2168

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL.27, NO.8, AUGUST 2016

A Framework of Price Bidding Configurations
for Resource Usage in Cloud Computing

Kenli Li, Member, IEEE, Chubo Liu, Keqin Li, Fellow, IEEE, and Albert Y. Zomaya, Fellow, IEEE

Abstract—In this paper, we focus on price bidding strategies of multiple users competition for resource usage in cloud computing. We
consider the problem from a game theoretic perspective and formulate it into a non-cooperative game among the multiple cloud users,
in which each cloud user is informed with incomplete information of other users. For each user, we design a utility function which
combines the net profit with time efficiency and try to maximize its value. We design a mechanism for the multiple users to evaluate
their utilities and decide whether to use the cloud service. Furthermore, we propose a framework for each cloud user to compute an
appropriate bidding price. At the beginning, by relaxing the condition that the allocated number of servers can be fractional, we prove
the existence of Nash equilibrium solution set for the formulated game. Then, we propose an iterative algorithm (Z.4), which is designed
to compute a Nash equilibrium solution. The convergency of the proposed algorithm is also analyzed and we find that it converges to a
Nash equilibrium if several conditions are satisfied. Finally, we revise the obtained solution and propose a near-equilibrium price bidding

algorithm (AMPB.A) to characterize the whole process of our proposed framework. The experimental results show that the obtained

near-equilibrium solution is close to the equilibrium one.

Index Terms—Cloud computing, nash equilibrium, non-cooperative game theory, price bidding strategy

1 INTRODUCTION

1.1 Motivation

LOUD computing has recently emerged as a new para-

digm for a cloud provider to host and deliver comput-
ing resources or services to enterprises and consumers [1].
Usually, the provided services mainly refer to Software as a
Service (SaaS), Platform as a Service (PaaS), and Infrastruc-
ture as a Service (IaaS), which are all made available to the
general public in a pay-as-you-go manner [3], [4]. In most
systems, the service provider provides the architecture for
multiple users to bid for resource usage [5], [6]. When mak-
ing bids for resource usage in cloud, multiple users and the
cloud provider need to reach an agreement on the service
level and the costs to use the provided resources during the
reserved time slots, which could lead to a competition for
the usage of limited resources [7]. Therefore, it is important
for a user to configure an appropriate bidding price for
resource usage during his/her reserved time slots without
complete information of those other users, such that his/her
utility is maximized.

e K. Liand C. Liu are with the College of Information Science and Engineer-
ing, Hunan University, and National Supercomputing Center in Chang-
sha, Hunan, China, 410082. E-mail: {Ikl, liuchubo}@hnu.edu.cn.

o K. Liis with the College of Information Science and Engineering, Hunan
University, and National Supercomputing Center in Changsha, Hunan,
China, 410082 and with the Department of Computer Science, State Univer-
sity of New York, New Paltz, New York 12561. E-mail: lik@newpaltz.edu.

o A.Y. Zomaya is with the School of Information Technologies, University
of Sydney, Sydney, NSW 2006, Australia.

E-mail: albert. zomaya@sydney.edu.au.

Manuscript received 28 July 2015; revised 14 Oct. 2015; accepted 18 Oct.
2015. Date of publication 26 Oct. 2015; date of current version 20 July 2016.
Recommended for acceptance by Z. Du.

For information on obtaining reprints of this article, please send e-mail to:
reprints@ieee.org, and reference the Digital Object Identifier below.

Digital Object Identifier no. 10.1109/TPDS.2015.2495120

For a cloud provider, the income (i.e., the revenue) is the
charge from users for resource usage [8], [9]. When provid-
ing computing resources to multiple cloud users, a suitable
resource allocation model referring to bidding prices should
be significantly taken into account. The reason lies in that an
appropriate resource allocation model referring to bidding
prices is not just for the profit of a cloud provider, but for
the appeals to more cloud users in the market to use cloud
service. Specifically, if the per resource usage bidding price
is too high, even though the allocated computing resource is
enough, a user may refuse to use the cloud service due to
the high payment, and choose another cloud provider or
just finish his/her requests locally. On the other hand, if the
per resource usage charge is low while the allocated com-
puting resource is not sufficiently enough, this will lead to
poor service quality (long task response time) and thus dis-
satisfies the cloud users even for potential users in the mar-
ket. Hence, a cloud provider should design an appropriate
resource allocation model considering users’ bidding prices.

A rational user will choose a bidding strategy to use
resources that maximizes his/her own net reward, i.e., the
utility obtained by choosing the cloud service minus the
payment [1]. On the other hand, the utility of a user is not
only determined by the importance of his/her tasks (.e.,
how much benefit the user can receive by finishing the
tasks), but also closely related to the urgency of the task
(i.e., how quickly it can be finished). The same task, such as
running an online voice recognition algorithm, is able to
generate more utility for a cloud user if it can be completed
within a shorter period of time in the cloud [1]. However,
considering the energy saving and economic reasons, it is
irrational for a cloud provider to provide enough comput-
ing resources to satisfy all requests in a time slot. Therefore,
multiple cloud users have to compete for resource usage.
Since the bidding price and allocated computing resources
of each user are affected by those decisions of other users, it

1045-9219 © 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

mailto:
mailto:
mailto:

LI ETAL.: AFRAMEWORK OF PRICE BIDDING CONFIGURATIONS FOR RESOURCE USAGE IN CLOUD COMPUTING

is natural to analyze the behavior of such systems as a stra-
tegic games [10].

1.2 Our Contributions

In this paper, we focus on price bidding strategies of multi-
ple users competition for resource usage in cloud comput-
ing. We consider the problem from a game theoretic
perspective and formulate it into a non-cooperative game
among the multiple cloud users, in which each cloud user is
informed with incomplete information of other users. For
each user, we design a utility function which combines the
net profit with time efficiency and try to maximize its value.
We study the conflicts of the multiple users with interactive
decisions and propose a near-equilibrium price bidding
algorithm (AMPBA) to configure appropriate bidding strat-
egy for each of the users. We also perform extensive experi-
ments to verify the effectiveness of our proposed price
bidding algorithm. In summary, the main contributions of
this work can be listed as follows:

e We propose a framework for each cloud user to con-
figure an appropriate bidding price for resource
usage in cloud computing.

e By relaxing the condition that the allocated number
of servers can be fractional, we prove the existence
of Nash equilibrium solution set for the formulated
game and propose an iterative algorithm (ZA) to
compute a Nash equilibrium solution.

e The convergency of the proposed Z.4 algorithm is
analyzed and we find that it converges to a Nash
equilibrium if several conditions are satisfied.

e We revise the obtained solution and propose a near-
equilibrium price bidding algorithm to characterize
the whole process of our proposed framework.

The experimental results show that the obtained near-
equilibrium solution is close to the equilibrium one, which
validates the effectiveness of our proposed N’PBA algorithm.

The rest of the paper is organized as follows. In Section 2,
we presented the relevant works. Section 3 describes the
models of the system and presents the problem to be solved.
Section 4 formulates the problem into a non-cooperative
game and propose a near-equilibrium price bidding algo-
rithm. Many analyses are also presented in this section. Sec-
tion 5 is developed to verify our theoretical analysis and
show the effectiveness of our proposed algorithm. We con-
clude the paper with future work in Section 6.

2 RELATED WORKS

In many scenarios, a service provider provides the architec-
ture for users to bid for resource usage [6], [11], [12]. One of
the most important aspects that should be taken into
account by the provider is its resource allocation model
referring users bidding prices, which is closely related to its
profit and the appeals to market users.

Many works have been done on resource allocation
scheme referring to bidding prices in the literature [6], [11],
[12], [13], [14], [15]. In [11], Samimi et al. focused on resource
allocation in cloud that considers the benefits for both the
users and providers. To address the problem, they proposed
a new resource allocation model called combinatorial double
auction resource allocation (CDARA), which allocates the

2169

resources according to bidding prices. In [6], Zaman and
Grosu argued that combinatorial auction-based resource
allocation mechanisms are especially efficient over the fixed-
price mechanisms. They formulated resource allocation
problem in clouds as a combinatorial auction problem and
proposed two solving mechanisms, which are extensions of
two existing combinatorial auction mechanisms. In [12], the
authors also presented a resource allocation model using
combinatorial auction mechanisms. Similar studies and
models can be found in [13], [14], [15], [16]. However, all of
these models only try to improve the profits of the cloud pro-
viders or cloud users. They failed to configure optimal bid-
ding prices for multiple users or show how their bidding
strategies closer to the optimal ones.

Game theory is a field of applied mathematics that
describes and analyzes scenarios with interactive decisions
[17], [18], [19]. It is a formal study of conflicts and coopera-
tion among multiple competitive users [20] and a powerful
tool for the design and control of multiagent systems [21].
There has been growing interest in adopting cooperative and
non-cooperative game theoretic approaches to modeling
many problems [22], [23], [24], [25]. In [25], Mohsenian-Rad
et al. used game theory to solve an energy consumption
scheduling problem. In their work, they proved the existence
of the unique Nash equilibrium solution and then proposed
an algorithm to obtain it. They also analyzed the convergence
of their proposed algorithm. Even though the formats for
using game theory in our work, i.e., proving Nash equilib-
rium solution existence, proposing an algorithm, and analyz-
ing the convergence of the proposed algorithm, are similar to
[25], the formulated problem and the analysis process are
entirely different. In [26], the authors used cooperative and
non-cooperative game theory to analyze load balancing for
distributed systems. Different from their proposed non-
cooperative algorithm, we solve our problem in a distributed
iterative way. In our previous work [27], we used non-
cooperative game theory to address the scheduling for sim-
ple linear deteriorating jobs. For more works on game theory,
the reader is referred to [26], [28], [29], [30], [31].

3 SyYSTEM MODEL AND PROBLEM FORMULATION

To begin with, we present our system model in the context
of a service cloud provider with multiple cloud users, and
establish some important results. In this paper, we are con-
cerned with a market with a service cloud provider and n
cloud users, who are competing for using the computing
resources provided by the cloud provider. We denote the
set of users as A" = {1,...,n}. Each cloud user wants to bid
for using some servers for several future time slots. The
arrival requests from cloud user i (i € N) is assumed to fol-
low a Poisson process. The cloud provider consists of multi-
ple zones. In each zone, there are many homogeneous
servers. In this paper, we focus on the price bidding for
resource usage in a same zone and assume that the number
of homogeneous servers in the zone is m. The cloud pro-
vider tries to allocate cloud user ¢ (i € N) with m; servers
without violating the constraint >, _,. m; < m. The allocated
m; servers for cloud user ¢ (i € A)) are modeled by an M/
M/m queue, only serving the requests from user i for t;
future time slots.

2170

We summarize all the notations used in this section in
the notation table (see Section 1 of the supplementary
material, which can be found on the Computer Society
Digital Library at http://doi.ieeecomputersociety.org/
10.1109/TPDS.2015.2495120).

3.1 Bidding Strategy Model

As mentioned above, the n cloud users compete for using
the m servers by bidding different strategies. Specifically,
each cloud user responds by bidding with a per server
usage price p; (i.e., the payment to use one server in a time
slot) and the number of time slots ¢; to use cloud service.
Hence, the bid of cloud user i (i €) is an ordered pair
bi = (pi, ti>.

We assume that cloud user i (: €) bids a price p; € P;,
where P; = [p,p;], with p; denoting user i's maximal possi-
ble bidding price. p is a conservative bidding price, which is
determined by the cloud provider. If p is greater than p;,
then P; is empty and the cloud user i (i € \) refuses to use
cloud service. As mentioned above, each cloud user i
(¢ € N) bids for using some servers for ¢; future time slots.
In our work, we assume that the reserved time slots ¢; is a
constant once determined by the cloud user i. We define
user i's (i €) request profile over the ¢; future time slots
as follow:

T
i = (A},...,A?) ,)

where X (t € T;) with 7; = {1,...,¢;}, is the arrival rate of
requests from cloud user ¢ in the ¢th time slot. The arrival of
the requests in different time slots of are assumed to follow
a Poisson process.

3.2 Server Allocation Model

We consider a server allocation model motivated by [32],
[33], where the allocated number of servers is propor-
tional fairness. That is to say, the allocated share of serv-
ers is the ratio between the cloud user’s product value of
his/her bidding price with reserved time slots and the
summation of all product values from all cloud users.
Then, each cloud user i (i € NV) is allocated a portion of
servers as

Diti
mi(bi, b)) = |=——-m|, (2)
{Zje/v pitj J
where b_; = (by,...,bi—1,b;41,...,b,) denotes the vector of

all users’ bidding profile except that of user i, and |z|
denotes the greatest integer less than or equal to . We
design a server allocation model as Eq. (2) for two consid-
erations. On one hand, if the reserved time slots to use
cloud service ¢; is large, the cloud provider can charge less
for one server in a unit of time to appeal more cloud users,
i.e., the bidding price p; can be smaller. In addition, for the
cloud user i (i €), he/she may be allocated more serv-
ers, which can improve his/her service time utility. On
the other hand, if the bidding price p; is large, this means
that the cloud user i (i € N) wants to pay more for per
server usage in a unit of time to allocate more servers,
which can also improve his/her service time utility. This

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL.27, NO.8, AUGUST 2016

is also beneficial to the cloud provider due to the higher
charge for each server. Therefore, we design a server
allocation model as Eq. (2), which is proportional to the
product of p; and ;.

3.3 Cloud Service Model

As mentioned in the beginning, the allocated m; servers for
cloud user i (i € N) are modeled as an M/M/m queue,
only serving the requests from cloud user i for ¢; future time
slots. The processing capacity of each server for requests
from cloud user ¢ (i € N) is presented by its service rate p;.
The requests from cloud user i (i €) in tth (¢t € 7;) time
slot are assumed to follow a Poisson process with average
arrival rate .

Let 7!, be the probability that there are k service requests
(waiting or being processed) in the tth time slot and
pl =X /(mip;) be the corresponding service utilization in
the M/M/m queuing system. With reference to [8],
we obtain

k
. T (miph) ' mhy, k< my;
T = 771,7.7”(,of)k
1 1

m;!

(3)

t .
7T107 k 2f mg;

where

m;—1 AL -1
| 1 m;p;
to= Sy G

=0 i pi

The average number of service requests (in waiting or in
execution) in ¢th time slot is

0 :
N = 3k = L+
=0 Pi

P
1—pt

?

1T, 5)

where II represents the probability that the incoming
requests from cloud user ¢ (i € A) need to wait in queue in
the tth time slot.

Applying Little’s result, we get the average response time
in the tth time slot as

t

_, N; 1
0= =5 (et +

7

¢
P; t
L II0).
—))

In this work, we assume that the allocated servers for
each cloud user will likely keep busy, because if no so, a
user can bid lower price to obtain less servers such
that the computing resources can be fully utilized. For
analytical tractability, I} is assumed to be 1. Therefore,
we have

t

ol 1 1

)= ——— ™
1- pf) Wi mip; — A

. NI 1
:’?Zyzﬁ(mmﬁ'
(2 (2

Note that the request arrival rate from a user should
never exceed the total processing capacity of the allocated
servers. In our work, we assume that the remaining process-
ing capacity for serving user ¢ (i €) is at least ou;, where
o is a relative small positive constant. That is, if
A > (m; — o), cloud user i (i € N) should reduce his/

http://doi.ieeecomputersociety.org/10.1109/TPDS.2015.2495120
http://doi.ieeecomputersociety.org/10.1109/TPDS.2015.2495120

LI ETAL.: AFRAMEWORK OF PRICE BIDDING CONFIGURATIONS FOR RESOURCE USAGE IN CLOUD COMPUTING

Cloud Users

M

Configuration;
ALbuy

M

Configuration;
A by uy

Information

Exchange Module

Computing Requests

2171

Cloud Provider

l

Allocator
(for request)

Configuration;
A b))

fi ion;
Configuration: : .
A by u,

|\ J/

Fig. 1. Architecture model.

her request arrival rate to (m; —o)u;. Otherwise, server
crash would be occurred. Hence, we have

- 1 1
L Tt
K Myl — X

®)

where x! is the minimum value of Al and (m; —o)u,;, ie.,
X = min{)\ﬁf, (m; — U)Mi}-

3.4 Architecture Model

In this section, we model the architecture of our proposed
framework to price bids for resource usage in cloud comput-
ing. The multiple users can make appropriate bidding deci-
sions through the information exchange module. As shown in
Fig. 1, each cloud user i (i € N) is equipped with a utility
function (u;), the request arrival rate over reserved time slots
(A, and the bidding configuration (b;), i.e., the payment strat-
egy for one server in a unit of time and the reserved time slots.
Let 5y be the aggregated payment from all cloud users for
using a server, then we have =, = Z?:l pit;. Denote
m = (m;),, as the server allocation vector, b = (b;),.,, as the
corresponding bids, and u = (u;),.,, as the utility functions of
all cloud users. The cloud provider consists of m homoge-
neous servers and communicates some information (e.g., con-
servative bidding price p, current aggregated payment from
all cloud users for using a server Z,) with multiple users
through the information exchange module. When multiple
users try to make price bidding strategies for resource usage
in the cloud provider, they first get information from the infor-
mation exchange module, then configure proper bidding
strategies (b) such that their own utilities (u) are maximized.
After this, they send the updated strategies to the cloud pro-
vider. The procedure is terminated when the set of remaining
cloud users, who prefer to use the cloud service, and their cor-
responding bidding strategies are kept fixed.

3.5 Problem Formulation

Now, let us consider user i's (i €) utility in time slot ¢
(t € T;). A rational cloud user will seek a bidding strategy
to maximize his/her expected net reward by finishing the
requests, i.e., the benefit obtained by choosing the cloud ser-
vice minus his/her payment. Since all cloud users are
charged based on their bidding prices and allocated number

of servers, we denote the cloud user i's payment in time
slot ¢ by P,Lt(b7,b_1), where Rt(bq’b_g) :pimi(bz-,b_i) with
b_i=(b1,...,bi—1,bis1,...,b,) denoting the vector of all
users’ bidding profile except that of user . Denote
Pr(b;,b_;) as the aggregated payment from all cloud users,
i.e., the revenue of the cloud provider. Then, we have

n Li n

Pr(b;,b_;) = Zzpf(bi,b—i) = Z(pimi(bi7b—i)ti)- 9

i=1 i=1

On the other hand, since a user will be more satisfied with
much faster service, we also take the average response time
into account. From Eq. (8), we know that the average response
time of user i (i € N) is impacted by m; and x!, where
xi =min{\, (m; — o)u; }. The former is varied by (b;,b_;),
and the latter is determined by)\E and m;. Hence, we denote
the average response time of user i as T} (b;, b_;, \!). More for-

(3

mally, the utility of user ¢ (i € A) in time slot ¢ is defined as

uf (b, boi, NL) = rixt — 8P (bi,by) — wiT! (b, b_;, X)), (10)

K3

where x! is the minimum value of \! and (m;(b;,b_;) — o)1;,
ie, xt =min{\, (m;(b;,b_;) — o)u; } with o denoting a rela-
tive small positive constant, r; (r; > 0) is the benefit factor
(the reward obtained by finishing one task request) of user
1, 8; (8; > 0) is the payment cost factor, and w; (w; > 0) is
the waiting cost factor, which reflects its urgency. If a user 4
(i € N) is more concerned with service time utility, then the
associated waiting factor w; might be larger. Otherwise, w;
might be smaller, which implies that the user 7 is more con-
cerned with profit.

Since the reserved server usage time ¢; is a constant and
known to cloud user i (i € N), we use u(p;,b_;, \!) instead
of u!(b;,b_;, A!). For further simplicity, we use P! and T} to
denote P/(b;,b_;) and T} (b;,b_;, \!), respectively. Following
the adopted bidding model, the total utility obtained by
user i (i € N) over all ¢; time slots can thus be given by

ti ti

ui (pi,bfu)\fi) = ui(piboi, X)) =) (rixt = P = wi}).

t=1 t=1

(11)

2172

In our work, we assume that each user i (i € N') has a reser-
vation value v;. That is to say, cloud user ¢ will prefer to use
the cloud service if w;(p;, b_;, Xf’) > v; and refuse to use the
cloud service otherwise.

We consider the scenario where all users are selfish. Spe-
cifically, each cloud user tries to maximize his/her total util-
ity over the ¢; future time slots, i.e., each cloud user i (i € V)
tries to find a solution to the following optimization prob-
lem (OPT)):

maximize u; (pi,b,i,)\zi), pi € P;. (12)

Remark 1. In finding the solution to (OPT;), the bidding
strategies of all other users are kept fixed. In addition,
the number of reserved time slots once determined by a
user is constant. So the variable in (OPT)) is the bidding
price of cloud user i, i.e., p;.

4 GAME FORMULATION AND ANALYSES

In this section, we formulated the considered scenario
into a non-cooperative game among the multiple cloud
users. By relaxing the condition that the allocated number
of servers for each user can be fractional, we analyze the
existence of a Nash equilibrium solution set for the for-
mulated game. We also propose an iterative algorithm to
compute a Nash equilibrium and then analyze its conver-
gence. Finally, we revise the obtained Nash equilibrium
solution and propose an algorithm to characterize the
whole process of the framework.

4.1 Game Formulation

Game theory studies the problems in which players try to
maximize their utilities or minimize their disutilities. As
described in [5], a non-cooperative game consists of a set of
players, a set of strategies, and preferences over the set of
strategies. In this paper, each cloud user is regarded as a
player, i.e., the set of players is the n cloud users. The strat-
egy set of player ¢ (¢ €) is the price bidding set of user 1,
i.e., P;. Then the joint strategy set of all players is given by
P=Px-xXP,.

As mentioned before, all users are considered to be self-
ish and each user i (i € N) tries to maximize his/her own
utility or minimize his/her disutility while ignoring those
of the others. Denote

Vi (pi,boiy N) = 8P + wiT] — rixy. (13)
In view of (11), we can observe that user i's optimization
problem (OPT;) is equivalent to

ti
minimize £, (pi, b-i, A/) =Y ¥ (pi,bi, ML),
(ot Xf) =3 wilonbX).)

st. (pi,p_;) €P.
The above formulated game can be formally defined by the
tuple G = (P, f), where f = (fi,..., f,). The aim of cloud

user i (i € V), given the other players’ bidding strategies
b_;, is to choose a bidding price p; € P; such that his/her

i

disutility function f; (pi, b_;,)\Li) is minimized.

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL.27, NO.8, AUGUST 2016

Definition 4.1 (Nash equilibrium). A Nash equilibrium of
the formulated game G = (P, f) defined above is a price bid-
ding profile p* such that for every player i (i € N):

p; € argmin f; (pmbﬂ:,)\?‘), p* €P. (15)

Pi€P;

At the Nash equilibrium, each player cannot further
decrease its disutility by choosing a different price bidding
strategy while the strategies of other players are fixed. The
equilibrium strategy profile can be found when each player’s
strategy is the best response to the strategies of other players.

4.2 Nash Equilibrium Existence Analysis

In this section, we analyze the existence of Nash equilibrium
for the formulated game G = (P, f) by relaxing one condi-
tion that the allocated number of servers for each user can
be fractional. Before addressing the equilibrium existence
analysis, we show two properties presented in Theorem 4.1
and Theorem 4.2, which are helpful to prove the existence
of Nash equilibrium for the formulated game.

Theorem 4.1. Given a fixed b_; and assuming that
ri > w;/(0’u?) (i€N), then each of the functions
Wi (pis b, o) (t; € T;) is convex in p; € P;.

Proof. Obviously, ¥ (p;,b_;, \!) (t € T,) is a real continuous
function defined on P;. The proof of this theorem follows
if we can show that Vp(y), p2) € P,

Vi (Op) + (1= 0)pea), i, X)

where 0 < 6 < 1.
Notice that, ¥/ (p;, b_;, \!) is a piecewise function and
the breakpoint satisfies (m; — o); = AL. Then, we obtain
the breakpoint as
o= MiZzny _ (Nt om)Eng
Com=miti ((m— o) — At

[3

where Z .\ (;; denotes the aggregated payment from all
cloud users in N except of user i, ie, Ey\;) =
> e ji Piti- Next, we discuss the convexity of the func-

tion lﬂ: (pi7 b,h)\f) .
Since

V(i iy) = 8: P+ wT] —rixl,
where x! = min{(m; — o)u;, !}, we have

!
ap;

P,

- .
(Piy b_;,)\2) =4; T owy T;) ax;

— T .
op; “opi ' ops

a7t
On the other hand, since %:O for p; € [B’ pﬁ) and

oxt .
%j = 0 for p; € (p!,p;|, we obtain

ap! axt
iop; — Tiap
P! aT! "
iy T Wigys Pi > D

i i(pi b A = pi < pf7
op, ¥ (Pinbio X)) = 5

LI ETAL.: AFRAMEWORK OF PRICE BIDDING CONFIGURATIONS FOR RESOURCE USAGE IN CLOUD COMPUTING

Namely,
d
5‘/’5 (pi,b-i, X))
mp;it;E mr it Ean 1
gi(erm) _mnahEg
_ N Y
} mpitiE/\/\{i} 3\ 7"7Uili:,ti5/\/’\{j}] /
(g em) R n
where
Ev =Sy +0iti =) Piti-
We can further obtain
82
8_p2 W: (pi> b,)\D
W N 1 (10—)
mt:,é’\/\{} ((U/}'i: f’z)tz +]‘)7 Di < pi7
._."\/, N
2mt;Ezn 1
s (g
= EN
| 2mwiptEE S MENGY "
f s i > P
(mm,l)\i) (m,‘#,‘,—AI’)EN + p bi
Obviously,
2
— Vi (pi,b_is X)) > 0
op?
for all p; € [p,p!) and p; € (pl, p;]. Therefore, Vpq), pe) €
[]27 pf) or Vp(l)yP(Z) € (pivf)l}/
¥ (Opay + (1 = 0)pay, by, X))

where 0 < 6 < 1.

Next, we focus on the situation where p(,) € [p, p!) and
p@) € (pl,p;]. Since ¥!(p;, b;, A!) is convex on [p,p!) and
(p!, p;], respectively. We only need to prove that the
value of ¥!(p!, b;, \!) is less than that of in the linear func-
tion value connected by the point in p(;) and the point in

p(?) ’ i-e'/

i (pi, i, X)

< 09 (pay bis X)) + (1= 0) ¥ (po), bis N).

P(z)*Pi .
T We proceed as follows (see Fig. (2)).

Define a function g/ (p;, b;, \!) on p; € P;, where

where 6! =

w;i(o+ 1)

—ri(m; — o).
We have

2173

A

Function value

Bidding price pl.

Fig. 2. Aniillustration.

forall p < p; < pl.If r; > w;/(0?n?), then

a

O i bt
oY (pi, bi, AY)

=2

_s, (mpitigj\/\{z'} N mi> _mriitiE N gy
=N

< 57< 1z N\{i} +ml> _ (HibiZ N\ (i}

=2 A\ 2 =2
=N Ml —)\f) SN

7i t(1\t
= o ‘/’j(pzvbzv)\i)v

forall p! < p; < p;. We have

wf(phbh)\:) el (77b77)‘f)
forall p! < p; < p;.

On the other hand, according to the earlier derivation,
we know that

32

for all p; € P;. That is, g!(p;, b, \!) is a convex function on
P;, and we obtain

v (Pl bi, AL

ng%(1)7b7’>\z) (_ef)gf(pZ 7b17)‘f)
= 61 b X) + (1=) (i)
< 0 (pays bis) + (1= 6) ¥ (pe), i, X))

Thus, we have ¥/ (p;, b_;, \!) is convex on p; € P;. This
completes the proof and the result follows. 0

Theorem 4.2. If both functions Ky (x) and Ky(x) are convex in
x € X, then the function KCs(x) = Ky (z) + Ko(x) is also con-
vexinx € X.

Proof. A complete proof of the theorem is given in the sup-
plementary material, available online. 0

Theorem 4.3. There exists a Nash equilibrium solution set for the
formulated game G = (P, f), given that the condition
i > w;/(0?u?) (i € N) holds.

2174

Proof. A complete proof of the theorem is given in the sup-
plementary material, available online.]

4.3 Nash Equilibrium Computation
Once we have established that the Nash equilibrium of the
formulated game G = (P, f) exists, we are interested in
obtaining a suitable algorithm to compute one of these equi-
libriums with minimum information exchange between the
multiple users and the cloud providers.

Note that we can further rewrite the optimization prob-
lem (14) as follows:

ti
e . = i) — “pi, E '
minimize f; (pZa‘-‘/\/'7)‘i) = ;% (p““N’/\i)’ (16)

st. (pi,p_;) €P,

where =, denotes the aggregated payments for each server
from all cloud users, i.e., - = 3y pjt;. From (16), we can
observe that the calculation of the disutility function of each
individual user only requires the knowledge of the aggre-
gated payments for a server from all cloud users (Z) rather
than that the specific individual bidding strategy profile
(b_;), which can bring about two advantages. On the one
hand, it can reduce communication traffic between users
and the cloud provider. On the other hand, it can also keep
privacy for each individual user to certain extent, which is
seriously considered by many cloud users.

Since all users are considered to be selfish and try to min-
imize their own disutility while ignoring those of the others.
It is natural to consider an iterative algorithm where, at
every iteration k, each individual user i (i € N) updates
his/her price bidding strategy to minimize his/her own dis-
utility function f;(p;, Zy,)\i’) The idea is formalized in
Algorithm 1.

Algorithm 1. Zterative Algorithm (Z.A)

Input: S, As, €.

Output ps-

./ /Initialize p; for each user i € S

: for (each cloud user i € S) do
set pEU) —b.

end for

Set k « 0.

: //Find equilibrium bidding prices

- H > ¢) do

for (each cloud user i € S) do

Receive = 5) from the cloud provider and compute

pka as follows (By Algorithm 2):

. while (Hp? — p!

VR N TN

—_
e

pgkﬂ) «— arg min f; (pi7 Eg“)’)\tz)
Pi€P;

11: Send the updated price bidding strategy to the cloud
provider.

12: end for

13: Setk «— k+ 1.

14: end while

15: return pfg)‘

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL.27, NO.8, AUGUST 2016

Given S, As, and ¢, where S is the set of cloud users who
want to use the cloud service, As is the request vector of all
cloud users in S, i.e., A\s = {)\i’}t6 s and e is a relative small
constant. The iterative algorithm finds optimal bidding pri-
ces for all cloud users in S. At the beginning of the itera-
tions, the bidding price of each cloud user is set as the
conservative bidding price (p). We use a variable k to index
each of the iterations, which is initialized as zero. At the
beginning of the iteration k, each of the cloud users i (i € \)

receives the value Eg“) from the cloud provider and com-

putes his/her optimal bidding price such that his/her own

disutility function f;(p;, :fsk), A) (@ € 8) is minimized. Then,

each of the cloud users in 8 updates their price bidding
strategy and sends the updated value to the cloud
provider. The algorithm terminates when the price bidding
strategies of all cloud users in S are kept unchanged, i.e.,

(k) _ (k=1)
lps" —ps I <e

In subsequent analyses, we show that the above algo-
rithm always converges to a Nash equilibrium if one condi-
tion is satisfied for each cloud user. If so, we have an
algorithmic tool to compute a Nash equilibrium solution.
Before addressing the convergency problem, we first pres-
ent a property presented in Theorem 4.4, which is helpful to
derive the convergence result.

Theorem 4.4. If r; 28”” , “”2} (i € N), then the optimal
bidding price p; (p; € 73) of clotid user i (i € N') is a non-
decreasing function with respect to Ey\(y, where

EnV(iy = 2jen Piti — piti.

Proof. According to the results in Theorem 4.1, we know
that for each cloud user i (i € N), given a fixed b_;, there
are t; breakpoints for the function f;(p;,b_;, XZZ) We
denote B; as the set of the t; breakpoints, then we have
B; = {pi}teﬂ, where

. miEn (Mt om)Eng
bom=mat o ((m— o) = Nt

Combining the above ¢; breakpoints with two end points,
ie., p and p;, we obtain a new set B; U {p,p;}. Reorder

0 < pgl) <
) — p;. Then,
we obtain a new ordered set B; We discuss the claimed

theorem by distinguishing three cases according to
the first derivative results of the disutility function
Fi(piy by, Al) on p; € P;\B;.

Case 1: o fl(pl,b,l,)\tf) < 0. According to the results
in Theorem 4.2, we know that the second derivative

of fz‘(py‘,»b—n)\ii) on p; € P;\B; is positive, i.e., 3‘%
ﬁ(pz-,b_z-,)\?) > 0 for all p; € P,\B;. In addition, if
ri > w;/(0?u?), the left partial derivative is less than
that of the right partial derivative in each of the
breakpoints in ;. Therefore, if % fi(pi,b,h/\?) <0,
then ;- fipi,b_i, Al') < 0 for all p; € P;\Bi. Namely,

fi(p7;7b,7;7)\§77) is a decreasing function on p; € P;\B,.
Hence, the optimal bidding price of cloud user i is

the elements in B;U{p,p;} such that p,

(ti+1) (0)

-gpg)gpi ,wherepi :]_)andpi

pi = p;. That is to say, the bidding price of cloud user i
increases with respect to Z_;.

Case 2: %j} (pi,y b_i,)\ﬁi) > 0. Similar to Case 1, accord-
ing to the results in Theorem 4.2, we know that

%fi(ph b_;,)\?) >0 for all p; €P\B;. Hence, if
% fi(pi,b,i,)\?) >0, fi(pi,b_i,)\f’) is an increasing func-
tion for all p; € P;\B;. Therefore, under this situation, the
optimal bidding price of cloud user i is p; = p ie., the

optimal bidding price is always the conservative bidding
price, which is the initialized value.

Case 3: %f,;(pi,b,,-,)\?) < 0 and ;% f,(p7,b,,,)\t;") > 0.
Under this situation, it means that there exists an optimal

bidding price p; € P;\B; such that

) =3)
_Z(apf T} ax7):0

op; Yopi ops

an

Otherwise, the optimal bidding price for cloud user ¢
(i € N)isin B; If above equation holds, then there exists
an integer t O < t <t;), such that the optimal bidding
price p; is in (p,ﬁ‘”,pﬁ"“)) C P\B; .

According to the derivations in Theorem 4.1, we know
that the first derivative of ¥/ (p;, b_;, \!) is

i ti. S\
a; % (pza b_;,)\L)

.‘_"4-,\"_

- mp,-t,'EN\{i} "’Lwiﬂitisj\/'\{i} t
b (THISINGL gy,) IO s g
P (=2 7 (TrLiu,i—)\if)QEif’ Di pw

mp;itiEnn g mri it Ean g
T) R
— N

£
That is,
0 t
PR £ i7b—i7)\t'
ap; Vi (Pir i X)
2t (Bipi(piti + 22x\y) — rwBavgyy), i< P
N
= mt; —_ wi“iEN\{i} ;
Sipi(piti + 250 qiy) — ——%5) 23
EZ'N < pi(piti + 2En\(iy) (mm,:—A,f,;)Z) Di > D

Therefore, the Eq. (17) is equivalent to the following
equation:

where

(pf (ptv b—i7)\ﬁ)
8ip; (p?ti + 25/\[\{7:}) — By, P < Pi;

« —_ w,;u,EN i .
8:p; (it +28np3y) — ﬁ D> i

LI ETAL.: AFRAMEWORK OF PRICE BIDDING CONFIGURATIONS FOR RESOURCE USAGE IN CLOUD COMPUTING 2175

After some algebraic manipulation, we can write the
first derivative result of ¢! (p;,b_;, \l) on p; as

d t
a *§01(p77b 77)‘1)
28; (piti + Enngiy) s p; < v

= 2ultzp. E

28:(piti + Enngiy) + g

¢
(m,-p,i)\f) sz\[» B P>

and the first derivative result of the function
@l (py, b, \L) on Zy g5y as

d ¢
Yl b, AL
85/\/\{1} (pt (pz v L)
28ip; — riui, pi < P
* Wi
_ 28;p; — riu; — (m,:uzlikﬁ)Q

. Qm'w,iu?p:.‘tiEN\{i}

* i
G o P > D
(mil‘-i_/\i) =y

Obviously, we have

0 t(, % t
ap: (pt (p,) b—27)\L) > 0
for all p; € P\BL.If ri > 28,7,/ i, then

3
IEN\ (i)

el boi) <0

Therefore, if r; > max{za”’?, “’Z} the function h(b;)
decreases with the increase of = N\{z} If Zjn\ ;) increases,
to maintain the equality h(b;) =0, b; must increase.
Hence, b; increases with the increase of Zy (;;. This com-
pletes the proof and the result follows.]

Theorem 4.5. Algorithm Z.A converges to a Nash equilibrium,
given that the condition r; > max{% , 0;‘—/12} (i € N) holds.

Proof. We are now ready to show that the proposed ZA algo-
rithm always converges to a Nash equilibrium solution

given that r; > {Z'E—l’jz } (i € N) holds. Let p*) be the

optimal bidding price of cloud user ¢ (i € NV) at the kth
iteration. We shall prove above claim by induction that

(k) is non-decreasing in k. In addition smce p} is bounded

by Di, this establishes the result that pi always converges.

By Algorithm 1, we know that the bidding price of
each cloud user is initialized as the conservative bidding
price, i.e., pf) is set as p for each of the cloud users i
(i € N). Therefore, after the first iteration, we obtain the

results pgl) > pEO) forall i € NV. This establishes our induc-
tion basis.
Assuming that the result is true in the kth iteration,

ie, p™ > p*Y forall i € V. Then, we need to show that

in the (k + 1)th iteration, pgkﬂ) > pf-,k) is satisfied for all
i € N. We proceed as follows.
By Theorem 4.4, we know that if r; > 28;p;/u;, the

optimal bidding price p; of cloud user i (i € N) increases

2176

with the increase of Zyn (), where Zx\ iy = >z Piti-
In addition, we can deduce that

=) (k)
Ei = 2 Pt
JEN j#i
(h=1)y _ glk-1)
> > = A
IGN JFi
Therefore, the optimal bidding price of cloud user i
(i € N) in the (k + 1)th iteration p< +1)
tion of Ejy\ [y satisfies pi (k1) > p,ﬁk for all i € N. Thus,

, which is a func-

the result follows. O

Algorithm 2. Calculate_p;(E, A}', €)

Input: =, Al S €
Output: p7
1: Sett — 0.
2: //Fmdp inP; \B
3: while (¢ < t;),do ,
4: Setub — pzf ¢ and b — pgt te
5 G S, (lb, g, Aﬁﬁ) > 0or i (ub, =, ,\ff) <0
t

K

hen
6: Sett «—t + 1; continue.
7: endif
8: while (ub—1b > ¢) do

9: Set mid — (ub+[b)/2, and p; «— mid.
10: if (ap fi (p“ z, fl) < 0) then
11: Set Ib — mid.
12: else
13: Set ub «— mid.
14: end if
15: end while
16: Setp; < (ub+ lb)/2; break.

17: end while

18: //Otherwise, find p; in B;

19: if (! =t; + 1) then

20: Set min « +oo0.

21: for (each break point pl ' e B) do

22: if (f; (pZ , B,)\t’) < min) then

23: Setm1n<—fz((”,_,
24: end if

25: end for
26: end if
27: return p;.

(t)

K3

A'),and p; — p,

Next, we focus on the calculation for the optimal bidding
price p; in problem (16), i.e., calculate

p; € argmin f; (pi, Ens /\?)- (18)

Pi€P;i

From Theorem 4.5, we know that the optimal bidding price
p; of cloud user i (¢ € N) is either in B; orin Pi\B; such that

ti

fl<p7"—‘./\[7 i) = Zail//:(pf75/\[,>\:)

N _
i P! aT! ax!)

= (St + w; — T 0,
7 < api api opi

- T
3

(19)

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL.27, NO.8, AUGUST 2016

where B; is an ordered set for all elements in B; U {p,p;},
and B; is the set of ¢; breakpoints of cloud user i (i € NV), i.e.,

B; = {p’ti}teTi with

o miEng (M How)Eng

. _ , (20)
Com=miti o ((m—o)u; — At

Assuming that the elements in B, satisfy p\” <

Pgl) << Pgti+l), where pEO) =p and pz('tﬁl) = pi- If equa-

tion (19) holds, then there exists an integer t < t < t;)

such that the optimal bidding price p; € (pgt) , pgt)

- Pi\B;. In addition, from the derivations in Theorem 4.5,
we know that

9 = AL
@f’é(piv*—‘/\/’)‘j) > 0, (21)
for all p; € Pi\B,:-. Therefore, we can use a binary search
method to search the optimal bidding price p; in each of the

sets (pgt),pgt’ +1)) - Pi\B; o< t; < t;), which satisfies (19). If

we cannot find such a bidding price in PZ-\B;, then the opti-
mal bidding price p; is in B;. The idea is formalized in
Algorithm 2.

Given Z, A}, and ¢, where Z =3\ pitj, A/ = {\}, .,
and e is a relatively small constant. Our optimal price bid-
ding configuration algorithm to find p; is given in Algo-
rithm Calculate_p;. The key observation is that the first
derivative of function f;(p;, Z, A,) ie., Bp & fi(p;, E,)\l-’i), is an

increasing function in p; € (p(f),py)) C Pi\Bi (see (21)),
where 0 < ¢ < t;. Therefore, if the optimal bidding price is
in Pi\B;, then we can find p; by using the binary search
method in one of the intervals (p<t), pft +1)) 0<t<t)

(Steps 3-17). In each of the search 1ntervals (, pft)

(t +1)

), we

set ub as (p; ¢) and Ib as (pi +¢€) (Step 4), where € is
relative small positive constant. If the first derivative of
function f;(p;, =,)\ﬁi) on [b is positive or the first derivative
on ub is negative, then the optimal bidding price is not in
this interval (Step 5). Once the interval, which contains the
optimal bidding price is decided, we try to find the optimal
bidding price p; (Steps 8-16). Notice that, the optimal bid-
ding price may in B; rather than in PL-\BZ- (Step 19). Under

this situation, we check each of the breakpoints in B; and
find the optimal bidding price (Steps 21-25).

By Algorithm 2, we note that the inner while loop (Steps
8-15) is a bmar¥ search process, which is very efficient and
requires O (log == B to complete, where py.. is the maxi-
mum upper blddlng bound of all wusers, ie,
DPmax = MaxX;en(P;). Let tmax = max;epn(¢;), then the outer

while loop (Steps 3-17) requires time G)(tmaxl og Prax=p) On
the other hand, the for loop (Steps 21-25) requires @(max) tO
find solution in set B; Therefore, the time complexity of
Algorithm 2 is O (¢ a5 (log ————= Pmax7p 1)).

4.4 A Near-Equilibrium Price Bidding Algorithm
Notice that, the equilibrium bidding prices obtained by Z.A
algorithm are considered under the condition that the

LI ETAL.: AFRAMEWORK OF PRICE BIDDING CONFIGURATIONS FOR RESOURCE USAGE IN CLOUD COMPUTING

allocated number servers can be fractional, i.e., in the com-
putation process, we use

pit;

m, =———-m (22)
> jen Pit
instead of
pili
m; = |—=————-m]|. (23)
{Zje/\/ pit; J

Therefore, we have to revise the solution and obtain a near-
equilibrium price bidding strategy. Note that, under
Eq. (23), there may exist some remaining servers, which is
at most n. Considering for this, we reallocate the remaining
servers according to the bidding prices. The idea is formal-
ized in our proposed near-equilibrium price bidding algo-
rithm, which characterizes the whole process.

Algorithm 3. N ear-equilibrium Price Bidding
Algorithm (WPB.A)

Input: NV, P, Ay, e
Output: p).
1: SetS. — N, S; «— 0,and k — 0.
2: while (S, # S)) do
3: Set py — 0, S S, ps, — LA(S:,As,,€), and & —

2 jen Pit-
4: for (each cloud useri € S.) do
5: Compute the allocated servers as (23), i.e., calculate:
6: end for
7: Set mg «— m — ZiESC m;, and flag < true.
8: while (mz # 0 and flag = true) do
9: Set flag « false.
10: for (each cloud useri € S.) do
11: Compute the reallocated servers, i.e., calculate:
mj — [Pt mr .
12: if (u; (m; + mf,p,;,)\fﬂ) > (mhp,;,)\z")) then
13: Set m; — m; +m!, mgr—mg—ml, and
flag «— false.
14: end if
15: end for

16: end while
17: for (each cloud useri € S.) do

18: if (u;(m;, pi,)\?) < v;) then

19: Setp; — 0,and S, — S, — {i}.
20: end if

21: end for

22: end while
23: return p,.

At the beginning, the cloud provider sets a proper con-
servative bidding price (p) and puts its value to into public
information exchange module. Each cloud user i (i € N)
sends his/her reserved time slots value (¢;) to the cloud pro-
vider. We denote the current set of cloud users who want to
use cloud service as S, and assume that in the beginning, all
cloud users in N want to use cloud service, i.e., set S. as N
(Step 1). For each current user set S., we calculate the opti-
mal bidding prices for all users in S. by Z.A algorithm,
under the assumption that the allocated servers can

2177

TABLE 1
System Parameters

System parameters (Fixed)-[Varied range] (increment)

(200)-[200, 540] (20)
(100)-[50, 200] (10)

Conservative bidding price (p)
Number of cloud users (n)

Maximal bidding price (p;) [500, 8001
Market profit factor (r;) [30, 120]
Weight value (w;) [0.1,2.5]
Request arrival rates (A!) [20, 4801
Processing rate of a server (u;) [60, 120]
Reserving time slots (¢;) [1,72]
Reservation value (v;) 0
Payment cost weight (;) 1

Other parameters (¢, o, m) (0.01, 0.1, 600)

fractional (Step 3). And then, we calculate their correspond-
ing allocated servers (Steps 4-6). We calculate the remaining
servers and introduce a flag variable. The inner while loop
tries to allocate the remaining servers according to the cal-
culated bidding strategies of the current users in S, (Steps
8-16). The variable flag is used to flag whether there is a
user in S, can improve his/her utility by the allocated num-
ber of servers. The while loop terminates until the remain-
ing servers is zero or there is no one such user can improve
his/her utility by reallocating the remaining servers. For
each user in S, if his/her utility value is less than the
reserved value, then we assume that he/she refuses to use
cloud service (Steps 17-21). The algorithm terminates when
the users who want to use cloud service are kept unchanged
(Steps 2-22).

5 PERFORMANCE EVALUATION

In this section, we provide some numerical results to vali-
date our theoretical analyses and illustrate the performance
of the NPBA algorithm.

In the following simulation results, we consider the sce-
nario consisting of maximal 200 cloud users. Each time slot
is set as one hour of a day and the maximal time slots of a
user can be 72. As shown in Table 1, the conservative bid-
ding price (p) is varied from 200 to 540 with increment 20.
The number of cloud users (n) is varied from 50 to 200 with
increment 10. The maximal bidding price (p;) and market
benefit factor (r;) of each cloud user are randomly chosen
from 500 to 800 and 30 to 120, respectively. Each cloud user
i (i € N) chooses a weight value from 0.1 to 2.5 to balance
his/her time utility and profit. We assume that the request
arrival rate (\!)) in each time slot of each cloud user is
selected randomly and uniformly between 20 and 480. The
processing rate (1) of a server to the requests from cloud
user ¢ (i € V) is randomly chosen from 60 to 120. For sim-
plicity, the reservation value (v;) and payment cost weight
(8;) for each of the cloud users are set as zero and one,
respectively. The number of servers m in the cloud provider
is set as a constant 600, o is set as 0.1, and ¢ is set as 0.01.

Fig. 3 shows an instance for the bidding prices of six dif-
ferent cloud users versus the number of iterations of the
proposed Z.A algorithm. Specifically, Fig. 3 presents the bid-
ding price results of six randomly selected cloud users
(users 8, 18, 27, 41, 59, and 96) with a scenario consisting of
100 cloud users. We can observe that the bidding prices of

2178
800
700+ g
g\soo— A U A PURS— A3
(0]
L2 —=—User 8 #— User 41
5 5001 g
o —>—User 18 —=— User 59
£ —&— User 27
kel 400
om
300+
e e e e o e e e e e o e o o=]
200 &= |
0 5 10 15 20
Iterations

Fig. 3. Convergence process of bidding price.

all users seem to be non-decreasing with the increase of iter-
ation number and finally reach a relative stable state, which
verifies the validness of Theorem 3.4. That is, the bidding
prices of all cloud users keep unchanged, i.e., reach a Nash
equilibrium solution after several iterations. In addition, it
can also be seen that the developed algorithm converges to
a Nash equilibrium very quickly. Specifically, the bidding
price of each user has already achieved a relatively stable
state after five iteration, which shows the high efficiency of
our developed algorithm.

In Fig. 4, we show the trend of the aggregated payment
from all cloud users (Pr), i.e., the revenue of the cloud pro-
vider, versus the increment of the conservative bidding
price. We compare two kinds of results with the situations
by computing the allocated number of servers for each
cloud user i (: € N) as (22) and (23), respectively. Specifi-
cally, we denote the obtained payment as V- when compute
m; as (22) and Pr for (23). Obviously, the former is the opti-
mal value computed from the Nash equilibrium solution
and bigger than that of the latter. However, it cannot be
applied in a real application, because the allocated number
of servers cannot be fractional. We just obtain a near-equi-
librium solution by assuming that the allocated number of

x 10°

B |
— 12 |

-
N
T

-
o
T

[oe]
T
|

(Virtual) aggregated payment

4 L .

2 L .

0

180 280 380 480 580
Value of P

Fig. 4. Aggregated payment of all users.

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL.27, NO.8, AUGUST 2016

100

95} g
I =

»90F g

»

Bss]

S

‘580t A

B7st 1

1S

>70 1

c

T651 g

=

60 1
551 .

50

180 280 480 580

380
Value of p

Fig. 5. Actual number of cloud users.

servers can be fractional at first. Even though the obtained
solution is not optimal, we can compare these two kinds of
results and show that how closer our proposed algorithm
can find a near-equilibrium solution to that of the computed
optimal one.

We can observe that the aggregated payment from all
cloud users tends to increase with the increase of conserva-
tive bidding price at first. However, it decreases when con-
servative bidding price exceeds a certain value. The reason
behind lies in that when conservative bidding price
increases, more and more cloud users refuse to use the
cloud service due to the conservative bidding price exceeds
their possible maximal price bidding values or their utilities
are less than their reservation values, i.e., the number of
users who choose cloud service decreases (see Fig. 5). We
can also observe that the differences between the values of
Pr and Vr are relatively small and make little differences
with the increase of the conservative bidding price. Specifi-
cally, the percent differences between the values of V7 and
Pr range from 3.99 to 8.41 percent, which reflects that our
NPBA algorithm can find a very well near-optimal solution
while ignoring the increment of conservative bidding price.
To demonstrate this phenomenon, we further investigate
the specific utilities of some users and their corresponding
bidding prices, which are presented in Figs. 6 and 7.

Atk
. aan ¢ %xzﬁ":‘*ﬁ\.ﬁ q
B N
> —*— User 58 IR
%) —=— User 87]
5 User 100
n 2r
5
215}
(8]
(O]
o 1t
N
0.5
0,
180 220 260 300 340 380 420 460 500 540
Value of p

Fig. 6. Specific user utility.

LI ETAL.: AFRAMEWORK OF PRICE BIDDING CONFIGURATIONS FOR RESOURCE USAGE IN CLOUD COMPUTING

700 ‘ ‘ ‘ : : :
—_600} & 3
S >—>—>—>—J
8 s00f g
5_ */,5,;
H

2 400t . 1
3 w —s—User 2
el -
= 3001 1l —+— User 19 1
[0
] —o— User 34
e 200} —#—User75 ||
3 —==— User 87
2 100t g
n User 100

or = = = = = = = = = = = = H1

180 220 260 300 340 380 420 460 500 540
Value of p

Fig. 7. Specific user bidding price.

In Figs. 6 and 7, we plot the utility shape and the bidding
prices of some cloud users for the developed NPBA algo-
rithm. Fig. 6 presents the utility shape under the developed
algorithm versus the increment of conservative bidding
price. We randomly select six users (users 1, 19, 35, 58, 87,
and 100). It can be seen that the utility trends of all cloud
users tend to decreases with the increase of conservative
bidding price. However, under every conservative bidding
price, for each user, the differences between the utilities
computed by using m; as (22) (the larger one) and (23) (the
smaller one) for each cloud user are relatively small. There-
fore, the differences between the aggregated payments of
(Pr) and (Vr) are small (see Fig. 4). Fig. 7 exhibits the corre-
sponding bidding prices of the users shown in Fig. 6. We
can observe that some users may refuse to use cloud service
when conservative bidding price exceeds a certain value
(user 2). When users choose to use cloud service, the treads
of their bidding prices tend to be non-decreasing with the
increment of conservative bidding price (user 19, 34, 75, 87,
and 100). This phenomenon also verifies the aggregated
payment trend shown in Fig. 4. Specifically, due to the
increases of users’ bidding prices, the aggregated payment
from all cloud users tend to increase at first. However,
when conservative bidding price exceeds a certain value,

x 10°
7

o2}
T
I

6}
T
I

IN
.

L

C 12

40 60 80 100 120 140 160 180 200 240
Number of users (n)

w

(Virtual) aggregated payment
N

—_
T

Fig. 8. Aggregated payment on number of users.

2179

200

180 q

-

[e2}

o
T

pt

N

o
T
L

number of users
o N
o o

[e2} o]
o o
T T
! !

(Actural)
5

40 60 80 100 120 140 160 180 200 240
Number of users (n)

Fig. 9. (Actural) number of cloud users.

more and more cloud users refuse to use cloud service.
Therefore, the aggregated payment tends to decrease when
conservative bidding price is large enough.

In Fig. 8, we show the impact of number of cloud users
on aggregated payment. Similar to Fig. 4, the differences
between the values of Py and V; are relatively small. Spe-
cifically, the percent differences between the values of Vi
and Pr range from 3.14 to 12.37 percent. That is, the aggre-
gated payment results for different number of users are
largely unchanged. In Fig. 9, we can observe that with the
increase of number of cloud users, the trend of the differ-
ences between the number of cloud users and the actual
number of cloud users who choose cloud service also
increases. The reason behind lies in that with the increase
of number of cloud users, more and more users refuse to
use cloud service due to their utilities are less than their
conservative values. This also partly verifies the aggre-
gated payment trend shown in Fig. 8, in which the aggre-
gated payments are largely unchanged with the increase of
number cloud users.

6 CONCLUSIONS

With the popularization of cloud computing and its many
advantages such as cost-effectiveness, flexibility, and scal-
ability, more and more applications are moved from local to
cloud. However, most cloud providers do not provide a
mechanism in which the users can configure bidding prices
and decide whether to use the cloud service. To remedy
these deficiencies, we focus on proposing a framework to
obtain an appropriate bidding price for each cloud user.

We consider the problem from a game theoretic perspec-
tive and formulate it into a non-cooperative game among
the multiple cloud users, in which each cloud user is
informed with incomplete information of other users. For
each user, we design a utility function which combines the
net profit with time efficiency and try to maximize its value.
We design a mechanism for the multiple users to evaluate
their utilities and decide whether to use the cloud service.
Furthermore, we propose a framework for each cloud user
to compute an appropriate bidding price. At the beginning,
by relaxing the condition that the allocated number of serv-
ers can be fractional, we prove the existence of Nash

2180

equilibrium solution set for the formulated game. Then, we
propose an iterative algorithm, which is designed to com-
pute a Nash equilibrium solution. The convergency of the
proposed algorithm is also analyzed and we find that it con-
verges to a Nash equilibrium if several conditions are satis-
fied. Finally, we revise the obtained solution and propose a
near-equilibrium price bidding algorithm to characterize
the whole process of our proposed framework. The experi-
mental results show that the obtained near-equilibrium
solution is close to the equilibrium one.

As part of future directions, we will configure the multi-
ple servers in cloud dynamically and study the relationship
between the cloud provider and multiple users. Another
direction is to study the cloud choice among multiple differ-
ent cloud providers or determine a proper mixed bidding
strategy.

ACKNOWLEDGMENTS

The research was partially funded by the Key Program of
National Natural Science Foundation of China (Grant Nos.
61133005, 61432005), the National Natural Science Founda-
tion of China (Grant Nos. 61370095, 61472124, 61402400),
and the International Science & Technology Cooperation
Program of China (Grant No. 2015DFA11240). Chubo Liu is
the corresponding author.

REFERENCES

[11 Y. Feng B. Li, and B. Li, “Price competition in an oligopoly market
with multiple iaas cloud providers,” IEEE Trans. Comput., vol. 63,
no. 1, pp. 59-73, Jan. 2014.

[2] H. Chen, Y. Li, R. H. Louie, and B. Vucetic, “Autonomous demand
side management based on energy consumption scheduling and
instantaneous load billing: An aggregative game approach,” IEEE
Trans. Smart Grid, vol. 5, no. 4, pp. 17441754, Jul. 2014.

[3] R. Pal and P. Hui, “Economic models for cloud service markets:
Pricing and capacity planning,” Theoretical Comput. Sci., vol. 496,
pp- 113124, 2013.

[4] P.D.Kaurand I. Chana, “A resource elasticity framework for qos-
aware execution of cloud applications,” Future Gener. Comput.
Syst., vol. 37, pp. 14-25, 2014.

[5] S.Tang,]. Yuan, C. Wang, and X.-Y. Li, “A framework for amazon
ec2 bidding strategy under sla constraints,” IEEE Trans. Parallel
Distrib. Syst., vol. 25, no. 1, pp. 2-11, Jan. 2014.

[6] S.Zaman and D. Grosu, “Combinatorial auction-based allocation
of virtual machine instances in clouds,” J. Parallel Distrib. Comput.,
vol. 73, no. 4, pp. 495-508, Apr. 2013.

[71 S.Son and K. M. Sim, “A price- and-time-slot-negotiation mecha-
nism for cloud service reservations,” IEEE Trans. Syst., Man,
Cybern., Part B: Cybern., vol. 42, no. 3, pp. 713-728, Jun. 2012.

[8] . Cao, K. Hwang, K. Li, and A. Y. Zomaya, “Optimal multiserver
configuration for profit maximization in cloud computing,” IEEE
Trans. Parallel Distrib. Syst., vol. 24, no. 6, pp. 1087-1096, Jun. 2013.

[91 J. Mei, K. Li, A. Ouyang, and K. Li, “A profit maximization
scheme with guaranteed quality of service in cloud computing,”
IEEE Trans. Comput., vol. 64, no. 11, pp. 3064-3078, 2015.

[10] E. Krpeolu, A. en, and K. Gler, “Non-cooperative joint replenish-
ment under asymmetric information,” Eur. |. Oper. Res., vol. 227,
no. 3, pp. 434-443, 2013.

[11] P. Samimi, Y. Teimouri, and M. Mukhtar, “A combinatorial dou-
ble auction resource allocation model in cloud computing,” Inf.
Sci., 2014.

[12] T.T. Huu and C.-K. Tham, “An auction-based resource allocation
model for green cloud computing,” in Proc. IEEE Int. Conf. Cloud
Eng., Mar. 2013, pp. 269-278.

[13] M. Rahman and R. Rahman, “Capmauction: Reputation
indexed auction model for resource allocation in grid
computing,” in Proc. 7th Int. Conf. Elect. Comput. Eng., Dec.
2012, pp. 651-654.

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL.27, NO.8, AUGUST 2016

[14] A. Ozer and C. Ozturan, “An auction based mathematical model
and heuristics for resource co-allocation problem in grids and
clouds,” in Proc. 5th Int. Conf. Soft Comput., Comput. Words Percep-
tions Syst. Anal., Decision Control., Sep. 2009, pp. 1-4.

[15] X. Wang, X. Wang, C.-L. Wang, K. Li, and M. Huang, “Resource
allocation in cloud environment: A model based on double multi-
attribute auction mechanism,” in Proc. IEEE 6th Int. Conf. Cloud
Comput. Technol. Sci., Dec. 2014, pp. 599-604.

[16] X. Wang, X. Wang, H. Che, K. Li, M. Huang, and C. Gao, “An intelli-
gent economic approach for dynamic resource allocation in cloud
services,” IEEE Trans. Cloud Comput., vol. 3, no. 3, pp. 275-289, 2015.

[17] G. Scutari, D. Palomar, F. Facchinei, and J.-S. Pang, “Convex opti-
mization, game theory, and variational inequality theory,” IEEE
Signal Process. Mag., vol. 27, no. 3, pp. 35-49, May 2010.

[18] M.]J. Osborne and A. Rubinstein, A Course in Game Theory.
Cambridge, MA, USA: MIT Press, 1994.

[19] J.-P. Aubin, Mathematical Methods of Game and Economic Theory.
New York, NY, USA: Dover, 2007.

[20] S.S. Aote and M. Kharat, “A game-theoretic model for dynamic
load balancing in distributed systems,” in Proc. Int. Conf. Adv.
Comput. Commun. Control, 2009, pp. 235-238.

[21] N. Li and]J. Marden, “Designing games for distributed opti-
mization,” in Proc. 50th IEEE Conf. Decision Control Eur. Control
Conf., Dec. 2011, pp. 2434-2440.

[22] E. Tsiropoulou, G. Katsinis, and S. Papavassiliou, “Distributed
uplink power control in multiservice wireless networks via a
game theoretic approach with convex pricing,” IEEE Trans. Paral-
lel Distrib. Syst., vol. 23, no. 1, pp. 61-68, Jan. 2012.

[23] G. Scutari and J.-S. Pang, “Joint sensing and power allocation in
nonconvex cognitive radio games: Nash equilibria and distributed
algorithms,” IEEE Trans. Inf. Theory, vol. 59, no. 7, pp. 4626-4661,
Jul. 2013.

[24] N. Immorlica, L. E. Li, V. S. Mirrokni, and A. S. Schulz,
“Coordination mechanisms for selfish scheduling,” Theoretical
Comput. Sci., vol. 410, no. 17, pp. 1589-1598, 2009.

[25] A.-H.Mohsenian-Rad, V. W. Wong, J. Jatskevich, R. Schober, and A.
Leon-Garcia, “Autonomous demand-side management based on
game-theoretic energy consumption scheduling for the future smart
grid,” IEEE Trans. Smart Grid, vol. 1, no. 3, pp. 320-331, Dec. 2010.

[26] S. Penmatsa and A. T. Chronopoulos, “Game-theoretic static load
balancing for distributed systems,” . Parallel Distrib. Comput.,
vol. 71, no. 4, pp. 537-555, 2011.

[27] K. Li, C. Liu, and K. Li, “An approximation algorithm based on
game theory for scheduling simple linear deteriorating jobs,” The-
oretical Comput. Sci., vol. 543, no. 0, pp. 46-51, 2014.

[28] I. Atzeni, L. G. Orddnez, G. Scutari, D. P. Palomar, and J. R.
Fonollosa, “Noncooperative and cooperative optimization of
distributed energy generation and storage in the demand-side
of the smart grid,” IEEE Trans. Signal Process., vol. 61, no. 10,
pp. 2454-2472, May 2013.

[29] N. Mandayam, G. Editor, S. Wicker,]J. Walrand, T. Basar,
J. Huang, and D. Palomar, “Game theory in communication sys-
tems [guest editoriall,” IEEE Trans. Sel. Areas Commun., vol. 26,
no. 7, pp. 1042-1046, Sep. 2008.

[30] E. Larsson, E. Jorswieck, J. Lindblom, and R. Mochaourab, “Game
theory and the flat-fading Gaussian interference channel,” IEEE
Signal Process. Mag., vol. 26, no. 5, pp. 18-27, Sep. 2009.

[31] C.Liu, K. Li, C. Xu, and K. Li, “Strategy configurations of multiple
users competition for cloud service reservation,” IEEE Trans. Par-
allel Distrib. Syst., Doi: 10.1109/TPDS.2015.2398435.

[32] K. Akkarajitsakul, E. Hossain, and D. Niyato, “Distributed
resource allocation in wireless networks under uncertainty and
application of Bayesian game,” IEEE Commun. Mag., vol. 49, no. §,
pp- 120-127, Aug. 2011.

[33] S. Misra, S. Das, M. Khatua, and M. Obaidat, “Qos-guaranteed
bandwidth shifting and redistribution in mobile cloud environ-
ment,” IEEE Trans. Cloud Comput., vol. 2, no. 2, pp. 181-193, Apr.
2014.

LI ETAL.: AFRAMEWORK OF PRICE BIDDING CONFIGURATIONS FOR RESOURCE USAGE IN CLOUD COMPUTING

Kenli Li received the PhD degree in computer
science from the Huazhong University of Science
and Technology, China, in 2003. He was a visiting
scholar at the University of lllinois at Urbana-
Champaign from 2004 to 2005. He is currently a
full professor of computer science and technol-
ogy at Hunan University and deputy director of
the National Supercomputing Center in Chang-
sha. His major research areas include parallel
computing, high-performance computing, grid
and cloud computing. He has published more
than 130 research papers in international conferences and journals
such as IEEE Transactions on Computers, IEEE Transactions on Paral-
lel and Distributed Systems, IEEE Transactions on Signal Processing,
Journal of Parallel and Distributed Computing, ICPF, CCGrid. He is an
outstanding member of CCF. He is a member of the IEEE and serves on
the editorial board of IEEE Transactions on Computers.

Chubo Liu is currently working toward the PhD
degree at Hunan University, China. His research
interests are mainly in modeling and scheduling
of distributed computing systems, approximation
and randomized algorithms, game theory, grid
and cloud computing.

Keqin Li is a SUNY distinguished professor of
computer science. His current research interests
include parallel computing and high-performance
computing, distributed computing, energy-effi-
cient computing and communication, heteroge-
neous computing systems, cloud computing, big
data computing, CPU-GPU hybrid and coopera-
tive computing, multicore computing, storage and
file systems, wireless communication networks,
sensor networks, peer-to-peer file sharing sys-
tems, mobile computing, service computing,
Internet of things, and cyber-physical systems. He has published more
than 370 journal articles, book chapters, and refereed conference
papers, and has received several best paper awards. He is currently or
has served on the editorial boards of IEEE Transactions on Parallel and
Distributed Systems, IEEE Transactions on Computers, IEEE Transac-
tions on Cloud Computing, and Journal of Parallel and Distributed Com-
puting. He is a fellow of the IEEE.

2181

Albert Y. Zomaya is currently the chair professor
of high-performance computing and networking
and Australian research council professorial fel-
low in the School of Information Technologies,
University of Sydney. He is also the director of the
Centre for Distributed and High Performance
Computing which was established in late 2009.
He is the author/co-author of seven books, more
than 400 papers, and the editor of nine books
and 11 conference proceedings. He was the edi-
tor-in-chief of the IEEE Transactions on Com-
puters and serves as an associate editor for 19 leading journals, such
as, the IEEE Transactions on Parallel and Distributed Systems and Jour-
nal of Parallel and Distributed Computing. He received the Meritorious
Service Award, in 2000 and the Golden Core Recognition, in 2006, both
from the IEEE Computer Society. Also, he received the IEEE Technical
Committee on Parallel Processing Outstanding Service Award and the
IEEE Technical Committee on Scalable Computing Medal for Excellence
in Scalable Computing, both in 2011. He is a chartered engineer, a fellow
of AAAS, IEEE, and IET United Kingdom.

> For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

