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Abstract—Closer to mobile users geographically, mobile edge computing (MEC) can provide some cloud-like capabilities to users

more efficiently. This enables it possible for resource-limited mobile users to offload their computation-intensive and latency-sensitive

tasks to MEC nodes. For its great benefits, MEC has drawn wide attention and extensive works have been done. However, few of them

address task migration problem caused by distributed user mobility, which can’t be ignored with quality of service (QoS) consideration.

In this article, we study task migration problem and try to minimize the average completion time of tasks under migration energy budget.

There are multiple independent users and the movement of each mobile user is memoryless with a sequential decision-making

process, thus reinforcement learning algorithm based on Markov chain model is applied with low computation complexity. To further

facilitate cooperation among users, we devise a distributed task migration algorithm based on counterfactual multi-agent (COMA)

reinforcement learning approach to solve this problem. Extensive experiments are carried out to assess the performance of this

distributed task migration algorithm. Compared with no migrating (NM) and single-agent actor-critic (AC) algorithms, the proposed

distributed task migration algorithm can achieve up 30-50 percent reduction about average completion time.

Index Terms—Energy, mobile edge computing, mobility, multi-agent reinforcement learning, task migration

Ç

1 INTRODUCTION

1.1 Motivation

RECENTLY, a variety of mobile applications, such as online
gaming, virtual reality (VR), and augmented reality

(AR), have become more and more popular in people’s
daily life [1], [2]. Nevertheless, the aboved mobile appli-
cations are usually computation-intensive and latency-
sensitive, thus resource-limited mobile devices face a great
challenge to meet resource and latency demands from these
mobile applications [3]. An alternative solution for mobile
devices is offloading tasks to a cloud center which has suffi-
cient computation resources. Unfortunately, centralized
cloud computing is not suitable for these applications, due
to huge latency caused by long transmission. To tackle this
problem, mobile edge computing (MEC) [4] is proposed
and regarded as a promising technology by deploying serv-
ers at the edge of networks. Compared to the traditional

cloud computing, MEC is geographically closer to mobile
users, and thus can response users faster [5]. Resource-lim-
ited mobile devices can offload their computation-intensive
and latency-sensitive tasks to MEC nodes for execution to
improve quality of service (QoS). For its great benefits, MEC
has drawn wide attention from the academic circle and
extensive works have been done. However, MEC also faces
many challenges. For example, users tend to be self-decided
and most of existing works address computation offloading
problem with quasi-static scenario [6], and the migration
management issues associated with user mobility are rarely
involved.

As shown in Fig. 1, there is a sample mobile user
endowed with a resource-limited device. The mobile user is
moving to location 2 after offloading its task to the MEC
node at location 1. In other words, mobile user may leave
the coverage of the MEC node that its task is offloaded to.
With QoS consideration, task migration problem caused by
user mobility cannot be ignored, and efficient migration
strategy that determines whether to migrate tasks dynami-
cally to follow users’ mobility should be designed to meet
QoS requirement. When considering multiple independent
users, the problem becomes even harder.

To our knowledge, only a few works address the task
migration problem caused by distributed user mobility in
MEC. Some works assume that user mobility information
can be perfectly predicted [7], [8], [9], [10], [11]. However,
user mobility is extremely hard to predict with perfect accu-
racy in realistic situations. On the other hand, some works
assume that the movement of mobile users is memoryless
with a sequential decision-making process, thus Markov
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Decision Process (MDP) method is applied to solve the task
migration problem [12]. Nevertheless, traditional solutions
such as dynamic programming require iteratively adjusting
task migration decisions with high computational complex-
ity, which is infeasible for latency-sensitive applications in
MEC. With the popularity of deep reinforcement learning,
some works try to apply deep reinforcement learning algo-
rithm to task migration problem [13], [14], [15], [16]. How-
ever, the deep reinforcement learning algorithms they
applied are single agent, in which the multi-task environ-
ment is unstable and the influence among multiple tasks is
overlooked. Furthermore, although a beneficial migration
can reduce latency of tasks, energy consumption for MEC
node per migration can’t be ignored. Designing an efficient
task migration strategy for distributed users becomes more
challenging when migration energy budget is involved.
Therefore, we try to devise an efficiently distributed task
migration algorithm to solve the energy-aware task migra-
tion problem based on counterfactual multi-agent (COMA)
reinforcement learning approach.

1.2 Related Work

Some works involving user mobility in MEC are done in
recent years [17]. Usually, these works can be categorized
from three perspectives, i.e., mobility prediction, online
processing, and Markovian hypothesis.

With the development of deep neural network, works for
the first category usually assume that user mobility infor-
mation is perfectly predicted. In [7], Nadembega et al. made
a tradeoff between execution overhead and latency based
on a mobility prediction method DAMP [8]. By exploiting
mobility prediction information, the authors tried to reduce
offloading delay by choosing a suitable communication
path [9]. Wang et al. also predicted user mobility to mini-
mize average latency with prediction errors consideration
[10]. Aissioui et al. were concerned with the service migra-
tion problem of automated driving scenario by exploiting
the vehicle mobility information [11]. Nevertheless, user
mobility is extremely hard to predict with perfect accuracy
in realistic situations [18].

Studies for the second category usually deal with issues of
online user mobility, in which task migration can be triggered
after the user’s location has changed. Sun et al. addressed the
mobility management problem based on Lyapunov optimiza-
tion, in order to minimize the average delay within the long-
term energy consumption constraint [19]. However, they
only involved a single user scenario and user-centric

offloading energy consumption, instead of energy consump-
tion of MEC node for migration. Ouyang et al. extended it to
a multi-user scenario and made a performance-cost trade off
based on Lyapunov optimization similarly [20].

The movement of users is memoryless with a sequential
decision-making process [12]. Therefore, studies for last cate-
gory usually adopt the method of Markov Decision Process
with the assumption that user mobility follows a Markovian
process. Taleb et al. defined an analytical model with a
single user case for the Follow-Me Cloud, but specific
migration scheme was not involved [21]. Taleb et al.
extended their work in [22], a traditional MDP method
was adopted to trade off between migration cost and
QoS, but they only discussed single user scenario with
one-dimension mobility. In [23], an optimal threshold
decision policy was devised to minimize time cost, simi-
larly, single user scenario with one-dimension mobility
is considered. Wang et al. extended their work to two-
dimension mobility, and applied an improved policy
iteration method to this problem with approximate solu-
tions [24]. Nevertheless, all of the aboved works ignored
migration energy consumption, in which traditional
MDP methods were adopted with high computational
complexity.

Therefore, some researchers tried to apply deep rein-
forcement learning based on Markov chain model to task
migration problem in MEC, due to its low computational
complexity [25], [26]. Zhang et al. devised a deep Q-network
(DQN) [27] based algorithm for task migration, in which
reward was defined as the difference between QoS and the
migration cost [13]. In [14], the authors tried to minimize
migration and communication cost by Q-learning based
and DQN based algorithms. However, these works only
considered a single user scenario. Zeng et al. addressed the
task migration problem with multi-user scenario, and DQN
based algorithm was devised to maximize the reward
defined as the reciprocal of migration and communication
overhead [15]. The authors in [16] formulated multiple con-
tainers migration problem as multiple dimensional MDP
spaces, DQN-based deep reinforcement learning algorithm
was introduced to reduce the large MDP spaces effectively.
However, to our knowledge, almost all works that apply
classical DQN reinforcement learning to migration problem
in MEC only involves a single agent. The local state of all
users is usually jointed as the global state when DQN is
applied to multi-user scenario, which leads to that multi-
user environment is unstable and the influence among mul-
tiple users is overlooked.

To meet average QoS under a distributed environment, a
cooperative multi-agent reinforcement learning algorithm is
suitable and necessary to utilize cooperation among users. Due
to the above limitations, based on cooperative counterfactual
multi-agent (COMA) reinforcement learning approach, we try
to devise a distributed task migration algorithm to minimize
the average completion time of tasks, in which migration
energy consumptions ofMECnodes are also involved.

1.3 Contributions

In this paper, we investigate task migration problem for
user mobility with multiple users scenario in MEC. The

Fig. 1. System model.
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users are independent and each mobile user offloads its
computation-intensive and latency-sensitive task to MEC
node for execution. Moving across multiple MEC nodes,
distributed users may move out side of the coverage of the
MEC node that their tasks offloaded to, thus an efficiently
distributed task migration algorithm is necessary to be
devised with QoS consideration. Besides, migration energy
consumptions of MEC nodes are also involved to make a
trade off between performance and cost. Generally, the
movement of mobile user is memoryless with a sequential
decision-making process [12], thus reinforcement learning
algorithm based on Markov chain model is applied with
low computation complexity. Specifically, utilizing coopera-
tion among users, a distributed counterfactual multi-agent
(COMA) reinforcement learning approach is suitable and
necessary to meet average QoS. In this paper, the goal is to
minimize the average completion time of tasks under
migration energy budget. Main contributions of this paper
can be summarized as

� We formulate task migration problem with multiple
users scenario in MEC as a minimum optimization
problem with constraint, in which migration energy
budget of MEC nodes is involved.

� We devise a distributed task migration algorithm
based on a counterfactual multi-agent (COMA) rein-
forcement learning approach, taking advantage of
facilitating cooperation among users with low com-
putation complexity.

� We carry out extensive experiments to assess the
performance of proposed distributed migration algo-
rithm based on multi-agent reinforcement learning
algorithm. Compared with no migrating (NM) and
single-agent actor-critic (AC) algorithms, the pro-
posed task migration algorithm can achieve up 30-50
percent reduction about average completion time.

The rest of this paper is organized as follows. Mathemati-
cal model and definitions of notations are presented in
Section 2.We formulate an optimization problem in Section 3.
In Section 4, we introduce the reinforcement learning setting
of our system and devise a distributed task migration algo-
rithm based on counterfactual multi-agent (COMA) rein-
forcement learning approach. Extensive experiments are
carried out to assess the proposed COMA-based task migra-
tion algorithm in Section 5. Furthermore, conclusion and
futureworks are presented in Section 6.

2 SYSTEM MODEL

2.1 System Overview

In this section, we introduce the system model by defining
some notations. As shown in Fig. 1, we consider that a set of
M MEC nodes attach base stations, denoted by M¼
1; 2; . . . ;Mf g, endowed with computation and storage

resources. And there are N mobile users with resource-lim-
ited devices, denoted by N ¼ 1; 2; . . . ; Nf g. Each mobile
user offloads its computation-intensive and latency-sensi-
tive task to MEC node for execution. With consideration of
user mobility, we focus on a dynamic scenario that mobile
users move across multiple MEC nodes. Thus we need to
decide whether to migrate task among MEC nodes to follow

user’s moving trajectory. Our system operates in a time-slot-
ted fashion t 2 1; 2; . . . ; Tf g, and the length of one time slot
is equal to t. Specially, for mobile user n 2 N , the MEC
node that executes its task Jn at time slot t is called serving
node of user n, denoted by sertn 2 M. On the other hand,
MEC node that covers user n at time slot t are called con-
nected node of user n, denoted by cotn 2 M. If sert�1n 6¼ cotn,
then we need to make a migration decision for mobile user
n at time slot t. Here livetn ¼ 0 if task Jn is completed before
time slot t and livetn ¼ 1 otherwise. Migration decisions of
all tasks at time slot t are denoted by X t ¼ xt

1; x
t
2; . . . ; x

t
n

� �
,

where xt
n 2 M. Specially, xt

n ¼ cotn and xt
n ¼ sert�1n denote

that task Jn will be or not be migrated from sert�1n to cotn at
time slot t, respectively. The notations we used are summa-
rized in Table 1. We next introduce communication model,
computation model, and migration model in details.

2.2 Communication Model

In this paper, we use a general parameter model Jn , ð�n; gn;
OnÞ to describe task, in which �n (in bits) is input data size of
task Jn, gn (in CPU cycles/bit) denotes how many CPU cycles
are required per bit for task Jn, and On is output data size of
task Jn. Transmission time of output data is not ignored, and
we assume that downlink data transmission rate is equal to
uplink data transmission rate. Based on a general communica-
tion model, data transmission rate between MEC node m and
mobile usern can be calculated as

rðm;nÞ ¼ wmlog2 1þ pnHm;n

%m

� �
; (1)

where wm is the channel bandwidth that MEC node m allo-
cates for mobile user n, pn is transmission power of mobile
user n, Hm;n is channel gain, um is white noise power. Thus
transmission time of input data and output data can be

TABLE 1
Notations

Notation Definition

M;N number of MEC node, number of mobile user
fm maximal CPU frequency of MEC nodem
’t
m number of tasks executed on MEC nodem

Jn task of mobile user n
�n; on input data size and output data size of task Jn
gn workload requirement of task Jn
ct

n remaining CPU cycles requirement at time slot t
pn transmission power of mobile user n
vm wireless bandwidth of MEC nodem
%m white noise power
Hm;n channel gain between MEC nodem and user n
xt
n MEC node that executes task Jn at time slot t

sertn Serving MEC node of user n at time slot t
cotn Connected MEC node of user n at time slot t
rðm;nÞ transmission rate between nodem and user n
Tuðm;nÞ transmission time between nodem and user n
rmm data transmission rate among MEC nodes
TeðnÞ remaining execution time of task Jn in time slot t
Tn
m total migration time of task Jn

E the energy consumption per bit for task migration
Ebudget the energy consumption budget for migration
t length of time slot
DðnÞ completion time of task Jn
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expressed as

TuðnÞ ¼ �n

rðm;nÞ þ
On

rðm0; nÞ ; (2)

wherem denotes MEC node that mobile user n first offloads
its task to, and m0 denotes MEC node that connects with
mobile user nwhen its task Jn is completed.

2.3 Computation Model

Asmentioned before, eachmobile user with a resource-limited
device offloads its task to MEC node for execution. We assume
that each MEC node is able to process multiple tasks simulta-
neously by sharing processor. Specifically, fm and ’t

m denote
the maximum computation capability (i.e., CPU cycles per sec-
ond) of MEC node m and number of tasks executed on MEC
nodem at time slot t. Then processing time of task Jn executed
onMECnodem at time slot t can be estimated as

TeðnÞ ¼ ct
n’

t
m

fm
; (3)

sertn ¼ m; 8n; t;m; (4)

where ct
n denotes how many remaining CPU cycles are

required for task Jn at the beginning of time slot t, sertn is
the serving MEC node of mobile user n at time slot t.

2.4 Migration Model

To satisfy QoS, task migration problem caused by user mobil-
ity is necessary to be addressed. When serving node sert�1n of
last time slot t� 1 is different from the connected node cotn of
task Jn, thenwe need tomake a taskmigration for it. If task Jn
is decided to be migrated from serving node sert�1n to con-
nected node cotn, then migration time of input data can’t be
ignored. We assume that whole input data of task needs to be
transmitted from sert�1n to cotn if there is a migration. Thus we
can calculatemigration time of task Jn as

TmðnÞ ¼
Xt¼T
t¼1

I sertn ¼ cotn
� � �n

rmm

þ I livetn ¼ 0 and sertn 6¼ cotn
� � On

rmm
; (5)

where first part denotes the sum of migration time of input
data for each migration. Here I xf g ¼ 1 if the event x is true
and I xf g ¼ 0 otherwise. And rmm is data transmission rate
among MEC nodes. The second part denotes migration time
of output data if serving node sertn is different with con-
nected node cotn of task Jn, when task Jn is completed.

It is intuitive that completion time of task can be reduced
when it is decided to be migrated. However, from the prospec-
tive of MEC nodes, there is non-negligible energy consumption
when each migration occurs. We use E to denote the energy
consumption per bit for taskmigration. Thus the totalmigration
energy consumption for allmobile users can be calculated as

Etotal ¼
Xn¼N
n¼1

Xt¼T
t¼1

I xt
n ¼ cotn

� �
�nE

þ I livetn ¼ 0 and sertn 6¼ cotn
� �

OnE; (6)

where �nE is the migration energy consumption of task Jn
once, and

Pt¼T
t¼1 I xt

n ¼ cotn
� �

denotes the total number of
migration. I xt

n ¼ 0 and sertn 6¼ cotn
� �

OnE denotes migra-
tion energy consumption of output data if serving node
sertn is different with connected node cotn of task Jn, when
task Jn is completed.

3 PROBLEM FORMULATION

We have discussed computation, communication, and
migration model in the last section. As mentioned earlier,
livetn ¼ 0 means that task Jn is completed before time slot t.
Then completion time of task Jn can be obtained by the sum
of time slots when livetn > 0,

DðnÞ ¼
Xt¼T
t¼1

I livetn > 0
� �

t; (7)

where t is the length of one time slot.
Note that we try to make a migration decision at each

time slot to minimize the average completion time of all
tasks, while the total energy consumption is under the
energy budget Ebudget. Mathematically, our optimization
problem can be formulated as

minimize

Pn¼N
n¼1 DðnÞ

N
; (8)

s.t. Etotal � Ebudget; (9)

xt
n 2 M 8n; t: (10)

Unfortunately, we find the optimization problem is NP-Hard.
Next, proof of NP-hardness for this problem is presented.

Theorem 1. The optimization problem is NP-hard.

Proof. To proceed, we first introduce the knapsack problem
(KP), which is a well-known NP-hard problem. KP: Given
N items with sizes vi and profit values pi for i 2 N and a
knapsack with size V , the objective is to find a set of items
S � N to pack such that the total values of knapsack is
maximized, mathematically, the knapsack problem can
be formulated as

maximize
X
i2S

pi;

s.t.
X
i2S

vi � V:

Here we consider a special instance of our optimiza-
tion problem, in which there are N tasks J1; J2; . . . ; Jn
with the migration energy budget Ebudget. The mobile
users moves across multiple MEC nodes. With different
migration schemes for each time slot, each task may be
executed on serving MEC node or migrated to connected
MEC node for execution. We use ti to denote completion
time of task Ji, and Ei to denote migration energy con-
sumption for task Ji. Then, our optimization problem
can be formulated as
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minimize

Pi¼N
i¼1 ti
N

;

s.t.
X
i2N

Ei � Ebudget:

For each task Ji, we define qi ¼ � ti
N , then the optimiza-

tion problem can be formulated as

maximize
X
i2N

qi;

s.t.
X
i2N

Ei � Ebudget:

This special instance of our problem corresponds to the
KP with knapsack size V ¼ Ebudget and profit value pi ¼
qi. Therefore, this problem is NP-hard. This completes
the proof. tu
As is presented before, the movement of mobile users is

memoryless with a sequential decision-making process [12],
thus MDP method can be applied. Nevertheless, traditional
solutions such as dynamic programming require iteratively
adjusting task migration decisions with high computational
complexity, which is infeasible for latency-sensitive applica-
tions in mobile edge computing. Therefore, we adopt deep
reinforcement learning algorithm based on Markov chain
model to tackle this task migration problem with low
computational complexity.

4 DISTRIBUTED TASK MIGRATION ALGORITHM

We have formulated the task migration problem as a mini-
mum optimization problem before. In this section, a distrib-
uted task migration algorithm based on counterfactual
multi-agent (COMA) reinforcement learning approach, is
devised to solve the task migration problem.

4.1 Reinforcement Learning Settings

As shown in Fig. 2, main idea of reinforcement learning
algorithm is that agent makes better decisions by constantly
interacting with the environment. For each time slot, agent
collects state St of system and evaluates the reward rt for
environmental feedback of last action At�1, then agent
makes a better action At to act on the environment.

In this paper, formal definition of our system for the
above-mentioned elements in reinforcement learning model
are as follows.

� Agent: MEC node controller is the agent of our sys-
tem. The MEC node controller receives information

of MEC nodes and tasks, and location information of
mobile users, then it makes task migration decisions
for all tasks at each time slot.

� State: in our system, state is defined as joint informa-
tion of all tasks. Specifically, state St at time slot t can
be expressed as

St ¼ fWt
1 �Wt

2 � . . .Wt
Ng; (11)

Wt
n ¼ fct

n; ser
t�1
n ; cotng; n 2 1; 2; . . . ; Nf g; (12)

where ct
n denotes how many remaining CPU cycles

are required for task Jn at the beginning of time slot
t, sert�1n is the serving node that processes task Jn at
time slot t� 1, and cotn denotes the connected node
that covers mobile user n.

� Action: as we said before, agent makes a better action
At for each task by constantly interacting with the
environment. At ¼ xt

1; x
t
2; . . . ; x

t
n

� �
, which means

action that agent makes at time slot t is joint migra-
tion decisions for all tasks. Specially, xt

n ¼ cotn and
xtn ¼ sert�1n denote that task Jn will be or not be
migrated from serving node sert�1n to connected
node cotn for execution at time slot t, respectively.

� Reward: at time slot t, agent evaluates the reward rt
based on environmental feedback of last action At�1.
In our system, we define reward rt at time slot t as
the difference between average estimated comple-
tion time Avgt�1 for all tasks at last time slot and
Avgt at current time slot,

rt ¼ Avgt�1 �Avgt; (13)

Estn ¼ tðt� 1Þ þ ct
n

fsertnP
i2N I xt

i
¼xtnf g

þ I sertn ¼ cotn
� � �n

rmm

þ I livetn ¼ 0 and sertn 6¼ cotn
� � On

rmm
;

(14)

Avgt ¼
Pn¼N

n¼1 Estn
N

; (15)

where Estn is the estimated completion time of task
Jn at time slot t, including the sum of past time
slotstðt� 1Þ for processing task Jn, the second part

ct
n

f
sertnP

i2N I xt
i
¼xtnf g

denotes the remaining processing time

of task Jn with the assumption that task Jn is exe-

cuted on serving node sertn until completed, the third

part I sertn ¼ cotn
� �

�n
rmm

is the migration time of input

data if task Jn is migrated from sert�1n to cotn at time

slot t, the last part I livetn ¼ 0 and sertn
� 6¼ cotng On

rmm

denotes the migration time of output data if task
Jn is completed at time slot t and its serving

node is different from connected node. The total

reward is the sum of reward at each episode

Fig. 2. Formal description of reinforcement learning.
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(r ¼ r1 þ r2 þ . . .þ rT ), which is the key evaluation
metrics of reinforcement learning algorithm.

Q-learning is a classical reinforcement learning algo-
rithm, in which each state-action pair is evaluated by Q-
value stored in Q-matrix. However, Q-matrix is huge and
storage-consumed with the large size, due to high dimen-
sional of state and action. To tackle this issue, deep neural
networks (DNN) is introduced to estimate the Q-value of
state-action pair based on traditional Q-learning method,
that is deep Q-network (DQN) algorithm [27]. And there
are some improved reinforcement learning algorithms, such
as Policy Gradients [28], DDPG [29], A3C [30] and so on,
however these reinforcement learning algorithms are sin-
gle-agent. It is not suitable to apply these single-agent rein-
forcement learning algorithms to multi-task problem in
mobile edge computing. The reason lies in that the local
state of all users is usually jointed as the global state when
single-agent reinforcement learning approaches are applied
to multi-user scenario, which leads to that multi-user envi-
ronment is unstable and the influence among multiple users
is overlooked. Therefore, we introduce a counterfactual
multi-agent deep reinforcement learning approach to our
system, COMA, considering cooperation among tasks to
achieve the global goal.

4.2 Actor-Critic Algorithm

Counterfactual multi-agent (COMA) policy gradients is a
class of actor-critic reinforcement learning approach [28].
Here are some necessary backgrounds need to be presented
before introducing the original actor-critic algorithm. The
above mentioned Q-learning is a value-based algorithm,
which chooses action based on approximating the value of
state-action QðS;AÞ, such as choosing the action whose
value is maximal on current state pðSÞ ¼ argmax

A
QðS;AÞ.

Algorithm 1. Policy Gradient Algorithm

Initialize the parameter u randomly
for each episode S1; A1; r1; . . . ; ST�1; AT�1; rT�1f g do
for t ¼ 1 to t ¼ T � 1 do
u u þ arulogpu St; Atð ÞVt;

end for
end for
return u;

Policy gradient [29] is a policy-based algorithm, which
outputs directly the probability of each action for current
state based on neural network. Specifically, the parameter u
updating process of neural network is shown in Algorithm
1. Loss is defined as logpu St; Atð ÞVt, in which puðS;AÞ ¼
P ðAjS; uÞ means the probability of choosing action A for
current state S when parameter of neural network is u. And
Vt can be the total reward or the value of state-action. Thus
in policy gradient algorithm, if an action receives more
reward, the probability of its occurrence will be increased,
otherwise, if an action receives less reward, we decrease the
probability of its occurrence. Note that policy gradient algo-
rithm is episode-updated instead of step-updated, which
makes a low learning efficiency.

Frame of actor-critic approach is shown in Fig. 3. Actor-
critic approach is consisted of an actor and a critic. Actor is

a policy neural network based on policy gradient algorithm.
Critic is a value-based neural network which estimates the
value of state. For each time slot t, actor outputs an action
At to act on the environment, then critic evaluates the
reward for environmental feedback of action At, and calcu-
lates the TD error dt to guide the parameter updating of
actor network. Specifically, the TD error dt is given by

dt ¼ rtþ1 þ gV Stþ1ð Þ � V Stð Þ; (16)

V ðSÞ ¼ Ep

X1
k¼0

gkrtþkþ1jSt ¼ S

" #
; (17)

where V ðSÞ is the value of state S, g is the discount factor.
Parameter uactor updating of actor network is guided by TD
error, uactor  uactor þ aruactor logpuactor St; Atð Þdt. On the other
hand, loss of critic network is defined as the square of TD
error.

4.3 COMA-Based Distributed Task Migration
Algorithm

When faced with task migration problem with multiple
users, we intuitively think that each agent learn indepen-
dently is simplest way to apply policy gradients with multi-
ple agents consideration. And each agent of user has its
own actor and critic to learn with user’s own state-action
information. This is independent actor-critic (IAC), which is
inspired by popular multi-agent learning algorithm inde-
pendent Q-learning [30]. Although it is simple to under-
stand and implement, it is hard to learn coordinated
strategies due to lack of interactions between multiple
agents, or evaluate the contribution of action of an individ-
ual agent to the global reward, or fail to exploit the fact that
learning is centralised [31]. Therefore, counterfactual multi-
agent (COMA) policy gradients [32] is introduced to tackle
these issues.

Main characteristics of COMA can be summarized as
introducing a centralised critic and a counterfactual base-
line. As is shown in Fig. 4. To exploit the fact that learning is
centralised, COMA introduces a centralised critic. Each
actor conditions on its own state histories of corresponding
user, however, input of the centralised critic is the joint state
of each user. As we said in last subsection, in single-agent
scenario, parameter uactor updating of actor network is

Fig. 3. Frame of actor-critic approach.
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usually based on TD error calculated by critic. Nevertheless,
it is not suitable to use TD error to update parameter uactor of
actor network in multi-agent reinforcement learning algo-
rithm. The reason lies in that TD error considers only global
reward, and each actor does not explicitly to know how its
actions contribute to the global reward.

Therefore, COMA introduces a counterfactual baseline to
solve this problem. Centralised critic estimates Q-values
QðSt; AtÞ of joint action At ¼ a1t ; a

2
t ; . . . ; a

n
t

� �
and state St ¼

S1
t ; S

2
t ; . . . ; S

n
t

� �
. For each agent k, keeping actions of agents

A�kt fixed except agent k, the advantage function that com-
pares the Q-value can be calculated as

Zk
t ðSt; AtÞ ¼ QðSt;AtÞ �

X
akt

pk akt jSk
t

� �
Q St; A�kt ; akt

� �� �
:

(18)

Hence, Zk
t ðSt; AtÞ computes a baseline for agent k to present

how its actions contribute to the global reward based on
centralised critic. In conclusion, COMA is aimed at maxi-
mizing the global reward by cooperation of multiple agents.
Thus it is reasonable to apply COMA to our task migration
problem with global goal that minimizing the average com-
pletion time of all tasks. Each actor is learned for each user’s
task in a distributed way, which chooses action that deter-
mines the task whether migrate or not. The centralised critic
calculates contribution of each task to the global goal, then
guides the learning of each actor. Next, specific implemen-
tation steps of COMA-based distributed task migration
algorithm is summarized as Algorithm 2.

In Algorithm 2, we initialise network with random
parameter (Step 1). For centralised critic, a double network
structure is used to reduce the correlation between the cur-
rent Q value and the target Q value and improve the stabil-
ity of the algorithm. In addition, to speed learning, an actor
network is reused for all agents by sharing parameters. The
network is trained in batch mode. For each training epoch i,
each actor with uiactor chooses migration action for each task,
and generated episodes are appended to buffer memory
(Steps 3-10). terminal is exit state of our system, when all
tasks are completed. Unrolling states, actions and rewards
in buffer memory B, target Q value y

ð�Þ
t is calculated with

target critic network using û1critic (Steps 11-16). n-step returns

G
ðnÞ
t are calculated with bootstrapped values estimated by

target network. Critic network is trained by minimizing loss

ðyð�Þt �QðSt; AtÞÞ2 (Steps 17-22), and ûicritic is reset as û
i
critic ¼

uicritic every C steps. Then calculating advantage function
Zk
t ðSt; AtÞ for each agent k based on Eq. (18), and parameter

updating of actor network is guided by advantage function
(Steps 23-28).

Algorithm 2. COMA-based Distributed Task Migration
Algorithm

1: Initialise critic network with random parameter u1critic; Initi-
alise target critic network with parameter û1critic ¼ u1critic; Ini-
tialise actor network with random parameter u1actor;
Initialise buffer memory B to capacity BatchSize.

2: for each training epoch i do
3: Empty buffer memory;
4: for (episode e from 1 to BatchSize ) do
5: while St 6¼ terminal and t < T do
6: For current state St, each actor with uiactor chooses

migration action for each task;
7: Get reward rt, t ¼ tþ 1;
8: end while
9: Append episode e to buffer memory B;
10: end for
11: for (time slot t from 1 to T ) do
12: Unroll states, actions and rewards in buffer memory B;
13: Calculate TDð�Þ target Q value y

ð�Þ
t using û1critic;

14: y
ð�Þ
t ¼ ð1� �ÞP1

n¼1 �
n�1GðnÞt ;

15: G
ðnÞ
t ¼ rtþ1 þ grtþ2 þ . . .þ gn�1rtþn þ gnV Stþnð Þ;

16: end for
17: for (time slot t from T to 1 ) do
18: Unroll states, actions and rewards in buffer memory B;
19: Ducritic ¼ rucritic y

ð�Þ
t �QðSt; AtÞ

� 	2
;

20: uiþ1critic ¼ uicritic � aDucritic;
21: Every C steps reset ûicritic ¼ uicritic;
22: end for
23: for (time slot t from T to 1 ) do
24: Process all agents in parallel via single batch;
25: Calculate advantage function Zk

t ðSt; AtÞ for each agent k
based on Eq. (18);

26: Duactorþ ¼ aruactor logpuactor Sk
t ; a

k
t

� �
Zk
t St; Atð Þ;

27: end for
28: uiþ1actor ¼ uiactor þ aDuactor;
29: end for

The actor network is based on recurrent neural net-
work, consisting of 128-bit gated recurrent units (GRUs)
that use fully connected layers both to process the input
and to produce the output values from the hidden state.
The critic network is based on a feed forward network
with multiple ReLU layers combined with fully con-
nected layers. Training is performed in batch mode, with
a batch size of 30. For one episode, a gradient step is
applied to train the feed-forward critic for each time
step. The recurrent part of the actor is fully unrolled and
gradients are aggregated in the backward pass across all
time steps, then a gradient update is applied to train
actor. In addition, a target network for the critic is
applied, which updates every 150 training steps for the
feed-forward critics. The actor and the critic networks
are trained using RMSprop. The learning rate of actor
network is 0.0001 and the learning rate of critic network
is 0.001.

The convergence analysis of COMA-based task migra-
tion algorithm is given in the following theorem. With same
assumptions, proof of this theorem is based on the conver-
gence of single-agent actor-critic algorithm [28].

Fig. 4. Distributed framework of COMA.
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Theorem 2. The COMA-based distributed task migration algo-
rithm is convergent, that is

lim inf
i
rGik k ¼ 0 w:p:1: (19)

Proof. The gradient of COMA-based task migration algo-
rithm is given by

Gi ¼ Epp

X
k

rui logp
k akjSk
� �

ZkðS;AÞ
" #

; (20)

where advantage function ZkðS;AÞ is defined as Eq. (18),
and we define the counterfactual baseline b S;A�k

� �
as

b S;A�k
� � ¼X

ak

pk akjSk
� �

Q S; A�k; ak
� �� �

; (21)

thus the gradient of COMA-based task migration algo-
rithm can be written as

Gi ¼ Epp

X
k

rui logp
k akjSk
� �

QðS;AÞ � b S;A�k
� �� �" #

;

(22)

where u are the parameters of all actor networks
u ¼ u1; uk; . . . ; uN

� �
.

First, we consider the counterfactual baseline
b S;A�k
� �

for the gradient Gi of COMA-based task migra-
tion algorithm,

Gb ¼ �Epp

X
k

rui logp
k akjSk
� �

b S;A�k
� �" #

; (23)

where Ep is the state-action expected distribution with
regard to joint policy p. In addition, as defined by [29],
dpðSÞ is the stationary distribution of states under joint
policy p,

dpðSÞ ¼ lim
t!1

Pr St ¼ SjS0;pf g: (24)

Then the gradient Gb of counterfactual baseline can be
written as

Gb ¼�
X
S

dpðSÞ
X
k

X
A�k

p A�kjS�k� ��
X
ak

pk akjSk
� �rulogp

k akjSk
� �

b S;A�k
� � (25)

¼�
X
S

dpðSÞ
X
k

X
S�k

p A�kjS�k� ��
X
ak

rup
k akjSk
� �

b S;A�k
� � (26)

¼ �
X
S

dpðSÞ
X
k

X
A�k

p A�kjS�k� �
b S;A�k
� �ru1 ¼ 0:

(27)

According to the following equations, the counterfactual
baseline b S;A�k

� �
does not change the expected gradient

Gi, thus we can draw the conclusion that counterfactual

baseline for each agent has no effect on the convergence
of COMA-based task migration algorithm.

Second, we consider the remainder of Gi except gradi-
ent Gb of counterfactual baseline,

GQ ¼ Epp

X
k

rulogp
k akjSk
� �

QðS;AÞ
" #

(28)

¼ Epp rulog
Y
k

pk akjSk
� �

QðS;AÞ
" #

(29)

¼ Epp rulogppðAjSÞQðS;AÞ½ �: (30)

Refer to [28], standard policy gradient G of a single-agent
actor-critic algorithm is given by

G ¼ Epp rulogppðAjSÞQðS;AÞ½ �; (31)

and the proof of convergence for a single-agent actor-
critic is presented on their work, with the following
assumptions,

� The policy p is differentiable.
� The learning rates for actor network and critic net-

work are sufficiently small.
� The learning rate of actor network is sufficiently

smaller than the learning rate of critic network.
These assumptions are satisfied in our COMA-
based task migration algorithm. Note that central-
ised critic network of COMA-based task migra-
tion algorithm is essential for this proof to hold.
Therefore, this achieves the proof of convergence
of COMA-based task migration algorithm. tu

5 PERFORMANCE EVALUATION

In this section, numerical studies are conducted to evaluate
performance of COMA-based distributed task migration
algorithm.

5.1 Parameter Configuration

As shown in Table 2, there are 60 mobile users and 16 MEC
nodes in our system. For MEC node m, CPU frequency fm
of which is uniformly selected from ½0:1; 1� GHz, and
dynamic value of which is from ½0:1; 0:5� GHz to ½0:5; 0:9�
GHz. Corresponding datasets, including training data and
validation data, are randomly generated to evaluate the per-
formance of algorithm. Specifically, the mobility trajectories
of mobile users are based on random walk model. The
parameter settings of task workloads is general, refer to
some related work. Training data and validation data are
completely independent and they are separated into 4:1
based on hold-out method. Mobile users are moving ran-
domly across multiple MEC nodes and trajectories of them
are generated based on random walk model [9], [19]. Each
mobile user is associated with a computation-intensive and
latency-sensitive task that is offloaded to MEC node for exe-
cution. For task Jn, fixed value of input data size ð�nÞ is uni-
formly selected from ½100; 500� KB, and dynamic value of
which is from ½100; 250� KB to ½100; 700� KB. Similarly, fixed
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value of output data size ðOnÞ is uniformly selected from
½100; 150� KB, and dynamic value of which is from ½100; 150�
KB to ½100; 600� KB. For workload ðgnÞ of task Jn, fixed value
of which is ½800; 2400� cycles/bit, and dynamic value of
which is from ½800; 1600� cycles/bit to from ½800; 6400�
cycles/bit. Fixed value of migration energy budget ðEbudgetÞ
is 250 GJ, and dynamic value of which is from 50 GJ to 450
GJ. Besides, configurations of other variables are summa-
rized in Table 2.

5.2 Performance Benchmark

To our knowledge, none of works applies multi-agent rein-
forcement learning algorithm to task migration problem in
mobile edge computing. And related work mentioned is not
suitable for comparison, because characteristics and perfor-
mance metrics of them are different. Hence, two heuristics
algorithms are introduced to evaluate the performance of
our COMA-based task migration algorithm. 1) Not Migrat-
ing (NM): Tasks are executed on MEC node that they are
first offloaded to until they are completed, no matter where
mobile users that they belongs is moving to. 2) Actor-Critic
(AC): The single-agent actor-critic reinforcement learning
algorithm we presented in Section 4.2 is also introduced for
comparison, in which inputs of actor network and critic net-
work are joint state and action of all tasks, and the coopera-
tion among multiple tasks toward a global goal is ignored.

5.3 Random Results

In our experiments, we randomly generate 100 files of data
with 60 mobile users. Three of which are chose as samples
to show dynamics of cumulative reward with increased epi-
sode steps in Fig. 5. As we presented before, reward rt in
our system is define as the difference between average esti-
mated completion time Avgt�1 for all tasks at last time slot
and Avgt at current time slot. In early episode steps, cumu-
lative reward is slightly oscillating due to exploration in
reinforcement learning. Then cumulative reward is tend to
be stable with increased episode steps.

In the following experiments, the average completion
time of all tasks is evaluated as performance metrics. Fur-
thermore, average value of performance metrics for 100
data files is presented to make the results more convincing.

With other variables remain unchanged, we first increase
input data sizes of tasks with an increment 150 KB. As
shown in Fig. 6, we can observe that the average completion
time of all tasks is increasing with increased input data sizes
of tasks. That’s because input data sizes of task is determin-
ing factor of computation time that increases with increased
input data sizes of tasks. Nevertheless, compared to NM
and AC algorithms, COMA-based distributed task migra-
tion algorithm can achieve up 30-50 percent reduction in
average completion time.

In addition, impact that changes output data sizes of
tasks on the average completion time of all tasks is shown
in Fig. 7. Similarly, increment of output data sizes of tasks is
also 150 KB. With the increased output data sizes of tasks,
we can observe that there’s almost no change in value of the
average completion time of all tasks in Fig. 7a. The reason
lies in that output data sizes of tasks can only have an effect
on communication time of tasks. And the value of output
data sizes of tasks is small. Thus we increase output data
sizes of tasks by 100 times. The experimental results are
shown in Fig. 7b. We can observe that the average comple-
tion time of all tasks is increasing with increased output
data sizes of tasks. That’s because migration time defined in
Eq. (5) is increased, due to increased output data sizes of
task. However, COMA-based distributed task migration
algorithm in this paper is always outperforming NM and
AC algorithms with the variation of output data size.

Keeping other variables constant, influence of the varia-
tion of workload on the average completion time of all tasks
is shown in Fig. 8. Workload requirements of tasks is
increased from ½800; 1600� to ½800; 6400� cycles/bit. From
Fig. 8, the average completion time of all tasks is increased
with the increase of workload requirements. That’s because

TABLE 2
Experiment Parameters

Parameters (Fixed)–[Varied range] (Increment)

Number of mobile user ðNÞ 60
Number of MEC node ðMÞ 16
Input data size ð�nÞ [100,500]–[100, 250-700] (150) KB
Output data size ðOnÞ [100,150]–[100, 150-600] (150) KB
Workload ðgnÞ [800,2400]–[800, 1600-6400] (1600)

cycles/bit
MEC CPU frequency ðfmÞ [0.1,1]–[0.1-0.5, 0.5-0.9](0.1) GHz
Migration energy budget
Ebudget

[250]–[50, 450] (100) GJ

Length of time slot t 5 s
Wireless bandwidth vm 1 Mbps
Channel gainHm;n 10�6

Transmission power pn 1 W
White noise power %m 10�9 W

Fig. 5. Dynamic cumulative reward with three representative data files.

Fig. 6. The average completion time of all tasks with the variation of input
data size.
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workload requirement of task is determining factor of com-
putation time and number of MEC nodes and CPU frequen-
cies of MEC nodes remain unchanged. Thus the average
completion time of all tasks is increased. However, as the
picture shows, COMA-based distributed task migration
algorithm always can achieve up a pretty high performance
improvement than NM and AC algorithms.

Fig. 9 presents the experiment results with varied CPU
frequencies of MEC nodes which varies from [0.1,0.5] to
[0.5,0.9] GHz. We can observe that the average completion
time of all tasks for three algorithms is decreased with
increased CPU frequencies of MEC nodes. Compared to
[0.1,1.0] GHz, performance improvements of COMA-based
distributed task migration algorithm for other cases are
slightly small. That’s because task migration scheme has no
obvious improvement on the average completion time,
when computing resources are limited or abundant. Never-
theless, no matter how CPU frequencies of MEC nodes
varies, multi-agent reinforcement learning algorithm always
outperforms NM and AC algorithms, which illustrates the
advantage of COMA-based distributed task migration algo-
rithm tominimize the average completion time of tasks.

Next, we will present experimental result for the scalabil-
ity of COMA algorithm. Critic network and actor network of
COMA is trained with 60 users for task migration. And we
can use trained actor network to perform task migration for

other small numbers of users. As is shown in Fig. 10a, trained
actor network with 60 users can be applied to other small
umber of users. And with changed number of users, COMA
always can achieve a good performance improvement on the
average completion time of tasks, comparing with AC and
NM algorithms. On the other hand, when number of users is
lager than 60, we can process users by dividing users into
groups by 60. Then each group is processed in in batches.We
also conduct a larger scale experiment with 80 users and 16
MEC nodes. As is shown in Fig. 10b, COMA can achieve up
a good performance improvement on the average comple-
tion time of taskswith larger scale of taskmigration problem.
In addition, the average completion time of three algorithms
increase somuchwith increased number of users. The reason
lies in that number of MEC nodes is unchanged, thus the
computation resource becomes more intensive. However,
COMA also have a satisfactory performance improvement,
compared with NM algorithm and AC algorithm. Thus the
COMA taskmigration algorithm is scalable to for taskmigra-
tion problem. Therefore, the COMA task migration algo-
rithm is scalable to different scale of taskmigration problem.

On the other hand, we also change migration energy
budget Ebudget from 50 to 450 with other variables remain
unchanged. From Fig. 11, we find that the average comple-
tion time of all tasks for NM algorithm tends to be
unchanged. As we said before, in NM algorithm, tasks are

Fig. 7. The average completion time of all tasks with increased output
data size.

Fig. 8. The average completion time of all tasks with the variation of
workload.

Fig. 9. The average completion time of all tasks with varied CPU fre-
quencies of MEC nodes.

Fig. 10. The average completion time of all tasks with varied number of
users.
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executed on MEC node that they are first offloaded to until
they are completed, no matter where mobile users that they
belongs is moving to. Thus migration energy budget has no
effect on NM algorithm. For COMA-based distributed task
migration algorithm and AC algorithm, the average com-
pletion time of all tasks is decreased with increased migra-
tion energy budget. In addition, compared to NM and AC
algorithms, performance improvement of COMA-based dis-
tributed task migration algorithm grows with increased
migration energy budget. To sum up, all experimental
results that verify advantages of the proposed COMA-based
distributed task migration algorithm.

6 CONCLUSION AND FUTURE WORKS

Migration problem caused by distributed usermobility, which
can’t be ignoredwith quality of service (QoS) consideration. In
this paper,we investigated taskmigration problemwithmulti-
ple users under migration energy budget. Reinforcement
learning algorithm based onMarkov chainmodel was applied
to solve this problem with low computation complexity, due
to thememoryless of user movement. To facilitate cooperation
among users, we devised a distributed task migration algo-
rithm based on COMA to minimize the average completion
time of tasks under migration energy budget. Extensive
experiments were carried out to evaluate the proposed
COMA-based distributed task migration algorithm. Com-
pared with no migrating (NM) and single-agent actor-critic
(AC) algorithms, the proposed COMA-based distributed task
migration algorithm can achieve up 30-50 percent reduction in
metrics of average completion time. As part of future direc-
tions, we plan tomake offloading decision andmigration deci-
sion simultaneously for taskswithusermobility consideration.
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