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Abstract—In this paper, we focus on strategy configurations of multiple users to make cloud service reservation. We consider the

problem from a game theoretic perspective and formulate it into a non-cooperative game among the multiple cloud users, in which each

user is informed with incomplete information of other users. For each user, we design a utility function which combines the net profit

with time efficiency and try to maximize its value. We solve the problem by employing variational inequality (VI) theory and prove that

there exists a Nash equilibrium solution set for the formulated game. Then, we propose an iterative proximal algorithm (IPA), which is

designed to compute a Nash equilibrium solution. The convergence of the IPA algorithm is also analyzed and we find that it converges

to a Nash equilibrium if several conditions are satisfied. Finally, we conduct some numerical calculations to verify our theoretical

analysis. The experimental results show that our proposed IPA algorithm converges to a stable state very quickly and improves the

utilities of all users to certain extent by configuring a proper request strategy.

Index Terms—Cloud service reservation, nash equilibrium, non-cooperative game theory, variational inequality theory

Ç

1 INTRODUCTION

1.1 Motivation

CLOUD computing has recently emerged as a new para-
digm for a cloud provider to host and deliver comput-

ing services to enterprises and consumers [1]. Usually, the
provided services mainly refer to Software as a Service
(SaaS), Platform as a Service (PaaS), and Infrastructure as a
Service (IaaS), which are all made available to the general
public in a pay-as-you-go manner [2], [3]. In most systems,
the service provider provides the architecture for users to
make reservations in advance [4], [5]. When making reser-
vations for a cloud service, multiple users and the cloud
provider need to reach an agreement on the costs of the pro-
vided service and make planning to use the service in the
reserved time slots, which could lead to a competition for
the usage of limited resources [6]. Therefore, it is important
for a user to configure his/her task requests in different
time slots without complete information of other users,
such that his/her utility is maximized.

For a cloud provider, the income (i.e., the revenue) is the
service charge to users [7]. When providing services to mul-
tiple cloud users, a suitable pricing model is a significant
factor that should be taken into account. The reason lies in
that a proper pricing model is not just for the profit of a

cloud provider, but for the appeals to more cloud users in
the market to use cloud service. Specifically, if the per
request charge is too high, a user may refuse to use the
cloud service, and choose another cloud provider or just fin-
ish his/her tasks locally. On the contrary, if the charge is too
low, the aggregated requests may be more than enough,
which could lead to low service quality (long task response
time) and thus dissatisfies its cloud users.

A rational user will choose a strategy to use the service
that maximizes his/her own net reward, i.e., the utility
obtained by choosing the cloud service minus the payment
[1]. On the other hand, the utility of a user is not only deter-
mined by the importance of his/her tasks (i.e., how much
benefit the user can receive by finishing the tasks), but also
closely related to the urgency of the task (i.e., how quickly it
can be finished). The same task, such as running an online
voice recognition algorithm, is able to generate more utility
for a cloud user if it can be completed within a shorter
period of time in the cloud [1]. However, considering the
energy saving and economic reasons, it is irrational for a
cloud provider to provide enough computing resources to
satisfy all requests in a time slot. Therefore, multiple cloud
users have to compete for the cloud service reservation.
Since the payment and time efficiency of each user are
affected by decisions of other users, it is natural to analyze
the behavior of such systems as strategic games [4].

1.2 Our Contributions

In this paper, we focus on the strategy choices of multiple
users to make cloud service reservation. We consider the
problem from a game theoretic perspective and formulate it
into a non-cooperative game among the multiple cloud
users, in which each cloud user is informed with incomplete
information of other users. At the beginning, we design a
mechanism for the cloud provider and its multiple users to
establish negotiations, which is beneficial to both the cloud
provider and its users. Specifically, the cloud provider can
evaluate proper dynamic pricing parameters to maximize
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its profit according to the aggregated requests and the users
can decide whether to use the cloud service and configure
proper strategies which are suitable for their own. For each
user, we design a utility function which combines the net
profit with time efficiency and try to maximize its value. We
solve the problem by employing variation inequality (VI)
theory and prove that there exists a Nash equilibrium solu-
tion set for the formulated game. Then, we propose an itera-
tive proximal algorithm (IPA), which is designed to
compute a Nash equilibrium solution. The convergence of
the IPA algorithm is also analyzed and we find that the pro-
posed algorithm converges to a Nash equilibrium if several
conditions are satisfied. Finally, we conduct some numerical
calculations to verify our theoretical analysis. The experi-
mental results show that our proposed IPA algorithm con-
verges to a stable state very quickly and improves the users’
utilities to certain extent by configuring proper request
strategies.

1.3 Related Works

In many scenarios, a service provider provides the archi-
tecture for users to make reservations in advance [4], [5],
[6]. One of the most important aspects that should be
taken into account by the provider is its pricing scheme,
which is closely related to its profit and the appeals to
market users.

Many works have been done on the pricing scheme in the
literature [7], [8], [9], [10], [11], [12]. In [7], Cao et al. pro-
posed a time dependent pricing scheme, i.e., the charge of a
user is dependent on the service time of his/her require-
ment. However, we may note that the service time is not
only affected by the amount of his/her own requirement,
but also influenced by other factors such as the processing
capacity of servers and the requirements of others.
Mohsenian-Rad et al. [8] proposed a dynamic pricing
scheme, in which the per price (the cost of one request or
one unit of load) of a certain time slot is set as an increasing
and smooth function of the aggregated requests in that time
slot. That is to say, when the aggregated requests are quite
much in a time slot, the users have to pay relatively high
costs to complete the same amount of requests, which is an
effective way to convince the users to shift their peak-time
task requests. Similar studies and models can be found in
[9], [10], [11], [12]. However, these models are only applied
to control energy consumption and different from applica-
tions in cloud services, since there is no need to consider
time efficiency in them.

Game theory is a field of applied mathematics that
describes and analyzes scenarios with interactive decisions
[13], [14], [15]. It is a formal study of conflicts and cooperation
among multiple competitive users [16] and a powerful tool
for the design and control of multiagent systems [17]. There
has been a growing interest in adopting cooperative and non-
cooperative game theoretic approaches to modeling many
communications problems [18], [19], [20], [21]. A more gen-
eral framework suitable for investigating and solving various
optimization problems and equilibrium models, even when
classical game theory may fail, is the variation inequality
method that is applicable to a very general class of problems
in nonlinear analysis [13], [22]. For more works on game the-
ory, the reader is referred to [8], [12], [21], [23], [24], [25].

1.4 Organization

The rest of the paper is organized as follows. Section 2
describes the models of the system and presents the prob-
lem to be solved. Section 3 formulates the problem into a
non-cooperative game and solves the problem by employ-
ing variational inequality theory. Many analyses are also
presented in this section. Section 4 is developed to verify
our theoretical analysis and show the effectiveness of our
proposed algorithm. We conclude the paper with future
work in Section 5.

2 MODEL FORMULATION AND ANALYSES

To begin with, we present our system model in the context
of a service cloud provider, and establish some important
results. In this paper, we are concerned with a market with
a service cloud provider and n cloud users, who are com-
peting for the cloud service reservation. We denote the set
of users as N ¼ f1; . . . ; ng. The arrival of requests from
cloud user i (i 2 N ) is assumed to follow a Poisson process.
The cloud provider is modeled by an M/M/m queue, serv-
ing a common pool of cloud users with m homogeneous
servers. Similar to [26], [27], we assume that the request pro-
file of each user is determined in advance for H future time
slots. Each time slot can represent different timing horizons,
e.g., one hour of a day.

2.1 Request Profile Model

We consider a user request model motivated by [9], [12],
where the user i0s (i 2 N ) request profile over the H future
time slots is formulated as

��i ¼ �1
i ; . . . ; �

H
i

� �T
; (1)

where �h
i (i 2 N ) is the arrival rate of requests from user i in

the hth time slot and it is subject to the constraintPH
h¼1 �

h
i ¼ Li , where Li denotes user i’s total requests. The

arrivals in different time slots of the requests are assumed
to follow a Poisson process. The individual strategy set of
user i can be expressed as

Qi ¼ ��i

�����X
H

h¼1
�h
i ¼ Li and �h

i � 0; 8h 2 H
( )

; (2)

whereH ¼ f1; . . . ; Hg is the set of allH future time slots.

2.2 Load Billing Model

To efficiently convince the users to shift their peak-time
requests and fairly charge the users for their cloud serv-
ices, we adopt the instantaneous load billing scheme,
which is motivated by [9], [12], where the request price
(the cost of one request) of a certain time slot is set as an
increasing and smooth function of the total requests in that
time slot, and the users are charged based on the instanta-
neous request price. In this paper, we focus on a practical
and specific polynomial request price model. Specifically,
the service price for one unit of workload of the hth time
slot is given by

C �h
S

� � ¼ a �h
S

� �2 þ b; (3)
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where a and b are constants with a; b > 0, and �h
S is the

aggregated requests from all users in time slot h, i.e.,

�h
S ¼

Pn
i¼1 �

h
i .

2.3 Cloud Service Model

The cloud provider is modeled by an M/M/m queue, serv-
ing a common pool of multiple cloud users withm homoge-
neous servers. The processing capacity of each server is
presented by its service rate m0. We denote m as the total
processing capacity of allm servers and L as the aggregated
requests from all cloud users, respectively. Then we have
m ¼ mm0, and L ¼Pn

i¼1 Li.
Let pi be the probability that there are i service requests

(waiting or being processed) and r ¼ L=m be the service uti-
lization in the M/M/m queuing system. With reference to
[7], [28], we obtain

pi ¼
1
i! mrð Þip0; i < m;
mmri

m! p0; i � m;

(
(4)

where

p0 ¼
Xm�1
k¼0

1

k!
mrð Þk þ 1

m!

ðmrÞm
1� r

( )�1
: (5)

The average number of service requests (in waiting or in
execution) is

�N ¼
X1
i¼0

kpi ¼ pm
1� r

¼ mrþ r

1� r
Pq; (6)

where Pq represents the probability that the incoming
requests need to wait in queue.

Applying Little’s result, we get the average response
time as

�T ¼
�N

L
¼ 1

L
mrþ r

1� r
Pq

� �
: (7)

In this paper, we assume that all the servers will likely
keep busy, because if not so, some servers could be shut-
down to reduce mechanical wear and energy cost. For ana-
lytical tractability, Pq is assumed to be 1. Therefore, we have

�T ¼
�N

L
¼ 1

L
mrþ r

1� r

� �
¼ m

m
þ 1

m� L
:

(8)

Now, we focus on time slot h (h 2 H). We get that the
average response time in that time slot as

�Th ¼ m

m
þ 1

m� �h
S

; (9)

where �h
S ¼

Pn
i¼1 �

h
i . In this paper, we assume that

�h
i < m ð8h 2 HÞ, i.e., the aggregated requests in time slot h

never exceeds the total capacity of all servers.

2.4 Architecture Model

In this section, we model the architecture of our proposed
service mechanism, in which the cloud provider can evalu-
ate proper charge parameters according to the aggregated
requests and the cloud users can make proper decisions
through the information exchange module. As shown in
Fig. 1, each user i (i 2 N ) is equipped with a utility function
(Ui) and the request configuration (��i), i.e., the service reser-
vation strategy overH future time slots. All requests enter a
queue to be processed by the cloud computing. Let ��S be
aggregated request vector, then we have ��S ¼

Pn
i¼1 ��i. The

cloud provider consists of m homogeneous servers with
total processing ratem, i.e., m ¼ mm0, where m0 is the service
rate of each server, and puts some information (e.g., price
parameters a and b, current aggregated request vector ��S)
into the information exchange module. When multiple
users try to make a cloud service reservation, they first get
information from the exchange module, then compute
proper strategies such that their own utilities are maxi-
mized and send the newly strategies to the cloud provider.
The procedure is terminated until the set of remaining
users, who prefer to make cloud service reservation, and
their corresponding strategies are kept fixed.

2.5 Problem Formulation

Now, let us consider user i0s (i 2 N ) utility in time slot h. A
rational cloud user will seek a strategy to maximize its
expected net reward by finishing the tasks, i.e., the benefit
obtained by choosing the cloud service minus its total pay-
ment. Since all cloud users are charged based on the instan-
taneous load billing and how much tasks they submit, we

denote the cloud user i0s payment in time slot h by Ph
i ,

where Ph
i ¼ Cð�h

SÞ�h
i with Cð�h

SÞ denoting the service price

for one unit of workload in time slot h. On the other hand,
since a user will be more satisfied with much faster service,
we also take the average response time into account. Note
that time utility will be deteriorated with the delay of time
slots. Hence, in this paper, we assume that the deteriorating

rate of time utility is d (d > 1). Denote �Th the average

response time and Th the time utility of user i in time slot h,

respectively. Then we have Th ¼ dh �Th. More formally, the
utility of user i (i 2 N ) in time slot h is defined as

Uh
i �h

i ; ��
h
�i

� � ¼ r�h
i � Ph

i

�
�h
i ; ��

h
�i
�� wiT

h �h
i ; ��

h
�i

� �
¼ r�h

i � Ph
i �h

i ; ��
h
�i

� �� wid
h �Th �h

i ; ��
h
�i

� �
; (10)

Fig. 1. Architecture model.
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where ��h
�i ¼ ð�h

1 ; . . . ; �
h
i�1; �

h
iþ1; . . . ; �

h
nÞ denotes the vector of

all users0 request profile in time slot h except that of user i,
r ðr > 0Þ is the benefit factor (the reward obtained by one
task request), and wi (wi > 0) is the waiting cost factor,
which reflects its urgency. If a user is more concerned with
task completion, then the associated waiting factor wi might
be larger.

For simplicity, we use Ph
i and �Th to denote Ph

i ð�h
i ; ��

h
�iÞ

and �Thð�h
i ; ��

h
�iÞ, respectively. Following the adopted request

price model, the total utility obtained by user i (i 2 N ) over
allH future time slots can thus be given by

Uið��i; ���iÞ ¼
XH
h¼1

Uh
i

�
�h
i ; ��

h
�i
�

¼
XH
h¼1

�
r�h

i � Ph
i � wid

h �T
h�
;

(11)

where ���i ¼ ð��1; . . . ; ��i�1; ��iþ1; . . . ; ��nÞ denotes the ðn� 1Þ
H � 1 vector of all users0 request profile except that of user i.

We consider the scenario where all users are selfish. Spe-
cifically, each user tries to maximize his/her total utility
over the H future time slots, i.e., each user i (i 2 N ) tries
to find a solution to the following optimization problem
(OPTi):

maximize Uið��i; ���iÞ; ��i 2 Qi: (12)

3 GAME FORMULATION AND ANALYSES

In this section, we formulate the considered scenario into a
non-cooperative game among the multiple cloud users. By
employing variational inequality theory, we analyze the
existence of a Nash equilibrium solution set for the formu-
lated game. And then we propose an iterative proximal
algorithm to compute a Nash equilibrium. We also analyze
the convergence of the proposed algorithm.

3.1 Game Formulation

Game theory studies the problems in which players try to
maximize their utilities or minimize their disutilities. As
described in [21], a non-cooperative game consists of a set
of players, a set of strategies, and preferences over the set of
strategies. In this paper, each cloud user is regarded as a
player, i.e., the set of players is the n cloud users. The strat-
egy set of player i (i 2 N ) is the request profile set of user i,
i.e., Qi. Then the joint strategy set of all players is given by
Q ¼ Q1 � � � � �Qn.

As mentioned before, all users are considered to be self-
ish and each user i (i 2 N ) tries to maximize his/her own
utility or minimize his/her disutility while ignoring the
others. In view of (12), we can observe that user i0s optimi-
zation problem is equivalent to

minimize fið��i; ���iÞ ¼
XH
h¼1

�
Ph
i þ wid

h �T
h � r�h

i

�
;

s:t: ð��i; ���iÞ 2 Q:

(13)

The above formulated game can be formally defined by the
tuple G ¼ Q; ffh i, where ff ¼ f1; . . . ; fnð Þ. The aim of user i
(i 2 N ), given the other players0 strategies ���i, is to choose

an ��i 2 Qi such that his/her disutility function fið��i; ���iÞ is
minimized. That is to say, for each user i (i 2 N ),

���i 2 argmin
��i2Qi

fið��i; ��
�
�iÞ; ��� 2 Q: (14)

At the Nash equilibrium, each player cannot further
decrease its disutility by choosing a different strategy while
the strategies of other players are fixed. The equilibrium
strategy profile can be found when each player0s strategy is
the best response to the strategies of other players.

3.2 Billing Parameters Analysis

It is important to investigate the way the cloud provider
decides load billing scheme. In our proposed model, the
request charge changes according to the total load during
different time slots. The cloud provider needs to decide the
proper pricing parameters a and b. The reason lies in that if
the per request charge (the cost of one task request) is too
high, some users may refuse to use the cloud service, and
choose to finish his/her tasks locally. On the contrary, if the
charge is low, the aggregated requests may be more than
enough, which could lead to low service quality (long task
response time). In this paper, we assume that each user i
(i 2 N ) has a reservation value vi. That is to say, cloud user
i will prefer to use the cloud service if Ui ��i; ���ið Þ � vi and
refuse to use the service otherwise. If the cloud provider
wants to appeal all n cloud users to use its service while
charging relatively high, then it must guarantee that the
obtained utility of each user i (i 2 N ) is equal to his/her res-
ervation value vi, i.e., Ui ��i; ���ið Þ ¼ vi (8i 2 N ), which
implies that

XH
h¼1

�
r�h

i � Ph
i � wid

h �T
h� ¼ vi; 8i 2 N : (15)

Considering all users together, (15) is equivalent to

rL� PT � wS

XH
h¼1

dh �Th ¼
Xn
i¼1

vi; (16)

where L ¼Pn
i¼1 Li, wS ¼

Pn
i¼1 wi, and PT ¼

Pn
i¼1
PH

h¼1 P
h
i .

For the cloud provider, its objective is trying to decide
proper pricing parameters a and b such that its net reward,
i.e., the charge to all cloud users (PT ) minus its cost (e.g.,
energy cost and machine maintenance cost), is maximized.
In this paper, we denote p as the net profit and gh the cost
in time slot h. When total capacity m is determined, gh is
assumed to be constant. Then the cloud provider0s problem
is to try to maximize the value p. That is

maximize p ¼ PT ð��Þ �
XH
h¼1

gh;

s.t. rL� PT ð��Þ � wS

XH
h¼1

dh �Th ¼
Xn
i¼1

vi;

(17)

L ¼
Xn
i¼1

Li ¼
XH
h¼1

�h
S; (18)

m > �h
S � 0; 8h 2 H: (19)
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The above optimization problem is equivalent to

maximize p ¼ rL� wS

XH
h¼1

dh �Th �
Xn
i¼1

vi �
XH
h¼1

gh;

s.t. L ¼
Xn
i¼1

Li ¼
XH
h¼1

�h
S;

m > �h
S � 0; 8h 2 H:

(20)

Theorem 3.1. For the cloud provider, the profit is maximized
when the billing parameters (a and b) satisfy the constraint
(17) and

�h
S ¼ m� Hm� Lð Þ 1� d1=2

� �
d h�1ð Þ=2

1� dH=2
� � ; (21)

where h 2 H.
Proof. We can maximize p in (20) by using the method of

Lagrange multiplier, namely,

@p

@�h
S

¼ �wSd
h @

�Th

@�h
S

¼ �’;

where ’ is the Lagrange multiplier. That is,

wSd
h�

m� �h
S

�2 ¼ ’;

for all 1 � h � H, and
PH

h¼1 �
h
S ¼ L. After some algebraic

calculation, we have

’ ¼ wSdð1� dH=2Þ2

ðHm� LÞ2ð1� d1=2Þ2
:

Then we can obtain

�h
S ¼ m� ðHm� LÞð1� d1=2Þdðh�1Þ=2

ð1� dH=2Þ ;

and the result follows. tu

Note that the obtained result (21) must satisfy the con-
straint (19), that is to say,

m� ðHm�LÞð1�d1=2ÞdðH�1Þ=2
ð1�dH=2Þ � 0; h ¼ H;

m� ðHm�LÞð1�d1=2Þ
ð1�dH=2Þ < m; h ¼ 1;

Hm� L > 0:

8>><
>>: (22)

We obtain

m � cL
cH�1 ;

Hm > L;

�
(23)

where

c ¼ ð1� d1=2ÞdðH�1Þ=2
1� dH=2

:

Then we have

H

L
< m � L

H � 1=c
; (24)

where

c ¼ ð1� d1=2ÞdðH�1Þ=2
1� dH=2

:

As mentioned before, we assume that the aggregated
requests do not exceed the capacity of all the servers, i.e.,

Hm > L. In addition, if m > L
H�1=c, it is possible to shutdown

some servers such that m satisfies the constraint (24), which
can also save energy cost. Therefore, in this paper, we
assume that the total processing capacity m satisfies con-
straint (24).

From Theorem 3.1, we know that if the cloud provider
wants to appeal all the n cloud users to use its service, then
proper pricing parameters a and b can be selected to satisfy
constraint (17). Specifically, if b (a) is given, and a (b) is
higher than the computed value from (17), then there exist
some users who refuse to use the cloud service, because
their obtained utilities are less than their reservation values.

3.3 Nash Equilibrium Analysis

In this section, we analyze the existence of Nash equilibrium
for the formulated game G ¼ Q; ffh i and prove the existence
problem by employing variational inequality theory. Then
wepropose an iterative proximal algorithm. The convergence
of the proposed algorithm is also analyzed. Before address
the problem, we show three important properties presented
in Theorems 3.2, 3.3, and 3.4, which are helpful to prove the
existence ofNash equilibrium for the formulated game.

Theorem 3.2. For each cloud user i (i 2 N ), the set Qi is convex
and compact, and each disutility function fið��i; ���iÞ is contin-
uously differentiable in ��i. For each fixed tuple ���i, the disutil-
ity function fið��i; ���iÞ is convex in ��i over the set Qi.

Proof. It is obvious that the statements in the first part of
above theorem hold. We only need to prove the convex-
ity of fið��i; ���iÞ in ��i for every fixed ���i. This can be
achieved by proving that the Hessian matrix of fið��i; ���iÞ
is positive semidefinite [9], [29]. Since fið��i; ���iÞ ¼PH

h¼1 ðPh
i þ wid

h �T
h � r�h

i Þ, we have

r��ifið��i; ���iÞ ¼ @fið��i; ���iÞ
@�h

i

� 	H
h¼1

¼ @fið��i; ���iÞ
@�1

i

; . . . ;
@fið��i; ���iÞ

@�H
i

� �
:

and the Hessian matrix is expressed as

r2
��i
fið��i; ���iÞ ¼ diag

@2fið��i; ���iÞ
@ð�h

i Þ2
" #H

h¼1

8<
:

9=
;

¼ diag 2a 2�h
S þ �h

i

� �þ 2wid
h

m� �h
S


 �3
2
64

3
75
H

h¼1

8><
>:

9>=
>;:

(25)

512 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 27, NO. 2, FEBRUARY 2016



Obviously, the diagonal matrix in (25) has all diagonal
elements being positive. Thus, the Hessian matrix of
fið��i; ���iÞ is positive semidefinite and the result follows.
The theorem is proven. tu

Theorem 3.3. The Nash equilibrium of the formulated game G is
equivalent to the solution of the variational inequality (VI)
problem, denoted by VIðQ;FFÞ, where Q ¼ Q1 � � � � �Qn and

FFð��Þ ¼ FFið��i; ���iÞð Þni¼1; (26)

with

FFið��i; ���iÞ ¼ r��ifið��i; ���iÞ: (27)

Proof. According to [30, Property 4.1], we know that the
above claim follows if two conditions are satisfied. First,
for each user i (i 2 N ), the strategy set Qi is closed and
convex. Second, for every fixed ���i, the disutility func-
tion fið��i; ���iÞ is continuously differentiable and convex
in ��i 2 Qi. By Theorem 3.2, it is easy to know that both
the mentioned two conditions are satisfied in the formu-
lated game G. Thus, the result follows. tu

Theorem 3.4. If both matricesM1 andM2 are semidefinite, then
the matrixM3 ¼M1 þM2 is also semidefinite.

Proof. As mentioned above, both matricesM1 andM2 are
semidefinite. Then we have 8xx

xxTM1xx � 0 and xxTM2xx � 0:

We obtain 8xx,

xxTM3xx ¼ xxTM1xxþ xxTM2xx � 0:

Thus, we can conclude that M3 is semidefinite and the
result follows. tu

Recall that the objective of this section is to study the
existence of Nash equilibrium for the formulated game
G ¼ Q; ffh i in (13). In the next theorem, we prove that if sev-
eral conditions are satisfied, the existence of such Nash
equilibrium is guaranteed.

Theorem 3.5. If maxi¼1;...;nðwiÞ � 1=n, there exists a Nash equi-
librium solution set for the formulated game G ¼ Q; ffh i.

Proof. Based on Theorem 3.3, the proof of this theorem fol-
lows if we can show that the formulated variational
inequality problem VIðQ;FFÞ in Theorem 3.3 possesses a
solution set. According to [30, Theorem 4.1], the VIðQ;FFÞ
admits a solution set if the mapping FF ��ð Þ is monotone
over Q, since the feasible set Q is compact and convex.

To prove the monotonicity of FF ��ð Þ, it suffices to show
that for any �� and ss in Q,

��� ssð ÞT FF ��ð Þ � FF ssð Þð Þ � 0;

namely,

XH
h¼1

Xn
i¼1

�h
i � shi

� ��r�h
i
fi ��ð Þ � rsh

i
fi ssð Þ

� � 0: (28)

Let ��h ¼ ð�h
1 ; . . . ; �

h
nÞT and ssh ¼ ðsh1 ; . . . ; shnÞT , then we can

write (28) as

XH
h¼1

��h � ssh
� � r��hf

h ��h
� ��rsshf

h ssh
� �� � � 0; (29)

where

fhð��hÞ ¼
Xn
i¼1

�
Ph
i þ wid

h �T
h � r�h

i

�
;

and

r��hf
hð��hÞ ¼ ðr�h

1
fhð��hÞ; . . . ;r�hn

fhð��hÞÞT :

We can observe that if

ð��h � sshÞðgghð��hÞ � gghðsshÞÞ � 0; 8h 2 H; (30)

where ggh ��h
� � ¼ r��hf

hð��hÞ, then equation (29) holds.
Recall the definition of a monotone mapping, we can

find that (30) holds if the mapping ggh ��h
� �

is monotone.
With reference to [30], the condition in (30) is equivalent

to proving the Jacobian matrix of ggh ��h
� �

, denoted by

GG ��h
� �

, is positive semidefinite.

After some algebraic manipulation, we can write the

ði; jÞth element of GG ��h
� �

as

GG ��h
� �� 


i;j
¼

2a 2�h
S þ �h

i

� �þ 2wid
h�

m��h
S

�3; if i ¼ j;

2a �h
S þ �h

i

� �þ 2wid
h�

m��h
S

�3; if i 6¼ j:

8>><
>>:

Since the matrix GG ��h
� �

may not be symmetric, we can
prove its positive semidefiniteness by showing that the
symmetric matrix

GGð��hÞ þGGð��hÞT ¼
2a
�
��h11Tn�1 þ 11n�1

�
��h
�T þ 2�h

S11n�n þ 2�h
SEEn

�|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
M1

þ 2as
�
ww11Tn�1 þ 11n�1wwT

�|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
M2

is positive semidefinite [31], where

s ¼ dh

a
�
m� �h

S

�3;
ww ¼ ðw1; . . . ; wnÞT , 11r�s is a r� s matrix with every ele-
ment of 1, and EEn is an identity matrix. This is equivalent
to showing that the smallest eigenvalue of this matrix is
non-negative.

With referring to [9], [31], we obtain the two non-zero
eigenvalues ofM1 as follows:

h1M1
¼ ðnþ 3Þ�h

S þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n
Xn
i¼1

�
�h
i þ �h

S

�2s
;

h2M1
¼ ðnþ 3Þ�h

S �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n
Xn
i¼1

�
�h
i þ �h

S

�2s
:
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Let

Að��hÞ ¼ ðnþ 3Þ�h
S;

and

B ��h
� � ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n
Xn
i¼1

�
�h
i þ �h

S

�2s
;

and hmin be the minimal eigenvalue of matrixM1. Then,

we have hmin ¼ min A ��h
� ��B ��h

� �
; 2�h

S

� �
. Furthermore,

we can derive that

A ��h
� �� �2 � B ��h

� �� �2 ¼ ð4nþ 9Þ �h
S

� �2�nXn
i¼1

�h
i

� �2

� n
Xn
i¼1

�h
i

 !2

�
Xn
i¼1

�h
i

� �20
@

1
A � 0:

Hence, we can obtain hmin � 0 and conclude thatM1

is semidefinite. Similar to the semidefinite proof ofM1,
we can also obtain that if maxi¼1;...;nðwiÞ � 1=n, thenM2

is semidefinite. By Theorem 3.4, we can conclude that the

matrix GGð��hÞ is semidefinite, and the result follows. tu

3.4 An Iterative Proximal Algorithm

Once we have established that the Nash equilibria of the for-
mulated game GG ¼ Q; ffh i exists, we are interested in obtain-
ing a suitable algorithm to compute one of these equilibria
with minimum information exchange between the multiple
users and the cloud provider.

Note that we can further rewrite the optimization prob-
lem (13) as follows:

minimize fið��i; ��SÞ ¼
XH
h¼1

�
Ph
i þ wid

h �T
h � r�h

i

�
;

s.t. ��i 2 Qi;

(31)

where ��S denotes the aggregated request profile of all users
over the H future time slots, i.e., ��S ¼

Pn
i¼1 ��i. From (31),

we can see that the calculation of the disutility function of
each individual user only requires the knowledge of the
aggregated request profile of all users (��S) rather than that
the specific individual request profile of all other users (���i)
, which can bring about two advantages. On the one hand,
it can reduce communication traffic between users and the
cloud provider. On the other hand, it can also keep privacy
for each individual user to certain extent, which is seriously
considered by many cloud users.

Since all users are considered to be selfish and try to min-
imize their own disutilities while ignoring the others. It is
natural to consider an iterative algorithm where, at every
iteration k, each individual user i (8i 2 N ) updates his/her
strategy to minimize his/her own disutility function
fið��i; ��SÞ. However, following [30, Theorem 4.2], it is not
difficult to show that their convergence cannot be guaran-
teed in our case if the users are allowed to simultaneously
update their strategies according to (31).

To overcome this issue, we consider an iterative prox-
imal algorithm, which is based on the proximal decom-
position Algorithm 4.2 [30]. The proposed algorithm is
guaranteed to converge to a Nash equilibrium under
some additional constraints on the parameters of the
algorithm. With reference to [30], consider the regular-
ized game in which each user i (i 2 N ) tries to solve the
following optimization problem:

minimize fið��i; ��SÞ þ
t

2
��i � ����i

�� ��2;
s.t. ��i; ����i 2 Qi:

(32)

That is to say, when given the aggregated requests, we must
find a strategy vector ���i for user i (i 2 N ) such that

���i 2 argmin
��i2Qi

fið��i; ��SÞ þ t

2
��i � ����i

�� ��2n o
; (33)

where tðt > 0Þ is a regularization parameter and may guar-
antee the convergence of the best-response algorithm [30,
Corollary 4.1] if it is large enough. The idea is formalized in
Algorithm 1.

Algorithm 1. Iterative Proximal Algorithm (IPA)

Input: Strategy set of all users: Q, �.
Output: Request configuration: ��.
1: Initialization: Each cloud user i (i 2 N ) randomly choose a

��
ð0Þ
i 2 Qi and set ����i  00. Set Sc  N , Sl  ;, and k 0.

2: while (Sc 6¼ Sl) do
3: Set Sl  Sc.
4: while ( ��ðkÞ � ��ðk�1Þ

�� �� > �) do
5: for (each cloud user i 2 Sc) do
6: Receive ��

ðkÞ
S

from the cloud provider and compute

��
ðkÞ
i as follows (by Algorithm 2):

7: ��
ðkþ1Þ
i  argmin��i2Qi

�
fi
�
��i; ��

ðkÞ
S

�þ t
2 ��i � ����i

�� ��2g:
8: Send the updated strategy to the cloud provider.
9: end for
10: if (Nash equilibrium is reached) then
11: Each user i (i 2 Sc) updates his/her centroid

����i  ��
ðkÞ
i .

12: end if
13: Set k kþ 1.
14: end while
15: for (each user i 2 Sc) do
16: if Uið��ðkÞi ; ��

ðkÞ
S
Þ < vi then

17: Set ��
ðkÞ
i  00, and Sc  Sc � if g.

18: end for
19: end while
20: return ��ðkÞ.

Theorem 3.6. There exists a constant t0 such that if t > t0, then

any sequence f��ðkÞi g1k¼1 (i 2 Sc) generated by the IPA algo-
rithm converges to a Nash equilibrium.

Proof. We may note that Algorithm 1 converges if the inner
while loop (Steps 4-14) can be terminated. Therefore, if
we can prove that Steps 4-14 converges, the result fol-
lows. In practice, Steps 4-14 in Algorithm 1 is a devel-
oped instance of the proximal decomposition algorithm,
which is presented in Algorithm 4.2 [30] for the
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variational inequality problem. Next, we rewrite the con-
vergence conditions exploiting the equivalence between
game theory and variational inequality ([30, chapter
4.2]). Given fið��i; ���iÞ defined as in equation (13),
Algorithm 1 convergences if the following two conditions
are satisfied. (1) The Jacobian matrix of FF is positive semi-
definite ([30, Theorem 4.3]). We denote the Jacobian by
JFFð��Þ ¼ ðJ��jFFið��ÞÞni;j¼1, where J��jFFið��Þ ¼ ðr��jfið��ÞÞnj¼1,
which is the partial Jacobian matrix of FFi with respect
to �j vector. (2) The n� n matrix ��FF;t ¼ ��FF þ tEEn is a
P-matrix ([30, Corollary 4.1]), where

��FF½ 	ij ¼
amin
i ; if i ¼ j;

�bmax
ij ; if i 6¼ j;

�

with

amin
i ¼ inf

��2Q
hmin JJ��iFFi ��ð Þ

� �
;

and

bmax
ij ¼ sup

��2Q
hmin JJ��jFFi ��ð Þ


 �
;

and hmin AAð Þ denoting the smallest eigenvalue of A. After
some algebraic manipulation, we can write the block ele-
ments of JFFð��Þ as

J��iFFið��Þ ¼ r2
��i
fið��i; ��SÞ

¼ diag 2a
�
2�h

S þ �h
i

�þ 2wid
h�

m� �h
S

�3
" #H

h¼1

8<
:

9=
;;

and

J��jFFið��Þ ¼ r2
��i��j

fið��i; ��SÞ

¼ diag 2a
�
�h
S þ �h

i

�þ 2wid
h�

m� �h
S

�3
" #H

h¼1

8<
:

9=
;;

for i 6¼ j (i; j 2 N ).
Next, we show that the above conditions (1) and (2)

hold, respectively. By Theorem 3.2, we know that the
vector function FFð��Þ is monotone on Q, which implies
that JFFð��Þ is semidefinite. On the other hand, consider-

ing J��iFFið��Þ, we have amin
i > 0,

Let

Lh
�
�h
i ; ��

h
�i
� ¼ 2a

�
�h
S þ �h

i

�þ 2wid
h�

m� �h
S

�3 :
Then, we have @Lh

@�h
i

> 0. As mentioned before, �h
S (8h 2 H)

does not exceed the total processing capacity of all serv-

ers m. We assume that �h
S � ð1� "Þm, where " is a small

positive constant. Then we can conclude that

Lhð�h
i ; ��

h
�iÞ � 4a 1� "ð Þmþ 2wmaxd

h

"mð Þ3 ;

where wmax ¼ maxi¼1;...;nfwig.

Hence, if

t0 � ðn� 1Þ 4a 1� "ð Þmþ 2wmaxd
H

"mð Þ3
 !

;

then

bmax
ij ¼ sup

��2Q
J��jFFi ��ð Þ
��� ��� � t0:

Then, it follows from [30, Properties 4.3] that, if t is cho-
sen as in Theorem 3.6, the matrix ��FF;t is a P-matrix, and
the result follows. tu

Next, we focus on the calculation for the optimization
problem in (33). Let

Lið��i; ��SÞ ¼ fið��i; ��SÞ þ t

2
��i � ����i

�� ��2: (34)

Then, we have to minimize Lið��i; ��SÞ. Note that the variable
in (34) is only ��i, therefore, we can rewrite (34) as

Lið��i; kkSÞ ¼ fið��i; kkSÞ þ t

2
��i � ����i

�� ��2; (35)

where kkS ¼ ��S � ��i. We denote Ri the constraint of user i,
i.e.,

Ri ¼ �1
i þ �2

i þ � � � þ �H
i ¼ Li;

and try to minimize Lið��i; kkSÞ by using the method of
Lagrange multiplier, namely,

@Li

@�h
i

¼ f
@Ri

@�h
i

¼ f;

for all 1 � h � H, where f is a Lagrange multiplier. Notice
that

@Ph
i

@�h
i

¼ a
�
2
�
�h
i þ khS

�
�h
i þ

�
�h
i þ khS

�2�þ b;

and

@ �T
h

@�h
i

¼ 1�
m� kh

S
� �h

i

�2 :
We obtain

@Li

@�h
i

¼ @Ph
i

@�h
i

þ wid
h @

�T
h

@�h
i

� rþ t
�
�h
i � ��h

i

�
¼ a

�
2
�
�h
i þ khS

�
�h
i þ

�
�h
i þ khS

�2�
þ bþ wid

h�
m� kh

S
� �h

i

�2 � rþ t
�
�h
i � ��h

i

� ¼ f:

(36)

Denote Y h
i ð�h

i ; k
h
SÞ as the first order of Lið��i; kkSÞ on �h

i .
Then, we have

Y h
i

�
�h
i ; k

h
S

� ¼ a
�
2
�
�h
i þ khS

�
�h
i þ

�
�h
i þ khS

�2�þ b

þ wid
h�

m� kh
S
� �h

i

�2 � rþ t
�
�h
i � ��h

i

�
: (37)
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Since the first order of Y h
i ð�h

i ; k
h
SÞ is

@Y h
i

@�h
i

¼ @2Li

@
�
�h
i

�2 ¼ 2a
�
3�h

i þ 2khS
�þ 2wid

h�
m� kh

S
� �h

i

�3 þ t > 0;

(38)

we can conclude that Y h
i ð�h

i ; k
h
SÞ is an increasing positive

function on �h
i . Based on above derivations, we propose an

algorithm to calculate ��i (i 2 N ), which is motivated by [28].

Algorithm 2. Calculate ��i(";m; a; b; r; t; ��i; ��S;Li)

Input: ";m; a; b; r; t; ��i; ��S;Li

Output: ��i.
1: Initialization: Let inc be a relative small positive constant.

Set kkS  ��S � ��i, ��i  00, and f 0.
2: while (�1

i þ �2
i þ � � � þ �H

i < Li) do
3: Setmid fþ inc, and f mid.
4: for (each time slot h 2 H) do
5: �h

i  Calculate �h
i ð";m; a; b; r; t; khS;fÞ.

6: end for
7: Set inc 2� inc.
8: end while
9: Set lb 0 and ub f.
10: while (ub� lb > �) do
11: Setmid ðubþ lbÞ=2, and f mid.
12: for (each time slot h 2 H) do
13: �h

i  Calculate �h
i ð";m; a; b; r; t; khS;fÞ.

14: if (�1
i þ �2

i þ � � � þ �H
i < Li) then

15: Set lb mid.
16: else
17: Set ub mid.
18: end if
19: end for
20: end while
21: Set f ðubþ lbÞ=2.
22: for (each time slot h 2 H) do
23: �h

i  Calculate �h
i ð";m; a; b; r; t; khS;fÞ.

24: end for
25: return ��i.

Algorithm 3. Calculate �h
i (";m; a; b; r; t; k

h
S;f)

Input: ";m; a; b; r; t; khS;f.
Output: �h

i .
1: Initialization: Set ub ð1� "Þm� khS, and lb 0.
2: while (ub� lb > �) do
3: Setmid ðubþ lbÞ=2, and �h

i  mid.
4: if (Y h

i ð�h
i ; k

h
SÞ < f) then

5: Set lb mid.
6: else
7: Set ub mid.
8: end if
9: end while
10: Set �h

i  ðubþ lbÞ=2.
11: return �h

i .

Given ";m; a; b; r; t; ��i; ��S, and Li, our optimal request
configuration algorithm to find ��i is given in Algorithm 2.

The algorithm uses another subalgorithm Calculate �h
i

described in Algorithm 3, which, given ";m; a; b; r; t; khS, and

f, finds �h
i satisfies (36).

The key observation is that the left-hand side of (36), i.e.,
(37), is an increasing function of �h

i (see (38)). Therefore,

given f, we can find �h
i by using the binary search method

in certain interval ½lb; ub	 (Steps 2-9 in Algorithm 3). We set
lb simply as 0. For ub, as mentioned in Theorem 3.6,

�h
i � ð1� "Þm;

where " is a relative small positive constant. Therefore, in
this paper, ub is set in Step 1 based on the above discussion.
The value of f can also be found by using the binary search
method (Steps 10-20 in Algorithm 2). The search interval
½lb; ub	 for f is determined as follows. We set lb simply as 0.
As for ub, we notice that the left-hand side of (36) is an

increasing function of �h
i . Then, we set an increment vari-

able inc, which is initialized as a relative small positive con-
stant and repeatedly doubled (Step 7). The value of inc is

added to f to increase f until the sum of �h
i (h 2 H) found

by Calculate �h
i is at least Li (Steps 2-8). Once ½lb; ub	 is

decided, f can be searched based on the fact that

Y h
i ð�h

i ; ��
h
�iÞ is an increasing function of �h

i . After f is deter-
mined (Step 21), ��i can be computed (Steps 22-24).

Finally, we can describe the proposed iterative proximal
algorithm as follows. At the beginning, each cloud user i
(i 2 N ) sends his/her weight value (wi) and total task
request (Li) to the cloud provider. Then the cloud provider
computes t as in Theorem 3.6 according to the aggregated
information and chooses proper parameters a and b such
that constraint (17) is satisfied. After this, the cloud provider
puts the computed load billing parameters a and b into pub-
lic information exchange module. Then, at each iteration k,
the cloud provider broadcasts a synchronization signal and

the current aggregated request profile ��
ðkÞ
S
. Within iteration

k, each user receives the aggregated profile ��
ðkÞ
S

and com-

putes his/her strategy by solving its own optimization
problem in (32), and then sends the newly updated strategy
to the cloud provider. Last, as indicated in Steps 10-12 of
Algorithm 1, the cloud provider checks whether the Nash
equilibrium has been achieved and if so, it broadcasts a sig-

nal to inform all users to update their centroid ����i
����i. It also

checks whether all cloud users0 strategies are unchanged
and if so, it informs all users to choose whether they still
prefer to the cloud service due to their reserved values. This
process continues until the set of the remaining cloud users
and their corresponding strategies are kept fixed. In this
paper, we assume that the strategies of all cloud users are

unchanged if k��ðkÞ � ��ðk�1Þk � �, where ��ðkÞ ¼ ð��ðkÞi Þni¼1 with

��
ðkÞ
i ¼ ðð�h

i ÞðkÞÞHh¼1. The parameter � is a pre-determined rela-
tively small constant. We also denote Sc as the current set of
remaining cloud users. Note that the individual strategies
are not revealed among the users in any case, and only the

aggregated request profile ��ðkÞ, which is determined at the
cloud provider adding the individual H-time slots ahead
request profile, is communicated between the cloud pro-
vider and multiple cloud users.

4 PERFORMANCE EVALUATION OF IPA

In this section, we provide some numerical results to vali-
date our theoretical analyses and illustrate the performance
of the IPA algorithm.
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In the following simulation results, we consider the sce-
nario consisting of maximal 50 cloud users. Each time slot is
set as one hour of a day and H is set as 24. As shown in
Table 1, the aggregated request (L) is varied from 50 to 500
with increment 50. The number of cloud users (n) is varied
from 5 to 50 with increment 5. Each cloud user i (i 2 N )
chooses a weight value from 0 to 1=n to balance his/her
time utility and net profit. For simplicity, the reservation
value vi for each user i (i 2 N ) and billing parameter b are
set to zero. Market benefit factor r is set to 50, deteriorating
rate on time utility d is equal to 1.2, and " is set as 0.01. The
total capacity of all servers m is selected to satisfy constraint
(24) and another billing parameter a is computed according
to (17). In our simulation, the initial strategy configuration,
i.e., before using IPA algorithm, is randomly generated
from Q.

Fig. 2 presents the utility results for five different
cloud users versus the number of iterations of the pro-
posed IPA algorithm. Specifically, Fig. 2 presents the util-
ity results of five randomly selected cloud users (users 1,
9, 23, 38, and 46) with a scenario consisting of 50 cloud
users. We can observe that the utilities of all the users
seem to increase and finally reach a relative stable state
with the increase of iteration number. The reason behind
lies in that the request strategies of all the users keep
unchanged, i.e., reach a Nash equilibrium solution after
several iterations. This trend also reflects the convergence
process of our proposed IPA algorithm. It can be seen
that the developed algorithm converges to a Nash equi-
librium very quickly. Specifically, the utility of each user
has already achieved a relatively stable state after about

eight iterations, which verifies the validness of Theorem 3.6,
as well as displays the high efficiency of the developed
algorithm.

In Fig. 3, we compare the aggregated request profile of
all cloud users with the situation before and after IPA
algorithm. Specifically, Fig. 3 shows the aggregated requests
in different time slots. The situation before IPA algorithm
corresponds to a feasible strategy profile randomly gener-
ated in the initialization stage, while the situation after IPA
algorithm corresponds to the result obtained by using our
proposed IPA algorithm. Obviously, the proposed service
reservation scheme encourages the cloud users to shift their
task requests in peak time slots to non-peak time slots,
resulting in a more balanced load shape and lower total
load. We can also observe that the aggregated requests in
different time slots are almost the same. To demonstrate
this phenomenon, we further investigate the specific utili-
ties of some users and their corresponding strategies in dif-
ferent time slots, which are presented in Figs. 4 and 5.

In Figs. 4 and 5, we plot the utility shape and the request
profile of some cloud users for the developed IPA algorithm
for a scenario of 10 users. Fig. 4 presents the utility shape
under the developed algorithm over future 24 time slots.
We randomly select six users (users 2, 3, 4, 7, 9, and 10). It
can be seen that the utilities in different time slots of all
users tend to decrease at different degrees. Specifically, the
slot utilities of the users with higher weights have a clearly
downward trend and tend to decrease sharply in later time
slots (users 2, 3, 7, 9). On the other hand, the slot utilities of
the users with lower weights decline slightly (users 4, 10).
Fig. 5 exhibits the corresponding request strategies of the

TABLE 1
System Parameters

System parameters Value (Fixed)–[Varied range] (increment)

Aggregated task requests ðLÞ (500)–[100, 500] (50)
Number of cloud users ðnÞ (50)–[5, 50] (5)
Weight value ðwiÞ [0, 1/n]
Reservation value ðviÞ 0
Other parameters ("; b; r; d) (0.01, 0, 50, 1.2)

Fig. 2. Convergence process. Fig. 3. Aggregation load.
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users shown in Fig. 4. We can observe that the slot utilities
of the users with higher weights tend to decrease (users 2, 3,
7, 9) while those of the users with lower weights tend to
increase (users 4, 10). Furthermore, the aggregated requests
increase or decrease sharply in later time slots. The reason
behind lies in the fact that in our proposed model, we take
into the average response time into account and the

deteriorating factor of the value grows exponentially, which
also demonstrates the downward trends shown in Fig. 4.
On the other hand, the weights are chosen randomly, there
could be a balance between the increment and the decre-
ment of the utilities. Hence, the aggregated requests in dif-
ferent time slots make little differences (Fig. 3).

Figs. 6 and 7 present the average utility versus the
increase of request aggregation and the number of users,
respectively. Fig. 6 illustrates the average utility results with
the linear increment of request aggregation. We can observe
that the average utility also linearly increases with the
increase of request aggregation. No matter what the request
aggregation is, the average utility obtained after our pro-
posed IPA algorithm is better than that of the initial strategy
profile. Moreover, the differences between the results before
IPA algorithm and those after the algorithm are also
increases. That is to say, our proposed IPA algorithm makes
significant sense when the aggregated requests are some-
what large. Fig. 7 shows the impacts of number of users. It
can be seen that both of the results after IPA algorithm and
before algorithm are inversely proportional to the number
of uses. The reason behind lies in that the variation of num-
ber of users makes little impact on the average utility value
when the request aggregation is fixed. Moreover, similar to
the results presented in Fig. 6, the average utility obtained
after IPA algorithm is always better than that of the initial
strategy profile.

Fig. 4. Specific slot utility.

Fig. 5. Specific slot shifting.
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5 CONCLUSIONS

With the popularization of cloud computing and its many
advantages such as cost-effectiveness, flexibility, and scal-
ability, more and more applications are moved from local to
cloud. However, most cloud providers do not provide a
mechanism in which the users can evaluate their costs and
then decide whether to use the cloud service after obtaining
a proper strategy. That is to say, the users cannot decide
whether to use the service in advance and configure a most
suitable strategies for their own. What0s more, most cloud
providers adopt the charge scheme that depends on the ser-
vice time of the users0 requests. However, we may note that
the service time of a user is not only determined by the proc-
essing capacity of the cloud provider but also affected by
the aggregated requests of other users. Therefore, it is not
fair for the cloud users to certain extent when they use the
service on peak-hours. To remedy these deficiencies, we
focus on the strategy choices of multiple users to make
cloud service reservation over several future time slots.

We first design a mechanism in which the cloud provider
and its multiple users can establish negotiations, i.e., the
users can decide whether to use the service and configure
most suitable strategies for them. We consider the problem
from a game theoretic perspective and formulate it into a
non-cooperative game among the cloud users, in which each
cloud user is informed with incomplete information of other
users. For each user, we design a utility function which com-
bines the profit with time efficiency and try to maximize its
value. We solve the problem by employing variation
inequality theory and prove that there exists a Nash equilib-
rium solution set for the formulated game. Then, we propose
an iterative proximal algorithm , which is designed to com-
pute a Nash equilibrium solution. The convergence of the
IPA algorithm is also analyzed andwe find that the proposed
algorithm converges to a Nash equilibrium if several condi-
tions are satisfied. Finally, we provide some numerical calcu-
lations to verify our theoretical analyses. The experimental
results show that our proposed IPA algorithm converges to a
stable state very quickly and improves the users’ utilities to
certain extent by configuring a proper request strategy.

As part of future directions, we will configure the multi-
ple servers in cloud dynamically and study the relationship
between the cloud provider and multiple users. Another
direction is to study the cloud choice among multiple differ-
ent cloud providers or determine a proper mixed choice
strategy.
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