
476 IEEE TRANSACTIONS ON RELIABILITY, VOL. 68, NO. 2, JUNE 2019

Service Reliability in an HC: Considering From the
Perspective of Scheduling With Load-Dependent

Machine Reliability
Chubo Liu , Kenli Li , Senior Member, IEEE, Jie Liang, and Keqin Li , Fellow, IEEE

Abstract—Considering the fact that a server is more likely to
fail if it is highly loaded, in this paper, we involve load impacts on
service reliability in a heterogeneous cluster, where servers have
load-dependent reliabilities and jobs have resource and execution
interval demands. Specifically, each server is specified by a resource
capacity and a workload limitation, i.e., the server is expected to
perform reliably if its workload is less than the workload limitation.
There is also a set of jobs needing to be executed on these servers.
Each job is associated with a resource demand and an execution
interval, i.e., the time interval that the job is planned to be executed.
Our goal is to find a reliable schedule of jobs to servers such that all
servers’ workload limitations are satisfied. The problem is proved
to be strongly NP-complete, which implies that there is not even a
pseudo-polynomial time algorithm. Hence, we try our best to find
a reliable schedule. To solve the problem, we define a stereogram
(specifically defined as a bipartite stereogram) and develop a bi-
partite stereogram matching-based scheduling method (BSMSM),
which combines the matching of our constructed bipartite stere-
ogram with reliable scheduling. Some theoretical results are also
derived in this paper. We perform extensive random experiments
and the results show that BSMSM can find reliable schedules, i.e.,
the workloads on all servers can be maintained to be less than or
equal to the servers’ workload limitations, to a large extent.

Index Terms—Bipartite stereogram, heterogeneous cluster
(HC), reliable scheduling, workload limitation.

I. INTRODUCTION

A. Motivation

DURING recent years, there is a rapidly increasing num-
ber of cloud infrastructure, platform, and service centers

Manuscript received December 10, 2017; revised May 15, 2018 and Septem-
ber 29, 2018; accepted March 22, 2019. Date of publication May 3, 2019; date of
current version May 28, 2019. This work was supported in part by the National
Natural Science Foundation of China under Grant 61702170, Grant 61802032,
and Grant 61772182, in part by the Key Program of National Natural Science
Foundation of China under Grant 61432005, and in part by the National Out-
standing Youth Science Program of National Natural Science Foundation of
China under Grant 61625202. Associate Editor: C.-Y. Huang. (Corresponding
authors: Kenli Li; Keqin Li.)

C. Liu, K. Li, and J. Liang are with the College of Information Science and
Engineering, Hunan University, Hunan 410082, China, and also with the Na-
tional Supercomputing Center in Changsha, Hunan 410082, China (e-mail:,
liuchubo@hnu.edu.cn; lkl@hnu.edu.cn; lxj@hnu.edu.cn).

K. Li is with the College of Information Science and Engineering, Hunan
University, Hunan 410082, China, with the National Supercomputing Center in
Changsha, Hunan 410082, China, and also with the Department of Computer
Science, State University of New York, New Paltz, NY 12561 USA (e-mail:,
lik@newpaltz.edu).

Color versions of one or more of the figures in this paper are available online
at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TR.2019.2908269

(such as Amazon, Microsoft Azure, Rackspace, etc.) [1]. Due to
its cost-effectiveness, maintenance-free convenience, and other
advantages, many companies or users have placed their appli-
cations out to cloud centers, and to support various service de-
mands, a service provider has to equip more and more computing
servers which form a huge heterogeneous cluster (HC) [2]. With
tens of thousands of host servers in an HC, it is difficult to ensure
that all host servers always work well. Hence, a statistically rare
failure event may become common in a cloud center, which se-
riously impacts the performance and cost [3], [4]. For example,
an unreliable HC with a higher probability of server failures in-
evitably results in more interruption of running virtual machines,
which implies a reduction in performance metric. Subsequent re-
covery or redoing the work also incurs additional energy cost.
Therefore, the issue of how to enhance service reliability has
become a critical problem.

Reliability is defined as the ability of an item to perform a
required function under stated conditions for a stated time period
in standard TL9000 [6], [7]. For server reliability, specifically,
it can be understood as the probability of the server to perform
normally for a given period of time. When considering service
reliability in an HC, server reliability is one of the most important
factors that should be taken into account [8]. The reason lies
in that when a host server crashes, all applications or virtual
machines on it will go down. The services delivered by the virtual
machines will be interrupted or even need to be re-run from the
beginning, which can result in serious performance degradation
and cost increase. On the other hand, it influences the appeal
to users or potential users in the market. Specifically, due to
performance degradation (e.g., long task response time), a user
may refuse to use the provided services or choose another service
provider, which impacts the long-term revenue of the service
provider.

It is well-known that as a server approaches a high level of
workload utilization, degradation in performance occurs (e.g.,
the average running time of an OpenMP program delays as the
increase of its parallelism degree [9]–[11]). Many works also
establish that workload utilization impacts a server’s reliability
[12], [13]. For example, in [5], Deng et al. established that CPU
temperature tends to linearly increase with its utilization [see
Fig. 1(a)]. They obtained the results by carefully controlling a
server to run SPEC 2006 benchmark [14] and using lm-sensors
[15] to record the corresponding temperature changes. Since the
failure rates caused by many hard errors [e.g., electromigration

0018-9529 © 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

https://orcid.org/0000-0002-2372-6715
https://orcid.org/0000-0002-2635-7716
https://orcid.org/0000-0001-5224-4048
mailto:liuchubo@hnu.edu.cn
mailto:lkl@hnu.edu.cn
mailto:lxj@hnu.edu.cn
mailto:lik@newpaltz.edu

LIU et al.: SERVICE RELIABILITY IN AN HC: CONSIDERING FROM THE PERSPECTIVE 477

Fig. 1. Illustration of the relationship between CPU utilization and MTTF of a server (cluster). (a) Relationship between CPU temperature and utilization [5].
(b) MTTF caused by three common hard errors (EM, SM, and TDDB). (c) Integrated MTTF caused by EM, SM, and TDDB. (d) Cluster reliability.

(EM), stress migration (SM), time-dependent dielectric break-
down (TDDB)] exponentially increase with the increase of tem-
perature [16], [17], the corresponding reliability (mean-time-to-
failure, MTTF) caused by each of these errors tends to expo-
nentially decrease with temperature increment [see Fig. 1(b)].
Due to the linear relationship between utilization and temper-
ature, the reliability of a server caused by EM, SM, or TDDB
also tends to decrease with utilization increment. In Fig. 1(c), we
plot the shape of the integrated reliability of a server caused by
EM, SM, and TDDB. Even though the reliability of a server can
be relatively high, when involving tens of hundreds of servers
(a cluster), the corresponding reliability can be significantly low
[see Fig. 1(d)].

Therefore, the reliability of a server can be impacted by its
workload (e.g., CPU utilization) and server workload should be
involved when addressing reliability. This conflicts with most
previous assumptions that a server maintains a constant reliabil-
ity level [18], [19]. In addition, many existing works for service
reliability are based on replication strategies [20] or rollback
recovery relying on checkpointing protocols [21], [22]. Rare
works are done from the perspective of servers’ workload im-
pacts. Therefore, in this paper, we involve the load impact on the
reliability of an HC, in which we associate a workload limitation
for each server, i.e., a server is assumed to attain a desired reli-
ability level if its workload is less than its workload limitation.
Furthermore, we consider from the perspective of scheduling.
Specifically, we try our best to find a schedule of jobs to servers
such that all sever load constraints are satisfied.

B. Our Contributions

Considering the fact that a server is more likely to fail if it is
highly loaded, in this paper, we involve load impacts on service
reliability in an HC, where servers have load-dependent relia-
bilities and jobs have resource and execution interval demands.
Specifically, there are some heterogeneous servers. Each server
is specified by a resource capacity and a workload limitation,
i.e., the server is expected to perform reliably if its workload
is less than the workload limitation. There is also a set of jobs
needing to be executed on these servers. Each job is associated
with a resource demand and an execution interval, i.e., the time
interval that the job is planned to be executed. Our goal is to
find a reliable schedule of jobs to servers such that all servers’

workload limitations are satisfied. The problem is proved to be
strongly NP-complete, which implies that there is not even a
pseudo-polynomial time algorithm. Hence, we try our best to
find a reliable schedule.

The main contributions and differences of this paper are listed
as follows.

1) We involve load impacts on reliability and consider from
the perspective of scheduling with machine load limita-
tions to maintain reliability.

2) We accordingly propose a method called bipartite stere-
ogram matching-based scheduling method (BSMSM), in
which we consider job–machine mapping as an extended
matching problem.

3) A theoretical conclusion is derived from our bipartite
stereogram matching-based method (see Theorem III.2),
which provides theoretical guarantees for our method to
some extent.

We perform extensive random experiments. The results show
that BSMSM can find appropriate schedules to a large extent.

C. Related Work

Enhancing the reliability of services is an important aspect of
service providers and has received considerable attention from
the research community [23]. The main solutions for service
reliability are based on replication strategies [19], [20], [24],
[25] and rollback recovery relying on checkpointing protocols
[21], [22].

Replication is based on the exploitation of redundancy and
is used in many fields. One-to-one and one-to-many standbys
are two well-known mechanisms. In [26], Xu et al. tried to
map each primary virtual machine (VM) to a backup VM. A
primary VM and its mapping backup node form a survivable
group. A task can be completed in time if at least one VM in
the survivable group works well. The work takes the bandwidth
reservation into account when solving the mapping problem. In
this regard, an optimal algorithm that maps a survivable group
to the physical data center was proposed [26]. In [27], Usman
et al. introduced a data semantics and data encoding-based data
replication strategy called semantic data replication (SDR),
which focuses on high operation availabilities with low costs. In
[28], Wang et al. proposed replicating bandwidth-intensive so-
cial contents in a device-to-device manner. Based on large-scale

478 IEEE TRANSACTIONS ON RELIABILITY, VOL. 68, NO. 2, JUNE 2019

measurement studies on social content propagation and user
mobility patterns in edge-network regions, they observed that
their proposed device-to-device replication strategy can signif-
icantly help users download social contents from neighboring
peers.

Checkpointing is another widely used mechanism for relia-
bility that functions by periodically saving the execution state
as an image file. However, usually, data centers have limited
network resources and may readily become congested when
a huge number of checkpoint image files are transferred. At-
tempting to avoid this problem, Zhang et al. [29] presented a
theoretical delta-checkpoint approach in which the base system
only needs to be saved once the first checkpoint completes and
subsequent checkpoint images only contain the incrementally
modified pages. A theoretical delta-checkpoint approach was
implemented by Goiri et al. in [30]. A further reduction in net-
work resource consumption was developed by Limrungsi et al.
[31], who proposed a peer-to-peer checkpoint approach in which
the checkpoint images are stored on the neighboring host servers.
If the storage server is located in the same pod as the service
providing server, it is unnecessary to transfer the checkpoint
images via core switches. In [32], Levitin et al. tried to formu-
late and solve optimal dynamic checkpointing policy problems,
as well as an integrated optimization problem that finds the op-
timal combination of checkpointing policy and element activa-
tion sequence. They also demonstrated the advantages of using
the dynamic checkpointing policy over fixed even checkpoints
through examples.

Different from the abovementioned works, we involve work-
load impacts when addressing reliability. In addition, we
consider the reliability of a cluster from the perspective of
scheduling. Specifically, we try to guarantee that for each server,
its workload is maintained below a threshold to attain a desir-
able reliability. Obviously, under this scheme, the reliability of
a cluster can also be maintained.

The rest of this paper is organized as follows. Section II-B
presents the preliminary notations and formulates our reliable
scheduling problem. In Section III, we construct our bipartite
stereogram and develop a BSMSM. Many analyses and dis-
cussions are also shown in this section. In Section IV, we per-
form extensive random experiments and show the results. The
conclusions are presented in Section V.

II. SYSTEM MODEL AND PROBLEM DEFINITION

A. Model Construction

Since the reliability of a server tends to exponentially decrease
with temperature (workload), we can find a tradeoff between
them to maintain relatively high reliable execution by controlling
workload on the server (see Fig. 2). For a cluster, if we guarantee
the reliability of each server, the corresponding reliability of the
cluster can be maintained (see Fig. 3).

Therefore, in our model, we associate a workload threshold
for each server and assume that if its workload is less than
the threshold, the server can attain a desirable reliability level.
By appropriate scheduling, we try to guarantee that all server

Fig. 2. Tradeoff between reliability and temperature (workload).

Fig. 3. Impact of each server’s reliability improvement on a cluster’s
reliability.

workload thresholds maintain the reliability of the cluster. We
formally formulate our problem in the next section.

B. Problem Definition

An HC is equipped with m heterogeneous machines, which
are represented by M = {1, . . . ,m}. Each machine j (j ∈ M)
is associated with a load capacity Cj and a workload limitation
ūj (ūj < 1), i.e., machine j is expected to perform reliably if its
workload is less than or equal to ūj . In this paper, we consider
time to be uniformly divided into discrete intervals ranging from
1 to T . Each interval is referred to as a time slot and the set of
time slots is denoted as T = {1, . . . , T}. There is a set of jobs
N = {1, . . . , n} needing to be scheduled on the machines inM.
Each job i (i ∈ N) is associated with a resource requirement ri
and an execution interval Ii = [si, ei], where si and ei (si, ei ∈
T) are the start-time and end-time slots of job i, respectively.
Our goal is to find a scheduling strategy for jobs in N such that
the workloads on all servers are less than or equal to the servers’
workload limitations throughout the time slots (see Fig. 4).

We formalize our scheduling problem as follows. As men-
tioned earlier, each job i (i ∈ N) is associated with an execution
interval Ii = [si, ei]. We say that job i is active at a time slot

LIU et al.: SERVICE RELIABILITY IN AN HC: CONSIDERING FROM THE PERSPECTIVE 479

Fig. 4. Scheduling model with load limitation.

t ∈ T if t ∈ Ii. If we denote A(t) as the set of all jobs active at
time slot t (t ∈ T), we can obtain

A(t) =
{
i| t ∈ Ii and i ∈ N

}
. (1)

Let Φj (Φj ⊆ N) be the set of jobs scheduled on machine j
(j ∈ M). Then, the workload utilization on machine j during
time slot t (t ∈ T) is expressed as

uj (Φj , t) =
1

Cj

∑
i∈Φj∩A(t)

ri. (2)

Our goal is to find a scheduling strategyΦ = (Φj)j∈M such that
the workload limitations of all machines are satisfied as much as
possible, i.e., find a strategy to the following reliable scheduling
(RELIABLE-SCHED) problem:

∀j ∈ M ∀t ∈ T uj (Φj , t) ≤ ūj (3)

where Φ satisfies
⋃

j∈M Φj = N and Φj ∩ Φk = ∅ for all
j, k ∈ M.

Theorem II.1: RELIABLE-SCHED is NP-complete in the
strong sense.

Proof: In order to prove the strong NP-completeness of
RELIABLE-SCHED, we will use a reduction from the Bin Packing
problem [33].

Bin Packing (Decision version): Given a set of bins
B1, B2, . . . , Bm with the same size V and a list of n items with
sizes s1, s2, . . . , sn to pack, find an m-partition S1 ∪ · · · ∪ Sm

of the set {1, 2, . . . , n} such that

∀k ∈ {1, . . . ,m} ,
∑
i∈Sk

ai ≤ V.

Let us consider the a special instance of RELIABLE-SCHED,
in which there are n jobs J1, J2, . . . , Jn to be executed on m
machines M1,M2, . . . ,Mm. There is only one time slot and all

the jobs are active in that time slot. Let ai denote the resource
demand ofJi. All servers are with resource capacityV and work-
load limitation one, i.e., the machines are homogeneous. Then,
the Bin Packing problem corresponds to this special instance of
RELIABLE-SCHED.

Therefore, the abovementioned special instance of RELIABLE-
SCHED and thus, RELIABLE-SCHED is strongly NP-complete.
This achieves the proof of strong NP-completeness of RELIABLE-
SCHED. �

III. BIPARTITE STEREOGRAM MATCHING-BASED

SCHEDULING ALGORITHM

In this section, we present a reliable scheduling algo-
rithm called BSMSM to RELIABLE-SCHED. Before presenting
BSMSM, we first find a feasible fractional solution to RELIABLE-
SCHED and construct a stereogram (specifically defined as
bipartite stereogram), which is the basis of BSMSM.

A. Problem Transformation for a Feasible Fractional Solution

We first try to transform RELIABLE-SCHED to another much
simpler problem so that we can find a feasible fractional solution
to RELIABLE-SCHED.

Denote Ri(t) as the resource requirement of job i (i ∈ N) at
time slot t (t ∈ T). Then

Ri(t) =

{
ri, if t ∈ Ii
0, if t /∈ Ii

(4)

where Ii is the associated execution interval of job i. For each
job i ∈ N and each machine j ∈ M, we associate a variable
xi,j , which represents whether job i is allocated on machine
j. Thus, xi,j only takes on integer value 0 (not allocated) or 1
(allocated), and the workload utilization on machine j (j ∈ M)

480 IEEE TRANSACTIONS ON RELIABILITY, VOL. 68, NO. 2, JUNE 2019

at time slot t (t ∈ T) can be rewritten as

uj (x, t) =
1

Cj

∑
i∈N

xi,jRi(t) (5)

wherex = (xi,j)i∈N ,j∈M is the scheduling indicator for all jobs,
and satisfies the constraint

∑
j∈M xi,j = 1 for all i ∈ N .

Notice that, our objective is to try to guarantee that the work-
load on each machine does not exceed its threshold throughout
the time horizon, i.e., ∀j ∈ M∀t ∈ T

uj (Φj , t) ≤ ūj . (6)

However, due to the strong NP-completeness, it is impracticable
to obtain such a solution in polynomial time under P 	= NP.
Hence, we first try to obtain a feasible fractional solution, and
based on the fractional solution, we consider the mapping of
jobs to machines from a matching perspective.

Denote umax
j (x, t) as the maximal workload of machine j

(j ∈ M) among all theT time slots under job allocation strategy
x, i.e.,

umax
j (x) = max

t∈T
uj (x, t) . (7)

To obtain a feasible fractional solution, we incorporate an
objective

U (x) =
∏
j∈M

(
ūj − umax

j (x)
)
. (8)

The reason why we design such an objective to obtain a fractional
solution is that besides satisfying the constraint ∀j ∈ M∀t ∈
T , uj (Φj , t) ≤ ūj , it can mitigate the workloads among all ma-
chines due to the fact that under ideal situation, U (x) is max-
imized when the values

(
ūj − umax

j (x)
)

of all machines are
equal. We first ignore the integer constraint of x and try to

maximize U (x) (9)

subject to the job allocation constraint and machine workload
limitation constraint, i.e., we try to solve the following optimiza-
tion problem (OPT-U):

maximize U (x) =
∏
j∈M

(
ūj − umax

j (x)
)

(10)

subject to
⎧
⎪⎪⎨
⎪⎪⎩

∑
j∈M xi,j = 1∀i ∈ N

umax
j (x) < ūj ∀j ∈ M

xi,j ≥ 0∀i ∈ N ∀j ∈ M

. (11)

Directly solving OPT-U is very hard, because each function
umax
j (x) (j ∈ M) is discontinuous and quite irregular. Hence,

to obtain an appropriate solution to OPT-U, we further transform
it into another simpler problem. The details are proceeded as
follows.

We simplify OPT-U by assuming that the allocation strategies
of a job on all machines are the same, i.e., ∀j ∈ M

x1,j = x2,j = · · · = xn,j = x0
j . (12)

Denote x0 as the new allocation strategy, i.e., x0 = (x0
j)j∈M,

and satisfies
∑

j∈M x0
j = 1. Then, we can rewrite uj(x, t) as

uj

(
x0, t

)
=

x0
j

Cj

∑
i∈N

Ri(t) (13)

and umax
j (x) as

umax
j (x) = uj

(
x0, t̂

)
(14)

where t̂ (t̂ ∈ T) is the time slot with maximal
∑

i∈N Ri(t), i.e.,

t̂ ∈ argmax
t∈T

(∑
i∈N

Ri(t)

)
. (15)

Then, we can formulate the simplified optimization problem
(SIMP-OPT-U) as follows:

maximize U
(
x0
)
=
∏
j∈M

(
ūj − uj

(
x0, t̂

))
(16)

subject to
⎧
⎪⎪⎨
⎪⎪⎩

∑
j∈M x0

j = 1

x0
j ≥ 0∀j ∈ M

uj

(
x0, t̂

)
< ūj ∀j ∈ M

. (17)

Theorem III.1: The optimal solution to SIMP-OPT-U can for-
mulate a feasible solution to OPT-U.

The abovementioned conclusion can be simply verified by
formulating x = (xi)i∈N with xi = x0 for all i ∈ N , i.e., the
allocation strategies of all jobs on a machine j ∈ M are the same
(equal to x0

j).
Next, we focus on solving SIMP-OPT-U and try to use the

method of Lagrange multiplier.
Notice that, uj(x, ts) is restricted to be less than ūj for all

j ∈ M. We can rewrite the objective of SIMP-OPT-U as

UΣ

(
x0
)
=
∑
j∈M

ln
(
ūj − uj

(
x0, t̂

))
. (18)

We first maximize (18) subject to the equality constraint in (17)
only, as it is clear that constraint

uj

(
x0, t̂

)
< ūj ∀j ∈ M (19)

is inactive, and we will treat the inequality constraint x0
j ≥ 0

(∀j ∈ M) as a special case. Hence, the Lagrangian is given by

L =
∑
j∈M

ln
(
ūj − uj

(
x0, t̂

))
+ α

⎛
⎝∑

j∈M
x0
j − 1

⎞
⎠

=
∑
j∈M

ln

(
ūj −

x0
jRΣ

(
t̂
)

Cj

)
+ α

⎛
⎝∑

j∈M
x0
j − 1

⎞
⎠ (20)

where RΣ(t̂) =
∑

i∈N Ri(t̂). A necessary condition is ∀j ∈ M

∂L

∂x0
j

= 0. (21)

LIU et al.: SERVICE RELIABILITY IN AN HC: CONSIDERING FROM THE PERSPECTIVE 481

Solving (21), we get

−
RΣ

(
t̂
)

ūjCj − x0
jRΣ

(
t̂
) + α = 0 (22)

and

x0
j =

ūjCj

RΣ

(
t̂
) − 1

α
. (23)

The Lagrange multiplier α needs to be chosen such that the
equality constraint

∑
j∈M x0

j = 1 is satisfied. Hence

∑
j∈M

(
ūjCj

RΣ

(
t̂
) − 1

α

)
= 1 (24)

and

α =
mRΣ

(
t̂
)

∑
j∈M ūjCj −RΣ

(
t̂
) . (25)

Substituting the obtained α into (23), we in turn get x0
j for all

j ∈ M.
We now need to consider the nonnegative constraint in (17),

i.e., x0
j ≥ 0∀j ∈ M. Using the results obtained so far, we know

that one or more x0
j will be nonnegative due to the equality

constraint in (17). At the crossroad, we have x0
j = 0. Setting

x0
j = 0 into (22) gives

αj =
RΣ

(
t̂
)

ūjCj
. (26)

Equations (23), (25), and (26) give us insight to how negative x0
j

occurs. If we include all machines in M as in (24), then we may
get x0

j < 0 due to α < αj . Therefore, some machines may need
to be excluded, that is, we set x0

j = 0 for these machines. We,
therefore, sort the machines in non-decreasing order according
to their values as given by (26). Denote the sorted sequence as
φ = (φ1, φ2, . . . , φm), i.e.,

αφ1
≤ αφ2

≤ · · · ≤ αφm
. (27)

Then, the following equation gives a compact representation to
the machines that should be included (and the rest excluded):

d∑
l=1

(
ūφl

Cφl

RΣ

(
t̂
) − 1

αφd

)
≥ 1 (28)

where d (1 ≤ d ≤ m) is the minimal positive integer represent-
ing the number of machines that should be included, and α is
given by the following equation:

d∑
l=1

(
ūφl

Cφl

RΣ

(
t̂
) − 1

α

)
= 1. (29)

Finally, combining with (23), x0
j is given as

x0
φl

=
1

d
+

ūφl
Cφl

RΣ

(
t̂
) − 1

dRΣ

(
t̂
)

d∑
k=1

ūφk
Cφk

(30)

for all 1 ≤ l ≤ d. For the remaining machines, i.e., machines
φl with d < φl ≤ m, set x0

φl
= 0. The details are presented in

Algorithm 1.

By Algorithm 1, we note that Step 1 requires a time of Θ(m)
to initializex0 and the time complexity of the first for loop (Steps
2–7) isΘ(nT). The second for loop (Steps 8–10) requires a time
of Θ(m) to calculate αj for all j ∈ M. Step 11 requires time
Θ(m logm) to sort the machines. In the third for loop (Steps 12–
18), the number of iterations is at most m(m+1)

2 and thus, its time
complexity isΘ

(
m2
)
. Obviously, it takesΘ(d) for the fourth for

loop (Steps 19–21) to calculatex0
j (j ∈ M) with positive values,

where d is less than or equal to m. Hence, the time complexity
of Calculate-SIMP-OPT-U is Θ

(
nT + 3m+m logm+m2

)
=

Θ
(
nT +m2

)
.

B. Job–Machine Connecting Stereogram Construction

In this section, we construct a stereogram which is the basis
of our proposed algorithm. To our knowledge, our constructed
stereogram differs from any previous one. Hence, we formally
give the definition of our constructed stereogram (called bipartite
stereogram) as follows.

Definition III.1: (Bipartite stereogram). A bipartite stere-
ogram S is a three-tuple (N , G (V, EG) , ES), where N is the
one-side node set, G (V, EG) is a plane graph which locates on
the other side. The node set in G is denoted as V , in which nodes
are interconnected by edges in EG. Edge connections between
nodes in N and nodes in V are incorporated in ES .

To characterize the relationships between jobs and ma-
chines, motivated by the bipartite graph construction in
[34], we will construct our bipartite stereogram S (x) =
(N , G (V (x) , EG (x)) , ES (x)) based on x and a value
x

′
(i, w) for each edge (i, w) ∈ ES , where N is the set of n

482 IEEE TRANSACTIONS ON RELIABILITY, VOL. 68, NO. 2, JUNE 2019

job nodes, G (V (x) , EG (x)) is a plane graph in which V is its
node set and EG is its edge set. Our stereogram construction
consists of three stages. At first, we construct an initial bipar-
tite stereogram. One side of the bipartite stereogram consists
of job nodes in N . The other side consists of constructed ma-
chine sub-nodes W = {wj,s(t)}j∈M,t∈T ,1≤s≤kj(t)

, where kj(t)
denotes the number of sub-nodes of machine j corresponding
to time slot t, and kj(t) is calculated as

kj(t) =

⎡
⎢⎢⎢
∑

i∈A(t)

xi,j

⎤
⎥⎥⎥

(31)

withA(t) [see (1)] denoting the set of all jobs active at time slot t
(t ∈ T) and �y
 denoting the minimal integer that is greater than
or equal to y. The

∑
t∈T kj(t) sub-nodes correspond to machine

j ∈ M. Our bipartite stereogram construction consists of three
stages.

Stage I: Machine sub-node and initial bipartite stereogram
construction.

The purpose of this stage is to construct an initial bipartite
stereogram which depicts the relationships between jobs and
machines, according to the obtained fractional solution (x).
Edges of the initial bipartite stereogram will correspond to job–
machine pairs (i, j) if xi,j > 0 (i ∈ N , j ∈ M). For each pos-
itive coordinate of x, there will be one or more corresponding
edges between job nodes in N and machine sub-nodes in W .
The initial bipartite stereogram and the vectorx

′
are constructed

in the following way.
We first sort the jobs in order of nonincreasing resource re-

quirement ri for all i ∈ N . Assume that the obtained sequence
is φ = (φi)i∈N , i.e.,

rφ1
≥ rφ2

≥ · · · ≥ rφn
. (32)

Then, we construct the edges incident to the sub-nodes corre-
sponding to machine j ∈ M as follows.

Case 1: ∀t ∈ T , if ∑
1≤l≤nandφl∈A(t)

xφl,j ≤ 1 (33)

then kj(t) is equal to one and there is only one sub-node
wj,1(t) ∈ W corresponding to machine j at time slot t. In this
case, for each xi,j > 0, construct an edge (i, wj,1(t)) and set
x

′
(i, wj,1(t)) = xi,j .
Case 2: ∀t ∈ T , if ∑

1≤l≤nandφl∈A(t)

xφl,j > 1 (34)

then find the minimal index l1 such that
∑

1≤l≤l1 andφl∈A(t)

xφl,j ≥ 1. (35)

Let ES contain these edges (φl, wj,1(t)) for all 1 ≤ l ≤ l1 − 1
and φl ∈ A(t) with xφl,j > 0, and set x

′
(φl, wj,1(t)) = xφl,j .

In addition, add edge (φl1 , wj,1(t)) in ES and set

x
′
(φl1 , wj,1(t)) = 1−

∑
1≤l≤l1−1andφl∈A(t)

x
′
(φl, wj,1(t)).

(36)

TABLE I
JOB CONFIGURATION IN EXAMPLE

This ensures that the summation of x
′

for edges connected to
wj,1(t) is exactly equal to one. If

∑
1≤l≤l1 andφl∈A(t)

xφl,j > 1 (37)

then a fraction of the value xφl1
,j , which equals

∑
1≤l≤l1 andφl∈A(t)

xφl,j − 1 (38)

is still unassigned. So, we also connect job node φl1 with the
next sub-node of machine j corresponding to time slot t, i.e.,
create an edge (φl1 , wj,2(t)), and set

x
′
(φl1 , wj,2(t)) =

∑
1≤l≤l1 andφl∈A(t)

xφl,j − 1. (39)

Then, we address the jobs φl ∈ A(t) with l > l1, i.e., those
jobs with smaller resource requirements on machine j, and con-
struct edges incident to wj,2(t) similar to previous steps. More
generally ∀s = 2, 3, . . . , kj(t)− 1, find the minimal index ls
such that

∑
1≤l≤ls andφl∈A(t)

xφl,j ≥ s. (40)

Add those edges (φl, wj,s(t)) for all ls−1 < l ≤ ls − 1 and
φl ∈ A(t) with xφl,j > 0, and set x

′
(φl, wj,s(t)) = xφl,j . Fur-

thermore, add edge (φls , wj,s(t)) in ES and set

x
′
(φls , wj,s(t)) = 1−

∑
ls−1<l≤ls−1andφl∈A(t)

x
′
(φl, wj,s(t)).

(41)

If
∑

1≤l≤ls andφl∈A(t)

xφl,j > s (42)

then, also add edge (φls , wj,s+1(t)) in ES and set

x
′
(φls , wj,s+1(t)) =

∑
1≤l≤ls andφl∈A(t)

xφl,j − s. (43)

For each remaining job φl ∈ A(t) with lkj−1 < l ≤ n

and xφl,j > 0, construct an edge
(
φl, wj,kj

(t)
)

and set
x

′ (
φl, wj,kj

(t)
)
= xφl,j .

Example. We will use the following instance to give an exam-
ple of our initial bipartite stereogram construction. The number
of time slots T is assumed to be three. Job parameters are shown
in Table I. There are m = 3 machines with ū1 = 0.7, ū2 = 0.8,
ū3 = 0.5, and normalized processing capacity Cj = 1 for all
1 ≤ j ≤ m. Then, RΣ (1) = r1 + r3 = 0.22, RΣ (2) = r1 +
r2 + r3 + r4 = 0.5, RΣ (3) = r2 + r3 = 0.3, and we should

LIU et al.: SERVICE RELIABILITY IN AN HC: CONSIDERING FROM THE PERSPECTIVE 483

Fig. 5. Three-stage illustration for job–machine connecting stereogram con-
struction. (a) Stage I: A feasible solution x to OPT-U and the corresponding
initial bipartite stereogram construction. (b) Stage II: Virtual node building and
the connecting relationship construction for each of the machines. (c) Stage
III: Relationship stereogram reconstruction (S (x)) between jobs and the newly
constructed virtual nodes.

calculate x0 by using RΣ (2). Sorting the machines, we can ob-
tain a sequenceφ = (φj)1≤j≤m, whereφ1 = 2,φ2 = 1,φ3 = 3.
We can calculate d = 3 and x0 = (0.4, 0.6, 0). That is to say,
a job is assigned to machine 1 with probability 0.4, machine 2
with probability 0.6, and machine 3 with probability 0. Hence,
a feasible fractional solution x and the corresponding initial bi-
partite stereogram constructed according to Stage I are given in
Fig. 5(a).

Stage II: Machine virtual node building and connecting
relationship construction among virtual nodes.

After we construct the initial bipartite stereogram, we focus
on machine sub-node side, and build virtual nodes and the rela-
tionships among them for each machine.

Specifically, for each machine j ∈ M with the obtained sub-
nodes in Stage I [see Fig. 5(a)], for each job i (i ∈ N) connected
to machine j, we regard the set of connected sub-nodes belong-
ing to machine j as a virtual node. Then, we obtain the newly
constructed set of virtual nodes for each machine j, denoted as
Vj =

{
Vj,1, Vj,2, . . . , Vj,qj

}
, where qj is the number newly ob-

tained virtual nodes for machine j. There exists an edge between
Vj,p1

and Vj,p2
(1 ≤ p1, p2 ≤ qj) if Vj,p1

and Vj,p2
contain one

or more common sub-nodes.
Take Fig. 5(b) for the illustration of Fig. 5(a). From Fig. 5(a),

we can observe that for machine M1, job J2 connects sub-nodes
w1,1 (2) and w1,1 (3). We construct a virtual node V1,1 which
consists of w1,1 (2) and w1,1 (3). Job J3 connects w1,1 (1),
w1,1 (2), and w1,1 (3). We construct a virtual node V1,2 which
contains w1,1 (1), w1,1 (2), and w1,1 (3). Job J1 connects
w1,1 (1), w1,1 (2), and w1,2 (2). We construct a virtual node
V1,3 which containsw1,1 (1),w1,1 (2), andw1,2 (2). Job J4 con-
nects w1,2 (2). We construct a virtual node V1,4 which contains
w1,2 (2). There exists an edge between V1,1 and V1,2 due to
which both of them contain w1,1 (2) and w1,1 (3). Similarly,
there exist edges between Q1,1 and Q1,3, Q1,2 and Q1,3, Q1,3

and Q1,4. Hence, we obtain a local graph for M1. We can simi-
larly obtain a local graph for M2 [see Fig. 5(b)].

Stage III: Job–machine connecting bipartite stereogram
reconstruction.

Based on the newly obtained graph (G (x)) for all machines
in Stage II, we construct our job–machine bipartite stereogram
(S (x)). This construction simply follows a rule that there exists
an edge between job Ji (i ∈ N) and virtual node Vj,p (j ∈ M
and 1 ≤ p ≤ qj), if there are connections between job Ji and all
the sub-nodes contained in Vj,p. Take Fig. 5(c) as an example,
there exists an edge between job J2 and Q1,1 due to that job J2
connects its sub-nodes w1,1 (2) and w1,1 (3) [see Fig. 5(a)].

The time complexity of our bipartite stereogram construc-
tion can be easily analyzed. Specifically, for each server, the
number of sub-nodes is at most nT . As for the virtual node
construction stage, we may note that there is at most n virtual
nodes corresponding to each machine, and we can implement
the construction and connection operations by simply using bit
operations, which require time complexity Θ

(
n2
)
. The con-

struction in Stage III can be incorporated in Stage II. Hence,
the time complexity of our bipartite stereogram construction is
Θ
(
m
(
nT + n2

))
.

C. Bipartite Stereogram Matching-Based Scheduling
Algorithm

To solve RELIABLE-SCHED, we propose an algorithm called
BSMSM, which is developed on a matching of the bipartite
stereogram constructed in Section III-B.

To our knowledge, we take the first step to construct a stere-
ogram called bipartite stereogram as in Section III-B and the
matching we consider is also different from the matching of a

484 IEEE TRANSACTIONS ON RELIABILITY, VOL. 68, NO. 2, JUNE 2019

bipartite graph or other matching definitions. Hence, we give the
formal matching definition for our bipartite stereogram.

Definition III.2: (Bipartite Stereogram Matching). A match-
ing for a bipartite stereogram S = (N , G (V, EG) , ES) is an
edge subset of ES which satisfies that ∀V ∈ V , if V is in the
matching, i.e., V has been matched to a node in N , then the
matching can not cover its adjacent nodes in G (V, EG).

1) Matching Algorithm Design: The proposed BSMSM is
based on a matching of our constructed bipartite stereogram.
Hence, before presenting BSMSM, we first propose an algorithm
aiming to find a matching, which is defined in Definition III.2,
for the bipartite stereogram. The algorithm details are presented
in Algorithm 2.

As shown in Bipartite-Stereogram-Matching, we first sort
the jobs such that rφ1

≥ rφ2
≥ · · · ≥ rφn

(see Step 1), where
φ = (φl)1≤l≤n is the ordered sequence. Then, according to φ,
we find a matching in S (x) for each job node φl (1 ≤ l ≤ n)
(see Steps 3–6), i.e., for each job node φl, we find a matching
virtual node in G (x). Furthermore, in this stereogram match-
ing, if a virtual node in G (x) is matched to a job node, then
its direct adjacent virtual nodes can not be matched to any job
nodes. For example, as shown in Fig. 5(c), if V1,1 is matched
to job J2, then its adjacent virtual nodes V1,2 and V1,3 can not
be matched to any job nodes. This is the core difference be-
tween our bipartite stereogram matching and the general bi-
partite graph matching, and the problem becomes more com-
plex. To find a matching node in G (x) for each job node φl

(i), Bipartite-Stereogram-Matching calls Match-Job-Node,
which is adapted from the well-known Hungarian algorithm [35]
and shown in Algorithm 3.

As mentioned above, the purpose of Match-Job-Node (see
Algorithm 3) is to find a matching node in G (x) for job Ji (i ∈
N) under the previous matching. Moreover, in this stereogram
matching, if a virtual node in G (x) is matched to a job node,
then its direct adjacent virtual nodes can not be matched to any
job nodes. Our algorithm proceeds as follows.

Denote VS (i) as the set of virtual nodes in S connected to
job node Ji. Take Fig. 5(c) as an example, VS (2) denotes the
set of V1,1 and V2,1 which are connected to J2. Then, Match-
Job-Node tries to search a virtual node in VS (i) to match job

LIU et al.: SERVICE RELIABILITY IN AN HC: CONSIDERING FROM THE PERSPECTIVE 485

Fig. 6. Matching process illustration. (a) Matching process for J2. (b) Matching process for J3. (c) Matching process for J1. (d) Matching process for J4.

node Ji and adjust the previous matching. Specifically, we use
a boolean vector visit to denote whether the virtual nodes in V
are visited under this matching process. We use another integer
vector mark to denote whether a virtual node is matched (1
means matched and 0, otherwise) or the number of its neighbor-
ing virtual nodes which are matched. At first, Match-Job-Node
constructs a dynamic list List and an associated list pointer pt
(Step 1). Then, it iteratively finds a matching for each of the job
nodes in List by moving pt and terminates until the iteration
reaches the end of List (Steps 3–45).

For the current job node i pointed by pt, we try to find (or
adjust) its matching node. We search all of the virtual nodes
connected to Ji, i.e., VS (i) (Steps 5–26). For each V ∈ VS (i),
if V has been visited in this matching process or V has been
marked, then skip this node. Otherwise, we set visit(V) as true
value (Step 9) and discuss two cases (Steps 10–20).

Case I: If V has been matched (Steps 10–12), then this means
that none of its adjacent virtual nodes has been matched and
we only need to consider the job node matched to V, denoted
as R(V) (R(V) ∈ N). Under this situation, we construct a list
node for R(V) and add it in List next to pt.

Case II: If V does not have to be matched (Steps 12–20), this
means that V is an appropriate matching node for Ji or some
nodes in VG (V) have been matched, where VG (V) denotes the
set of neighboring nodes of V in G(V, EG). If it is the latter,
we need to adjust the matching for all job nodes matched to the
neighboring nodes of V and add the job nodes in List next to pt
(Steps 16–17). Then, we temporally match job node i to V , and
mark V and its adjacent nodes in G once more (Steps 21–24).

After the searching process for job node i, i.e., at the end of
the for loop (Steps 5–26), we need to decide the next searching
job node, which is incorporated in the if sentence (Steps 27–44).
More specifically, if the value of ans is false, this means that
under the current matching for all job nodes inList before pt, we
can not find a matching node for job i. This implies that we need
to adjust the matching of some previous job nodes. Hence, we
move pt to point its previous job node i

′
, i.e., job node i

′
needs to

be matched to another virtual node, and do minus operation for
its marked nodes (Steps 30–36). The while loop (Steps 37–40)
is used to delete the job nodes added next to i

′
in List due to its

previous matching.
2) Illustration: Fig. 6 presents the matching process of

Bipartite-Stereogram-Matching (especially for Match-Job-
Node) for the bipartite stereogram shown in Fig. 5(c). As shown
in Fig. 6(a), at first, Match-Job-Node tries to find a matching
node for J2. At the beginning, the link list List only has one
list node J2 (Steps 1 and 2 of Algorithm 3). In the while loop
(Steps 3–45), we first scan the node J2 in List (Step 4) and
search its possible matching nodes in VS (2), i.e., V1,1, V2,1

(Steps 5–26). When checking V1,1, Match-Job-Node finds that
V1,1 does not have to be matched. Hence, it tries to add the job
nodes matched to the neighboring nodes of V1,1 in G (i.e., V1,2,
V1,3) (Steps 14–18) and there is no such kind of job nodes. After
skipping out of the for loop, pointer pt is moved to the next
one which is NULL. Hence, Match-Job-Node terminates the
matching process of J2 and finds its matching node V1,1 [see
Fig. 6(a)]. As for J3, Match-Job-Node first searches its possible
matching node V1,2 (Step 5–26) and checks whether there are

486 IEEE TRANSACTIONS ON RELIABILITY, VOL. 68, NO. 2, JUNE 2019

job nodes matched to some neighboring nodes of V1,2 in G
(Steps 13–19). It finds that the neighboring node V1,1 has been
matched by J2. Hence, it adds a list node J2 next to J3 in List.
Then, pt is moved to the next list node and Match-Job-Node
tries to find another matching node for J2 (Step 4). Hence, it
searches V2,1 and finds that V2,1 can be matched to J2 (Steps
5–26). Then, pt is moved to NULL and Match-Job-Node
terminates the matching process of J3 [see Fig. 6(b)].

Similarly, Match-Job-Node finds a matching node for J1 and
J4, respectively [see Fig. 6(c) and (d)]. This ends the matching
illustration.

3) Time Complexity and Property Analyses: Next, we ana-
lyze the time complexity of Bipartite-Stereogram-Matching.
Since its main operation is the call of Match-Job-Node, we first
analyze the time complexity of Match-Job-Node. The details
are proceeded as follows.

For each job node, there is at most one virtual node corre-
sponding to each of the machines. Then, the number of iterations
of the for loop (Steps 5–26) is Θ(m). Furthermore, in each of
the iterations, for a virtual node V , Match-Job-Node scans the
adjacent virtual nodes of V , which requires time complexity
Θ(n− 1) (Steps 10–20). Hence, the time complexity of the for
loop (Steps 5–26) is Θ(mn). Since the main operation of the
if sentence (Steps 27–44) lies in the while loop (Steps 37–40),
which is also a scanning operation requiring time Θ(n− 1),
the time complexity required by one iteration of the while loop
(Steps 4–44) is Θ(mn). Hence, to configure the time complex-
ity of Match-Job-Node, we only need to evaluate the overall
number of iterations of the while loop (Steps 3–45).

Notice that, during a matching process (i.e., once time ex-
ecution of Match-Job-Node), each virtual node is visited at
most once and for each virtual node, there is at most one job
node added in List. Hence, the overall number of iterations of
the while loop (Steps 3–45) is Θ(mn) and the time complex-
ity of Match-Job-Node) Θ

(
m2n2

)
. Then, we can easily obtain

that the time complexity of Bipartite-Stereogram-Matching is
Θ
(
m3n2

)
.

For the schedule obtained by Bipartite-Stereogram-
Matching, we can conclude the result as in Theorem III.2.

Specifically, denote ij (ij ∈ N) as the job with maximal
workload requirement among all jobs allocated to machine j
(j ∈ M), i.e.,

îj ∈ argmax
i∈N and xI

i,j=1

(ri) (44)

and ρ̄j be the ratio between rîj and Cj , i.e., ρ̄j =
rîj
Cj

. Then, we
can conclude the following theorem.

Theorem III.2: For the solution xI returned by Bipartite-
Stereogram-Matching, we can conclude

umax
j

(
xI
)
≤ ūj + ρ̄j ∀j ∈ M (45)

where umax
j

(
xI
)

[see (7)] denotes the maximal workload uti-
lization of machine j among all the T time slots under job
allocation strategy xI .

Proof: Let rmax
j,s (t) (1 ≤ s ≤ kj(t)) be the maximum of

the resource requirements ri (i ∈ N) corresponding to edges
(i, wj,s(t)) ∈ ES , and rmin

j,s (t) be the analogous minimum.
Then, we have rmin

j,s (t) ≥ rmax
j,s+1(t) for all 1 ≤ s ≤ kj(t)− 1

due to the reason that the jobs are sorted in nonincreasing order
and consequently mapped to the nodes corresponding to each
machine.

Notice that ∀j ∈ M, there are
∑

t∈T kj(t) sub-nodes cor-
responding to machine Mj in the bipartite stereogram [see
Fig. 5(a)]. Furthermore, we find a job–machine matching which
satisfies that if a virtual node in Vj is matched to a job node, then
its direct adjacent virtual nodes, which contain common machine
sub-nodes, can not be matched to any job nodes. This implies
that for each sub-node wj,s(t) (j ∈ M, t ∈ T , 1 ≤ s ≤ kj(t)),
there will be at most one job scheduled on Mj corresponding to
one of the incident edges.

Therefore ∀j ∈ M and ∀t ∈ T
kj(t)∑
s=2

rmax
j,s

Cj
≤

kj(t)−1∑
s=1

rmin
j,s

Cj

≤
kj(t)−1∑
s=1

∑
i: (i,wj,s(t))∈S0(x)

x
′
(i, wj,s(t))

ri
Cj

≤
kj(t)∑
s=1

∑
i: (i,wj,s(t))∈S0(x)

x
′
(i, wj,s(t))

ri
Cj

≤
∑

i∈A(t)

xi,j
ri
Cj

≤ μ̄j

and

uj

(
xI , t

)
≤ ūj +

rmax
j,1 (t)

Cj
≤ ūj + ρ̄j .

This completes the proof and the result follows. �
4) BSMSM Design: Notice that, after we obtain xI , we can

slightly make adjustments to mitigate the possible excesses, i.e.,
move some jobs on servers with exceeded workloads to servers
without exceeded workloads. Combining the previous bipartite
stereogram matching and this adjustment idea, we formulate our
scheduling algorithm BSMSM in Algorithm 4.

Compared with Bipartite-Stereogram-Matching, algorithm
BSMSM tries to mitigate the possible workload excesses from
the following two aspects.

1) Decrease the workload limitations of servers by intro-
ducing a parameter δ when calculating. By doing so, the
schedule returned by Bipartite-Stereogram-Matching is
more likely to perform reliably due to the matching prop-
erty concluded in Theorem III.2.

2) Add the scaling operation which involves moving jobs on
servers with workload excesses.

As mentioned above, in each iteration of the scaling operation
(Steps 6–12) in Algorithm 4, we try to find a machine with
workload excess and a job on this machine which can decrease
its workload utilization. The time complexity of this process
is Θ(mn). In addition, we try to find another machine which

LIU et al.: SERVICE RELIABILITY IN AN HC: CONSIDERING FROM THE PERSPECTIVE 487

TABLE II
SYSTEM PARAMETERS

can execute the selected job without workload excess. Hence,
once time moving operation requires time complexityΘ

(
m2n

)
.

Since there is at most one moving operation in BSMSM for each
job and there are total n jobs, we can conclude that the time
complexity of the scaling operation in BSMSM is Θ

(
m2n2

)
.

Combined with the previous analyzed time complexity results
Θ
(
m2
)

for Step 1,Θ
(
m
(
nT + n2

))
for Step 2, andΘ

(
m3n2

)
for Step 3, we can conclude that the time complexity of BSMSM
is Θ

(
m3n2 +mnT

)
.

IV. EXPERIMENTAL EVALUATION

In this section, we provide extensive random experiments to
validate the performance of BSMSM.

A. Parameter Configuration

In our experiments, we consider the schedule of 300 jobs to
100 heterogeneous servers, i.e., the numbers of jobs (n) and
servers (m) are 300 and 100, respectively. As shown in Table II,
all servers’ resource capacities (Cj) are normalized as one and
their workload limitations (ūj) are randomly and uniformly dis-
tributed in interval [0.5, 0.9]. The resource demands of the 300
jobs are normalized, and randomly and uniformly distributed

in intervals [0.0, 0.1], [0.0, 0.2], [0.0, 0.3], [0.0, 0.4], [0.0, 0.5].
Furthermore, for each interval, we randomly and uniformly gen-
erate 100 groups of data for all jobs. The scaling parameter (δ)
varies in 0.15, 0.25, and 0.35. Of course, other parameter settings
are also feasible.

B. Random Results

Fig. 7 presents the results of a small instance configured as in
Table II except that n is set as 20, m is set as 6, and T is set as
10. We compare three types of values, i.e., scaled workload lim-
itation, workload utilization before scaling operation (schedule
obtained by Bipartite-Stereogram-Matching), and work-
load utilization after scaling operation (schedule obtained by
BSMSM). From Fig. 7, we can observe that when workload lim-
itations are great enough, the results without scaling and those
with scaling are the same, i.e., there is no need to scale the sched-
ule obtained by Bipartite-Stereogram-Matching due to the fact
that the obtained schedule is already reliable, i.e., the overall load
utilization on each server does not exceed the server’s scaled
workload limitation [see Fig. 7(a) and (b)]. On the other hand,
when the scaled workload limitations are low enough, workload
utilizations on some servers obtained by Bipartite-Stereogram-
Matching exceed the scaled workload limitation. However, the
excesses are not large [see Fig. 7(c)]. Furthermore, our pro-
posed BSMSM can do some slight adjustments to mitigate the
excesses.

Fig. 8 presents the results with the variation of resource re-
quirement interval. Since for each interval, we have 100 groups
of random data, we present the average workload utilization as
well as the maximum workload and minimum workload results.
As shown in Fig. 8, we randomly select nine machines (M7,
M21, M40, M42, M59, M63, M82, M86, and M95) out of 100
to show their workload trends with the variation of resource
requirement interval. We can observe that both the average and
maximum workload utilizations of all machines tend to increase
with the increase of interval. In addition, when resource require-
ment interval is not large ([0.0, 0.1], [0.0, 0.2], or [0.0, 0.3]), the
results before scaling and after scaling are the same. However,
there are differences between them when the interval is some-
what larger ([0.0, 0.4] or [0.0, 0.5]). The reason lies in that when
job resource demands are low, the scaled workload limitations
of machines are large enough to pack all jobs, and there is no
need to scale the schedule obtained by Bipartite-Stereogram-
Matching. However, when the interval increases to [0.0, 0.4],
the matching results can not satisfy the scaled workload lim-
itations (e.g., M40, M63, M86). Hence, there are some slight
adjustments in our BSMSM, i.e., job migrations among ma-
chines. Specifically, we can observe that the average workload
utilizations of some machines tend to increase (M7, M21, M42,
M59, M82) while some average workload utilizations tend to
decrease (M40, M63, M86). Furthermore, all scaled workload
utilizations (including maximum workload utilization values)
tend to be smaller than the corresponding scaled workload limi-
tations even though some maximum workload utilization values
increase (M21, M42, M59, M82, M95). When resource require-
ment interval is large enough ([0.0, 0.5]), both results before

488 IEEE TRANSACTIONS ON RELIABILITY, VOL. 68, NO. 2, JUNE 2019

Fig. 7. One small instance with δ = 0.15, 0.25, and 0.35. (a) δ = 0.15. (b) δ = 0.25. (c) δ = 0.35.

Fig. 8. Results with varied resource requirement interval. (a) M7. (b) M21. (c) M40. (d) M42. (e) M59. (f) M63. (g) M82. (h) M86. (i) M95.

LIU et al.: SERVICE RELIABILITY IN AN HC: CONSIDERING FROM THE PERSPECTIVE 489

Fig. 9. More specific results with and without scaling. (a) M1–M5. (b) M6–M10. (c) M11–M15. (d) M31–M35. (e) M36–M40. (f) M41–M45. (g) M61–M65.
(h) M66–M70. (i) M71–M75. (j) M86–M90. (k) M91–M95. (l) M96–M100.

scaling and after scaling tend to exceed the scaled workload lim-
itations. However, some of the maximum results after scaling are
somewhat smaller (M7, M40, M59, M63, M95). The reason lies
in that the scaled workload limitations are too low to satisfy all
jobs’ resource demands. However, notice that even under this
condition, the workloads of all machines tend to be smaller than
the lower bound of all original workload limitations.

Fig. 9 presents more specific results with scaling and without
scaling (including maximum and minimum workload utiliza-
tion values). Specifically, we show 60 workload utilizations out
of 100. From Fig. 9, we can observe that the increase of aver-
age workload utilization does not always imply the increase of
maximum or minimum workload utilization (e.g.,M1,M3,M6–
M9) even though some workload utilizations are (M61, M87).

490 IEEE TRANSACTIONS ON RELIABILITY, VOL. 68, NO. 2, JUNE 2019

TABLE III
RANDOMLY COLLECTED 100 RUNNING JOBS WITH THEIR CPU LOADS FROM TIANHE-1A (NATIONAL SUPERCOMPUTING CENTER IN CHANGSHA)

The reason lies in that the resource demands of the jobs mi-
grated to these machines are not the maximum or the minimum.
In addition, when some workload utilizations exceed their ma-
chine workload limitations, the scaling operation in our pro-
posed BSMSM works (e.g., M1, M31, M33, M35). We can also
observe that the excesses are not very large. This partly validates
the results shown in Fig. 8 and the feasibility of our proposed
method.

To show that our method is feasible and not limited to param-
eter settings, we also perform another set of experiments with
different configurations. The different parameter settings with
Table II are shown in Table IV, in which we set the workload
threshold of each server as a random value uniformly chosen
from [0.5, 0.7]. The interval [0.5, 0.7] is determined according
to an observation that a server is more likely to crash when its
utilization exceeds 60% [36]. We also increase the number of
jobs as 600 and set δ as zero.

The results corresponding to Table IV are shown in Fig. 10.
We can observe that the results in Fig. 10 show similar shapes
as those in Fig. 8. Specifically, when resource requirements of
jobs are relatively low (e.g., [0.0, 0.1], [0.0, 0.2], [0.0, 0.3], and
[0.0, 0.4]), our method can find a reliable schedule, i.e., work-
load on each server can be guaranteed less than its threshold.
However, when resource requirements of jobs are large enough
([0.0, 0.5]), our method can not find such a reliable schedule.
The reason lies in that the overall resource requirement of jobs
exceeds the overall capacity of all servers limited by thresholds
[see Fig. 10(a)–(l)]. However, we can also observe that no matter
what the job requirement interval is, the average results on each
server are always smaller than its threshold. The similarities be-
tween Figs. 8 and 10 verify that our method is not limited to
parameter settings.

C. Application for Real Jobs

To further investigate the feasibility and applicability of our
proposed method, we also perform another set of experiments
with real job resource usages. Specifically, we randomly collect

TABLE IV
SYSTEM PARAMETERS

TABLE V
SYSTEM PARAMETERS

100 jobs running in Tianhe-1A (National Supercomputing
Center in Changsha) and record their occupied CPU loads. The
results are shown in Table III. Then, we generate n jobs based
on the collected 100 jobs with their corresponding resource
usages, i.e., for each generated job, its workload is randomly
and uniformly selected from the 100 jobs. Other parameter
settings are shown in Table V, in which we also set the workload
threshold of each server as a random value uniformly chosen
from [0.5, 0.7], which is determined according to an observation
that a server is more likely to crash when its utilization exceeds
60% [36]. We vary the number of generated jobs (n) between
100 and 1100, and set δ as zero.

The results corresponding to the configurations in Table V are
shown in Figs. 11 and 12.

We can observe that the results in Fig. 11 show similar shapes
as those in Figs. 8 and 10. Specifically, with the number of jobs
varying from 100 to 875, our method can always find a reliable
schedule, i.e., workload on each server can be guaranteed to be
less than or equal to its threshold. Further, when the number of
jobs is low (e.g., 100 and 300), our method can find a reliable
schedule even without scaling operation. However, when the
number of jobs is somewhat larger (e.g., 500, 700, and 875).
Our method cannot find a reliable schedule without scaling

LIU et al.: SERVICE RELIABILITY IN AN HC: CONSIDERING FROM THE PERSPECTIVE 491

Fig. 10. Another set of results with varied resource requirement interval. (a) M2. (b) M7. (c) M13. (d) M21. (e) M23. (f) M27. (g) M32. (h) M36. (i) M38. (j) M41.
(k) M48. (l) M50.

492 IEEE TRANSACTIONS ON RELIABILITY, VOL. 68, NO. 2, JUNE 2019

Fig. 11. Another set of results on real job characteristics with varied number of jobs. (a) M1. (b) M3. (c) M7. (d) M12. (e) M17. (f) M20. (g) M23. (h) M30.
(i) M35. (j) M38. (k) M41. (l) M49.

operation [e.g., Fig. 11(a)–(d), (f), etc.]. The reason lies in that
the schedule returned by Bipartite-Stereogram-Matching
(without scaling operation) cannot guarantee that the workload
on each server is less than or equal to the server’s threshold.
Nevertheless, from Fig. 11, we can also observe that the

exceeds on servers are very small, which verifies the property of
Bipartite-Stereogram-Matching shown in Theorem III.2. By
doing the scaling operation, the maximal workloads on some
servers are reduced to be less than their thresholds, while those
maximal workloads on some other servers may be increased

LIU et al.: SERVICE RELIABILITY IN AN HC: CONSIDERING FROM THE PERSPECTIVE 493

Fig. 12. Comparison results among BSMSM, first fit (FF), and modified round robin (MRR).

[see Fig. 11(c) and (l)]. Nevertheless, the increased maximal
workloads are also guaranteed to be less than or equal to the
thresholds of the corresponding servers.

We also compare our method with others. Indeed, there are
many previous works involving reliability [4], [37]–[47], and
most of them [38], [39], [41], [44]–[47] involve exponential
function evaluation for reliability. However, their methods and
the corresponding metrics cannot be applied to our situation due
to the following reasons.

1) In this paper, the reliability of a server is negatively im-
pacted by its workload due to the investigation shown in
Section 1.1 (Motivation). Further, the reliability consid-
ered in this paper is related to hard errors, i.e., the errors
which can result in the crash of the server, rather than
software errors. The metrics (especially the exponential
metrics) and the corresponding methods presented in the
above works can not be applied to our situation.

2) Due to the negative impact of workload on a server’s re-
liability, for each server, we set a workload threshold and
assume that if the workload on the server does not ex-
ceed the threshold, the reliability target of the server is
reached. Hence, in our situation, the reliability of a server
is segmented rather than continuous, which enhances the
hardness to solve our problem.

Due to the abovementioned reasons, we design our compari-
son metric as the number of servers whose reliability targets are
achieved, i.e., the number of servers whose workloads are less
than or equal to their corresponding workload thresholds. We
compare our method with first fit (FF), i.e., for each job, find the
first server whose workload is still guaranteed after accommo-
dating the job, and modified round robin (MRR), which is mod-
ified according to original round robin (RR) idea, i.e., checking
servers from the server next to the server accommodating the
last allocated job. The only difference between MRR and RR
lies in that when checking a server, if its workload threshold is
no longer guaranteed, we move to the next server for checking.
In both FF and MRR, if no one server can accommodate a job
without violating its workload threshold, we randomly and uni-
formly select a server from the m servers and allocate the job to
the selected server.

The comparison results are shown in Fig. 12. In Fig. 12, we
present the percentage of servers whose reliability targets are
achieved, i.e., whose workload thresholds are satisfied, with the
increase of the number of jobs. From Fig. 12, we can observe
that when the number of jobs is somewhat low (less than 675), all
the three methods can guarantee all servers’ reliability targets.

However, with the increase of the number of jobs, the percentage
of reliable servers obtained by MRR decreases. When the num-
ber of jobs becomes further larger (greater than 900), the result
obtained by FF begins to drop from 100% and further decreases
with the increase of the number of jobs. From Fig. 12, we can
also observe that when the number of jobs reaches 1100, the
result obtained by our proposed method can be better than those
of FF and MRR by around 10% and 20%, respectively. That is
to say, for the same HC, the schedule obtained by our method
can guarantee the reliability targets of all servers while those
of FF and MRR can result in 10% and 20% of servers whose
reliability targets are not guaranteed. The reason lies in that we
consider job allocation for reliability objective from an overall
view and involve the coalition between jobs and servers.

V. CONCLUSION

Considering the fact that the reliability of a server tends to
decrease with the increase of its workload, in this paper, we in-
volved load impacts on service reliability in an HC. Our goal was
to find a reliable schedule of jobs to servers such that all servers’
workload limitations are satisfied. In this paper, we constructed
a reliability model in which each sever had its own workload
limitation and formulated the corresponding RELIABLE-SCHED

problem. To solve the problem, we accordingly developed a
BSMSM, in which we viewed the job–machine mapping as a
matching between them. We theoretically proved that the solu-
tion obtained by our method can guarantee that the workload
on each of the servers cannot exceed its threshold by one job’s
resource requirement. We also performed extensive random ex-
periments to verify the feasibility of our method.

As part of future directions, we will configure the multiple
servers dynamically and study the relationship between the
resource demands and the servers. Another direction is to study
the minimal cost of a set of selected servers to accommodate a
set of services, i.e., service allocation with minimal server cost.

ACKNOWLEDGMENT

The authors would like to thank the Associate Editor and the
anonymous reviewers for their comments and suggestions which
have significantly improved the quality of the paper.

REFERENCES

[1] K. Chard and K. Bubendorfer, “Co-operative resource allocation: Building
an open cloud market using shared infrastructure,” IEEE Trans. Cloud
Comput., vol. 7, no. 1, pp. 183–195, Jan./Mar. 2019.

494 IEEE TRANSACTIONS ON RELIABILITY, VOL. 68, NO. 2, JUNE 2019

[2] B. Mao, S. Wu, and H. Jiang, “Improving storage availability in cloud-of-
clouds with hybrid redundant data distribution,” in Proc. IEEE Int. Parallel
Distrib. Process. Symp., 2015, pp. 633–642.

[3] M. Adams et al., “An introduction to designing reliable cloud services,”
Microsoft Corporation, Redmond, WA, USA, 2014.

[4] P. Sun, Y. Dai, and X. Qiu, “Optimal scheduling and management on cor-
relating reliability, performance, and energy consumption for multiagent
cloud systems,” IEEE Trans. Rel., vol. 66, no. 2, pp. 547–558, Jun. 2017.

[5] W. Deng, H. Jin, X. Liao, F. Liu, L. Chen, and H. Liu, “Lifetime or en-
ergy: Consolidating servers with reliability control in virtualized cloud
datacenters,” in Proc. IEEE Int. Conf. Cloud Comput. Technol. Sci., 2012,
pp. 18–25.

[6] E. Bauer and R. Adams, Reliability and Availability of Cloud Computing.
Hoboken, NJ, USA: Wiley, 2012.

[7] C. Liu, K. Li, and K. Li, “A game approach to multi-servers load balancing
with load-dependent server availability consideration,” IEEE Trans. Cloud
Comput., to be published, doi: 10.1109/TCC.2018.2790404.

[8] A. Zhou, S. Wang, Z. Zheng, C.-H. Hsu, M. R. Lyu, and F. Yang, “On
cloud service reliability enhancement with optimal resource usage,” IEEE
Trans. Cloud Comput., vol. 4, no. 4, pp. 452–466, Oct./Dec. 2016.

[9] J. Zhang, X. Lu, and D. K. Panda, “High performance MPI library for
container-based HPC cloud on infiniband clusters,” in Proc. 45th Int. Conf.
Parallel Process., 2016, pp. 268–277.

[10] C. Liu, K. Li, C. Xu, and K. Li, “Strategy configurations of multiple users
competition for cloud service reservation,” IEEE Trans. Parallel Distrib.
Syst., vol. 27, no. 2, pp. 508–520, 2016.

[11] K. Li, C. Liu, K. Li, and A. Y. Zomaya, “A framework of price bidding con-
figurations for resource usage in cloud computing,” IEEE Trans. Parallel
Distrib. Syst., vol. 27, no. 8, pp. 2168–2181, Aug. 2016.

[12] R. K. Iyer, S. E. Butner, and E. J. McCluskey, “A statistical failure/load
relationship: Results of a multicomputer study,” IEEE Trans. Comput.,
vol. C-31, no. 7, pp. 697–706, Jul. 1982.

[13] B. Schroeder and G. Gibson, “A large-scale study of failures in high-
performance computing systems,” IEEE Trans. Dependable Secure Com-
put., vol. 7, no. 4, pp. 337–350, Oct./Dec. 2010.

[14] SPEC CPU2006, Standard Performance Evaluation Corporation,
Gainesville, VA, USA, 2006. [Online]. Available: http://www.spec.
org/cpu2006/

[15] [Online]. Available: http://www.lm-sensors.org
[16] J. Srinivasan, S. V. Adve, P. Bose, and J. A. Rivers, “The case for lifetime

reliability-aware microprocessors,” in Proc. Int. Symp. Comput. Architec-
ture, 2004, pp. 276–287.

[17] K. Swaminathan, N. Chandramoorthy, C. Y. Cher, R. Bertran, and P. Bose,
“Bravo: Balanced reliability-aware voltage optimization,” in Proc. IEEE
Int. Symp. High Perform. Comput. Architecture, 2017, pp. 97–108.

[18] D. I. Heimann, N. Mittal, and K. S. Trivedi, “Availability and reliability
modeling for computer systems,” Adv. Comput., vol. 31, pp. 175–233,
1990.

[19] O. Beaumont, L. Eyraud-Dubois, and H. Larchevêque, “Reliable service
allocation in clouds,” in Proc. IEEE 27th Int. Symp. Parallel Distrib. Pro-
cess., 2013, pp. 55–66.

[20] K. Ferreira et al., “Evaluating the viability of process replication reliability
for exascale systems,” in Proc. IEEE Int. Conf. High Perform. Comput.,
Netw., Storage Anal., 2011, pp. 1–12.

[21] M. Bougeret, H. Casanova, M. Rabie, Y. Robert, and F. Vivien, “Check-
pointing strategies for parallel jobs,” in Proc. Int. Conf. High Perform.
Comput., Netw., Storage Anal., 2011, Art. no. 33.

[22] F. Cappello, H. Casanova, and Y. Robert, “Checkpointing vs. migration
for post-petascale supercomputers,” in Proc. IEEE 39th Int. Conf. Parallel
Process., 2010, pp. 168–177.

[23] A. Zhou et al., “Cloud service reliability enhancement via virtual machine
placement optimization,” IEEE Trans. Services Comput., vol. 10, no. 6,
pp. 902–913, Nov./Dec. 2017.

[24] W. Li, Y. Yang, and D. Yuan, “Ensuring cloud data reliability with min-
imum replication by proactive replica checking,” IEEE Trans. Comput.,
vol. 65, no. 5, pp. 1494–1506, May 2016.

[25] C. Liu, K. Li, and K. Li, “Minimal cost server configuration for meeting
time-varying resource demands in cloud centers,” IEEE Trans. Parallel
Distrib. Syst., vol. 29, no. 11, pp. 2503–2513, Nov. 2018.

[26] J. Xu, J. Tang, K. Kwiat, W. Zhang, and G. Xue, “Survivable virtual in-
frastructure mapping in virtualized data centers,” in Proc. IEEE 5th Int.
Conf. Cloud Comput., 2012, pp. 196–203.

[27] A. Usman, R. Schadek, and O. Theel, “A novel highly available data repli-
cation strategy exploiting data semantics, coding techniques and prior at-
hand knowledge,” in Proc. IEEE 22nd Pacific Rim Int. Symp. Dependable
Comput., 2017, pp. 301–310.

[28] Z. Wang, L. Sun, M. Zhang, H. Pang, E. Tian, and W. Zhu, “Propagation-
and mobility-aware D2D social content replication,” IEEE Trans. Mobile
Comput., vol. 16, no. 4, pp. 1107–1120, Apr. 2017.

[29] M. Zhang, H. Jin, X. Shi, and S. Wu, “VirtCFT: A transparent VM-level
fault-tolerant system for virtual clusters,” in Proc. IEEE 16th Int. Conf.
Parallel Distrib. Syst., 2010, pp. 147–154.

[30] Í. Goiri, F. Juli, J. Guitart, and J. Torres, “Checkpoint-based fault-tolerant
infrastructure for virtualized service providers,” in Proc. IEEE Netw. Oper.
Manage. Symp., 2010, pp. 455–462.

[31] N. Limrungsi, J. Zhao, Y. Xiang, T. Lan, H. H. Huang, and S. Subramaniam,
“Providing reliability as an elastic service in cloud computing,” in Proc.
IEEE Int. Conf. Commun., 2012, pp. 2912–2917.

[32] G. Levitin, L. Xing, Y. Dai, and V. M. Vokkarane, “Dynamic checkpointing
policy in heterogeneous real-time standby systems,” IEEE Trans. Comput.,
vol. 66, no. 8, pp. 1449–1456, Aug. 2017.

[33] S. Ghosh and A. H. Gebremedhin, “Parallelization of bin packing on mul-
ticore systems,” in Proc. IEEE 23rd Int. Conf. High Perform. Comput.,
2016, pp. 311–320.

[34] D. B. Shmoys and É. Tardos, “An approximation algorithm for the general-
ized assignment problem,” Math. Program., vol. 62, no. 1/3, pp. 461–474,
1993.

[35] H. W. Kuhn, “The Hungarian method for the assignment problem,” Naval
Res. Logistics, vol. 2, no. 1/2, pp. 83–97, 1955.

[36] A. Roy, R. Ganesan, and S. Sarkar, “Keep it moving: Proactive workload
management for reducing SLA violations in large scale SAAS clouds,” in
Proc. IEEE Int. Symp. Softw. Rel. Eng., 2014, pp. 421–430.

[37] A. B. M. B. Alam, M. Zulkernine, and A. Haque, “A reliability-based
resource allocation approach for cloud computing,” in Proc. IEEE Int.
Symp. Cloud Service Comput., 2017, pp. 249–252.

[38] L. Zhang, K. Li, Z. Wen, C. Peng, and K. Li, “Contention-aware reliability
management scheme for parallel tasks scheduling in heterogeneous com-
puting systems,” in Proc. Green Sustain. Comput. Conf., 2017, pp. 1–6.

[39] H. Youness, A. Omar, and M. Moness, “Fault tolerant heterogeneous MP-
SOC schedule length minimization based on platform reliability,” in Proc.
Japan-Egypt Int. Conf. Electron., Commun. Comput., 2014, pp. 88–93.

[40] H. Lee and M. A. A. Faruque, “GPU architecture aware instruction
scheduling for improving soft-error reliability,” IEEE Trans. Multi-Scale
Comput. Syst., vol. 3, no. 2, pp. 86–99, Apr./Jun. 2017.

[41] S. Guo, H. Z. Huang, Z. Wang, and M. Xie, “Grid service reliability mod-
eling and optimal task scheduling considering fault recovery,” IEEE Trans.
Rel., vol. 60, no. 1, pp. 263–274, Mar. 2011.

[42] A. Naithani, S. Eyerman, and L. Eeckhout, “Optimizing soft error relia-
bility through scheduling on heterogeneous multicore processors,” IEEE
Trans. Comput., vol. 67, no. 6, pp. 830–846, Jun. 2018.

[43] Y. Liu, R. Li, and Q. Li, “Reliability analysis of cloud computing systems
with different scheduling strategies under dynamic demands,” in Proc. Int.
Conf. Inf. Sci. Control Eng., 2017, pp. 1108–1113.

[44] W. Abdulal and S. Ramachandram, “Reliability-aware genetic scheduling
algorithm in grid environment,” in Proc. Int. Conf. Commun. Syst. Netw.
Technol., 2011, pp. 673–677.

[45] T. Wei, X. Chen, and S. Hu, “Reliability-driven energy-efficient task
scheduling for multiprocessor real-time systems,” IEEE Trans. Comput.-
Aided Design Integr. Circuits Syst., vol. 30, no. 10, pp. 1569–1573,
Oct. 2011.

[46] I. Assayad, A. Girault, and H. Kalla, “Scheduling of real-time embedded
systems under reliability and power constraints,” in Proc. IEEE Int. Conf.
Complex Syst., 2012, pp. 1–6.

[47] C. Chen, “Task scheduling for maximizing performance and reliability
considering fault recovery in heterogeneous distributed systems,” IEEE
Trans. Parallel Distrib. Syst., vol. 27, no. 2, pp. 521–532, Feb. 2016.

Chubo Liu received the B.S. and Ph.D. degrees
in computer science and technology from Hunan
University, Changsha, China, in 2011 and 2016,
respectively.

He is currently an Associate Professor of
Computer Science and Technology with Hunan
University. He has published over ten papers in jour-
nals, such as the IEEE TRANSACTIONS ON PARALLEL

AND DISTRIBUTED SYSTEMS, IEEE TRANSACTIONS

ON CLOUD COMPUTING, ACM Transactions on Mod-
eling and Performance Evaluation of Computing Sys-

tems, and Theoretical Computer Science. His research interests include game
theory, approximation and randomized algorithms, cloud and edge computing.

https://dx.doi.org/10.1109/TCC.2018.2790404
http://www.spec.org/cpu2006/
http://www.lm-sensors.org

LIU et al.: SERVICE RELIABILITY IN AN HC: CONSIDERING FROM THE PERSPECTIVE 495

Kenli Li received the Ph.D. degree in computer sci-
ence from the Huazhong University of Science and
Technology, Wuhan, China, in 2003.

From 2004 to 2005, he was a Visiting Scholar
with the University of Illinois at Urbana-Champaign,
Champaign, IL, USA. He is currently the Dean and
a Full Professor of Computer Science and Technol-
ogy with Hunan University and the Deputy Director
of the National Supercomputing Center, Changsha,
China. He has published more than 160 research pa-
pers in international conferences and journals, such as

the IEEE TRANSACTIONS ON COMPUTERS, IEEE TRANSACTIONS ON PARALLEL

AND DISTRIBUTED SYSTEMS, IEEE TRANSACTIONS ON SIGNAL PROCESSING,
Journal of Parallel and Distributed Computing, ICPP, and CCGrid. His ma-
jor research interests include parallel computing, high-performance computing,
grid and cloud computing.

Prof. Li is an Editorial Board Member of the IEEE TRANSACTIONS ON

COMPUTERS. He is a Senior Member and an outstanding member of the CCF.

Jie Liang received the B.S. degree in communi-
cation engineering from Henan Normal University,
Xinxiang, China, in 2011, and the M.S. degree in in-
formation and communication engineering, in 2014
from Hunan University, Changsha, China, where she
is currently working toward the Ph.D. degree.

Her research interests include modeling and
scheduling of distributed computing systems, opti-
mization and parallel algorithms, game theory, grid
and cloud computing.

Keqin Li is a SUNY Distinguished Professor of
Computer Science. He has authored coauthored more
than 630 journal articles, book chapters, and refer-
eed conference papers. His current research interests
include parallel computing, high-performance com-
puting, distributed computing, energy-efficient com-
puting and communication, heterogeneous comput-
ing systems, cloud computing, big data computing,
CPU-GPU hybrid and cooperative computing, mul-
ticore computing, storage and file systems, wireless
communication networks, sensor networks, peer-to-

peer file sharing systems, mobile computing, service computing, Internet of
Things, and cyber-physical systems.

Prof. Li has received several Best Paper Awards. He is currently serving or
has served on the editorial boards of IEEE TRANSACTIONS ON PARALLEL AND

DISTRIBUTED SYSTEMS, IEEE TRANSACTIONS ON COMPUTERS, IEEE TRANS-
ACTIONS ON CLOUD COMPUTING, IEEE TRANSACTIONS ON SERVICES COMPUT-
ING, IEEE TRANSACTIONS ON SUSTAINABLE COMPUTING.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 900
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00111
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 1200
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00083
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00063
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

