative game
consists of a set of players, a set of strategies, and preferences over the set of strategies. In this paper, each job in � is
regarded as a player, i.e., the set of players is the n non-preemptive jobs. The strategy set Si of player i (i ∈ {1, . . . , n}) is
the m identical parallel machines, i.e., Si = {1, . . . , m}. We define S =×n

i=1 Si .
The strategy of player i is represented by si (si ∈ {1, . . . , m}). Thus, for all players we obtain a strategy vector s =

(s1, . . . , sn) (s ∈ S). s is called a job scheduling strategy vector. Each player’s preference is represented by its utility ui
(i ∈ {1, . . . , n}) and the player tries to maximize it. We denote ui = ui(s) which means the utility of player i when the
strategy vector of all players is s. A player i prefers the strategy s∗

i to the strategy s′
i if and only if ui(s∗

i , s−i) > ui(s′
i, s−i),

where s−i is used to denote what remains from s when its i-th element si is dropped. (s′
i, s−i) denotes the strategy vector

after replacing si by s′
i .

Let C j(s) (j ∈ {1, . . . , m}) be the completion time of last finished job on M j when the strategy vector is s. Cmax(s)
denotes the maximal completion time of all machines under s. Similarly, let Cmin(s) be the minimal completion time. Then
the scheduling problem stated in Section 2 is to find a strategy vector s such that Cmax(s) is minimized, i.e.,

minimize max C j(s), s ∈ S (OPT)

j=1,...,m

48 K. Li et al. / Theoretical Computer Science 543 (2014) 46–51
It is NP-hard to find an optimal strategy vector for the above scheduling problem. However, there exists an effective
solution to a non-cooperative game. We define ui(s) = 1/Csi (s) (i ∈ {1, . . . , n}), each player i tries to find a machine Msi

such that its utility is maximized.

Definition 3.1 (Nash equilibrium). A Nash equilibrium of the non-cooperative game defined above is a strategy vector s∗ such
that for every player i (i ∈ {1, . . . , n}):

s∗
i ∈ arg max

si∈Si

ui
(
si, s∗

−i

)
, s∗ ∈ S

At the Nash equilibrium, every player cannot further increase its utility by choosing a different strategy while the strate-
gies of other players are fixed. The equilibrium strategy vector can be found when each player’s strategy is the best response
to the strategies of other players. Given complete knowledge of the system, the best response for player i (i ∈ {1, . . . , n}) is
a solution to the following optimization problem (BRi):

minimize Csi (si, s−i), si ∈ Si

Remark 3.1. In finding the solution to BRi , the strategies of all other players are kept fixed, so the variable in BRi is the
strategy of player i, i.e., si .

In this paper, we use the price of anarchy [16], which is the ratio between the worst possible Nash equilibrium makespan
and the optimal makespan, as a measure of the effectiveness of our proposed algorithm.

4. Algorithm A

This section presents a polynomial time algorithm A, which constructs a solution for the Pm|pi = biti |Cmax problem
based on game theory. We first show the convergence of A and then analyze the solution obtained by A. The approximation
and time complexity guarantee of the algorithm are also analyzed.

Let us think of jobs as players. The game is assumed to be played sequentially with players taking turns in some order to
make a decision. We emphasize that in each turn exactly one player tries to change strategy to increase its utility while the
others keep their strategies fixed. Let s denote the strategy vector of all players at the beginning of the k-th iteration. Given
that it is the turn of player i to make a decision in this iteration, it selects a machine Msi so as to maximize its utility, that
is, player i solves the problem BRi mentioned in Section 3.

We next present the algorithm A. The main idea is to construct a strategy vector in which every player cannot further
increase its utility while the strategies of other players are kept fixed. We propose to do this with a greedy scheme. The
player with a larger deteriorating rate is earlier to make a decision.

Algorithm A.
Step 1. Re-index jobs in non-increasing order of their deteriorating rates such that b1 ≥ b2 ≥ . . . ≥ bn . Randomly assign each
job J i (i ∈ {1, . . . , n}) to a machine and set k = 0.
Step 2. Record the initial selection vector s0 and store the value C j(s0) (j ∈ {1, . . . , m}) in a min-heap.
Step 3. In the k-th iteration, get the machine M j with the smallest current load from the min-heap and it is the turn of
player i (i = k mod n + 1) to make a decision. Assuming that the strategy vector is s at the beginning of this iteration. If
Csi (s) > C j(s)(1 + bi), then set si = j.
Step 4. Set k = k + 1 and update values in the min-heap, go to Step 3 until the strategy vector s in the k-th iteration is
equal to the one in the (k − n)-th iteration.

4.1. Convergence to pure-strategy Nash equilibrium

It is catastrophic if the job to machine mapping keeps changing. A good scheduling mechanism is one with a small
price of anarchy and fast convergence to a Nash equilibrium. In this section, we analyze the convergence of our proposed
algorithm A. The result shows that A converges to a Nash equilibrium in n number of rounds where n is the number of jobs.

Before addressing the problem mentioned above, we first introduce the notation of a state graph and a potential function
which can be found in [14]. As described in [14], a state graph G = (V , E) is a directed graph where the set V of nodes
equals to S (S =×n

i=1 Si), and an edge exists from state s to s′ if the difference between these two states is the strategy
of a player i (i ∈ {1, . . . , n}) and i’s payoff is strictly less in s′ . A Nash equilibrium corresponds to a node with no outgoing
edges. A potential function is a function f mapping the set of states to a totally ordered set such that f (s′) is strictly less
than f (s) for each edge from s to s′ in E . In other words, whenever a player in state s changes its strategy to improve its
payoff, the resulting state s′ satisfies f (s) > f (s′).

The authors in [14] also mentioned that the existence of a potential function implies that the state graph is acyclic,
which establishes the existence of a Nash equilibrium. A game that has a potential function is also called a potential game.

K. Li et al. / Theoretical Computer Science 543 (2014) 46–51 49
Theorem 4.1. The proposed algorithm A for Pm|pi = biti |Cmax is a potential game.

Proof. For any state s, let C(s) be the vector of total completion times of all machines sorted in non-increasing order. We
show that as a job switches from one machine to another machine to increase its utility, it decreases the corresponding
vector C lexicographically.

Suppose the system is in state s and C(s) = (C1, C2, . . . , Cm). Assuming that job i with utility 1/C j (si = j) switches its
machine under the proposed policy A. Call the new state s′ , and let C(s′) = (C ′

1, C
′
2, . . . , C

′
m). Assuming that i’s utility in s′

is 1/C ′
j′ (j′ ∈ {1, . . . , m}). We obtain C ′

j′ < C j (see Step 3 of algorithm A). Even though the change of i’s strategy causes an
increase on the total completion time of M j′ , the value C ′

j′ is still less than C j . Furthermore, the action obviously decreases
the total completion time of M j while keeping the total completion times of other machines (except for M j and M j′)
unchanged. Thus this switch decreases the corresponding vector lexicographically, i.e., C(s′) < C(s), and so C is a potential
function. �
Corollary 4.2. The selfish behavior of players will converge to a Nash equilibrium under the proposed scheduling policy A for Pm|pi =
biti |Cmax .

Knowing that the selfish behavior of players converges to a Nash equilibrium does not indicate fast convergence to a
solution. The speed of convergence to a Nash equilibrium is also a key point. We next prove the convergence to a Nash equi-
librium for the proposed policy A. Before addressing the problem, we show two important properties which are presented
in Theorem 4.3 and Theorem 4.4.

Theorem 4.3. Suppose the algorithm A is in a state s and the subsequent state is s′ . Then we have Cmin(s) ≤ Cmin(s′).

Proof. Assuming that it is the turn of player i to switch machine. Then we know that J i moves from machine Msi to Ms′i
and we have Cs′i (s) = Cmin(s). Furthermore, Cmin(s′) = min{Csi (s)/(1 +bi), Cs′i (s)(1 +bi), C j(s)} (j ∈ {1, . . . , m} and j �= si, s′

i).
From the proposed algorithm, we know that it is the condition Csi (s) > Cmin(s)(1 + bi) which motivates the move of job
i from machine Msi to Ms′i . Therefore, we obtain Csi (s)/(1 + bi) > Cmin(s). Clearly, C j(s) ≥ Cmin(s) (j ∈ {1, . . . , m} and
j �= si, s′

i). Thus, we have Cmin(s) ≤ Cmin(s′). �
Theorem 4.4. Assuming that player i (i ∈ {1, . . . , n}) has updated its strategy and the corresponding state of algorithm A is s. For all
1 ≤ j ≤ i, we have s j ∈ arg maxs′j∈S j

u j(s′
j, s− j).

Proof. It is equivalent to prove that s j ∈ arg mins′j∈S j
Cs′j (s′

j, s− j), i.e., Cs j (s) ≤ Cmin(s)(1 + b j). We prove the above claim by
induction on i. For i = 1, the statement becomes Cs1 (s) ≤ Cmin(s)(1 +b1). Clearly, it is true and we have our induction basis.

Assuming that the result is true for player i (i ∈ {1, . . . , n − 1}), i.e., we have for all 1 ≤ j ≤ i, Cs j (s) ≤ Cmin(s)(1 + b j).
Then we need to show that for player i + 1, for all 1 ≤ j ≤ i + 1, Cs j (s′) ≤ Cmin(s′)(1 + b j) where s′ is the state after player
i + 1 make a decision. We proceed as follows.

In state s, if the condition Csi+1 (s) ≤ Cmin(s)(1 + bi+1) is satisfied, then the strategy vector keeps unchanged, i.e., s′ = s.
Under this situation, we have Cs j (s′) ≤ Cmin(s′)(1 + b j) for all 1 ≤ j ≤ i + 1. Otherwise, Csi+1 (s) > Cmin(s)(1 + bi+1) and
J i+1 moves from machine Msi+1 to Ms′i+1

. This action changes the total completion times of these two machines while
keeping the total completion times of all others unchanged. We have Cs j (s′) = Cs j (s) (1 ≤ j ≤ i + 1 and s j �= si+1, s′

i+1).
By Theorem 4.3, we know that Cmin(s) ≤ Cmin(s′). Therefore, Cs j (s′) ≤ Cmin(s)(1 + b j) ≤ Cmin(s′)(1 + b j) (1 ≤ j ≤ i + 1 and
s j �= si+1, s′

i+1). The completion time of Msi+1 decreases and we have Cs j (s′) ≤ Cmin(s′)(1 + b j) (1 ≤ j ≤ i + 1 and s j = si+1).
As for all 1 ≤ j ≤ i + 1 and s j = s′

i+1, it is obvious that Cs′i+1
(s′) ≤ Cmin(s′)(1 + bi+1). Furthermore, b j ≥ bi+1 and s j = s′

i+1.
We also have Cs j (s′) ≤ Cmin(s′)(1 + b j).

Hence, s j ∈ arg maxs′j∈S j
u j(s′

j, s j) (1 ≤ j ≤ i and i ∈ {1, . . . , n}), and the result follows. �
Theorem 4.5. The proposed algorithm A takes n rounds to converge to a Nash equilibrium for Pm|pi = biti |Cmax .

Proof. We know that a player with a larger deteriorating rate is earlier to make a decision, i.e., the players make decisions
according to the sequence b1 ≥ b2 ≥ . . . ≥ bn . By Theorem 4.4, we know that if player i (i ∈ {1, . . . , n}) has updated its
strategy, the players before i keep their strategies fixed. Therefore, if player n has updated its strategy, the strategy vector
keeps unchanged. Thus, algorithm A takes n rounds to converge to a Nash equilibrium for Pm|pi = biti |Cmax. �
4.2. Analysis of the solution

We make an analysis on the solution obtained by algorithm A . We prove that there exists at least one Nash equilibrium
that is also an optimal solution and analyze the price of anarchy of the proposed algorithm.

50 K. Li et al. / Theoretical Computer Science 543 (2014) 46–51
Theorem 4.6. There exists at least one Nash equilibrium that is also a solution of (OPT).

Proof. Denote s∗ a solution of (OPT) and assume that s0 = s∗ . After algorithm A is executed, we obtain a solution s and
have Cmax(s) ≤ Cmax(s∗). Since s∗ has been assumed to be an optimal strategy vector, Cmax(s∗) cannot be further reduced.
Thus, Cmax(s) = Cmax(s∗) and consequently, s is also an optimal strategy vector. Hence, we can conclude that there is at
least one Nash equilibrium that is also a solution of (OPT). �
Theorem 4.7. For Pm|pi = biti |Cmax , the price of anarchy of the game presented in A is at most (1 + bmax)

m−1
m , where bmax is the

maximum deteriorating rate.

Proof. Even though the proof is similar to list scheduling and the bound is the same, the result obtained by our algorithm
can be better in practice, because we consider the job with minimal deteriorating rate among all jobs on the machine
with makespan. Denote C∗

max the optimal makespan and C A
max the makespan obtained by A respectively. Suppose M j is the

machine with C A
max and J i is the job with minimal deteriorating rate among all jobs on M j . By Theorem 4.5, we know

that the strategy vector s obtained by A is a Nash equilibrium which satisfies si ∈ arg maxs′i∈Si
ui(s′

i, s−i) (i ∈ {1, . . . , n}). Let
C A

min = Cmin(s). Then

C A
max

1 + bi
≤ C A

min ≤ C j′(s),

where j′ ∈ {1, . . . , m} and j′ �= j. We obtain

C A
max ≤ (1 + bi)

(∏m
j′=1 C j′(s)

1 + bi

) 1
m

= (1 + bi)

(∏n
l=1(1 + bl)

1 + bi

) 1
m

= (1 + bi)
m−1

m

(
n∏

l=1

(1 + bl)

) 1
m

.

Because of C∗
max ≥ (

∏n
l=1(1 + bl))

1
m , we have

C A
max ≤ (1 + bi)

m−1
m C∗

max ≤ (1 + bmax)
m−1

m C∗
max.

Furthermore, since (1 + bi)
m−1

m ≤ (1 + bmax)
m−1

m is satisfied for all 1 ≤ i ≤ n, the worst NE is also bounded by (1 + bmax)
m−1

m .
The result follows. �
Theorem 4.8. The upper bound (1 + bmax)

m−1
m is tight for algorithm A.

Proof. It suffices to present a specific job instance in which the ratio (1 + bmax)
m−1

m is satisfied. Given an instance � =
{ J1, J2, . . . , Jn} where n = m(m − 1) + 2, b1 = b2 = 2m − 1 and b3 = b4 = . . . = bn = 1. Then bmax = b1 and (1 + bmax)

m−1
m =

(1 + 2m − 1)
m−1

m = 2m−1. Assuming that a solution s is obtained after A is executed, in which J1, J2 are assigned to M1
and all the remaining n − 2 jobs are equally assigned to the other m − 1 machines. Clearly, the solution s corresponds to a
Nash equilibrium and the makespan C A

max obtained by A is 22m . In an optimal schedule, J1 and J3 are assigned to M1, J2
and J4 are assigned to M2, and the remaining jobs are equally assigned to the other m − 2 machines. This yields to optimal
makespan C∗

max = 2m+1. Thus, C A
max/C∗

max = 2m−1. The result follows. �
4.3. Time complexity analysis

Theorem 4.9. For Pm|pi = biti |Cmax , the time complexity of A is Θ(n log(n)).

Proof. By algorithm A, we note that Step 1 requires the time of Θ(n log(n)) to sort the jobs and Θ(n) to assign the jobs to
machines. In Step 2, it takes Θ(m) to construct a min-heap. In Step 3 and Step 4, each iteration requires update operations
with time Θ(log(m)) on the min-heap. There are at most 2n iterations in all. Hence, the time complexity of algorithm A is
Θ(n log(n) + n + m + 2n log(m)) = Θ(n log(n)). The result follows. �
5. Conclusion

This work presents an approximation algorithm for Pm|pi = biti |Cmax with price of anarchy (1 + bmax)
m−1

m , where bmax
is the maximum deteriorating rate. We tackle the problem with a game theoretic approach, in which each job is regarded
as player and tries to make a decision to optimize its own payoff while ignoring the others. We further prove that the
algorithm converges to a Nash equilibrium in n number of rounds, where n is the number of jobs. Finally, we analyze the time
complexity of the proposed algorithm, which is Θ(n log(n)). A future direction is to consider more general deterioration such
as pi = ai + biti , non-linear deterioration, or other time-dependent functions. It would be interesting and more challenging
to study such problems.

K. Li et al. / Theoretical Computer Science 543 (2014) 46–51 51
Acknowledgements

We are very grateful to the anonymous reviewers for their comments and suggestions which significantly improved the
quality of the manuscript. This research was partially funded by the Key Program of National Natural Science Foundation
of China (Grant No. 61133005), and the National Natural Science Foundation of China (Grant Nos. 61070057, 61103047,
61370095), the National Science Foundation for Distinguished Young Scholars of Hunan (12JJ1011), Key Projects in the
National Science & Technology Pillar Program (2012BAH09B02).

References

[1] A.S. Kunnathur, S.K. Gupta, Minimizing the makespan with late start penalties added to processing times in a single facility scheduling problem,
European J. Oper. Res. 47 (1) (1990) 56–64.

[2] G. Mosheiov, Scheduling jobs under simple linear deterioration, Comput. Oper. Res. 21 (6) (1994) 653–659.
[3] G. Mosheiov, Multi-machine scheduling with linear deterioration, INFOR 36 (4) (1998) 205–214.
[4] S. Browne, U. Yechiali, Scheduling deteriorating jobs on a single processor, Oper. Res. 38 (3) (1990) 495–498.
[5] J.N. Gupta, S.K. Gupta, Single facility scheduling with nonlinear processing times, Comput. Ind. Eng. 14 (4) (1988) 387–393.
[6] S. Yu, P.W. Wong, Online scheduling of simple linear deteriorating jobs to minimize the total general completion time, Theoret. Comput. Sci. 487 (2013)

95–102.
[7] M. Ji, T.E. Cheng, Parallel-machine scheduling with simple linear deterioration to minimize total completion time, European J. Oper. Res. 188 (2) (2008)

342–347.
[8] M. Ji, T.E. Cheng, Parallel-machine scheduling of simple linear deteriorating jobs, Theoret. Comput. Sci. 410 (38) (2009) 3761–3768.
[9] C. Miao, Y. Zhang, Z. Cao, Bounded parallel-batch scheduling on single and multi machines for deteriorating jobs, Inform. Process. Lett. 111 (16) (2011)

798–803.
[10] M. Liu, F. Zheng, S. Wang, J. Huo, Optimal algorithms for online single machine scheduling with deteriorating jobs, Theoret. Comput. Sci. 445 (2012)

75–81.
[11] S. Li, J. Yuan, Parallel-machine scheduling with deteriorating jobs and rejection, Theoret. Comput. Sci. 411 (40) (2010) 3642–3650.
[12] C. Ng, S. Li, T.E. Cheng, J. Yuan, Preemptive scheduling with simple linear deterioration on a single machine, Theoret. Comput. Sci. 411 (40) (2010)

3578–3586.
[13] X.-R. Wang, X. Huang, J.-B. Wang, Single-machine scheduling with linear decreasing deterioration to minimize earliness penalties, Appl. Math. Model.

35 (7) (2011) 3509–3515.
[14] N. Immorlica, L.E. Li, V.S. Mirrokni, A.S. Schulz, Coordination mechanisms for selfish scheduling, Theoret. Comput. Sci. 410 (17) (2009) 1589–1598.
[15] S. Penmatsa, A.T. Chronopoulos, Game-theoretic static load balancing for distributed systems, J. Parallel Distrib. Comput. 71 (4) (2011) 537–555.
[16] E. Koutsoupias, C. Papadimitriou, Worst-case equilibria, Comput. Sci. Rev. 3 (2) (2009) 65–69.

http://refhub.elsevier.com/S0304-3975(14)00422-8/bib4B756E6E6174687572313939303536s1
http://refhub.elsevier.com/S0304-3975(14)00422-8/bib4B756E6E6174687572313939303536s1
http://refhub.elsevier.com/S0304-3975(14)00422-8/bib4D6F736865696F7631393934363533s1
http://refhub.elsevier.com/S0304-3975(14)00422-8/bib4D6F736865696F7631s1
http://refhub.elsevier.com/S0304-3975(14)00422-8/bib42726F776E653031303531393930s1
http://refhub.elsevier.com/S0304-3975(14)00422-8/bib477570746131393838333837s1
http://refhub.elsevier.com/S0304-3975(14)00422-8/bib5975323031333935s1
http://refhub.elsevier.com/S0304-3975(14)00422-8/bib5975323031333935s1
http://refhub.elsevier.com/S0304-3975(14)00422-8/bib4A6932303038333432s1
http://refhub.elsevier.com/S0304-3975(14)00422-8/bib4A6932303038333432s1
http://refhub.elsevier.com/S0304-3975(14)00422-8/bib4A693230303933373631s1
http://refhub.elsevier.com/S0304-3975(14)00422-8/bib4D69616F32303131373938s1
http://refhub.elsevier.com/S0304-3975(14)00422-8/bib4D69616F32303131373938s1
http://refhub.elsevier.com/S0304-3975(14)00422-8/bib4C6975323031323735s1
http://refhub.elsevier.com/S0304-3975(14)00422-8/bib4C6975323031323735s1
http://refhub.elsevier.com/S0304-3975(14)00422-8/bib4C693230313033363432s1
http://refhub.elsevier.com/S0304-3975(14)00422-8/bib4E673230313033353738s1
http://refhub.elsevier.com/S0304-3975(14)00422-8/bib4E673230313033353738s1
http://refhub.elsevier.com/S0304-3975(14)00422-8/bib57616E673230313133353039s1
http://refhub.elsevier.com/S0304-3975(14)00422-8/bib57616E673230313133353039s1
http://refhub.elsevier.com/S0304-3975(14)00422-8/bib496D6D6F726C6963613230303931353839s1
http://refhub.elsevier.com/S0304-3975(14)00422-8/bib50656E6D6174736132303131353337s1
http://refhub.elsevier.com/S0304-3975(14)00422-8/bib4B6F7574736F7570696173323030393635s1

	An approximation algorithm based on game theory for scheduling simple linear deteriorating jobs
	1 Introduction
	2 Problem statement and notations
	3 Non-cooperative game theory
	4 Algorithm A
	4.1 Convergence to pure-strategy Nash equilibrium
	4.2 Analysis of the solution
	4.3 Time complexity analysis

	5 Conclusion
	Acknowledgements
	References

