
A New Service Mechanism for Profit
Optimizations of a Cloud Provider and Its Users

Chubo Liu , Kenli Li , Senior Member, IEEE, Keqin Li , Fellow, IEEE, and Rajkumar Buyya , Fellow, IEEE

Abstract—In this paper, we try to design a service mechanism for profit optimizations of both a cloud provider and its multiple users.

We consider the problem from a game theoretic perspective and characterize the relationship between the cloud provider and its

multiple users as a Stackelberg game, in which the strategies of all users are subject to that of the cloud provider. The cloud provider

tries to select and provision appropriate servers and configure a proper request allocation strategy to reduce energy cost while

satisfying its cloud users at the same time. We approximate its servers selection space by adding a controlling parameter and

configure an optimal request allocation strategy. For each user, we design a utility function which combines the net profit with time

efficiency and try to maximize its value under the strategy of the cloud provider. We formulate the competitions among all users as a

generalized Nash equilibrium problem (GNEP). We solve the problem by employing variational inequality (VI) theory and prove that

there exists a generalized Nash equilibrium solution set for the formulated GNEP. Finally, we propose an iterative algorithm (IA),

which characterizes the whole process of our proposed service mechanism. We conduct some numerical calculations to verify our

theoretical analyses. The experimental results show that our IA algorithm can benefit both of a cloud provider and its multiple users

by configuring proper strategies.

Index Terms—Cloud computing, generalized Nash equilibrium, non-cooperative game theory, profit optimization, resource allocation, varia-

tional inequality theory

Ç

1 INTRODUCTION

CLOUD computing is an increasingly popular paradigm
of offering subscription-oriented services to enterprises

and consumers [1]. Usually, the provided services refer to
Infrastructure as a Service (IaaS), Platform as a Service
(PaaS), and Software as a Service (SaaS), which are all made
available to the general public in a pay-as-you-go manner
[2], [3]. To support various services, more and more cloud
centers are equipped with thousands of computing nodes,
which results in tremendous energy cost [4]. It is reported
that about 50 percent management budget of Amazon0s
data center is used for powering and colling the physical
servers [5]. There are also researchers who have studied the
cost of data centers and concluded that around 40 percent
of the amortized cost of a data center falls into power
related categories [6]. Hence, it is important to reduce
energy cost for improving the profit of a cloud provider.

However, it can often be seen that there are many under-
utilized servers in cloud centers, or on the contrary,
cloud providers provide less processing capacity and
thus dissatisfy their users for poor service quality. There-
fore, it is important for a cloud provider to select appro-
priate servers to provide services, such that it reduces
cost as much as possible while satisfying its users at the
same time.

For a cloud provider, the income (i.e., the revenue) is the
service charge to the aggregated requests from all cloud
users [7]. When the per request charge is determined, serv-
ers selection and request allocation strategy are two signifi-
cant factors that should be taken into account. The reason
behind lies in that both of them are not just for the profit of
a cloud provider, but for the appeals to more cloud users in
the market to use cloud service and thus also impact the
profit. Specifically, if the provided computing capacity is
large enough (i.e., many servers are under-utilized), this
will result in tremendous amount of energy waste with
huge cost and thus reduces the profit of the cloud provider.
On the other hand, if the cloud provider provides less com-
puting capacity or improperly configures the request alloca-
tion strategy, this will lead to low service quality (e.g., long
task response time) and thus dissatisfies its cloud users or
potential cloud users in the market.

A rational userwill choose a strategy to use the service that
maximizes his/her own net reward, i.e., the utility obtained
by choosing the cloud service minus the payment [8]. In addi-
tion, the utility of a user is not only determined by the net
profit of his/her requests (i.e., how much benefit the user can
receive by finishing the configured tasks), but also closely
related to the urgency of the tasks (i.e., how quickly they can

� C. Liu and K. Li are with the College of Information Science and Engineer-
ing, Hunan University, Changsha Shi 410006, China, and the National
Supercomputing Center in Changsha, Hunan 410082, China.
E-mail: {liuchubo, lkl}@hnu.edu.cn.

� K. Li is with the College of Information Science and Engineering, Hunan
University, Changsha Shi 410006, China, National Supercomputing
Center in Changsha, Hunan 410082, China, and the Department of
Computer Science, State University of New York, New Paltz, NY 12561
USA. E-mail: lik@newpaltz.edu.

� R. Buyya is with the Department of Computing and Information Systems,
University of Melbourne, Parkville, Vic 3053, Australia.
E-mail: rbuyya@unimelb.edu.au.

Manuscript received 1 June 2015; revised 21 Sept. 2016; accepted 30 Apr.
2017. Date of publication 7 June 2017; date of current version 5 Mar. 2021.
(Corresponding author: Chubo Liu)
Recommended for acceptance by R. Campbell.
Digital Object Identifier no. 10.1109/TCC.2017.2701793

14 IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. 9, NO. 1, JANUARY-MARCH 2021

2168-7161 © 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See ht _tps://www.ieee.org/publications/rights/index.html for more information.

https://orcid.org/0000-0002-2372-6715
https://orcid.org/0000-0002-2372-6715
https://orcid.org/0000-0002-2372-6715
https://orcid.org/0000-0002-2372-6715
https://orcid.org/0000-0002-2372-6715
https://orcid.org/0000-0002-2635-7716
https://orcid.org/0000-0002-2635-7716
https://orcid.org/0000-0002-2635-7716
https://orcid.org/0000-0002-2635-7716
https://orcid.org/0000-0002-2635-7716
https://orcid.org/0000-0001-5224-4048
https://orcid.org/0000-0001-5224-4048
https://orcid.org/0000-0001-5224-4048
https://orcid.org/0000-0001-5224-4048
https://orcid.org/0000-0001-5224-4048
https://orcid.org/0000-0001-9754-6496
https://orcid.org/0000-0001-9754-6496
https://orcid.org/0000-0001-9754-6496
https://orcid.org/0000-0001-9754-6496
https://orcid.org/0000-0001-9754-6496
mailto:
mailto:
mailto:

be finished). The same amount of tasks are able to generate
more utility for a cloud user if they can be completed within a
shorter period of time in the cloud center [8]. However, con-
sidering from energy saving and economic reasons, it is irra-
tional for a cloud provider to provide enough computing
resources to complete all requests in a short period of time.
Therefore, multiple cloud users have to configure the amount
of requests in different time slots. Since the requests from
users are submitted randomly, in our paper, we approxi-
mately characterize the request arrivals as a Poisson process
[9]. Since the payment and time efficiency of each of the cloud
users are affected by the decisions of others, it is natural to
analyze the behaviors of these users as strategic games [10].

In this paper, we try to design a new service mechanism
for profit optimizations of both a cloud provider and its
multiple users. We consider the problem from a game theo-
retic perspective and characterize the relationship between
the cloud provider and its users as a Stackelberg game, in
which the strategies of all users are subject to that of the
cloud provider. In our mechanism, the cloud provider tries
to select appropriate servers and configure a proper request
allocation strategy to reduce energy cost while satisfying its
users at the same time.

The main contributions of this paper are listed as follows.

� We characterize the relationship between the cloud
provider and its users as a Stackelberg game, and try
to optimize the profits of both a cloud provider and
its users at the same time.

� We formulate the competitions among all users as a
generalized Nash equilibrium problem (GNEP), and
prove that there exists a generalized Nash equilib-
rium solution set for the formulated GNEP.

� We solve the GNEP by employing varational
inequality (VI) theory and propose an iterative algo-
rithm (IA) to characterize the whole process of our
proposed service mechanism.

Experimental results show that our IA algorithm can
benefit both of the cloud provider and its multiple users by
configuring proper strategies.

The rest of the paper is organized as follows. Section 2
presents the related works. Section 3 describes the models
of the system and presents the problem to be solved.
Section 4 formulates the problem into a Stackelberg game,
which consists of a leader and a set of followers. We analyze
the strategies for both of the leader and the followers. Many
analyses and several subalgorithms are presented in this
section. Section 5 is developed to verify our theoretical anal-
ysis and show the effectiveness of our proposed algorithm.
We conclude the paper with future work in Section 6.

2 RELATED WORK

Some works have been done for profit optimizations of
cloud centers in the literature [7], [11], [12], [13]. The meth-
ods are presented in Table 1. In [12], Lampe et al. proposed
a heuristic method to tackle profit maximization for a cloud
provider. They focus on auction profit maximization in the
context of multiple virtual machines (VMs). In [13], Gou-
darzi and Pedram developed a heuristic to deal with profit
maximization in cloud computing system with service level
agreements. They try to reduce cost by powering off appro-
priate servers, i.e., selecting appropriate servers to provide
services. More recently, Cao et al. [7] proposed an optimal
method for energy saving under continuous dynamic volt-
age frequency scaling (DVFS) environment. Specifically,
they try to configure appropriate speed for each server to
save energy. However, as shown in Table 1, all these meth-
ods mainly consider from the perspective of the cloud
provider.

To our knowledge, hardly any previous works investi-
gate multiple users0 profit optimizations, let alone optimiz-
ing the profits of a cloud provider and its users at the same
time. In this work, we first try to optimize multiple users0

profits. Since multiple cloud users compete for using the
resources of a cloud provider, and the utility of each user is
affected by the decisions (service request strategies) of other
users, it is natural to analyze the behaviors of such systems
as strategic games [14].

Game theory provides a framework to explain and
address the interactive decision situations where the goals
and preferences of the participating users are in conflict [15],
[16]. It is a formal study of conflicts and cooperation among
multiple users [17] and a powerful tool for the design and
control of multiagent systems [18]. Due to its advantages,
there has been a growing interest in adopting cooperative
and non-cooperative game theoretic approaches to various
areas such as scheduling [19], communications [20], and evo-
lution of cooperation [21]. A more general framework suit-
able for investigating and solving various equilibrium
models, even when game theory may fail, is the variational
inequality theory which is applicable to a very general class
of problems in nonlinear analysis [22]. For more works on
game theory, the reader is referred to [23], [24], [25].

As presented in Section 1, energy cost is one of the most
important factors that should be taken into account for a
cloud provider to increase its profit. Many works have also
been done on energy saving in the literature [26], [27], [28],
[29]. In [28], Mei et al. proposed an energy-aware schedul-
ing algorithm for sporadic tasks. The authors try to reduce
energy consumption by using dynamic voltage frequency
scaling technique. In [29], based on DVFS technique and the
concept of slack sharing among processors, the authors also
proposed two novel energy-aware scheduling algorithms.
Similar works can also be found in [26], [27].

However, according to [30], even an energy efficient
server still consues about half of its full power when doing
no work. Therefore, powering off idle servers when possible
is regarded as an effective way to reduce energy cost, espe-
cially during off-peak traffic hours for a relative long period
of time [31]. In this work, we try to power off some idle serv-
ers (i.e., select appropriate servers to provide services) to
reduce energy cost for the cloud provider. In addition, we

TABLE 1
Comparison Between IA and the State-of-the-Art Schemes

Schemes Perspective(s) Energy saving
technique

Characteristic

[7] Cloud provider Continuous DVFS Optimal
[11] Cloud provider Powering off servers Heuristic
[12] Cloud provider VM consolidation Heuristic
[13] Cloud provider Powering off servers Heuristic
IA Cloud provider

and users
Powering off servers Heuristic

LIU ET AL.: A NEW SERVICE MECHANISM FOR PROFIT OPTIMIZATIONS OF A CLOUD PROVIDER AND ITS USERS 15

configure server selection strategy for multiple time slots,
i.e., for a relative long period of time.

3 SYSTEM MODEL AND PROBLEM FORMULATION

In this section, we first present our system models and then
formulate the profit optimization problem. We consider the
context of a cloud provider with multiple cloud users. The
cloud provider is assumed to be equipped with m heteroge-
neous multicore servers. We denote the set of servers as
M¼ 1; 2; . . . ;mf g. Each server j (j 2 M) consists of cj cores
and similar to [9], it is modeled by an M/M/c queueing sys-
tem. We denote the set of cloud users as N ¼ 1; 2; . . . ; nf g.
The requests from each of the cloud users are assumed to
follow a Poisson process.

We summarize all the notations used in this section in
the notation table (see Section 1 of the supplementary
material, which can be found on the Computer Society
Digital Library at http://doi.ieeecomputersociety.org/
10.1109/TCC.2017.2701793).

3.1 Architecture Model

In this section, wemodel the architecture of our proposed ser-
vice mechanism, in which the cloud provider can select an
appropriate servers subset S fromM (i.e., S �M) to provide
services for the H future time slots, and configure a proper
strategy ppS ¼ pp1S; . . . ; pp

H
S

� �
with pphS ¼ ðphj Þj2S (h 2 H) to allo-

cate the aggregated requests to the selected servers, such that
the average response time over all cloud users (see Eq. (14)) is
minimized, while its multiple users can make an appropriate
request decision according to the selected servers and alloca-
tion strategy. As shown in Fig. 1, each user i (i 2 N) is
equipped with a utility function (Ui) and a request configura-
tion strategy (��i), i.e., the request strategy over H future time
slots. All requests enter a queue to be processed by the cloud
center. Let ��S be the aggregated request vector, then we have
��S ¼

P
i2N ��i. The cloud provider tries to select an appropri-

ate servers subset S, configure an appropriate allocation strat-
egy ppS , and publishes some information (e.g., per request
charge r, server subset S, and the corresponding allocation
strategy ppS , current aggregated requests ��S) on the informa-
tion exchange model. When multiple users try to configure
appropriate request strategies, they first get information from
the exchangemodule, then compute proper request strategies
such that their own utilities are maximized and send the
newly strategies to the cloud provider.

The computation and communication process can be
automatically done by a software. If a user wants to have a

look at the aggregated requests ��S in the process, he/she
just needs to press a button of the software to ask for the
cloud provider to send the newly updated value of ��S. Take
one day as an example, i.e., H ¼ 24 (from 20:00 to 20:00 of
the next day), with one hour a time slot. The cloud provider
sets 20:00 to ensure the users who use its service and com-
pute their corresponding strategies over the next 24 hours.
That is to say, each user has two steps to make cloud service
reservation. First, before 20:00, the users who want to use
the cloud service register their informations. Second, the
cloud provider collects the informations of its registered
users and ensures the agreements at 20:00. If a user registers
after 20:00, then he/she tries to make the next negotiation,
i.e., waits for the next round.

3.2 Energy Cost Model

We consider energy consumption model in the context of
our proposed heterogeneous multicore server system.
Energy consumption and circuit delay in complementary
metal-oxide semiconductor (CMOS) can be accurately mod-
eled by simple equations, even for complex microprocessor
circuits [9]. The energy consumption of a CMOS-based pro-
cessor is defined as the summation of capacitive, short-cir-
cuit, and leakage energy [32]. However, the dominant
component in a well-designed circuit is capacitive energy
E, which is approximately defined as

E ¼ dCV 2f; (1)

where d is the number of switches per clock cycle, C is
the total capacitance load, V is the supply voltage, and f
is the frequency. The processing capacity of a processor
m is usually linearly proportional to the clock frequency,
i.e., m / f . With reference to [9], [33], we also obtain
f / V f with 0 < f � 1, which implies that V / f1=f.
Therefore, we know that the energy consumption is
E / fa and E / ma, where a ¼ 1þ 2=f � 3. In this paper,
we assume that

E ¼ �ma; (2)

where � is a corresponding factor. Denote x as the cost of
one unit of energy and let Ej be the energy consumption of
server j (j 2 M) in a unit of time. According to Eq. (2), we
obtain

Ej ¼ xcj�jm
aj
j ; (3)

where mj is the processing rate of one core of server j, �j and
aj are the corresponding energy consumption factors.

3.3 Request Profile Model

We consider a user request model similar to [34], [35],
where the user i0s (i 2 N) request profile over the H future
time slots is formulated as

��i ¼ �1
i ; . . . ; �

H
i

� �
; (4)

where �h
i (h 2 H) is the arrival rate of requests from user i in

the hth time slot and it is subject to the constraint
0 � �h

i � Li, where Li denotes user i
0s maximal requests in

a time slot. The requests from each of the users in different

Fig. 1. Architecture model.

16 IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. 9, NO. 1, JANUARY-MARCH 2021

http://doi.ieeecomputersociety.org/10.1109/TCC.2017.2701793
http://doi.ieeecomputersociety.org/10.1109/TCC.2017.2701793

time slots are assumed to follow a Poisson process. The indi-
vidual strategy set of user i can be expressed as

Qi ¼
n
��ij0 � �h

i � Li; 8h 2 H
o
; (5)

whereH ¼ 1; . . . ; Hf g is the set of allH future time slots.

3.4 Cloud Service Model

The cloud provider is equipped with a request scheduler
and m heterogeneous multicore servers. Each server j
(j 2 M) consists of cj cores and similar to [9], it is modeled
by an M/M/c queuing system. We assume that all of the
servers differ in their processing capacities and energy con-
sumptions. The processing capacity of one core of server j
(j 2 M) is presented by its service rate mj. Energy consump-
tion factors �j and aj are also different among different serv-
ers. The cloud provider only selects a servers subset S
(S �M) to provide services.

Let phj be the probability that each of the requests is
assigned to server j (j 2 S) in time slot h (h 2 H) and rhj be
the corresponding service utilization. Then we have
rhj ¼ phj �

h
S

.
cjmj

� �
, where �h

S denotes the aggregated
requests from all cloud users in time slot h, i.e.,
�h
S ¼

Pn
i¼1 �

h
i . Let p

h
k;j be the probability that there are k ser-

vice requests (waiting or being proceed) at server j in time
slot h. With reference to [9], we have

ph
k;j ¼

ph
0;j

cjr
h
j

� �k

k! ; k < cj;

ph
0;j

c
cj
j

rh
j

� �k

cj!
; k � cj;

8>>><
>>>:

(6)

where

ph
0;j ¼

Xcj�1
l¼0

cjr
h
j

� �l
l!

þ
cjr

h
j

� �cj
cj!

� 1

1� rhj

0
B@

1
CA
�1

: (7)

The probability of queuing (i.e., the probability that a newly
submitted request must wait due to all cores of server j are
busy) is

Ph
q;j ¼

X1
k¼cj

ph
k;j ¼

ph
cj;j

1� rhj
: (8)

The average number of service requests in time slot h (in
waiting or in execution) at server j is

�Nh
j ¼

X1
k¼0

kph
k;j ¼ cjr

h
j þ

rhj

1� rhj
Ph
q;j: (9)

Applying Little0s result, we obtain the average response
time at server j as

�Th
j ¼

�Nh
j

phj �
h
S

¼ 1

phj �
h
S

cjr
h
j þ

rhj

1� rhj
Ph
q;j

 !
; (10)

where Ph
q;j represents the probability that the incoming

requests at server j need to wait in queue in time slot h.
In this paper, we assume that all of the selected servers

will likely keep busy, because if not so, some servers
could be removed to reduce mechanical wear and energy
cost. Therefore, Ph

q;j (8j 2 S) is assumed to be 1, and we
have

�Th
j ¼

1

phj �S

cjr
h
j þ

rhj

1� rhj

 !
¼ 1

mj

þ 1

cjmj � phj �
h
S

: (11)

With a request rate of �h
i (i 2 N) in time slot h (h 2 H),

the average response time of user i on server j (j 2 S) is
given by

�Th
ij ¼

phj �
h
i

mj

þ phj �
h
i

cjmj � phj �
h
S

: (12)

We derive the mean response time of user i (i 2 N) over all
servers as

�Th
i ¼

X
j2S

phj
�Th
ij ¼

X
j2S

phj

� �2
�h
i

mj

þ
phj

� �2
�h
i

cjmj � phj �
h
S

0
B@

1
CA; (13)

and the average response time over all users as

�Th ¼
X
i2N

�h
i

�h
S

�Th
i

 !
¼
X
i2N

�h
i

�h
S

X
j2S

phj
�Th
ij

 !

¼
X
i2N

�h
i

� �2
�h
S

X
j2S

phj

� �2
mj

þ
phj

� �2
cjmj � phj �

h
S

0
B@

1
CA:

(14)

3.5 Problem Formulation

Now, let us consider user i0s (i 2 N) utility in time slot h. A
rational cloud user will seek a strategy to maximize its
expected net reward by finishing the tasks, i.e., the benefit
obtained by choosing the cloud service minus its total pay-
ment. We denote user i0 net reward in time slot h by Rh

i ,
where Rh

i ¼ b� rð Þ�h
i with b and r denoting the benefit fac-

tor (the reward obtained by one task request) and the charge
factor (the cost by finishing one task request in cloud com-
puting), respectively. On the other hand, since a user will be
more satisfied with much faster service, we also take the
response time of the user into account. Note that service
time utility will be deteriorated with the delay of time slots.
Hence, in this paper, we assume that the deteriorating rate
of time utility is d (d > 1). Denote the T̂ h

i as the time utility
of user i in time slot h. Then we have T̂ h

i ¼ dh �Th
i . More for-

mally, the utility of user i (i 2 N) in time slot h is defined as

Uh
i �h

i ; ��
h
�i

� � ¼ wiR
h
i � T̂ h

i ¼ wi b� rð Þ�h
i � dh �Th

i ; (15)

where ��h
�i ¼ �h

1 ; . . . ; �
h
i�1; �

h
i ; . . . ; �

h
n

� �
denotes the vector of

all users0 request profile in time slot h except that of user i,
and wi (wi > 0) is a weight factor, which reflects the impor-
tance of net benefit compared with time utility. Note that,
when the average response time is low, the users may sub-
mit more requests and thus impact the aggregated requests
in cloud center.

We obtain the total utility obtained by user i (i 2 N) over
allH future time slots as

LIU ET AL.: A NEW SERVICE MECHANISM FOR PROFIT OPTIMIZATIONS OF A CLOUD PROVIDER AND ITS USERS 17

Ui ��i; ���ið Þ ¼
X
h2H

Uh
i �h

i ; ��
h
�i

� �
¼
X
h2H

wi b� rð Þ�h
i � dh �Th

i

� �
;

(16)

where ���i ¼ ��1; . . . ; ��i�1; ��iþ1; . . . ; ��nð Þ denotes the
ðn� 1ÞH � 1 vectors of all users0 request profile except that
of user i. In this paper, we assume that each user i (i 2 N)
has a reservation value vi. That is to say, cloud user i will
prefer to use the cloud service if Ui ��i; ���ið Þ � vi and refuse
to use the cloud service otherwise.

For the cloud provider, its objective is trying to select an
appropriate servers subset S fromM and configure a proper
request allocation strategy ppS , such that its net reward, i.e.,
the charge to all cloud users minus its energy cost, is maxi-
mized. We denote p as the net profit, then the cloud
provider0s problem is tomaximize the value p. That is,

maximize p S; ppSð Þ ¼ r
X
i2N

X
h2H

�h
i �H

X
j2S

Ej;S �M;

s.t. Ui ��i; ���ið Þ � vi; ��i 2 Qi; 8i 2 N ;

phj �
h
S < cjmj; 8j 2 S; 8h 2 H;X
j2S p

h
j ¼ 1; 8h 2 H:

(17)

4 GAME FORMULATION AND ANALYSES

Since the multiple users have to compete for using the com-
puting resources, and their strategies are subject to that of
the cloud provider, we formulate the relationship between
the cloud provider and its multiple users into a Stackelberg
game. For the cloud provider, we try to approximate its
server selection solution space by using a control parameter
and configure an appropriate request allocation strategy to
the selected servers. For the multiple users, we characterize
their competitions as a non-cooperative game and formulate
them into a generalized Nash equilibrium problem. By
employing variational inequality theory, we analyze the the
formulated GNEP. Then, we propose an iterative algorithm
to compute appropriate strategies for both the cloud pro-
vider and its multiple users.

4.1 Game Formulation

Game theory studies the problems in which multiple players
try to maximize their utilities or minimize their disutilities.
In this section, we characterize the optimization problem
presented in Section 3.5 as a Stackelberg game, which is a
sequential game played between a Leader and a set of Fol-
lowers [36]. All of them try tomaximize their own utilities.

In ourwork, the cloud provider plays the role of the leader,
who tries to select an appropriate servers subset S fromM
and configure a proper request allocation strategy ppS to the
selected servers, such that it can appeal user requests asmany
as possible while its cost is relatively low. We denote QL as
the servers selection space, thenQL can be expressed as

QL ¼ SjS � Mf g: (18)

Each cloud user is regarded as a follower, i.e., the set of fol-
lowers is the n cloud users. Notice that when given S and
ppS , the workload of each server j (j 2 S) in time slot h

(h 2 H) never exceeds its processing capacity, i.e.,
phj �

h
S < cjmj (8j 2 S). We denote s as a relative small con-

stant and add the constraint �h
S � 1� sð Þ�h

up, where �h
up ¼

minj2Sfcjmj=:p
h
j g. Then the request strategy set of user i

(i 2 N) can be expressed as

Q̂i ���ið Þ ¼ Qi \ ��ij
Xn
i¼1

�h
i � 1� sð Þ�h

up; 8h 2 H
()

: (19)

Then, the joint strategy set of all followers is given by
Q̂F ¼Q̂1 � � � � �Q̂n.

A Stackelberg game assumes certain decision power for
both the leader and followers, with the leader processing a
higher priority. The followers have to make their decisions
subject to the leader’s strategy [37] and try to maximize their
own utilities. Therefore, the profit maximization problem of
the cloud provider can be formulated as the following opti-
mization problem (OPT):

maximize p S; ppSð Þ ¼ r
X
i2N

X
h2H

�h
i �H

X
j2S

Ej;S 2 QL;

s.t. ��i 2 argmax
��
0
i
2Q̂i ���ið Þ

Ui ��
0
i; ���i

� �
; 8i 2 N :

(20)

Theorem 4.1. Above OPT problem is NP-hard.

Proof. A complete proof of the theorem is given in the sup-
plementary material, available online. tu

4.2 Leader’s Strategy Analysis

We now consider the problem from the perspective of the
cloud provider. We try to reduce the servers selection space
by using an approximated one. We also configure an opti-
mal request allocation strategy for the aggregated requests.

4.2.1 Solution Space Approximation

To reduce the solution space (QL), we use a parameter " to
categorize all the elements in QL and reduce some server
subsets, which provide similar processing capacities.

We notice that a server j (j 2 M) gains net profit at most
Pj in each time slot for the cloud provider, where
Pj ¼ rcjmj � Ej. Therefore, we use Pj to characterize the
server j (j 2 M) during our approximation process. In this
paper, the value Pj (8j 2 M) is assumed to be greater than
zero. We denote PT Sð Þ as the largest possible profit gained
by all servers in S. Then we have PT Sð Þ ¼

P
j2S Pj. Arrange

all of the server subsets Sð1Þ;Sð2Þ; . . . ;Sð QLj jÞ in QL, such that
PT ðSð1ÞÞ � PT ðSð2ÞÞ � � � � � PT ðSð QLjÞj Þ. We try to reduce
some elements inQL to an approximated solution spaceQð"ÞL
, such that for each server subset S in QL, there exists an ele-
ment Sð"Þ (Sð"Þ 2 Qð"ÞL) satisfying PT Sð Þ � 1þ "ð ÞPT ðSð"ÞÞ.
The idea is formalized in Algorithm 1.

Given "; r;mm; EE, and M, where mm ¼ mj

� �
j2M and EE ¼

Ej

� �
j2M, the algorithm Calcualte Qð"ÞL finds an approximated

solution space Qð"ÞL for QL. The key idea is trying to reduce
solution space by selecting some server subset representatives
and removing similar ones (Steps 7-11). At the beginning, we
set Qð"ÞL as ;f g, which only contains an empty subset
(Step 1). Then, for a server j (j 2 M), we merge it into each
of the subsets in Qð"ÞL (Steps 3-5) and resort the subsets

18 IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. 9, NO. 1, JANUARY-MARCH 2021

according to their largest possible gained profits (Step 6).
After resorting, we try to remove some later elements SðlÞ
(SðlÞ 2 QL) if there exists a previous one SðpÞ (SðpÞ 2 QL) sat-
isfying PT ðSðlÞÞ � 1þ "ð ÞPT ðSðpÞÞ (Steps 7-11). This process
is terminated when all the servers inM are considered.

Algorithm 1. Calculate Qð"ÞL ("; r;mm; EE;M)

Input: "; r;mm; EE;M.
Output: Qð"ÞL .
1: Initialization: For each server j (j 2 M), calculate Pj.

SetQð"ÞL ¼ ;f g.
2: for (each server j 2 M) do
3: for (each element S 2 Qð"ÞL) do
4: Merge server j into set S, i.e., set S S [fjg.
5: end for
6: Sort the elements inQð"ÞL such that

PT ðSð1ÞÞ � PT ðSð2ÞÞ � � � � � PT ðSðjQ
ð"Þ
L
jÞÞ.

7: for (i from 1 to jQð"ÞL j � 1) do
8: if (PT ðSðiþ1ÞÞ � 1þ "ð ÞPT ðSðiÞÞ) then
9: Remove Sðiþ1Þ fromQð"ÞL , i.e., set

Qð"ÞL Qð"ÞL � Sðiþ1Þ
n o

.

10: end if
11: end for
12: end for
13: returnQð"ÞL .

Theorem 4.2. The time complexity of Algorithm 1 is
QðmLð"ÞlogLð"ÞÞ, where

Lð"Þ ¼ 1þ "ð Þ lnPT Mð Þ
"

; (21)

with PT Mð Þ ¼Pj2M rcjmj �Ej

� �
.

Proof. We first derive an upper bound of the length of set
Qð"ÞL . As can be seen from Algorithm 1, after steps 7-11,
two continuous elements S and S0 (S;S0 2 Qð"ÞL) satisfy
the condition PT ðS0 Þ=:PT Sð Þ > 1þ ". That is to say, for
any two elements S;S0 2 Qð"ÞL , PT ðS0 Þ

.
PT Sð Þ > 1þ ".

Therefore, Qð"ÞL contains element ; and may contain at

most other log 1þ"PT Mð Þ� �
elements. Thus, the number of

elements in setQð"ÞL is at most

log 1þ"ð ÞPT Mð Þ þ 1 ¼ lnPT Mð Þ
ln 1þ "ð Þ þ 1

� 1þ "ð Þ lnPT Mð Þ
"

þ 1:

In Algorithm 1, we note that the for loop (Steps 3-5)

requires QðLð"ÞÞ to complete as well as the other for loop

(Steps 7-11). In step 6, it takes at most Q Lð"ÞlogLð"Þ
� �

to

sort the elements in set Qð"ÞL . Therefore, the outer for loop

(Steps 2-12) takes time Qðmð2Lð"Þ þ Lð"ÞlogLð"ÞÞÞ
¼ QðmLð"ÞlogLð"ÞÞ. Thus, the time complexity of

Algorithm 1 is QðmþmLð"ÞlogLð"ÞÞ ¼ QðmLð"ÞlogLð"ÞÞ.
This completes the proof and the result follows. tu

4.2.2 Request Distribution Analysis

After a servers subset is determined, the cloud provider has
to consider an appropriate request allocation strategy, such

that the average response time over all users (see Eq. (14)) is
minimized and thus satisfies and appeals more cloud users.
Before address the request allocation strategy, we first show
two properties which are presented in Theorem 4.3 and
Corollary 4.4.

Theorem 4.3. Consider a two server system such that mj < mk

(j; k 2M), it is optimal to assign a certain amount of requests
� (� < �S and � < mj þ mk) to both of the servers. Namely,
the minimum ~Tk xpcð Þ þ ~Tj 1� xð Þpcð Þ occurs at 0 < x < 1,
where

~Tl xpcð Þ ¼ 1

�S

X
i2N

�2
i

 !
xpcð Þ2
ml

þ xpcð Þ2
clml � xpc�S

 !
; (22)

l ¼ j; k, and pc ¼ �=�S.

Proof. From (22), we can observe that ~Tk xpcð Þ and
~Tj 1� xð Þpcð Þ are convex and thus ~Tk xpcð Þ þ ~Tj 1� xð Þpcð Þ
is a convex function. We try to obtain the minimum of
~Tk xpcð Þ þ ~Tj 1� xð Þpcð Þ by analyzing its derivative for all
0 � x � 1. After some algebraic calculation, we obtain

d

dx
~Tk xpcð Þ� � ¼ 1

�S

X
i2N

�2
i

 !
2xp2c
mk

þ 1

�S

X
i2N

�2
i

 !
2xp2cckmk � xð Þ2p3c�S

ckmk � xpc�Sð Þ2 ;

and

d

dx
~Tj 1� xð Þpcð Þ� � ¼ � 1

�S

X
i2N

�2
i

 !
2 1� xð Þp2c

mj

�

1

�S

X
i2N

�2
i

 !
2 1� xð Þp2ccjmj � 1� xð Þ2p3c�S

cjmj � 1� xð Þpc�S

� �2 :

Obviously, d
dx

~Tk xpcð Þ þ ~Tj 1� xð Þpcð Þ� �
< 0 at x ¼ 0,

and d
dx

~Tk xpcð Þ þ ~Tj 1� xð Þpcð Þ� �
> 0 at x ¼ 1. Besides,

we can further obtain

d2

dx2
~Tk xpcð Þ þ ~Tj 1� xð Þpcð Þ� �

¼ 1

�S

X
i2N

�2
i

 !
2p2c
mk

þ 2p2cc
2
km

2
k

ckmk � xpc�Sð Þ3
 !

þ 1

�S

X
i2N

�2
i

 !
2p2c
mj

þ 2p2cc
2
jm

2
j

cjmj � 1� xð Þpc�S

� �3
 !

> 0:

Therefore, d
dx

~Tk xpcð Þ þ ~Tj 1� xð Þpcð Þ� �
is strictly increas-

ing over 0 � x � 1 so long as x� < mk and ð1� xÞ�
< mj, that is, for all feasible assignments.

Thus, the minimum ~Tk xpcð Þ þ ~Tj 1� xð Þpcð Þ occurs at
0 < x < 1 and the result follows. tu

Corollary 4.4. Given a server set S, it is optimal for a cloud pro-
vider to assign jobs to all servers in S.

Proof.We denote TR ppRð Þ as the average response time of all
users when the server set is R (R 	 S) and the request
distribution strategy is ppR, where ppR ¼ pj

� �
j2R. Denote

pp
R as an optimal assignment. Let

LIU ET AL.: A NEW SERVICE MECHANISM FOR PROFIT OPTIMIZATIONS OF A CLOUD PROVIDER AND ITS USERS 19

~Tj pj
� � ¼ 1

�S

X
i2N

�2
i

 !
p2j
mj

þ p2j
cjmj � xpj�S

 !
;

for all j 2 R. Then we have

TR ppRð Þ ¼
X
j2R

~Tj pj
� �

:

Assuming that there exist a server k (k 2 R) and a
server l (l 2 �R), where �R denotes the supplementary set
of R. Based on Theorem 4.3, we can find that there exists
an x (0 < x < 1) such that

~Tk xp
k
� �þ ~Tl 1� xð Þp
k

� �
< ~Tk p
k

� �
:

Namely,X
j2R;j 6¼k

~Tjðp
j Þ þ ~Tkðxp
kÞ þ ~Tl 1� xð Þp
k
� �

<
X
j2R

~Tjðp
j Þ:

Therefore, there exists a probability vector pp
0
R[lf g for

server set R[lf g with p
0
k ¼ xp
k, p

0
l ¼ 1� xð Þp
k, and

p
0
j ¼ p
j (j 2 R and j 6¼ k), such that

TR[lf g
�
pp
0
R[lf g

�
< TR pp
R

� �
:

This process can be terminated when the server set �R is
empty. Thus, it is optimal for a cloud provider to assign
requests to all servers for set S, and the result follows. tu
Next, we focus on the probability distribution for the mini-

mization of system response time in time slot h (h 2 H) (see
Eq. (14)).We denoteP as the constraint of probability, i.e.,

P ¼
X
j2S

phj ¼ 1; (23)

and try to minimize �Th by using the method of Lagrange
multiplier, namely,

@ �Th

@phj
¼ f

@P

@phj
¼ f; (24)

where f is a Lagrange multiplier. That is,

@ �Th

@phj
¼

X
i2N

�h
i

� �2
�h
S

 !
2phj
mj

þ
2phj cjmj � phj

� �2
�h
S

cjmj � phj �
h
S

� �2
0
B@

1
CA ¼ f; (25)

for all j 2 S, andPj2S p
h
j ¼ 1.

Since the second order of �Th phj

� �
is

@2 �Th

@ phj

� �2 ¼ X
i2N

�h
i

� �2
�h
S

 !
2

mj

þ 2c2jm
2
j

cjmj � phj �
h
S

� �3
0
B@

1
CA > 0; (26)

we can conclude that @ �Th

@ph
j

is an increasing positive function

on phj . Based on above derivations, we propose an algorithm

to calculate ppS , which is motivated by [9].
Given �;mm; �h

S, and S, our optimal request allocation algo-
rithm to find ppS is given in Algorithm 2. The algorithm uses
another subalgorithm Calculate phj , which, given mj; �

h
S, and

f, finds phj satisfies (25). The key observation is that the left-
hand side of (25) is an increasing function on phj (see (26)).
Therefore, given f, we can find phj by using the binary search
method in certain interval ½lb; ub� (Steps 2-9 in Algorithm 3).
We set lb simply as 0. For ub, we may note that the allocated
load never exceed its processing capacity. Therefore, we set
ub as min 1; cjmj

�
�h
S

	

. The value of f can also be found by

using the binary search method (Steps 2-8 in Algorithm 2).
The search interval ½lb; ub� for f is determined as follows. We
set lb simply as 0. As for ub, we set an increment variable inc,
which is initialized as a relative small positive constant and
repeatedly doubled (Step (7)). The value of inc is added to f

to increase f until the sum of phj (j 2 S) found byCalculate phj
is at least 1 (Steps 2-8). Once ½lb; ub� is decided, f can be
searched by using binary search (Steps 10-20). After f is deter-
mined (Step 21), phj can be computed (Steps 22-24).

Algorithm 2. Calculate pphS(�;mm; �
h
S;S)

Input: �;mm; �h
S;S

Output: pphS .
1: Initialization: Let inc be a relative small positive constant.

Set pphS 00, and f 0.
2: while (

P
j2S p

h
j < 1) do

3: Setmid fþ inc, and f mid.
4: for (each server j 2 S) do
5: phj Calculate phj ð�;mj; �

h
S;fÞ.

6: end for
7: Set inc 2� inc.
8: end while
9: Set lb 0 and ub f.
10: while (ub� lb > �) do
11: Setmid ðubþ lbÞ=2, and f mid.
12: for (each server j 2 S) do
13: phj Calculate phj ð�;mj; �

h
S;fÞ.

14: if (
P

j2S p
h
j < 1) then

15: Set lb mid.
16: else
17: Set ub mid.
18: end if
19: end for
20: end while
21: Set f ðubþ lbÞ=2.
22: for (each server j 2 S) do
23: phj Calculate phj ð�;mj; �

h
S;fÞ.

24: end for
25: return pphS .

By Algorithm 3, we note that the while loop (Steps 2-9) is
a binary search process, which is very efficient and requires

time Qðlog ð1�minf1; mj

�h
S

gÞÞ ¼ Qðlog ð1�ÞÞ, where � is the error

tolerance (e.g., 0.1, 0.01, in our work, � is set as 0.01). As for
Algorithm 2, its main idea is the twice uses of binary search
method. Specifically, the first while loop (Steps 2-8) is the
first use of binary search method, which is designed to
determine an upper bound (ub) of f. The second use
of binary search method is the second while loop (Steps
10-20), which is designed to search the exact f such thatP

j2S p
h
j ¼ 1. Therefore, the number of loops of the first

while loop is Q logubð Þ and that of the second while loop is

Qðlog ðub� ÞÞ. To analyze the time complexity of Algorithm 2,

20 IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. 9, NO. 1, JANUARY-MARCH 2021

we have to find an upper bound of f, i.e., ub. From (25) of
our paper, we know that

f ¼ @ �Th

@phj
¼

X
i2N

�h
i

� �2
�h
S

 !
2phj
mj

þ
2phj cjmj � phj

� �2
�h
S

cjmj � phj �
h
S

� �2
0
B@

1
CA

�
X
i2N

�h
i

 !
2phj
mj

þ
2phj cjmj � phj

� �2
�h
S

cjmj � phj �
h
S

� �2
0
B@

1
CA

¼ 2phj �
h
S

mj

þ
2cjmj phj �

h
S

� �
� phj �

h
S

� �2
cjmj � phj �

h
S

� �2

< 2cj þ
2cjmj phj �

h
S

� �
cjmj � phj �

h
S

� �2
� 2cj þ

2 1� sð Þ cjmj

� �2
s2 cjmj

� �2
� 2cmax þ 2 1� sð Þ

s2
;

(27)

where cmax denotes the maximal number of cores of a server,
i.e., cmax ¼ maxj2M cj

� �
, and s is a relative small positive

constant (to maintain the convexity of the individual strat-
egy set of a user, phj �

h
S � 1� sð Þcjmj (8j 2 M) is added to

the optimization problem of the cloud provider as a con-
straint, i.e., we try to maximize the profits under the con-
straint phj �

h
S � 1� sð Þcjmj (8j 2 M). In our work, s is also

set as 0.01). Therefore, an upper bound of f, i.e., ub, in

Algorithm 2 is ð2cmax þ 2ð1�sÞ
s2
Þ. We can conclude that the

number of loops of the first while loop (Steps 2-8) is

Qðlog ðcmax þ ð1�sÞs2
ÞÞ, and the number of loops of the second

while loop (Steps 10-20) is Qðlog ðcmax
� þ ð1�sÞ�s2

ÞÞ. Since at each

iteration (loop) of these two while loops, the main operation

is the Sj j times call for Algorithm 3, and the possible maxi-

mal value of Sj j is m, these two while loops require time

Qðm log ð1�Þlog ðcmax þ ð1�sÞs2
ÞÞ to complete. In addition, the

time complexity of the for loop (Steps 22-24) requires time

Q m log 1
�

� �� �
. Therefore, the time complexity of Algorithm 2

is Qðm log ð1�Þlog ðcmax
� þ ð1�sÞ�s2

ÞÞ.

Algorithm 3. Calculate phj (�;mj; �
h
S;f)

Input: �;mj; �
h
S;f.

Output: phj .

1: Initialization: Set ub min 1;
mj

�h
S

� �
, and lb 0.

2: while (ub� lb > �) do
3: Setmid ðubþ lbÞ=2, and phj mid.
4: if (@

@ph
j

�Thðphj Þ < f) then

5: Set lb mid.
6: else
7: Set ub mid.
8: end if
9: end while
10: Set phj ðubþ lbÞ=2.
11: return pj.

4.3 Followers’ Decisions Analysis

We formulate the competitions among multiple users as a
generalized Nash equilibrium problem. By employing varia-
tional inequality theory,we analyze the existence of a general-
ized Nash equilibrium solution set. And then we propose an
algorithm to compute a generalizedNash equilibrium (GNE).

4.3.1 GNEP Formulation

We formulate the profit optimization problem of all the
cloud users as a generalized Nash equilibrium problem, in
which each user selfishly optimizes his/her own profit
within his strategy set that also depends on the strategies of
the other users [38].

As mentioned earlier, all users are considered to be selfish
and each user i (i 2 N) tries to maximize his/her utility or
minimize his/her disutility, while ignoring those of others and
satisfying the global constraint. In view of (20), we can observe
that user i0s (i 2 N) optimization problem is equivalent to

minimize fi ��i; ���ið Þ ¼
X
h2H

dhTh
i � wi r� cð Þ�h

i

� �
;

s.t. ��i; ���ið Þ 2Q̂F :

(28)

The above formulation GNEP can be formally defined by
the tuple G ¼ Q̂F ; ff

D E
, where ff ¼ f1; . . . ; fnð Þ. The aim of

user i (i 2 N), given the other users0 strategies ���i, is to
choose an ��i 2Q̂i ���ið Þ such that his/her disutility function
fi ��i; ���ið Þ is minimized.

Definition 4.1. A generalized Nash equilibrium of the game
G ¼ Q̂F ; ff

D E
is a strategy profile ��
 such that for each user i

(i 2 N)

��
i 2 argmin
�i2Q̂i ��
�ið Þ

fi ��i; ��

�i

� �
; ��
 2Q̂F : (29)

At the generalized Nash equilibrium, each user cannot
further decrease its disutility by choosing a different strat-
egy while the strategies of other users are fixed. The equilib-
rium strategy profile can be found when each user0s
strategy is the best response to the strategies of other users.

4.3.2 GNE Existence Analysis

We try to analyze the existence of generalized Nash equilib-
rium for the formulated GNEP by employing variational
inequality theory. When passing from the GNEP (see
Eq. (28)) to the associated VI, the solutions of the GNEP that
are also solutions of VI are termed as variational solutions
[39], and enjoy some remarkable properties that make them
particularly appealing in many applications. Before address
the problem, we show two properties which are presented
in Theorems 4.5 and 4.6.

Theorem 4.5. For each cloud user i (i 2 N), the set Qi is closed
and convex, and each disutility function fi ��i; ���ið Þ is continu-
ously differentiable in ��i. For each fixed tuple ���i, the disutility
function fi ��i; ���ið Þ is convex in ��i over the set Vi.

Proof. A complete proof of the theorem is given in the sup-
plementary material, available online. tu

Theorem 4.6. Every solution of the variational inequality (VI)
problem, denoted by VI Q̂F ;FF

� �
, is a solution of the GNEP

LIU ET AL.: A NEW SERVICE MECHANISM FOR PROFIT OPTIMIZATIONS OF A CLOUD PROVIDER AND ITS USERS 21

G ¼ Q̂F ; ff
D E

, where

FF ��ð Þ ¼ FFi ��i; ���ið Þð Þni¼1; (30)

with

FFi ��i; ���ið Þ ¼ r��ifi ��i; ���ið Þ: (31)

Proof. A complete proof of the theorem is given in the sup-
plementary material, available online. tu

Theorem 4.7. If �h
S � minj2S nþ 1ð Þcjmj

.
2nphj

� �n o
(h 2 H),

there exists a generalized Nash equilibrium solution set for the

formulated GNEP G ¼ Q̂F ; ff
D E

.

Proof. A complete proof of the theorem is given in the sup-
plementary material, available online. tu

4.3.3 GNE Computation

With the establishment of the generalized Nash equilibrium
of the GNEP G, we now aim at obtaining a suitable algo-
rithm to compute the GNE.

Note that we can further rewrite the optimization prob-
lem (28) as follows:

minimize fi ��i; ��Sð Þ ¼
X
h2H

dh �Th
i � wi r� cð Þ�h

i

� �
;

s.t. ��i 2Q̂i:

(32)

with

�Th
i �h

i ; �
h
S

� � ¼X
j2S

phj

� �2
�h
i

mj

þ
phj

� �2
�h
i

cjmj � phj �
h
S

0
B@

1
CA; (33)

where ��S denotes the aggregated request profile of all
users over the H future time slots, i.e., ��S ¼

Pn
i¼1 ��i.

From the above equation, we can see that the calculation
of the disutility function of each individual user only
requires the knowledge of the aggregated request profile
of all users (��S) rather than the specific individual request
profile of all other users (���i), which can bring two
advantages. On the one hand, it can reduce communica-
tion traffic between users and the cloud provider. On the
other hand, it can also keep privacy for each individual
user to certain extent, which is seriously considered by
many cloud users.

We can compute the variational solutions of the GNEP
(20) by solving the following Nash equilbirium (NEP). This
can be done by using the framework in [39], which leads to
an algorithm Calculate ��. Specifically, the nþ 1 users try to
solve the following optimization problem:

minimize fi ��i; ��Sð Þ þ hhTcc ��i; ��Sð Þ;
s.t. ��i 2 Qi; 8i 2 N ;

minimize � hhTcc ��ð Þ;
s.t. hh � 00:

(34)

where hh ¼ hhð ÞHh¼1, and

cc ��ð Þ ¼
Xn
i¼1

�h
i � Gh

 !H

h¼1
; (35)

with

Gh ¼ min
j2S

nþ 1ð Þcjmj

.
2nphj

� �n o
; h 2 H: (36)

That is to say, when given the aggregated requests, we
must find a strategy vector zz
 ¼ ��
; hh
ð Þ 2 QF;h, where
QF;h ¼ QF �R

ðHÞ
þ , such that

��
i 2 argmin
��i2Qi

fi ��i; ��

S

� �þ hhTcc ��i; ��

S

� �þ t

2
��i � ����i

 2n o
;

(37)
for each user i (i 2 N), and

hh
 2 argmin
h�00

�hhTcc ��
ð Þ þ t

2
hh� �h�hk k2

n o
: (38)

where t (t > 0) is a regularization parameter and can guar-
antee the convergence of the algorithm Calculate �� if
its value is large enough [39]. The idea is formalized in
Algorithm 4.

Algorithm 4. Calculate ��(�;S; ppS; t)
Input: �;S; ppS ; t.
Output: ��.
1: Initialization: Randomly choose a feasible strategy vector

zzð0Þ ¼ ��ð0Þ; hhð0Þ
� �

ðzzð0Þ 2 QF;hÞ. Set ���� 00, �h�h 0, and k 0.

2: while ð zzðkÞ � zzðk�1Þ
 > �Þ do

3: for (each cloud user i 2 N) do
4: Receive ��

ðkÞ
S from the cloud provider and compute

��
ðkþ1Þ
i as follows:

��
ðkþ1Þ
i 2

argmin
��i2Qi

fi ��i; ��
ðkÞ
S

� �
þ hhT

ðkÞ
cc ��i; ��

ðkÞ
S

� �
þ t

2 ��i � ����i

 2
8<
:

9=
;:

5: Send the updated strategy to the cloud provider.
6: end for
7: The cloud provider computes hðkþ1Þ as

hhðkþ1Þ 2 argmin
hh�00

�hhTcc ��ð Þ þ t

2
hh� �h�hk k2

n o
:

8: if (Nash equilibrium is reached) then
9: The nþ 1 cloud users updates their centroids:

����; �h�h
� � ��ðkþ1Þ; hhðkþ1Þ

� �
10: end if
11: Set k kþ 1.
12: end while
13: return ��ðkÞ.

4.4 An Iterative Algorithm

In this section, we describe the whole process of our proposed
servicemechanism,which is formalized inAlgorithm 5.

We describe operational process of the proposed itera-
tive algorithm. At the beginning, the cloud provider
approximates its sever selection space (QL) and obtains
the approximated one (Qð"ÞL). For each servers subset (~S)
in (Qð"ÞL), it initializes the allocation strategy (pp~S) in differ-
ent time slot h (h 2 H). Under this servers subset and allo-
cation strategy, all of the users calculate the proper

22 IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. 9, NO. 1, JANUARY-MARCH 2021

xrequest strategies. The cloud provider reconfigures the
allocation strategy such that the average response time
over all users is minimized. Each of the user in the cur-
rent set (Sc) calculates its utility, if the value is less than
its reserved value (vi), then he/she refuses to use the
cloud service. This process is terminated when all of the
users who choose the cloud service and their correspond-
ing request strategies are kept unchanged. The algorithm
terminates until it selects the optimal servers subset from
the approximated subset solution space (Qð"ÞL).

Algorithm 5. Iterative Algorithm (IA)

Input: ";mm; a; b; r; t;M
Output: S; ppS .
1: Initialization: The cloud provider approximates its

solution space, i.e.,Qð"ÞL Calculate Qð"ÞL "; c;mm; EE;Mð Þ.
Set pS 0.

2: for (each server subset ~S 2 Qð"ÞL) do
3: Set Sc N , and Sl ;.
4: for (each time slot h 2 H) do
5: for (each server j 2 ~S) do
6: Set phj ¼ mj=ð

P
j2~S mjÞ.

7: end for
8: end for
9: while (Sc 6¼ Sl) do
10: Set Sl Sc, and �� Calculate �� ";S; ppS ; tð Þ.
11: for (each time slot h 2 H) do
12: Set pph~S Calculate pp~S

h ";mm; �h
S;S

� �
.

13: end for
14: for (each user i 2 Sc) do
15: if (Uið��ðkÞi ; ��

ðkÞ
S
Þ < vi) then

16: Set ��i 00, and Sc Sc � fig.
17: end if
18: end for
19: end while
20: Set p~S c

P
i2N

P
h2H �h

i � ET ð~SÞ.
21: if (p~S > pS) then
22: Set pS p~S , S ~S, and ppS pp~S .
23: end if
24: end for
25: return S, ppS .

5 PERFORMANCE EVALUATION

In this section, we provide some numerical results to vali-
date our theoretical analyses and illustrate the performance
of our proposed IA algorithm.

In the following simulation results, we assume that the
number of cloud users is at most 50 over futureH time slots,

which is not a very long period of time. Specifically, each
time slot is set as one hour of a day and H is set as 24. As
shown in Table 2, the server set controlling parameter (") is
varied from 0.2 to 1.0 with increment 0.2. The number of
cloud users (n) is varied from 5 to 50 with increment 5. For
each server j (j 2 M), the energy consumption parameter �j
is randomly chosen from 0.01 to 2.5 and aj is set as a con-
stant 3. Each cloud user i (i 2 N) chooses a weight value
from 1 to 10 to balance his/her net profit and time utility.
For simplicity, the reservation value vi and total requests Li

for each user i (i 2 N) are set as 0 and 35, respectively. Mar-
ket benefit factor r is set to 100, per request charge by the
cloud provider c is equal to 60, and d is set as 1.1. The cost of
one unit of energy is set as 0.02. In our simulation, the num-
ber of servers (m) in the cloud provider is set as 50 and its
total processing capacity (mM) is equal to 800.

5.1 Results of One Instance

Fig. 2 presents the utility results for five different cloud
users versus the number of iterations of our proposed
Calculate �� algorithm (Algorithm 4) in a certain instance.
Specifically, it presents the utility results of 5 randomly
selected cloud users (users 1, 4, 5, 8, and 10). We can observe
that the utilities of all users seem to linearly increase and
finally reach a relatively stable statewith the increase of itera-
tion number. The reason behind lies in that the request strate-
gies of all users are kept unchanged, i.e., reach a generalized
Nash equilibrium solution after some iterations. In addition,
the utility with a larger weight value reaches a relatively sta-
ble state more faster. This trend also reflects the convergence
process of our proposed IA algorithm at each iteration. It can
be seen that the utility of each user has already achieved a
relatively stable state after about 80 iterations, which reflects
the high efficiency of the developed algorithm.

In Fig. 3, we plot the request profile of some cloud users
for a scenario of 50 users. Specifically, it presents the
requests shape of some users over future 24 time slots. We
randomly select 3 users (users 25, 38, and 42). It can be seen
that the requests of all users tend to decrease with the delay
of time slot. The reason behind lies in the fact that in our
proposed model, we take into average response time into
account and the deteriorating factor grows exponentially,
which also demonstrates the downward trend of the aggre-
gated requests shown in Fig. 4, i.e., the aggregated requests
slightly decrease with the delay of time slot.

TABLE 2
System Parameters

System parameters (Fixed)–[Varied range]
(increment)

Servers set control parameter ð"Þ (0.2)–[0.2, 1.0] (0.2)
Number of cloud users ðnÞ (50)–[5, 50] (5)
Energy parameters ð�j; ajÞ [0.01, 2.5], 3
Weight value ðwiÞ [1, 10]
User total requests ðLiÞ 35
Reservation value ðviÞ 0
Other parameters (b;m;mM; r; c; d) (0.02, 50, 800, 100, 60, 1.1)

Fig. 2. Convergence process.

LIU ET AL.: A NEW SERVICE MECHANISM FOR PROFIT OPTIMIZATIONS OF A CLOUD PROVIDER AND ITS USERS 23

In Fig. 5, we present the impacts of different servers sub-
set. Table 3 shows an instance of servers subset when " is
0.2. In that table, we show the first 8 server subset obtained
by our Calculate Qð"ÞL algorithm (Algorithm 1). Fig. 5 shows
the corresponding results. Specifically, it shows the total
charge CT from all users, where CT ¼ c

P
i2N

P
h2H �h

i , total
energy cost ET , where ET ¼ H

P
j2S Ej, and net profit

p ¼ CT � ET over future H time slots. As can be seen from
Fig. 5, at first, the net profit of the cloud provider increases
with the increase of total processing capacity of provided
servers. However, it decreases after the number of subset
exceeds 4. The reason behind lies in the fact that at the begin-
ning, the aggregated requests from all users can not exceed
the total processing capacity provided by the cloud provider
(i.e., �h

S < mS; 8h 2 H), while the provided processing capac-
ity is large enough, the aggregated requests can not rise more
due to their individual limits (i.e., �h

i < Li; 8i 2 N). This is
also the reason that the total charge (CT) increases at first and
reaches a relatively stable state when the processing capacity
is large enough, as well as the trend of energy cost and thus
reflects the results of net profit (see Fig. 5).

5.2 Results of Various Configuration Instances

To simulate the heterogeneous system and the different
preferences of multiple cloud users, i.e., the different prefer-
ences over payments and time efficiencies, we randomly
generate the server parameter (�j) for each server and the
weight value (wi) for each user according to Table 2. For the
simulated results, we perform 300 runs, of which the aver-
age value is computed.

Figs. 6 and 7 show the impacts of the number of cloud
users and the value of ". In Fig. 6, we compare the net profit

(p) obtained by our IA algorithm with that of using all
50 servers (pT). The number of cloud users increases from
5 to 50 with increment 5. As mentioned above, we perform
300 runs and compute the average value. As shown in Fig. 6,
we also present the maximal and minimal profit values over
the 300 runs. Obviously, the average net profit value
obtained by our IA algorithm increases with the increase of
the number of cloud users. We can also observe that the net
profit by using all servers is negative at the beginning. The
reason behind lies in that the aggregated requests from all
users are not enoughwhile the total energy cost of all servers
is large. However, our results are always better than those of
by using all servers. This shows that our IA algorithm can
select appropriate servers to provide services. Fig. 7 shows
the impact of ". It can be seen that the average net profit value
obtained by IA algorithm is the largest when " is set to 0.2.
The reason behind lies in the fact that the smaller the value of
" is, it takes more probability for our algorithm to select an
appropriate servers subset equalling to the optimal one, that
is, it takes more probability that the optimal servers subset is
included in our approximated solution space.

6 CONCLUSIONS AND FUTURE WORK

With the popularization of cloud computing and its many
advantages such as cost-effectiveness, elasticity, and scal-
ability, more and more applications are moved from local
computing environment to cloud center. In this work, we
try to design a new service mechanism for profit optimiza-
tions of both a cloud provider and its multiple users.

We consider the problem from a game theoretic perspec-
tive and characterize the relationship between the cloud
provider and its multiple users as a Stackelberg game, in

Fig. 3. Specific user requests.

Fig. 4. Aggregated load.

Fig. 5. Impact of servers.

TABLE 3
System Parameters

No. of subset Servers to provide service

1 {50}
2 {49, 50}
3 {48, 49, 50}
4 {47, 48, 49, 50}
5 {44, 45, 46, 47, 48, 49, 50}
6 {41, 42, 43, 44, 45, 46, 47, 48, 49, 50}
7 {31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42,

43, 44, 45, 46, 47, 48, 49, 50}
8 {27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38,

39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50}

24 IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. 9, NO. 1, JANUARY-MARCH 2021

which the strategies of all users are subject to that of the
cloud provider. The cloud provider tries to select appro-
priate servers and configure a proper request allocation
strategy to reduce energy cost while satisfying its cloud
users at the same time. We approximate its server selec-
tion space by adding a controlling parameter and config-
ure an optimal request allocation strategy. For each user,
we design a utility function which combines the net
profit with time efficiency and try to maximize its value
under the strategy of the cloud provider. We formulate
the competitions among all users as a generalized Nash
equilibrium problem. We solve the problem by employ-
ing varational inequality theory and prove that there
exists a generalized Nash equilibrium solution set for the
formulated GNEP. Finally, we propose an iterative algo-
rithm, which characterizes the whole process of our pro-
posed service mechanism. We conduct some numerical
calculations to verify our theoretical analyses. The exper-
imental results show that our IA algorithm can reduce
energy cost and improve users utilities to certain extent
by configuring proper strategies.

As part of future work, we will study the cloud center
choice amongmultiple different cloud providers or determine
a propermixed choice strategy. Another direction is the oppo-
site, we consider problem from cloud providers and study

the competitions among multiple cloud providers, which
may incorporate charge price, service quality, and so on.

ACKNOWLEDGMENTS

We are very grateful to the associate editor and anonymous
reviewers for their comments and suggestions which have
significantly improved the quality of the manuscript. The
researchwas partially funded by theKey ProgramofNational
Natural Science Foundation of China (Grant No. 61432005),
the National Outstanding Youth Science Program ofNational
Natural Science Foundation of China (Grant No. 61625202),
the International (Regional) Cooperation and Exchange Pro-
gram ofNational Natural Science Foundation of China (Grant
No. 61661146006), the National Natural Science Foundation
of China (Grant Nos. 61370095, 61472124, 61602170), the Inter-
national Science & Technology Cooperation Program of
China (Grant Nos. 2015DFA11240), the National Key R&D
Program of China (Grant No. 2016YFB0201402), and the
Chinese Postdoctoral Science Foundation (Grant Nos.
2016M602409, 2016M602410).

REFERENCES

[1] A. Prasad and S. Rao, “A mechanism design approach to resource
procurement in cloud computing,” IEEE Trans. Comput., vol. 63,
no. 1, pp. 17–30, Jan. 2014.

[2] R. Pal and P. Hui, “Economic models for cloud service markets:
Pricing and capacity planning,” Theoretical Comput. Sci., vol. 496,
pp. 113–124, 2013.

[3] P. D. Kaur and I. Chana, “A resource elasticity framework for
QoS-aware execution of cloud applications,” Future Generation
Comput. Syst., vol. 37, pp. 14–25, 2014.

[4] L. Duan, D. Zhan, and J. Hohnerlein, “Optimizing cloud data cen-
ter energy efficiency via dynamic prediction of CPU idle inter-
vals,” in Proc. IEEE 8th Int. Conf. Cloud Comput., 2015, pp. 985–988.

[5] Z. Li, J. Ge, H. Hu, W. Song, H. Hu, and B. Luo, “Cost and energy
aware scheduling algorithm for scientific workflows with dead-
line constraint in clouds,” IEEE Trans. Services Comput., 2015,
doi: 10.1109/TSC.2015.2466545.

[6] A. Greenberg, J. Hamilton, D. A. Maltz, and P. Patel, “The cost of a
cloud: Research problems in data center networks,” ACM SIG-
COMMComput. Commun. Rev., vol. 39, no. 1, pp. 68–73, 2008.

[7] J. Cao, K. Hwang, K. Li, and A. Zomaya, “Optimal multiserver
configuration for profit maximization in cloud computing,” IEEE
Trans. Parallel Distrib. Syst., vol. 24, no. 6, pp. 1087–1096, Jun. 2013.

[8] Y. Feng, B. Li, and B. Li, “Price competition in an oligopoly market
with multiple IaaS cloud providers,” IEEE Trans. Comput., vol. 63,
no. 1, pp. 59–73, Jan. 2014.

[9] J. Cao, K. Li, and I. Stojmenovic, “Optimal power allocation and
load distribution for multiple heterogeneous multicore server
processors across clouds and data centers,” IEEE Trans. Comput.,
vol. 63, no. 1, pp. 45–58, Jan. 2014.

[10] S. Jrgensen and G. Zaccour, “A survey of game-theoretic models
of cooperative advertising,” Eur. J. Oper. Res., vol. 237, no. 1,
pp. 1–14, 2014.

[11] S. Liu, S. Ren, G. Quan, M. Zhao, and S. Ren, “Profit aware load
balancing for distributed cloud data centers,” in Proc. IEEE 27th
Int. Symp. Parallel Distrib. Process., May 2013, pp. 611–622.

[12] U. Lampe, M. Siebenhaar, A. Papageorgiou, D. Schuller, and
R. Steinmetz, “Maximizing cloud provider profit from equilib-
rium price auctions,” in Proc. IEEE 5th Int. Conf. Cloud Comput.,
Jun. 2012, pp. 83–90.

[13] H. Goudarzi and M. Pedram, “Maximizing profit in cloud com-
puting system via resource allocation,” in Proc. 31st Int. Conf. Dis-
trib. Comput. Syst. Workshops, 2011, pp. 1–6.

[14] E. K€orpeo�glu, A. Şen, and K. G€uler, “Non-cooperative joint
replenishment under asymmetric information,” Eur. J. Oper. Res.,
vol. 227, no. 3, pp. 434–443, 2013.

[15] C. Liu, K. Li, C. Xu, and K. Li, “Strategy configurations of multiple
users competition for cloud service reservation,” IEEE Trans. Par-
allel Distrib. Syst., vol. 27, no. 2, pp. 508–520, Feb. 2016.

Fig. 6. Impact of users.

Fig. 7. Impact of ".

LIU ET AL.: A NEW SERVICE MECHANISM FOR PROFIT OPTIMIZATIONS OF A CLOUD PROVIDER AND ITS USERS 25

[16] M. J. Osborne and A. Rubinstein, A Course in Game Theory. Cam-
bridge, MA, USA: MIT Press, 1994.

[17] S. S. Aote and M. U. Kharat, “A game-theoretic model for
dynamic load balancing in distributed systems,” in Proc. Int. Conf.
Advances Comput. Commun. Control, 2009, pp. 235–238.

[18] N. Li and J. Marden, “Designing games for distributed opti-
mization,” IEEE J. Sel. Topics Signal Process., vol. 7, no. 2, pp. 230–
242, Apr. 2013.

[19] S. Penmatsa and A. T. Chronopoulos, “Game-theoretic static load
balancing for distributed systems,” J. Parallel Distrib. Comput.,
vol. 71, no. 4, pp. 537–555, 2011.

[20] G. Scutari and J.-S. Pang, “Joint sensing and power allocation in
nonconvex cognitive radio games: Nash equilibria and distributed
algorithms,” IEEE Trans. Inf. Theory, vol. 59, no. 7, pp. 4626–4661,
Jul. 2013.

[21] Z. Wang, A. Szolnoki, and M. Perc, “Rewarding evolutionary fit-
ness with links between populations promotes cooperation,” J.
Theoretical Biol., vol. 349, pp. 50–56, 2014.

[22] G. Scutari, D. Palomar, F. Facchinei, and J.-S. Pang, “Convex opti-
mization, game theory, and variational inequality theory,” IEEE
Signal Process. Mag., vol. 27, no. 3, pp. 35–49, May 2010.

[23] K. Li, C. Liu, and K. Li, “An approximation algorithm based on
game theory for scheduling simple linear deteriorating jobs,” The-
oretical Comput. Sci., vol. 543, pp. 46–51, 2014.

[24] C. A. Ioannou and J. Romero, “A generalized approach to belief
learning in repeated games,” Games Econ. Behavior, vol. 87,
pp. 178–203, 2014.

[25] K. Li, C. Liu, K. Li, and A. Y. Zomaya, “A framework of price bid-
ding configurations for resource usage in cloud computing,” IEEE
Trans. Parallel Distrib. Syst., vol. 27, no. 8, pp. 2168–2181, Aug. 2016.

[26] P. Wang, Y. Qi, and X. Liu, “Power-aware optimization for hetero-
geneous multi-tier clusters,” J. Parallel Distrib. Comput., vol. 74,
no. 1, pp. 2005–2015, 2014.

[27] Y. Gao, H. Guan, Z. Qi, T. Song, F. Huan, and L. Liu, “Service level
agreement based energy-efficient resource management in cloud
data centers,”Comput. Elect. Eng., vol. 40, no. 5, pp. 1621–1633, 2014.

[28] J. Mei, K. Li, J. Hu, S. Yin, and E. H.-M. Sha, “Energy-aware preemp-
tive scheduling algorithm for sporadic tasks on {DVS} platform,”
MicroprocessorsMicrosystems, vol. 37, no. 1, pp. 99–112, 2013.

[29] D. Zhu, R. Melhem, and B. Childers, “Scheduling with dynamic
voltage/speed adjustment using slack reclamation in multiproces-
sor real-time systems,” IEEE Trans. Parallel Distrib. Syst., vol. 14,
no. 7, pp. 686–700, Jul. 2003.

[30] A. Beloglazov, J. Abawajy, and R. Buyya, “Energy-aware resource
allocation heuristics for efficient management of data centers for
cloud computing,” Future Generation Comput. Syst., vol. 28, no. 5,
pp. 755–768, 2012.

[31] R. N. Calheiros, A. N. Toosi, C. Vecchiola, and R. Buyya, “A coor-
dinator for scaling elastic applications across multiple clouds,”
Future Generation Comput. Syst., vol. 28, no. 8, pp. 1350–1362, 2012.

[32] M. Mezmaz et al., “A parallel bi-objective hybrid metaheuristic for
energy-aware scheduling for cloud computing systems,” J. Parallel
Distrib. Comput., vol. 71, no. 11, pp. 1497–1508, 2011.

[33] B. Zhai, D. Blaauw, D. Sylvester, and K. Flautner, “Theoretical and
practical limits of dynamic voltage scaling,” in Proc. 41st Annu.
Des. Autom. Conf., 2004, pp. 868–873.

[34] I. Atzeni, L. Ordonez, G. Scutari, D. Palomar, and J. Fonollosa,
“Noncooperative day-ahead bidding strategies for demand-side
expected cost minimization with real-time adjustments: A GNEP
approach,” IEEE Trans. Signal Process., vol. 62, no. 9, pp. 2397–
2412, May 2014.

[35] H. Chen, Y. Li, R. Louie, and B. Vucetic, “Autonomous demand
side management based on energy consumption scheduling and
instantaneous load billing: An aggregative game approach,” IEEE
Trans. Smart Grid, vol. 5, no. 4, pp. 1744–1754, Jul. 2014.

[36] H. Soliman and A. Leon-Garcia, “Game-theoretic demand-side
management with storage devices for the future smart grid,” IEEE
Trans. Smart Grid, vol. 5, no. 3, pp. 1475–1485, May 2014.

[37] G. Du, R. J. Jiao, and M. Chen, “Joint optimization of product fam-
ily configuration and scaling design by Stackelberg game,” Eur. J.
Oper. Res., vol. 232, no. 2, pp. 330–341, 2014.

[38] J. Wang, M. Peng, S. Jin, and C. Zhao, “A generalized Nash equi-
librium approach for robust cognitive radio networks via general-
ized variational inequalities,” IEEE Trans. Wireless Commun.,
vol. 13, no. 7, pp. 3701–3714, Jul. 2014.

[39] G. Scutari, D. Palomar, F. Facchinei, and J.-S. Pang, “Monotone
games for cognitive radio systems,” in Distributed Decision Making
and Control. London, U.K.: Springer, 2012, pp. 83–112.

Chubo Liu received the BS and PhD degrees in
computer science and technology from Hunan
University, China, in 2011 and 2016, respectively.
His research interests include mainly in modeling
and scheduling of distributed computing systems,
approximation and randomized algorithms, game
theory, grid, and cloud computing. He has pub-
lished several papers in journals such as the
IEEE Transactions on Parallel and Distributed
Systems, the Future Generation Computer Sys-
tems, and the Theoretical Computer Science.

Kenli Li received the PhD degree in computer
science from Huazhong University of Science
and Technology, China, in 2003. He was a visit-
ing scholar with the University of Illinois at
Urbana-Champaign from 2004 to 2005. He is cur-
rently the dean and a full professor of computer
science and technology with Hunan University
and deputy director of National Supercomputing
Center in Changsha. His major research areas
include parallel computing, high-performance
computing, grid, and cloud computing. He has

published more than 150 research papers in international conferences
and journals such as the IEEE Transactions on Computers, the IEEE
Transactions on Parallel and Distributed Systems, the IEEE Transac-
tions on Signal Processing, the Journal of Parallel and Distributed Com-
puting, ICPP, and CCGrid. He serves on the editorial board of the IEEE
Transactions on Computers. He is an outstanding member of the CCF.
He is a senior member of the IEEE.

Keqin Li is a SUNY distinguished professor of
computer science. His current research interests
include parallel computing and high-performance
computing, distributed computing, energy-effi-
cient computing and communication, heteroge-
neous computing systems, cloud computing, big
data computing, CPU-GPU hybrid and coopera-
tive computing, multicore computing, storage and
file systems, wireless communication networks,
sensor networks, peer-to-peer file sharing sys-
tems, mobile computing, service computing,

Internet of things, and cyber-physical systems. He has published more
than 480 journal articles, book chapters, and refereed conference
papers, and has received several best paper awards. He is currently or
has served on the editorial boards of the IEEE Transactions on Parallel
and Distributed Systems, the IEEE Transactions on Computers, the
IEEE Transactions on Cloud Computing, the IEEE Transactions on
Services Computing, and the IEEE Transactions on Sustainable Com-
puting. He is a fellow of the IEEE.

Rajkumar Buyya received the BE and ME degrees
in computer science and engineering from Mysore
and Bangalore Universities, in 1992 and 1995,
respectively, and the doctor of philosophy (PhD)
degree in computer science and software engineer-
ing from Monash University, Melbourne, Australia,
in 2002. He is a professor of computer science and
software engineering; future fellow of the Australian
Research Council; and director of the Cloud Com-
puting and Distributed Systems (CLOUDS) Labora-
tory, University of Melbourne, Australia. He is also

serving as the founding CEO of Manjrasoft Pty Ltd., a spin-off company of
theUniversity, commercialising its innovations inGrid andCloudComput-
ing. He was the founding editor-in-chief (EiC) of the IEEE Transactions on
Cloud Computing. He has authored more than 500 publications and five
text books including “Mastering Cloud Computing” published by McGraw
Hill, Morgan Kaufmann, and China Machine Press for Indian, Interna-
tional, and Chinesemarkets respectively. He is a fellow of the IEEE.

" For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/csdl.

26 IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. 9, NO. 1, JANUARY-MARCH 2021

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

