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Abstract—In this paper, we focus on request migration strategies among multi-servers for load balancing. Different from the general

load balancing problem, we consider it under a distributed, non-cooperative, and competitive environment. Due to the mentioned

characteristics, we view our problem from a game theoretic perspective and formulate it into a non-cooperative game among the

multiple servers, in which each server is informed with incomplete information of other servers. For each server, we define its expected

response time as a disutility function and try to minimize its value. We also take into account server availability, which impacts the

processing capacity of a server and thus its disutility. We solve the problem by employing variational inequality (VI) theory and prove

that there exists a Nash equilibrium solution set for the formulated game. Then, we propose an iterative proximal algorithm (IPA) to

compute a Nash equilibrium solution. The convergence of the IPA algorithm is also analyzed and we find that it converges to a Nash

equilibrium. Finally, we conduct some numerical calculations to verify our theoretical analyses. The experimental results show that our

proposed IPA algorithm converges to a Nash equilibrium very quickly and significantly decreases the disutilities of all servers by

configuring a proper request migration strategy.

Index Terms—Distributed environment, load balancing, non-cooperative game, nash equilibrium, server availability, variational inequality theory
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1 INTRODUCTION

1.1 Motivation

CLOUD computing is the delivery of resources and com-
puting as a service rather than a product over the Inter-

net, such that accesses to shared hardware, software,
databases, information, and all resources are provided to
consumers on-demand [1], [2]. Usually, the provided serv-
ices mainly refer to Infrastructure as a Service (IaaS), Plat-
form as a Service (PaaS), and Software as a Service (SaaS),
which can all be accessed by the general public on demand
[3]. However, due to the more and more users, the portal
server of a cloud center can be heavily loaded. Furthermore,
many lightweight jobs can bring a lot of interferences to
other computation-intensive jobs and thus significantly
degrade their performances. To improve the overall service
quality (e.g., response time) of a cloud center, recently,
some works (such as [4]) propose to deploy certain edge
servers in front of a cloud center. As shown in Fig. 1, user
applications (demands) first arrive at edge servers, which
are interconnected through a network. If an application is

lightweight, then it is immediately processed by one of the
edge servers. Otherwise, it is uploaded to the cloud center
for processing. Obviously, this can mitigate the interfer-
ences brought by lightweight jobs and significantly improve
the overall performance of a cloud center.

In this work, we focus on load balancing for edge serv-
ers layer. Due to the differences in the computing capacities
and uneven request arrival patterns, the workload on dif-
ferent servers can vary greatly [5]. It can often be seen that
many servers are underutilized while the others are over-
loaded. Or on the other hand, the cloud providers do not
take into account server availability, which refers to the
percentage of time that it is running in a given time interval
[6]. All of these situations can lead to high response time
and low service availability, which are two import quality
measures for a cloud provider to appeal more users to use
cloud service [7]. Therefore, it is important for a cloud pro-
vider to design an appropriate load balancing scheme
involving server availability. In this work, we try to config-
ure a proper request migration strategy for the edge servers
layer. Specifically, we try to simultaneously optimize the
response times of all servers involved in the connected
multi-server system. In addition, we take server availability
into account.

Load balancing concerns the distribution of requests
among diverse servers in a given environment such that no
server is overloaded or underutilized [8], [9]. It is one of the
most important factors that should be seriously considered
by both a cloud provider and its multiple users. For a cloud
provider, an appropriate load balancing strategy helps in
making use of the available resources most favourably and
thus ensures that no server is overloaded or underutilized.
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It can improve the aggregated performance and increase the
revenue of the cloud provider. Specifically, an appropriate
load balancing scheme improves the request service rate of
the cloud provider. Therefore, the cloud provider can
charge more from its users for more accomplished work
and thus increase its revenue. Cloud-based applications
depend even more heavily on load balancing and optimiza-
tion than traditional enterprise applications [1]. On the
other hand, it improves service quality (e.g., task response
time) and appeals more users to use cloud service. For mul-
tiple cloud users, appropriate load balancing will be seri-
ously considered when they select a cloud provider. The
same task, such as running an online voice recognition algo-
rithm, is able to generate more utility for a cloud user if it
can be completed within a shorter period of time [10].

Server availability refers to the probability that a server is
found to be in the running state at a given point in time. It
can also be defined as the percentage of time that it is run-
ning in a given time interval [6]. Server availability is an
important factor that should be taken into account by a
cloud provider for designing appropriate load balancing
scheme. The reason behind lies in that server availability is
also related to the profit of a cloud provider and the appeals
to more cloud users in the market. Specifically, if availability
level of servers is low, it impacts the service availability of
servers and thus decreases the total processing rate of the
cloud provider. Obviously, the cloud provider charges less
from cloud users due to its less accomplished work during
certain time interval. On the other hand, low server avail-
ability also impacts the service quality (e.g., task response
time) of the cloud provider, which is seriously considered
by most cloud users. When more requests are allocated to

the servers with low availability, even though their ideal
processing capacities are high, the overall response time can
be long and thus dissatisfies its current users even the
potential users in the market. Therefore, it is important for a
cloud provider to design appropriate load balancing
scheme which also involves server availability.

1.2 Related Work

Load balancing is one of the most important factors that
should be taken into account in scheduling, and in litera-
ture, many works have been done on it for various consider-
ations [1], [5], [11], [12], [13], [14], [15].

Specifically, in [1], Cao et al. studied the tradeoff between an
aggregated performance (system response time) and energy
consumption in cloud centers. Specifically, the tried to opti-
mize system response timeunder energy constraint and energy
consumption under response time constraint, respectively. In
[11], KASSAB et al. addressed load balancing (makespan) for
scheduling independent tasks under power constraints. They
proposed several heuristics for the case of multi-core architec-
ture and assessed their performances on synthetic workloads
and power envelopes. In [12], Zhao et al. proposed a Bayes the-
orem based heuristic, and tried to optimize the standard devia-
tion to achieve load balancing. However, as shown in Table 1,
all these works refer to one single objective (makespan, overall
system response time, or standard deviation of response time),
i.e., they focus on load balancingmetric.

There are also some works referring multi-objectives
which incorporate load balancing, i.e., load balancing is one
of the multiple objectives. Siavoshani et al. [13] combined
load balancing (average waiting time) with communication
cost and tried to configure a scheduling scheme by optimiz-
ing a weighted sum of them. In [15], Shen studied load bal-
ancing by migrating virtual machines (VMs), and she aimed
to optimize the number of overall VM migrations. She also
incorporated communication cost, bandwidth, and pro-
posed a heuristic to try to optimize all of them. In [14],
Thant et al. proposed a heuristic for the purposes of mini-
mizing the overall makespan and machine instance deploy-
ment cost during workload execution. For this kind of
scheduling, the main techniques are usually heuristic and
weighted sum method (see Table 1). However, as shown in
Table 1, all the previously mentioned works are from the
central perspective. Different from their considerations, we
address load balancing under distributed environment.

When considering load balancing under distributed
environment, the problem becomes more complex. The rea-
son behind lies in that the relationships among servers are

Fig. 1. Motivation illustration.

TABLE 1
Load Balancing Comparison Between IPA and the State-of-the-Art Schemes

Schemes Environment Objective(s) Main technique(s)

[11] Central Single objective (makespan) Heuristic
[12] Central Single objective (standard deviation) Heuristic
[1] Central Single objective (system response time) Lagrangian multiplier method
[13] Central Multi-objectives (¼ 2) Weighted summethod
[14] Central Multi-objectives (¼ 2) Heuristic
[15] Central Multi-objectives (¼ 3) Heuristic
[5] Distributed Multi-objectives (� 3) Non-cooperative game
IPA Distributed Multi-objectives (� 3) Non-cooperative game and variational inequality theory
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non-cooperative and competitive. Few works can be found
for this in the literature. In [5], Penmatsa and Chronopoulos
proposed a non-cooperative game based NCOOPC algo-
rithm, in which they tried to minimize the average response
time of each cloud user. In this work, we also use non-coop-
erative game to formulate our problem. However, due to
the different models and problems. The general game meth-
ods (such as NCOOPC in [5]) can no longer be applied in
our situation. In this work, we leverage variational inequal-
ity (VI) theory to solve our problem.

Game theory is a field of applied mathematics that
describes and analyzes scenarios with interactive decisions
[16], [17]. It is a formal study of conflicts and cooperation
among multiple competitive players [18], and a powerful
tool for design and control of multiagent systems [19]. There
has been a growing interest in adopting cooperative and
non-cooperative game approaches to modeling many prob-
lems [20], [21], [22]. In [20], the authors presented a game-the-
oretic approach for the provisioning and operation of the
infrastructure under uniform cost models. Xu and Yu [21]
proposed a game theoretic resource allocation algorithm
which considers the fairness among cloud users and resource
utilization. However, to obtain game solutions, there are not
standard methods, and we must address game problems
on a case by case basis. In this work, we try to leverage varia-
tional inequality theory, which is a framework suitable for
investigating and solving various equilibrium models and
optimization problems in nonlinear analysis [16], [23]. We
try to obtain a Nash equilibrium for our non-cooperative and
competitive load balancing. For more works on game theory,
the reader is referred to [24], [25], [26], [27], [28].

Server availability is another important metric in sched-
uling. It refers to the percentage of time that it is running in
a given time interval [6]. Obviously, it impacts the actual
processing rates of servers and thus the aggregated perfor-
mance in cloud.

During the past decades, the vast majority of researches
in load balancing assume that all servers are continuously
available for processing throughout horizon [29]. This
assumption may not be true in all cases, since a server may
become unavailable due to breakdown, preventive mainte-
nance, tool change during a certain period [30], [31], [32].
Some works have been done to investigate load balancing
schemes with availability constraints [29], [33]. In [29], Qin
and Xie proposed an algorithm SSAC, in which they tried to
maximize system availability while minimizing average
response time at the same time. In [33], Liao and Sheen
studied a polynomial time binary search algorithm to solve
the parallel server scheduling problem with availability
constraints. However, rare of above listed researches have
considered the impacts of workload on server availability.
Nevertheless, according to surveys in [6], [34], [35], a server
is more likely to fail if it is heavily loaded.

Therefore, we also involve load-dependent server avail-
ability in our non-cooperative and competitive load balanc-
ing scheme.

1.3 Our Contributions

In this paper, we focus on request migration strategies on
multi-servers for load balance. Different from the general
load balancing problem, we consider it under a distributed,

non-cooperative, and competitive environment. The goal is
to minimize the average response time for each server as
much as possible. The main contributions and differences of
this paper are listed as follows.

� We consider load balancing under a distributed and
non-cooperative environment. Furthermore, we try
to find a request migration strategy which simulta-
neously optimizes the expected response times of all
servers rather than a single objective (such as
makespan).

� We consider the problem from a game theoretic per-
spective and formulate it into a non-cooperative
game among the multiple servers. Specifically, each
server is informed with incomplete information of
other servers. We define its average response time as
the disutility function and try to minimize its value.

� We also take into account server availability, which
impacts the processing capacity of a server and thus
its disutility function value.

� We solve the problem by employing variational
inequality theory and prove that there exists a Nash
equilibrium solution set for the formulated game.
Then, we propose an iterative proximal algorithm
(IPA) to compute a Nash equilibrium solution.

� The convergence of the IPA algorithm is also analyzed
andwe find that it converges to aNash equilibrium.

We conduct some numerical calculations to verify our the-
oretical analysis. The experimental results show that our pro-
posed IPA algorithm converges to a Nash equilibrium very
quickly and significantly decreases the disutilities of all serv-
ers by configuring a proper request migration strategy.

1.4 Organization

The rest of the paper is organized as follows. Section 2
describes the system models of the system and presents the
problem to be solved. Section 3 formulates the problem into
a non-cooperative game and solves the problem by employ-
ing variational inequality theory. Some analyses are also
presented in this section. Section 4 is developed to verify
our theoretical analyses and show the effectiveness of our
proposed algorithm. We conclude the paper with future
work in Section 5.

2 SYSTEM MODEL AND PROBLEM FORMULATION

To begin with, we present our system model in the context
of a cloud provider with m heterogeneous servers, which
are connected by a communication network. We denote the
set of servers asM¼ 1; . . . ;mf g. The processing capacity of
server i (i 2 M) is represented by its service rate mi, which
is also impacted by the workload on the server. The external
request arrival rate at server i (i 2 M) is assumed to follow
a Poisson process. Similar to [5], [36], we also assume that
each of the servers and the communication network are
modeled as M/M/1 queuing systems.

We summarize all the notations used in this section in the
notation Table 2.

2.1 Request Migration Model

We consider the request migration model motivated by [5],
[36], where the request migration profile at server i (i 2 M)
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is formulated as the following probability vector

ppi ¼ pi1; . . . ; pimð ÞT ; (1)

where pij (j 2 M) is the probability that a request at server i
is migrated to server j and it is subject to the constraintPm

j¼1 pij ¼ 1. Then, the request migration strategy set of
server i (i 2 M) can be expressed as

Pi ¼ ppi
Xm
j¼1

pij ¼ 1 and pij � 0; 8j 2 M
�����

( )
: (2)

At each server, there are randomly arrived external
requests. Denote fi as the external request arrival rate at
server i (i 2M), and �ij as the request flow rate from server
i to server j (i.e., the expected number of requests sent from
server i to server j per unit of time). Then

�ij ¼ pijfi; (3)

and the request migration profile can also be expressed as

��i ¼ �i1; . . . ; �imð ÞT : (4)

Correspondingly, the request migration strategy set can be
written as

Qi ¼ ��i

Xm
j¼1

�ij ¼ fi and �ij � 0; 8j 2 M
�����

( )
; (5)

and the joint individual strategy set of all servers is given as
Q ¼ Q1 � � � � � Qm.

Denote mj as the processing rate of server j (j 2 M).
Then, the aggregated requests at each server cannot exceed
its processing capacity, i.e., bj ¼

Pm
i¼1 �ij < mj, where bj is

the workload of server j (j 2 M). Then, when given the
others0 request migration strategies ���i ¼ ð��jÞmj¼1;j6¼i, the

request migration strategy ��i of server i (i 2 M) also satis-

fies
Pm

i¼1 �ij < mj.

2.2 Server Availability Model

Server availability refers to the probability that a server is found
to be in the running state at a given point in time [6]. It can also
be defined as the percentage of time that it is running in a given
time interval. A relationship between the average load intensity
and the failure rate does exist [6], [35]. If the workload intensity
increases, themore failureswill be expected.

To take server availability into account for appropriate
load balance, we model the server availability in our work
motivated by [6], where the processing capacity (i.e., the
available service time) of a server linearly decreases with
the increase of its workload. Specifically, the expected ser-
vice rate of server i (i 2 M) is given as follows:

mi ¼ �mi � aibi; (6)

where �mi is the maximum processing rate of server i, ai

(ai < 1) is the corresponding availability deteriorating fac-
tor, and bi is its workload (i.e., the aggregated requests at
server i), which satisfies bi < �bi with �bi ¼ �mi

1þai. In this
work, we assume that the total external request arrival rate
is less than the total expected processing rate of all servers,
i.e.,

Pm
i¼1 fi <

Pm
i¼1 �bi.

2.3 Cloud Service Model

There are m heterogeneous servers, which are connected by
a communication network. Each of the servers is modeled
as an M/M/1 queuing system, serving the requests aggre-
gated at this server.

A request at server i (i 2M) may be either processed at
server i or transferred to another server j (j 2 M) through
the communication network for remote processing. The
response time of a request in above system consists of queu-
ing delay and processing delay at the service server, and
also some possible communication delay incurred due to
request transfer. Denote ~Di bið Þ as the delay incurred at the
server i (i 2 M), then the probability that ~Di bið Þ is greater
than T (T � 0) is equal to e� mi�bið ÞT , i.e.,

PrPr ~Di bið Þ > T
� � ¼ e� mi�bið ÞT ; T � 0; (7)

and the expected delay is expressed as

Di bið Þ ¼
1

mi � bi
; (8)

where bi is the aggregated requests at server i, i.e.,
bi ¼

Pm
j¼1 �ji, and mi is the service rate of server i as in (6).

As mentioned earlier, the communication network is also
modeled as an M/M/1 queuing system [5], [36], in which
the expected communication delay from server i to server j

TABLE 2
Notations

Notation Description

m Number of servers in the cloud center
M Set of them servers in the cloud center
pij Probability of a request transferred from server i to j

ppi Probability vector for transferring requests at server i
Pi Probability strategy set at server i
�ij Request migration rate from server i to j

��i Request migration vector at server i
��S Summation of ��i for all i 2M
�� Request migration strategies of all servers
���i Migration strategies of all servers except server i
Qi Request migration strategy set at server i
Q Joint request migration strategy set of all servers
fi External request arrival rate at server i
bi Aggregated request arrival rate at server i
mi Expected processing capacity of server i
�mi Processing capacity of server iwithout load impacts
mm Processing vector involving �mi for all i 2M
ai Availability deteriorating factor of server i
~Di Delay of a request incurred at server i
Di Expected delay of a request incurred at server i
t Mean communication time of a request
g Total traffic through the network
~C Communication delay incurred by a request
C Expected communication delay incurred by a request
~Rij Delay of a request at i and processed at j
Rij Expected delay of a request at i and processed at j
F Probability density function of ~Rij
~Ri Response time of a request at server i
Ri Expected response time of a request at server i
Ui Disutility function of server i
U Disutility function vector for all servers
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is independent of the source-destination pair (i, j) but may
depend on the total traffic through the network denoted by
g, where g ¼Pm

i¼1
Pm

j¼1;j6¼i �ij. Denote ~C gð Þ as the communi-
cation delay for one request and C gð Þ as the expected value,
respectively. Then, with referring to [5], [36], we obtain

PrPr ~C gð Þ > T
� � ¼ e�

1
t�gð ÞT ; T � 0; (9)

and

C gð Þ ¼ t

1� tg
; (10)

where t (t < 1
g
) is the mean communication time for sending

or receiving a request.
Denote ~Rij ��ð Þ as the delay of a request incurred at server

i and been processed at server j (i; j 2 M). Then

~Rij ��ð Þ ¼
~Dj bj
� �þ ~C gð Þ; if j 6¼ i;

~Dj bj
� �

; if j ¼ i,

(
(11)

and

PrPr ~Dj þ ~C > T
� � ¼ PrPr ~Dj > T

� �
þ
Z T

0

Z 1
T� ~Dj

aje
�aj ~Dja ~Ce

�a ~C
~Cd ~Djd ~C

¼ aj

aj � a ~C

e�a ~C
T � a ~C

aj � a ~C

e�ajT ;

(12)

where aj ¼ mj � bj and a ~C ¼ 1
t � g. We can further obtain its

probability density function as

F Tð Þ ¼ @

@T
PrPr ~Dj þ ~C � T
� � ¼ aja ~C

aj � a ~C

e�a ~C
T � e�ajT

� �
; (13)

and the expected value of ~Rij ��ð Þ as

Rij ��ð Þ ¼ Dj bj
� �þ C gð Þ; if j 6¼ i;

Dj bj
� �

; if j ¼ i.

(
(14)

2.4 Architecture Model

In this section, we model the architecture of our proposed
framework for load balance in cloud with load dependent
server availability. Each of the servers can make appropriate
request migration decision through the information exchange
model connected by a virtual communication player. As
shown in Fig. 2, each server i (i 2 M) is equippedwith amax-
imum processing capacity (�mi) with corresponding availabil-
ity deteriorating rate (ai), a disutility function (Ui), and the
request migration strategy (��i). Let ��S be the aggregated
request vector on all servers, then we have ��S ¼

Pm
i¼1 ��i.

Denote �m�m ¼ �mið Þi2M as the maximum processing capacity
vector of all servers, aa ¼ aið Þi2M as the corresponding deteri-

orating rates, andU ¼ Uið Þi2M as the disutility functions of all
servers. The cloud provider consists ofm heterogeneous serv-
ers, which are connected by a communication network, and a
virtual communication player, that is, the player can be a dae-
mon running on a host rather than a real player. It communi-
cates some information (e.g., current aggregated request
vector on all servers ��S, and the communication requests
through the network g) with multiple servers through the
information exchange module. When multiple servers try to
make request migration decisions, they first get information
from the communication player by the information exchange
module, then configure appropriate request migration strate-
gies (��) such that their own disutilities (U) are minimized.
After this, they send the updated strategies to the communica-
tion player. The procedure is terminated when the request
migration strategies of all servers are kept fixed.

2.5 Problem Formulation

Denote ~Ri as the response time of a request at server i
(i 2 M), i.e., the time interval of a request from its arrival at
server i until its service completion. Then, ~Ri ¼ ~Rij, if the
request is allocated to server j 2 M.

In this work, we try to minimize the response time ( ~Ri) of
each server for load balance. Specifically, given a cloud

Fig. 2. Architecture model.
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provider with m heterogeneous servers, denoted by
M¼ 1; . . . ;f mg, which are connected by a communication
network, and the external request arrival rate fi at server i
(i 2 M), and the maximum service rate �mi with availability
deteriorating factor ai (i 2 M), we try to find a migration
strategy profile for each of the servers such that its response
time isminimized.

Notice that, a request at server i (i 2 M) is randomly
migrated to server j (j 2 M) according to a request migra-
tion profile ppi. Hence, we configure its expectation

Ri ��ð Þ ¼
Xm
j¼1

pij ~Rij ��ð Þ; (15)

and try to minimize its value. We may further notice that
the value of ~Rij is also random and there is not an equation
form to represent it. However, we depict its density func-
tion and probability function, and find that ~Rij does not
deviate its average value (Rij) enough (see Fig. 3). Hence,
we use Rij to replace ~Rij and obtain

Ri ��ð Þ ¼
Xm
j¼1

pijRij ��ð Þ

¼
Xm
j¼1

pijDj bj

� �þ Xm
j¼1;j 6¼i

pijC gð Þ

¼ 1

fi

Xm
j¼1

�ij

mj � bj
þ
Xm

j¼1;j 6¼i

�ijt

1� tg

 !
:

(16)

Our goal is to find a request migration strategy such that
the expected response times of all servers can be optimized,
i.e., we try to find a solution to the following non-linear opti-
mization problem (OPTi): 8i 2 M

minimize Ri ��i; ���ið Þ; ��i 2 Qi;

s.t. �ij þ Lj
�i < �bj; 8j 2 M;

(17)

where ���i ¼ ð��jÞmj¼1;j6¼i denotes the request migration strat-
egy of all other servers except that of server i, �bj ¼ �mj

1þaj, and
Lj
�i ¼

Pm
l¼1;l 6¼i �lj for all j 2 M.

Remark 2.1. In finding solution to (OPTi), the request
migration strategies of other servers are kept fixed. So the
variable in (OPTi) is the request migration strategy of
server i, i.e., ��i.

3 GAME FORMULATION AND ANALYSES

In this section, we formulate the request migration problem
among multiple servers as a non-cooperative game. By
employing variational inequality theory, we analyze the
existence of Nash equilibrium solution set for the formu-
lated game. Then, we propose an iterative proximal algo-
rithm to compute a Nash equilibrium solution. We also
analyze the convergence of the proposed algorithm.

3.1 Game Formulation

Game theory studies the problems in which players try
to maximize their utilities or minimize their disutilities.
As described in [5], a non-cooperative game consists of a
set of players, a set of disutility functions, and a set of
strategies. In this paper, each server is regarded as a
player, i.e., the set of players is the m servers. The dis-
utility function of each player i (i 2 M) is its average
response time, i.e., Ri. The individual strategy set of
player i is the request migration set of server i, i.e., Qi.
Then, the joint individual strategy set of all players is
given as Q ¼ Q1 � � � � � Qm.

In our work, we ignore the constraint in (17), because
there exists one optimal solution to the optimization prob-
lem (17) without violating the constraint in (17), when given
the feasible strategies of others ���i ¼ ��j

� �m
j¼1;j 6¼i. The details

are discussed in the following theorem.

Theorem 3.1. Given two servers j; k 2 M such that their
remain processing capacities m̂j < m̂k with m̂l ¼ �ml �
1þ alð ÞLl

�i (l ¼ j; k), there exists an arrival rate f�i > 0 such
that it is optimal to migrate all requests to server k for all
requests fi < f�i . Otherwise, it is optimal to migrate requests
to both servers.

Proof. To improve the overall readability of this manu-
script, the complete proof of this theorem is given in the
supplementary material, which can be found on the
Computer Society Digital Library at http://doi.
ieeecomputersociety.org/10.1109/TCC.2018.2790404. tu

Theorem 3.2. Reorder the servers inM such that they are num-
bered in non-increasing order of their remaining processing
rates, i.e., m̂1 � m̂2 � � � � � m̂m with m̂j ¼ �mj � 1þ aj

� �
Lj
�i

(j 2 M). There exists a set of threshold request arrival rates
fmin
i1 ;fmin

i2 ; . . . ;fmin
im ¼ 0, such that in the optimal migration

policy �ij ¼ 0 if fi � fmin
ij and �ij > 0 if fi > fmin

ij .

Fig. 3. Illustration for response time.

6 IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. 9, NO. 1, JANUARY-MARCH 2021

http://doi.ieeecomputersociety.org/10.1109/TCC.2018.2790404
http://doi.ieeecomputersociety.org/10.1109/TCC.2018.2790404


Proof. To improve the overall readability of this manu-
script, the complete proof of this theorem is given in the
supplementary material, available online. tu
Based on the results of Theorems 3.1 and 3.2, we conclude

that there exists one optimal solution to the optimization
problem (17) without violating the constraint in (17), when
given the feasible strategies of others ���i ¼ ��j

� �m
j¼1;j 6¼i. There-

fore, in ourwork, we ignore the constraint in (17), and reduce
the problem (17) to the following optimization problem:

minimize Ri ��i; ���ið Þ; ��i 2 Qi: (18)

The above formulated game can be formally defined by the
tuple G ¼ Q;Rh i, where R ¼ Rið Þmi¼1. The aim of player i
(i 2 M), given the other players0 strategies ���i, is to choose
a strategy ��i 2 Qi such that its average response time
Ri ��i; ���ið Þ is minimized.

Definition 3.1 (Nash equilibrium). A Nash equilibrium of
the formulated game G ¼ Q;Rh i defined above is a request
migration profile ��� such that for every player i (i 2 M)

���i 2 argmin
��i2Qi

Ri ��i; ���ið Þ; ��� 2 Q: (19)

At the Nash equilibrium, each player cannot further
decrease its average response time by choosing a different
request migration strategy while the strategies of other play-
ers are fixed. The equilibrium strategy profile can be found
when each player0s strategy is the best response to the strat-
egies of other players.

3.2 Nash Equilibrium Existence Analysis

In this section, we analyze the existence of Nash equilibrium
solution for the formulated game G ¼ Q;Rh i, and prove the
existence problem by employing variational inequality the-
ory. Before addressing the problem, we first show three
import properties presented in Theorems 3.1, 3.2, and 3.3,
which are helpful to prove the existence of Nash equilib-
rium for the formulated game.

Theorem 3.3. If both matrixesM1 andM2 are positive definite,
then the matrix M3 and M4 and are also positive definite,
where

M3 ¼M1 þM2; andM4 ¼ M1 0
0 0

� �
: (20)

Proof. As mentioned above, both matrixesM1 andM2 are
positive definite. Then, we have 8xx

xxTM1xx > 0 and xxTM2xx > 0:

We obtain 8xx

xxTM3xx ¼ xxTM1xxþ xxTM2xx > 0:

Therefore, we can conclude that the matrix M3 is posi-
tive definite. On the other hand, if matrixM1 is positive
definite, then we obtain 8zz ¼ ðxx

y
Þ

zzTM4zz ¼ xxTM1 þ y00; 0
� � xx

y

	 

¼ xxTM1xxþ y00xx ¼ xxTM1xx > 0:

Thus, the matrix M4 is also positive definite and the
result follows. tu

Theorem 3.4. For each cloud player i (i 2 M), the set Qi is
closed and convex, and each disutility function Ri ��i; ���ið Þ is
continuously differentiable in ��i. For each fixed tuple ���i, the
disutility function Ri ��i; ���ið Þ is convex in ��i over the set Qi,
given that the condition t � �t holds, where

�t ¼ m

m� 2ð Þfmax þmgð Þ ; (21)

with fmax ¼ maxj2M fj

� �
.

Proof. To improve the overall readability of this manu-
script, the complete proof of this theorem is given in the
supplementary material, available online. tu

Theorem 3.5. If the condition (21) holds, then every solution of
the variational inequality problem, denoted by VI Q; Fð Þ, is an
equilibrium solution of the game G ¼ Q;Rh i, where

F ��ð Þ ¼ Fi ��i; ���ið Þð Þmi¼1; (22)

with

Fi ��i; ���ið Þ ¼ r��iRi ��i; ���ið Þ: (23)

Proof. According to Lemma 4.2 in [37], we know that the
above claim holds if two conditions are satisfied. First, for
each player i (i 2 M), the strategy set Qi is closed and
convex. Second, for every fixed ���i, the disutility function
Ri ��i; ���ið Þ is twice continuously differentiable and con-
vex in ��i 2 Qi. By Theorem 3.2, it is easy to know that
both the two conditions are satisfied in the formulated
game G. Thus, the result follows. tu
Recall that the objective of this section is to study the

existence of Nash equilibrium for the formulated game
G ¼ Q;Rh i in (18). In the next theorem, we prove that if (21)
holds, the existence of such Nash equilibrium is guaranteed.

Theorem 3.6. There exists a Nash equilibrium solution set for
the formulated game G ¼ Q;Rh i, given that the condition (21)
holds.

Proof. Based on Theorem 3.3, the proof of this theorem fol-
lows if we can show that the formulated variational
inequality problem VI Q; Fð Þ in Theorem 3.3 possesses a
solution set. According to Theorem 4.1 in [37], VI Q; Fð Þ
admits a solution set if themapping F is monotone overQ.

To prove the monotonicity of F, it suffices to show that
for any �� and ss inQ

��� ssð ÞT F ��ð Þ � F ssð Þð Þ � 0;

that is

Xm
i¼1

��i � ssið ÞT Fi ��ð Þ � Fi ssð Þð Þ � 0: (24)

We can observe that if

��i � ssið ÞT Fi ��ð Þ � Fi ssð Þð Þ � 0; 8i 2 M;

then inequality (24) holds.
After some algebraic manipulation, we can write the

(j; k)th element of J��iFi ��ð Þ as
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J��iFi ��ð Þ
� �

jk
¼ @2Ri ��i; ���ið Þ

@�ij@�ik

¼

2 1þajð Þ mj�bjð Þþ 1þajð Þ�ijð Þ
mj�bjð Þ3 ; if i ¼ j ¼ k;

2 1þajð Þ mj�bjð Þþ 1þajð Þ�ijð Þ
mj�bjð Þ3

þ 2t t 1�tgð Þþ�ijt2ð Þ
1�tgð Þ3 ; if i 6¼ j; j ¼ k;

t2 1�tgð Þþ2�ijt3
1�tgð Þ3 ; if i 6¼ j; i 6¼ k;

0; otherwise:

8>>>>>>>>>>>>><
>>>>>>>>>>>>>:

By the derivations in Theorem 3.2, we can conclude that
the jacobian matrix J��iFi ��ð Þ is positive definite. The
result follows. tu

3.3 Nash Equilibrium Computation

Once we have established that the Nash equilibrium solu-
tion for the formulated gameG ¼ Q;Rh i exists, we are inter-
ested in obtaining a suitable algorithm to compute one of
these equilibria.

Notice that, we can further rewrite the optimization
problem (18) as follows:

minimize Ri ��i; ��S; gð Þ; 8i 2 M; (25)

where ��S denotes the aggregated requests of all servers, i.e.,

��S ¼
Pm

i¼1 ��i, and g ¼Pm
i¼1
Pm

j¼1;j 6¼i �ij, is the total traffic

through the network. From (25), we can observe that the cal-
culation of the disutility function of each individual player
only requires the knowledge of the aggregated requests of
all servers (��S) and the total traffic (g) rather than that the
specific individual strategy profile (���i), which can bring
about two advantages. On the one hand, it can reduce com-
munication traffic between the virtual communication
player and the m players. On the other hand, it can reduce
storage for each player to calculate its own strategy.

Since all players are considered to be selfish and try to
minimize their own disutilities while ignoring the others. It
is natural to consider an iterative algorithm where, at every
iteration k, each player i (8i 2 M) updates its strategy to
minimize its own disutility function Ri ��i; ���ið Þ. However,
following [37], it is not difficult to show that their conver-
gence cannot be guaranteed in our case if the players are
allowed to simultaneously update their strategies. To over-
come this issue, we consider an iterative proximal algo-
rithm, which is based on the best response Algorithm 4.1
[37]. The proposed algorithm is guaranteed to converge to a
Nash equilibrium under some additional constraints on the
parameters of the algorithm. With reference to [37], we can
find a solution to the optimization problem (25) by solving
the regularized game in which each of the m players tries to
solve the following optimization problem:

minimize Ri ��i; ��S; gð Þ þ t

2
��i � ����i

�� ��2;
s.t. ��i 2 Qi; 8i 2 M:

(26)

That is to say, when given the external requests, we must
find a strategy vector ��� 2 Q, such that

���i 2 argmin
��i2Qi

Ri ��i; ��
�
S; g

� �þ t

2
��i � ����i

�� ��2n o
; (27)

for each player i (i 2 M), where t (t > 0) is a regularization
parameter and can guarantee the convergence of the IPA
algorithm if its value is large enough. The idea is formalized
in Algorithm 1.

Algorithm 1. Iterative Proximal Algorithm (IPA)

Input: �;mm; ��;M.
Output: ppi.
1: Initialization: Randomly choose a feasible strategy vector ��ð0Þ

(��ð0Þ 2 Q). Set ���� 00, and k 0.

2: while ( ��ðkÞ � ��ðk�1Þ
�� �� > �) do

3: for (each player i 2M) do

4: Receive ��
ðkÞ
S

and gðkÞ from the information player, and

compute ��
ðkþ1Þ
i as follows:

��
ðkþ1Þ
i 2
argmin
��i2Qi

Ri ��i; ��
ðkÞ
S
; gðkÞ

� 

þ t

2
��i � ����i

�� ��2n o
:

5: Send the updated strategy to the communication
player.

6: end for
7: if (Nash equilibrium is reached) then
8: All of the m players updates their centroids, i.e.,

���� ��ðkþ1Þ.
9: end if
10: Set k kþ 1.
11: end while
12: return ��ðkÞ.

At the beginning, each cloud user i (i 2 M) sends its server
parameters (ai; �mi) and the external request arrival rate (fi) to
the virtual communication player. Then the communication
player computes the regulation parameter (t) as in
Theorem 3.6 according to the aggregated information. After
this, the communication player puts the computed regulation
parameter into the public information exchange module.
Then, at each iteration k, the communication player broad-
casts the current aggregated request profile (��

ðkÞ
S ), and the

current communication traffic (gðkÞ). Within iteration k, each
player receives the aggregated profile (��

ðkÞ
S
, gðkÞ) and com-

putes its strategy by solving its own optimization problem in
(26), and then sends the newly updated strategy to the com-
munication player. Lastly, as indicated in Algorithm 1 (Steps
7-9), the communication player checks whether the Nash
equilibrium has been achieved and if so, it broadcasts a signal
to inform all players to update their centroid (����i

����i). This pro-
cess continues until the strategies of all players (i.e., the
request migration strategies of all servers) are kept fixed. In
this paper, we assume that the strategies of all cloud users are
unchanged if ��ðkÞ � ��ðk�1Þ

�� �� � �, where ��ðkÞ ¼ ð��ðkÞi Þmi¼1 with
��
ðkÞ
i ¼ ðð�ijÞðkÞÞmj¼1, and � is a relatively small constant.

3.4 Convergence Analysis of IA Algorithm

In this section, we analyze the convergence of our proposed
IPA algorithm. We prove that when the regulation parame-
ter t is large enough, the IPA algorithm converges to a Nash
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equilibrium. Before addressing the convergence problem,
we show a property about matrix, which is presented in
Theorem 3.5.

Theorem 3.7. Let A ¼ aij
� �

be a real matrix with m order, then
we have

Ak k2 � m Ak k1; (28)

where Ak k2 and Ak k1 denote the 2-norm and infinite norm of
matrix A, respectively.

Proof. Since A is a real matrix, it is easy to obtain that 8xx

xxT AAT
� �

xx ¼ ATxx
� �T

ATxx
� � � 0:

That is to say, the matrix ATA is positive semidefinite
and we can conclude that kmin ATA

� � � 0with kmin ATA
� �

denoting the minimal eigenvalue of matrix ATA. Let
ki ATA
� �

be the ith eigenvalue of matrix ATA, then we
have ki ATA

� � � kmin ATA
� � � 0. On the other hand, since

Xm

i¼1 ki ATA
� � ¼ tr ATA

� �
;

where tr ATA
� �

denotes the summation of all diagonal

elements of matrix ATA, i.e., tr ATA
� � ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPm

i¼1
Pm

j¼1 a
2
ij

q
,

then we have

Ak k2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kmax ATA

� �q
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tr ATA
� �q

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m �maxi2M

Xm

j¼1 aij
�� ��2r

� m �maxi2M
Xm

j¼1 aij
�� �� ¼ m Ak k1:

Therefore, we obtain Ak k2 � m Ak k1. This completes
the proof and the result follows. tu

Theorem 3.8. There exists a positive constant t such that
t > t0, then any sequence f��ðkÞg1k¼0 generated by the IA algo-
rithm converges to a Nash equilibrium, where

t0 ¼ m� 1ð Þm2xmax; (29)

with

xmax ¼
1þ amaxð Þ s�mmin þ 2 1þ amaxð Þfmaxð Þ

s�mminð Þ3

þ
�t
2
1� �tgð Þ þ 2fmax

�t
3

1� �tgð Þ3 ;

(30)

where s ¼ d
1þ 1�dð Þak, amax ¼ maxk2M akð Þ, �mmin ¼ mink2M mkð Þ,

fmax ¼ maxi2M fið Þ, and

�t ¼ m

m� 2ð Þfmax þmgð Þ : (31)

Proof. To improve the overall readability of this manu-
script, the complete proof of this theorem is given in the
supplementary material, available online. tu

4 PERFORMANCE EVALUATION

In this section, we provide some numerical results to vali-
date our theoretical analyses and illustrate the performance
of the IPA algorithm. The performance metrics used in our
simulation are the multiplied time value (TR), namely

TR ¼
Ym
i¼1

Ri; (32)

and specific average response time (Ri), and fairness index
(f Rð Þ) [36], where

f Rð Þ ¼
Xm
i¼1

Ri

 !2,
m
Xm
i¼1

R2
i

 !
; (33)

is used to quantify the fairness of load balancing schemes. If
all servers have the same expected response time, then
f ¼ 1 and the system is fair. Notice that, different from the
central view, our method is developed in a distributed and
non-cooperative environment.

In the following simulation results, we consider a sce-
nario that the maximum total external request arrival
rate (F) can be 500 and the maximum mean request
communication time can be 0.06. As shown in Table 3,
the total external request arrival rate (F) is varied from
50 to 500 with increment 25. The mean request commu-
nication time (t) is varied from 0.001 to 0.01 with incre-
ment 0.001, and from 0.01 to 0.06 with increment 0.01.
The maximum processing rate of a server (�mi) and its
corresponding deteriorating rate (ai) are randomly cho-
sen from 20 to 120 and 0 to 0.5, respectively. The number
of servers (m) in the cloud provider is set as a constant
50. In our configuration, d is set as 0.2, that is to say, the
aggregated requests at a server cannot exceed 80 percent
expected processing capability of the server, and the
accuracy control parameter (�) is set as 0.01. Of course,
other parameter values can also be configured.

Fig. 4 shows an instance for the average response times of
different servers versus the number of iterations of the pro-
posed IPA algorithm. Specifically, Fig. 4 illustrates the aver-
age response time trends of 6 randomly selected servers
(servers 7, 11, 17, 24, 35, and 50) during the iteration process
(the iteration process of the while loop) of our proposed
IPA algorithm. In this scenario, the total number of servers
is 50. From Fig. 4, we can observe that the average response
times of some servers (servers 11, 17, 24, 35, and 50) tend to
decrease with the increase of the iteration number while
some servers (server 7) tend to increase. However, all the
average response times reach a relatively stable state, which
verifies the convergency result shown in Theorem 3.8. That
is, the average response times of all servers are kept
unchanged after several iterations, i.e., reach a Nash equilib-
rium solution after several iterations. In addition, it can also
be seen that the developed algorithm converges to a Nash
equilibrium very quickly. Specifically, the average response
times of all servers have already achieved a relatively stable

TABLE 3
System Parameters

System parameters (Fixed)–[Varied range] (increment)

Total request arrival rate ðFÞ (50)–[50, 500] (25)
Mean communication time ðtÞ (0.001)–[0.001, 0.06] (0.001, 0.01)
Maximum processing rate ð�miÞ [20, 120]
Service deteriorating rate ðaiÞ [0, 0.5]
Other parameters (�; d;m) (0.01, 0.2, 50)
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state after around 8 iterations, which shows the high effi-
ciency of our developed algorithm.

In Fig. 5, we compare the multiplied time values (calcu-
lated according to Eq. (32)) with the situations before and
after IPA algorithm, i.e., compare the results without
request migration and those with request migration config-
ured by our IPA algorithm. Specifically, Fig. 5 shows the
multiplied time values with the increase of total external
request arrival rate. We conduct 300 times with initial strate-
gies randomly chosen from the feasible strategy set, and
present the mean value in Fig. 5. The initial multiplied time
value (ITR) corresponds to the result of a feasible strategy
profile randomly generated in the initialization stage, i.e.,
the profile without request migration, while the result
(TR) corresponds to the value obtained by adopting our
request migration scheme. Obviously, our IPA algorithm
can significantly optimize the multiplied value generated
by initial strategy, which shows that our proposed algo-
rithm is effective for load balance under distributed envi-
ronment. We can also observe that the trend of multiplied
values tend to increase with increase of total external

request arrival rate. The reason behind lies in that with
the increase of total external requests, the expected
response times of some servers significantly increase. To
demonstrate this phenomenon, we further investigate the
specific response times of different servers. The results
are presented in Fig. 6.

In Fig. 6, we plot the average response time shapes of
some servers for the developed IPA algorithm with the
increase of total external request arrival rate. Specifically, in
Fig. 6, we randomly select 3 servers (servers 8, 26, and 45)
and show the expected response time trends. It can be seen
that the average response times of some servers tend to
increase with the increase of total external request arrival
rate (servers 26 and 45), while some of them tend to decrease
(server 8). The reason behind lies in that some slow servers
tend to migrate their arrived requests to other servers to
decrease their own expected response times. Otherwise, their
expected response times will significantly increase evenwith
a small load increase. On the other hand, some fast servers
tend to process the arrived requests by themselves. Hence,
the expected response times of some servers tend to
increase while some servers tend to decrease. Fig. 7
presents the fairness results. The initial fairness index (If)
corresponds to the initial strategy, i.e., the strategy with-
out request migration, and the other corresponds to the
strategy obtained by our IPA algorithm. We can observe
that at first, both results are small and the result obtained
by our algorithm is even worse. With the increase of total
request arrival rate, both results tend to increase. How-
ever, the result obtained by IPA algorithm is more better.
The reason behind lies in that when the total request is
small, there are no aggregated requests on many servers,
i.e., many servers run with very little requests compared
to their whole processing capacities. However, with the
increase of total request arrival rate, our method can find
a better balancing strategy and reaches around 0.6-0.7
fairness index in our non-cooperative environment.

Figs. 8 and 9 present the impacts of mean request
communication time on multiplied time value and the cor-
responding specific response times of some servers. Specifi-
cally, Fig. 8 illustrates the multiplied time value with theFig. 5. Impacts of F on multiplied time value.

Fig. 4. Convergency process of specific response time.
Fig. 6. Impacts ofF on specific response time.
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increment of mean communication time. We can observe
that the multiplied time value increases with increase of
mean request communication time (from 0.001 to 0.03).
However, it keeps unchanged if the mean communication
time of a request is large enough (from 0.04 to 0.06). Fig. 9
shows the corresponding specific average response times.
We randomly select 3 servers (servers 10, 19, and 48). It can
be seen that the average response times of servers tend to
increase with the increase of mean request communication
time (from 0.001 to 0.03) at first. Then, they are kept
unchanged when the mean communication time is large
enough (from 0.04 to 0.06). The reason behind lies in that at
the beginning, even though the mean request communica-
tion time increases, some servers still prefer to migrate
some of their requests to other servers to reduce their own
expected response times. However, when the mean request
communication time (i.e., the cost to migrate a request) is
large enough, they will prefer to complete all the aggregated
requests on their own. This also partly verifies the multi-
plied time shape shown in Fig. 8.

5 CONCLUSIONS

An increasing number of applications migrated to cloud cen-
ters, load balancing has become one of the most important
factors for service quality. However, most of the existing
scheduling algorithms in clouds ignore the server availability,
which can lead to load imbalance and a great waste of com-
puting resources. To remedy this problem to certain extent,
we propose a non-cooperative game based load balancing
scheme, which involves load-dependent server availability.

In this paper, we focus on request migration strategies of
multiple servers for load balance in cloud. We consider the
problem from a game theoretic perspective and formulate it
into a non-cooperative game among the multiple servers, in
which each server is informed with incomplete information
of other servers. For each server, we define its average
response time as a disutility function and try to minimize
its value. We also take into account server availability,
which impacts the processing rate of a server and thus its
disutility. We solve the problem by employing variational
inequality theory and prove that there exists a Nash equilib-
rium solution set for the formulated game. Then, we pro-
pose an iterative proximal algorithm to compute a Nash
equilibrium solution. The convergence of the IPA algorithm
is also analyzed and we find that it converges to a Nash
equilibrium if several conditions are satisfied. Finally, we
conduct some numerical calculations to verify our theoreti-
cal analysis. The experimental results show that our pro-
posed IPA algorithm converges to a Nash equilibrium very
quickly and significantly decreases the disutilities of all
servers by configuring a proper request migration strategy.

As part of future directions, we will extend IPA to
request migration across clouds, in which the communica-
tion cost can be large. Another direction is to study the inte-
gration of our IPA with some pre-scheduling algorithm.

ACKNOWLEDGMENTS

We are very grateful to the associate editor and anonymous
reviewers for their comments and suggestions which have
significantly improved the quality of the manuscript. The
research was partially funded by the National Key R&D

Fig. 7. Impacts of F on fairness index.

Fig. 8. Impacts of t on multiplied time value.

Fig. 9. Impacts of t on specific response time.

LIU ET AL.: A GAME APPROACH TO MULTI-SERVERS LOAD BALANCING WITH LOAD-DEPENDENT SERVER AVAILABILITY... 11



Program of China (Grant No. 2016YFB0201402), the National
Natural Science Foundation of China (Grant Nos. 61702170,
61602350, 61602170, 61402400, 61370098, 61672219), the Key
Program of National Natural Science Foundation of China
(Grant No. 61432005), the National Outstanding Youth Sci-
ence Program of National Natural Science Foundation of
China (Grant No. 61625202), the National High-tech R&D
Program of China (2015AA015305), and the Chinese Post-
doctoral Science Foundation (Grant Nos. 2016M602409,
2016M602410)

REFERENCES

[1] J. Cao, K. Li, and I. Stojmenovic, “Optimal power allocation and
load distribution for multiple heterogeneous multicore server pro-
cessors across clouds and data centers,” IEEE Trans. Comput.,
vol. 63, no. 1, pp. 45–58, Jan. 2014.

[2] J. Mei, K. Li, and K. Li, “Customer-satisfaction-aware optimal
multiserver configuration for profit maximization in cloud
computing,” IEEE Trans. Sustainable Comput., vol. 2, no. 1, pp. 17–
29, Jan.–Mar. 2017.

[3] P. D. Kaur and I. Chana, “A resource elasticity framework for
QoS-aware execution of cloud applications,” Future Generation
Comput. Syst., vol. 37, pp. 14–25, 2014.

[4] L. Tong, Y. Li, and W. Gao, “A hierarchical edge cloud architec-
ture for mobile computing,” in Proc. IEEE Int. Conf. Comput. Com-
mun., 2016, pp. 1–9.

[5] S. Penmatsa and A. T. Chronopoulos, “Game-theoretic static load
balancing for distributed systems,” J. Parallel Distrib. Comput.,
vol. 71, no. 4, pp. 537–555, 2011.

[6] C.-W. Ang and C.-K. Tham, “Analysis and optimization of service
availability in a HA cluster with load-dependent machine
availability,” IEEE Trans. Parallel Distrib. Syst., vol. 18, no. 9,
pp. 1307–1319, Sep. 2007.

[7] H. Khazaei, J. Misic, and V. Misic, “A fine-grained performance
model of cloud computing centers,” IEEE Trans. Parallel Distrib.
Syst., vol. 24, no. 11, pp. 2138–2147, Nov. 2013.

[8] A. Singh, D. Juneja, and M. Malhotra, “Autonomous agent based
load balancing algorithm in cloud computing,” Procedia Comput.
Sci., vol. 45, pp. 832–841, 2015.

[9] A. Paya and D. C. Marinescu, “Energy-aware load balancing and
application scaling for the cloud ecosystem,” IEEE Trans. Cloud
Comput., vol. 5, no. 1, pp. 15–27, Jan.–Mar. 2017.

[10] Y. Feng, B. Li, and B. Li, “Price competition in an oligopoly market
with multiple IaaS cloud providers,” IEEE Trans. Comput., vol. 63,
no. 1, pp. 59–73, Jan. 2014.

[11] A. Kassab, J.-M. Nicod, L. Philippe, and V. Rehn-Sonigo,
“Scheduling independent tasks in parallel under power con-
straints,” in Proc. 46th Int. Conf. Parallel Process., 2017, pp. 543–552.

[12] J. Zhao, K. Yang, X. Wei, Y. Ding, L. Hu, and G. Xu, “A heuristic
clustering-based task deployment approach for load balancing
using bayes theorem in cloud environment,” IEEE Trans. Parallel
Distrib. Syst., vol. 27, no. 2, pp. 305–316, Feb. 2016.

[13] M. J. Siavoshani, S. P. Shariatpanahi, H. Ghasemi, and
A. Pourmiri, “On communication cost versus load balancing in
content delivery networks,” in Proc. IEEE Symp. Comput. Commun.,
2017, pp. 651–656.

[14] P. T. Thant, C. Powell, M. Schlueter, and M. Munetomo, “A level-
wise load balanced scientific workflow execution optimization
using NSGA-II,” in Proc. 17th IEEE/ACM Int. Symp. Cluster Cloud
Grid Comput., 2017, pp. 882–889.

[15] H. Shen, “RIAL: Resource intensity aware load balancing in
clouds,” IEEE Trans. Cloud Comput., 2017.

[16] G. Scutari, D. P. Palomar, F. Facchinei, and J.-S. Pang, “Convex
optimization, game theory, and variational inequality theory,”
IEEE Signal Process. Mag., vol. 27, no. 3, pp. 35–49, May 2010.

[17] J.-P. Aubin, Mathematical Methods of Game and Economic Theory.
North Chelmsford, MA, USA: Courier Corporation, 2007.

[18] S. S. Aote and M. Kharat, “A game-theoretic model for dynamic
load balancing in distributed systems,” in Proc. Int. Conf. Advances
Comput. Commun. Control, 2009, pp. 235–238.

[19] N. Li and J. R. Marden, “Designing games for distributed opti-
mization,” IEEE J. Sel. Topics Signal Process., vol. 7, no. 2, pp. 230–
242, Apr. 2013.

[20] N. S. Rao, S. W. Poole, F. He, J. Zhuang, C. Y. Ma, and D. K. Yau,
“Cloud computing infrastructure robustness: A game theory
approach,” in Proc. Int. Conf. Comput. Netw. Commun., 2012,
pp. 34–38.

[21] X. Xu and H. Yu, “A game theory approach to fair and efficient
resource allocation in cloud computing,” Math. Problems Eng.,
vol. 2014, 2014, Art. no. 915878.

[22] J. K€unsem€oller and H. Karl, “A game-theoretical approach to the
benefits of cloud computing,” in Economics of Grids, Clouds, Sys-
tems, and Services. Berlin, Germany: Springer, 2012, pp. 148–160.

[23] G. Scutari, F. Facchinei, J.-S. Pang, and D. P. Palomar, “Real and
complex monotone communication games,” IEEE Trans. Inf. The-
ory, vol. 60, no. 7, pp. 4197–4231, Jul. 2014.

[24] K. Li, C. Liu, K. Li, and A. Y. Zomaya, “A framework of price bid-
ding configurations for resource usage in cloud computing,” IEEE
Trans. Parallel Distrib. Syst., vol. 27, no. 8, pp. 2168–2181,
Aug. 2016.

[25] A.-H. Mohsenian-Rad, V. W. Wong, J. Jatskevich, R. Schober, and
A. Leon-Garcia, “Autonomous demand-side management based
on game-theoretic energy consumption scheduling for the future
smart grid,” IEEE Trans. Smart Grid, vol. 1, no. 3, pp. 320–331,
Dec. 2010.

[26] I. Atzeni, L. G. Ord�o~nez, G. Scutari, D. P. Palomar, and J. R.
Fonollosa, “Noncooperative and cooperative optimization of dis-
tributed energy generation and storage in the demand-side of the
smart grid,” IEEE Trans. Signal Process., vol. 61, no. 10, pp. 2454–
2472, May 2013.

[27] C. Liu, K. Li, C. Xu, and K. Li, “Strategy configurations of multiple
users competition for cloud service reservation,” IEEE Trans.
Parallel Distrib. Syst., vol. 27, no. 2, pp. 508–520, Feb. 2016.

[28] E. G. Larsson, E. Jorswieck, J. Lindblom, and R. Mochaourab,
“Game theory and the flat-fading gaussian interference channel,”
IEEE Signal Process. Mag., vol. 26, no. 5, pp. 18–27, Sep. 2009.

[29] X. Qin and T. Xie, “An availability-aware task scheduling strategy
for heterogeneous systems,” IEEE Trans. Comput., vol. 57, no. 2,
pp. 188–199, Feb. 2008.

[30] B. Vahedi-Nouri, P. Fattahi, M. Rohaninejad, and R. Tavakkoli-
Moghaddam, “Minimizing the total completion time on a single
machine with the learning effect and multiple availability con-
straints,” Appl. Math. Modelling, vol. 37, no. 5, pp. 3126–3137, 2013.

[31] C. Zhao, M. Ji, and H. Tang, “Parallel-machine scheduling with an
availability constraint,” Comput. Ind. Eng., vol. 61, no. 3, pp. 778–
781, 2011.

[32] I. Kacem, “Effective algorithms for scheduling problems under
non-availability constraints,” in Proc. 2nd Int. Conf. Syst. Comput.
Sci., 2013, pp. 162–169.

[33] L.-W. Liao and G.-J. Sheen, “Parallel machine scheduling with
machine availability and eligibility constraints,” Eur. J. Oper. Res.,
vol. 184, no. 2, pp. 458–467, 2008.

[34] B. Schroeder and G. Gibson, “A large-scale study of failures in
high-performance computing systems,” IEEE Trans. Depend.
Secure Comput., vol. 7, no. 4, pp. 337–350, Oct.–Dec. 2010.

[35] J. Tian, S. Rudraraju, and Z. Li, “Evaluating web software reliabil-
ity based on workload and failure data extracted from server
logs,” IEEE Trans. Softw. Eng., vol. 30, no. 11, pp. 754–769, Nov.
2004.

[36] R. Jain, The Art of Computer Systems Performance Analysis: Techni-
ques for Experimental Design, Measurement, Simulation, and Model-
ing. Hoboken, NJ, USA: Wiley, 1990.

[37] G. Scutari, D. P. Palomar, F. Facchinei, and J.-S. Pang, “Monotone
games for cognitive radio systems,” in Distributed Decision Making
and Control. Berlin, Germany: Springer, 2012, pp. 83–112.

12 IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. 9, NO. 1, JANUARY-MARCH 2021



Chubo Liu received the BS and PhD degrees in
computer science and technology from Hunan
University, China, in 2011 and 2016, respectively.
His research interests include mainly in modeling
and scheduling of distributed computing systems,
approximation and randomized algorithms, game
theory, grid, and cloud computing. He has pub-
lished over 5 papers in journals such as the IEEE
Transactions on Parallel and Distributed Sys-
tems, the IEEE Transactions on Cloud Comput-
ing, the ACM Transactions on Modeling and

Performance Evaluation of Computing Systems, the Future Generation
Computer Systems, and the Theoretical Computer Science.

Kenli Li received the PhD degree in computer
science from Huazhong University of Science
and Technology, China, in 2003. He was a visit-
ing scholar with the University of Illinois at
Urbana-Champaign from 2004 to 2005. He is cur-
rently the dean and a full professor of computer
science and technology with Hunan University
and director of National Supercomputing Center
in Changsha. His major research areas include
parallel computing, high-performance computing,
grid, and cloud computing. He has published

more than 150 research papers in international conferences and journals
such as the IEEE Transactions on Computers, the IEEE Transactions on
Parallel and Distributed Systems, the IEEE Transactions on Signal Proc-
essing, the Journal of Parallel and Distributed Systems, ICPP, and
CCGrid. He serves on the editorial board of the IEEE Transactions on
Computers. He is an outstanding member of CCF. He is a senior mem-
ber of the IEEE.

Keqin Li is a SUNY distinguished professor of
computer science. His current research interests
include parallel computing and high-performance
computing, distributed computing, energy-
efficient computing and communication, hetero-
geneous computing systems, cloud computing,
big data computing, CPU-GPU hybrid and cooper-
ative computing, multicore computing, storage
and file systems, wireless communication net-
works, sensor networks, peer-to-peer file sharing
systems, mobile computing, service computing,

Internet of things, and cyber-physical systems. He has published more
than 480 journal articles, book chapters, and refereed conference papers,
and has received several best paper awards. He is currently or has served
on the editorial boards of the IEEE Transactions on Parallel and Distrib-
uted Systems, the IEEE Transactions on Computers, the IEEE Transac-
tions on Cloud Computing, the IEEE Transactions on Services
Computing, and the IEEE Transactions on Sustainable Computing. He is
a fellow of the IEEE.

" For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/csdl.

LIU ET AL.: A GAME APPROACH TO MULTI-SERVERS LOAD BALANCING WITH LOAD-DEPENDENT SERVER AVAILABILITY... 13



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Algerian
    /Arial-Black
    /Arial-BlackItalic
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BaskOldFace
    /Batang
    /Bauhaus93
    /BellMT
    /BellMTBold
    /BellMTItalic
    /BerlinSansFB-Bold
    /BerlinSansFBDemi-Bold
    /BerlinSansFB-Reg
    /BernardMT-Condensed
    /BodoniMTPosterCompressed
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /BritannicBold
    /Broadway
    /BrushScriptMT
    /CalifornianFB-Bold
    /CalifornianFB-Italic
    /CalifornianFB-Reg
    /Centaur
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /Chiller-Regular
    /ColonnaMT
    /ComicSansMS
    /ComicSansMS-Bold
    /CooperBlack
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FootlightMTLight
    /FreestyleScript-Regular
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /HarlowSolid
    /Harrington
    /HighTowerText-Italic
    /HighTowerText-Reg
    /Impact
    /InformalRoman-Regular
    /Jokerman-Regular
    /JuiceITC-Regular
    /KristenITC-Regular
    /KuenstlerScript-Black
    /KuenstlerScript-Medium
    /KuenstlerScript-TwoBold
    /KunstlerScript
    /LatinWide
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaBright
    /LucidaBright-Demi
    /LucidaBright-DemiItalic
    /LucidaBright-Italic
    /LucidaCalligraphy-Italic
    /LucidaConsole
    /LucidaFax
    /LucidaFax-Demi
    /LucidaFax-DemiItalic
    /LucidaFax-Italic
    /LucidaHandwriting-Italic
    /LucidaSansUnicode
    /Magneto-Bold
    /MaturaMTScriptCapitals
    /MediciScriptLTStd
    /MicrosoftSansSerif
    /Mistral
    /Modern-Regular
    /MonotypeCorsiva
    /MS-Mincho
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /NiagaraEngraved-Reg
    /NiagaraSolid-Reg
    /NuptialScript
    /OldEnglishTextMT
    /Onyx
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Parchment-Regular
    /Playbill
    /PMingLiU
    /PoorRichard-Regular
    /Ravie
    /ShowcardGothic-Reg
    /SimSun
    /SnapITC-Regular
    /Stencil
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TempusSansITC
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanMTStd
    /TimesNewRomanMTStd-Bold
    /TimesNewRomanMTStd-BoldCond
    /TimesNewRomanMTStd-BoldIt
    /TimesNewRomanMTStd-Cond
    /TimesNewRomanMTStd-CondIt
    /TimesNewRomanMTStd-Italic
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /VinerHandITC
    /Vivaldii
    /VladimirScript
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZapfChanceryStd-Demi
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create PDFs that match the "Suggested"  settings for PDF Specification 4.0)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


