Kenli Li, Member, IEEE, Chubo Liu, Keqin Li, Fellow, IEEE, and Albert Y. Zomaya, Fellow, IEEE

1 NOTATION TABLE

TABLE 1: Notations

Notation	Description
n	Number of cloud users
m	Number of servers in a zone in the cloud
\mathcal{N}	Set of the <i>n</i> cloud users
\mathcal{M}	Set of the m servers in the zone in the cloud
p_i	Bidding price of cloud user <i>i</i>
\underline{p}	Minimal bidding price for a server in one time slot
\bar{p}_i	Maximal possible bidding price of cloud user i
\mathcal{P}_i	The set of price bidding strategies of cloud user i
t_i	Reserved time slots of cloud user <i>i</i>
b_i	Bidding strategy of cloud user <i>i</i>
b	Bidding strategy of all cloud users
\boldsymbol{b}_{-i}	Bidding strategy profile of all users except that of user i
λ_i^t	Request arrival rate of cloud user i in t -th time slot
$oldsymbol{\lambda}_i^{t_i}$	User i 's request profile over the t_i future time slots
m_i	Allocated number of servers for cloud user i
m	Allocated server vector for all cloud users
μ_i	Processing rate of a server for requests from user i
\bar{T}_i^t	Average response time of cloud user i in t -th time slot
$\Xi_{\mathcal{S}}$	Aggregated payment from users in $\mathcal S$ for using a server
P_i^t	Payment of cloud users i in t -th time slot
P_T	Total payment from all cloud users
r_i	Benefit obtained by user i by finishing one task request
u_i^t	Utility of cloud user i in t -th time slot
u_i	Total utility of cloud user i over t_i future time slots
$oldsymbol{u}$	Utility vector of all cloud users

2 PROOFS OF THEOREM 4.2 AND 4.3

Proof of Theorem 4.2: As mentioned in the theorem, both of the functions $\mathcal{K}_1(x)$ and $\mathcal{K}_2(x)$ are convex in $x \in \mathcal{X}$. Then we have $\forall x_1, x_2 \in \mathcal{X}$,

$$\mathcal{K}_1\left(\theta x_1 + (1-\theta) x_2\right) \le \theta \mathcal{K}_1\left(x_1\right) + (1-\theta) \mathcal{K}_1\left(x_2\right),$$

and

 $\mathcal{K}_{2}\left(\theta x_{1}+\left(1-\theta\right)x_{2}\right)\leq\theta\mathcal{K}_{2}\left(x_{1}\right)+\left(1-\theta\right)\mathcal{K}_{2}\left(x_{2}\right),$

where $0 < \theta < 1$. We further obtain $\forall x_1, x_2 \in \mathcal{X}$,

$$\begin{split} \mathcal{K}_{3} \left(\theta x_{1} + (1 - \theta) \, x_{2} \right) \\ &= \mathcal{K}_{1} \left(\theta x_{1} + (1 - \theta) \, x_{2} \right) + \mathcal{K}_{2} \left(\theta x_{1} + (1 - \theta) \, x_{2} \right) \\ &\leq \theta \left(\mathcal{K}_{1} \left(x_{1} \right) + \mathcal{K}_{2} \left(x_{1} \right) \right) + (1 - \theta) \left(\mathcal{K}_{1} \left(x_{2} \right) + \mathcal{K}_{2} \left(x_{2} \right) \right) \\ &= \theta \mathcal{K}_{3} \left(x_{1} \right) + (1 - \theta) \mathcal{K}_{3} \left(x_{2} \right). \end{split}$$

Thus, we can conclude that $\mathcal{K}_3(x)$ is also convex in $x \in \mathcal{X}$ and the result follows.

Proof of Theorem 4.3: According to [1], [2], the proof of this theorem follows if the following two conditions are satisfied. (1) For each cloud user i ($i \in \mathcal{N}$), the set \mathcal{P}_i is convex and compact, and each disutility function $f_i(p_i, \mathbf{b}_{-i}, \boldsymbol{\lambda}_i^{t_i})$ is continuous in $p_i \in \mathcal{P}_i$. (2) For each fixed tuple \mathbf{b}_{-i} , the function $f_i(p_i, \mathbf{b}_{-i}, \boldsymbol{\lambda}_i^{t_i})$ is convex in p_i over the set \mathcal{P}_i .

It is obvious that the statements in the first part hold. We only need to prove the convexity of $f_i(p_i, \mathbf{b}_{-i}, \boldsymbol{\lambda}_i^{t_i})$ in p_i for every fixed \mathbf{b}_{-i} . By Theorem 4.1, we know that if $r_i \geq w_i/(\sigma^2 \mu_i^2)$ $(i \in \mathcal{N})$, then each of the functions $\psi_i^t(p_i, \mathbf{b}_{-i}, \lambda_i^t)$ $(t \in \mathcal{T}_i)$ is convex in $p_i \in \mathcal{P}_i$. In addition, according to the property presented in Theorem 4.2, it is easy to deduce that

$$f_i\left(p_i, \boldsymbol{b}_{-i}, \boldsymbol{\lambda}_i^{t_i}\right) = \sum_{t=1}^{t_i} \psi_i^t\left(p_i, \boldsymbol{b}_{-i}, \lambda_i^t\right),$$

is also convex in $p_i \in \mathcal{P}_i$. Thus, the result follows.

REFERENCES

- H. Chen, Y. Li, R. H. Louie, and B. Vucetic, "Autonomous demand side management based on energy consumption scheduling and instantaneous load billing: An aggregative game approach," *Smart Grid, IEEE Transactions on*, vol. 5, no. 4, pp. 1744–1754, 2014.
- [2] G. Scutari, D. Palomar, F. Facchinei, and J.-S. Pang, "Convex optimization, game theory, and variational inequality theory," *Signal Processing Magazine*, *IEEE*, vol. 27, no. 3, pp. 35–49, May 2010.