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GenoM7GNet: An Efficient N"-Methylguanosine Site
Prediction Approach Based on a Nucleotide
Language Model

Chuang Li"¥, Heshi Wang"”, Yanhua Wen

Abstract—N7-methylguanosine (m7G), one of the mainstream
post-transcriptional RNA modifications, occupies an exceedingly
significant place in medical treatments. However, classic ap-
proaches for identifying m7G sites are costly both in time and equip-
ment. Meanwhile, the existing machine learning methods extract
limited hidden information from RNA sequences, thus making it
difficult to improve the accuracy. Therefore, we put forward to a
deep learning network, called “GenoM7GNet,” for m7G site iden-
tification. This model utilizes a Bidirectional Encoder Representa-
tion from Transformers (BERT) and is pretrained on nucleotide
sequences data to capture hidden patterns from RNA sequences
for m7G site prediction. Moreover, through detailed comparative
experiments with various deep learning models, we discovered
that the one-dimensional convolutional neural network (CNN) ex-
hibits outstanding performance in sequence feature learning and
classification. The proposed GenoM7GNet model achieved 0.953in
accuracy, 0.932in sensitivity, 0.976in specificity, 0.907in Matthews
Correlation Coefficient and 0.984in Area Under the receiver oper-
ating characteristic Curve on performance evaluation. Extensive
experimental results further prove that our GenoM7GNet model
markedly surpasses other state-of-the-art models in predicting
m7G sites, exhibiting high computing performance.

Index Terms—BERT, biological sequence, convolutional neural
network, deep learning, N7 -methlguanosine.

Received 9 November 2023; revised 19 May 2024; accepted 7 September
2024. Date of publication 20 September 2024; date of current version 10
December 2024. This work was supported in part by the Training Program for
Excellent Young Innovators of Changsha under Grant kq2107020, in part by the
Natural Science Foundation of Hunan Province under Grant 2022JJ40128, in
part by the Major Program of Xiangjiang Laboratory under Grant 23XJ01002,
in part by the Key Research and Development Plan of Hunan Province under
Grant 2021NK2020, and in part by the Education Department of Hunan Province
of China under Grant 23B0598 and Grant 21A0372. (Corresponding authors:
Yanhua Wen; Rui Yin.)

Chuang Li, Heshi Wang, and Yanhua Wen are with the School of
Computer Science, Hunan University of Technology and Business, Hunan
410205, China, and also with Xiangjiang Laboratory, Changsha 410205, China
(e-mail: chuangli@hutb.edu.cn; 220720854024 @stu.hutb.edu.cn; yanhuawen
@hutb.edu.cn).

Rui Yin is with the Department of Health Outcomes and Biomedical Informat-
ics, University of Florida, Gainsville, FL 32608 USA (e-mail: ruiyin@ufl.edu).

Xiangxiang Zeng is with the College of Computer Science and Elec-
tronic Engineering, Hunan University, Changsha 410082, China (e-mail:
xzeng @hnu.edu.cn).

Keqin Li is with the College of Computer Science and Electronic Engineering,
Hunan University, Changsha 410082, China, and also with the Department of
Computer Science, State University of New York, New Paltz, NY 12561 USA
(e-mail: lik@newpaltz.edu).

Digital Object Identifier 10.1109/TCBB.2024.3459870

, Rui Yin

, Xiangxiang Zeng *“, and Keqin Li

1. INTRODUCTION

NA modification refers to the chemical alteration of the
Rnucleotide sequence of RNA molecules under specific
conditions. It can enhance the capacity of RNA to convey
diverse information, realizing more complex biological func-
tions [1]. At present, among the identified RNA modifications,
N7-methylguanosine (m7G) has become a rising star in the
research field because of its significant epigenetic modifica-
tions [2], [3]. m7G refers to the methylation modification on
the seventh nitrogen atom of the guanine in RNA molecules.
Research has shown that m7G modification is ubiquitous in
RNA molecules, including mRNA, ribosomal RNA (rRNA), and
transfer RNA (tRNA), and it participates in numerous vital bio-
logical processes, including RNA processing, gene expression,
and protein translation [4], [5], [6].

In previous studies, m7G modification has been shown to
be highly correlated with a variety of diseases, such as Down
syndrome, brain malformations, and microcephalic primordial
dwarfism [4], [7], [8]. Recent research also indicates the in-
volvement of m7G modification at various stages of cancer
formation and progression [9], [10], [11]. In the study of mam-
mals, Methyltransferase-like 1 (METTL1) is the most frequently
researched m7G regulatory factor. Together with its co-factor
WD Repeat Domain 4 (WDR4), it performed m7G modifications
in mRNA, miRNA, and tRNA [12]. Usually, in cancer, abnormal
expressions are found in m7G methyltransferases. They catalyze
the m7G modification in miRNA or tRNA, affecting the expres-
sion of target genes, and thereby regulating the progression of
tumors [13]. In summary, determining the distribution of m7G
sites within RNA is fundamental for the in-depth study of related
diseases and holds significant implications for medical treatment
and research.

In traditional experimental methodologies, numerous tech-
niques for identifying m7G sites have emerged due to the
advancement of sequencing technology, including MeRIP-seq,
miCLIP-seq, AlkAniline-seq, and m7G-quant-seq [6], [14],
[15], [16]. However, these methods typically require exten-
sive manipulations such as RNA enrichment, isolation, chem-
ical reactions, and gel electrophoresis, rendering them time-
consuming, laborious, and relatively costly. Moreover, the ef-
ficiency of traditional experimental methods is rather low for
large-scale RNA sequencing. Consequently, there is an urgent
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need for an efficient prediction method to accurately identify
m7G sites.

With increasingly available biological data and the rapid
advancement of machine learning (ML), numerous researchers
have applied new techniques to address problems in bioinformat-
ics [17], [18], [19]. Chen et al. [20] pioneered the application
of ML to identify m7G sites, proposing a predictor based on
support vector machine (SVM) named iRNA-m7G. It utilized
the integration approach of various features to enrich its in-
formation for prediction, including secondary structure compo-
nent, nucleotide property and frequency, and pseudo nucleotide
composition. Subsequently, Song et al. developed m7GFinder
for the high-precision identification of m7G sites based on
human genomic coordinates or DNA sequences [21]. Liu et
al. presented m7GPredictor, which predicts m7G sites based
on various feature extraction methods [22]. Other m7G site
prediction tools include XG-m7G, m7G-IFL, m7G-DLSTM,
THRONE, and m7G-autoBioSeqpy [23], [24], [25], [26], [27].

Despite the progress in the prediction of m7G sites with
existing models, the latent spatial and temporal information
of RNA sequences is underexplored, which could restrict the
potential for further improvements in their prediction accuracy.
Recently, there has been remarkable success in studies applying
nucleotide language models to predict RNA-protein interac-
tions [28] and DNA methylations [29]. Compared to previous
feature extraction methods, nucleotide language models possess
more potent capabilities for extracting features from nucleotide
sequences, such as DNA and RNA sequences. We assumed that
if we can capture aricher array of hidden information from RNA
sequences, we could further enhance the accuracy and efficiency
of m7G site prediction by integrating the nucleotide language
model with deep learning.

In this paper, we proposed an efficient deep learning pre-
diction model utilizing a nucleotide language model, named
“GenoM7GNet.” GenoM7GNet primarily comprises two parts:
a pre-trained BERT [30] model and a CNN model. In the
pre-trained BERT model part, we utilized DNABERT model
developed by Ji et al. [31] on human genomic data as an
embedding layer to embed tokens into real-valued vectors. In
the CNN model section, we employed a one-dimensional CNN
to learn and classify the vectors outputted from the BERT
embedding layer, thereby achieving the identification of m7G
sites. The proposed GenoM7GNet surpasses existing state-of-
the-art predictors in terms of accuracy, specificity, and Matthews
Correlation Coefficient (MCC). The principal contributions of
our work can be summarized as follows:

1) A novel deep learning prediction model, GenoM7GNet,

for rapid and accurate m7G sites identification.

2) A new approach that integrates the BERT model based on
nucleotide language as an embedding layer into m7G site
prediction for the extraction of richer hidden information
from RNA sequences.

3) Without any extra information beyond RNA sequence,
GenoM7GNet can accomplish high-performance m7G
site prediction tasks.

4) Compared to previous models, the method we propose
demonstrates significant improvements across various
evaluation metrics.
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II. MATERIALS AND METHODS

The proposed GenoM7GNet model comprises a series
of processes including dataset preprocessing, embedding of
pre-trained BERT model, training and classification through
one-dimensional CNN, and model evaluation. The comprehen-
sive workflow of the model is depicted in Fig. 1. The detailed
elaboration for each process is described in the following sub-
sections.

A. Dataset

In our work, we utilized the widely used dataset in previous
research [20], [23], [24], [25], [26], [27]. This benchmark dataset
is comprised of 1482 RNA sequences, each with a length of
41 nucleotides. It contains 741 positive samples (m7G sites)
and an equal number of negative samples (non-m7G sites). The
benchmark dataset D can be represented as

D=DTuUD" (1)

where D is the positive m7G site samples, and D~ the negative
ones. D consist of sequences centered around m7G sites iden-
tified by Drummond et al. [32], originated from human HepG2
and HeLa cells. The negative samples contain non-m7G sites
and are of equal length to the positive samples. To mitigate
sequence homology bias, we employed the CD-HIT tool [33]
to remove sequences with similarity greater than 80%. To intu-
itively observe the nucleotide base distribution between positive
and negative samples, we employed an online Two Sample Logo
tool [34] for analysis. The sequence logo shown in Fig. 2 depicts
the distribution of adenine (A), uracil (U), cytosine (C), and
guanine (G) in the dataset.

We first randomly partitioned the benchmark dataset, allo-
cating 20% of the data as a testing set for final evaluation.
To make optimal use of limited data and enhance the sta-
bility of the model, we employed an 8-fold cross-validation
approach for training. This choice is an empiric value from mul-
tiple experimental comparisons, where 8-fold cross-validation
demonstrated markedly superior performance and generalizabil-
ity compared to 5-fold or 10-fold cross-validation. Specifically,
we evenly divided the remaining dataset into eight subsets,
sequentially selecting one subset as the validation set and others
for the training. The validation set is to evaluate the trained model
with the goal of determining a final model that yields the optimal
performance, while the test set is to assess this final model. The
ratios among the training, validation, and testing sets within the
benchmark dataset were 0.7:0.1:0.2, respectively.

B. Pre-Trained BERT Model

1) DNABERT: Biological sequences primarily consist of
DNA, RNA, and protein sequences. They have been widely
utilized in bioinformatics research and can be regarded as a
form of language for conveying information between cells.
Unlike natural languages, the information encoded in biological
sequences is interacted at cellular level, making it complicated
and difficult to understand. One of the primary challenges is
to effectively extract and analyze information from these se-
quences. Word embedding is a method that maps words to
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Fig. 1. The flow chart of GenoM7GNet for predicting m7G sites. First, we partitioned the benchmark dataset obtained from previous work into training, test,

and validation sets, following a 70%, 20%, and 10% distribution, respectively. Subsequently, we utilize a BERT model pre-trained on human genome data as an
embedding layer to extract information from RNA sequences. Then, we employ the 1D CNN architecture to learn the feature information derived from BERT and
classify whether the sequences contained m7G sites. Finally, we use the test sets to evaluate the performance of the final model.
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Fig. 2.

The distribution of nucleotides in the m7G site sample dataset. Proportional symbol sizes are used to illustrate the statistically significant differences

between the two samples. Nucleotides are classified into two distinct categories: (i) those enriched in the positive samples and (ii) those that are depleted in the

positive samples.

real-valued vector representations, which can learn hidden fea-
tures from large-scale corpora to convert words into suitable
vector representations. For natural language processing (NLP),
there are diverse widely used traditional word embedding meth-
ods, such as word2vec [35], [36], fastText [37], and GloVe [38].
Although these methods are efficient, they are inherently static

and struggle to address the problem of polysemy. However,
BERT utilizes the attention mechanism to pre-train unlabeled
text bidirectionally. It is capable of generating dynamic word
embeddings, where the same word or nucleotide is mapped to
different real-valued vectors depending on its position in the
sequence.
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Inspired by the vector representation in nature language, we
introduced DNABERT, which is an architecture based on BERT.
DNABERT was pretrained on the human reference genome
GRCh38.p13, with the training objective being the prediction
of masked tokens using contextual cues. Numerous studies have
demonstrated that features learned from DNA base sequences
can be easily applied to RNA tasks [28], [39], [40], [41].
Compared to BERT models pre-trained on natural languages,
DNABERT is superior to capture hidden information and fea-
tures within nucleotide sequences.

2) Tokenization: To enable us to handle with biological data,
we utilized k-mer representation to tokenize nucleotide se-
quences as opposed to single bases. The k-mer representation
is the concatenation of each nucleotide base with the subse-
quent continuous k-1 bases, forming a sequence of length k.
For example, the 6-mer representation of the RNA sequence
‘ACAACCU’ is: {ACAACC, CAACCU}, while its 5-mer rep-
resentation is: { ACAAC, CAACC, AACCU}. The k-mer rep-
resentation, which provides richer contextual information for
individual nucleotide bases, has been widely adopted to process
biological sequences processing. In DNABERT, different k-mer
representations (k=3-6) have been exploited to train four distinct
models for downstream analysis. In our GenoM7GNet model,
we opted to tokenize RNA sequences using 6-mer representa-
tion.

3) BERT Embedding: After converting the sequences into
6-mer representation, a 41-length RNA sequence is segmented
into 36 tokens. These tokens are then inputted into the pre-
trained BERT model, where each token is transformed into a
real-valued vector of dimension 768. Consequently, for each
input RNA sequence, the BERT embedding layer converted it
into a matrix of size 36 X 768. In our model, we adopted a strategy
where parameters of the pre-trained BERT model remained
fixed throughout the training phase. This means that we neither
fine-tune nor train the model parameters individually, leaving all
parameter learning to the downstream classifier. This decision
was based on the fact that the pre-trained BERT model already
possesses strong nucleotide language information extraction ca-
pabilities, and due to the limitations in data volume, fine-tuning
or participating in training offers limited improvements but more
than doubles the time cost.

C. One-Dimensional CNN Model

CNN is a deep learning model frequently employed for
addressing computer vision problems, while also exhibiting
exceptional performance in the field of bioinformatics [42],
[43]. One-dimensional CNN, a variant of CNN, is particularly
adept at handling sequence data and possesses robust abilities
for capturing local features. In our research, we utilized the one-
dimensional CNN model to perform feature learning on BERT
embeddings and classify the presence of m7G sites based on the
RNA sequences. We added a convolutional layer, a pooling layer,
a fully connected layer to constitute the fundamental structure
of our CNN models. To reduce the potential overfitting issues,
we incorporate batch normalization and dropout strategies in the
architecture.
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In mathematical terms, the relationships among the convo-
lutional layer and the Rectified Linear Unit (ReLU) layer are
expressed as

S—1N-1
ConvID(R);; = ReLU <Z > W;‘nRﬂs’n) )
s=0 n=0
where R represents the input of one-dimensional CNN, j is
the output position index, f is the convolutional kernel index,
s denotes the kernel size and » is the number of channels. ReLU
can be defined as

ReLU(z) = max(0, z). 3)

Batch normalization and dropout strategies can be employed
to prevent the occurrence of vanishing gradients in the model.
The mathematical definition of batch normalization is shown in
).

x — mean|z]*

BatchNorm(z) = v+ 8 (4)

var[z] + ¢

where mean[z] and var[z] represent the global mean and variance
obtained during the training process, respectively. Following the
two layers of 1D CNN is a fully connected neural network, the
purpose of which is to flatten the CNN output and perform fur-
ther feature extraction. Finally, we utlized the sigmoid function
to scale the output layer value between 0 and 1, in order to predict
whether a given sequence contains the m7G site. Equation (5)
provides the mathematical expression of the sigmoid function.

1
1+e 2

Sigmoid(z) = 5)

D. Performance Evaluation Metrics

In our research, we employed several commonly used metrics
to assess the model’s predictive performance, including accuracy
(ACCQC), sensitivity (SN), specificity (SP), Matthews Correlation
Coefficient (MCC), and the receiver operating characteristic
(ROC) curve.

TP + TN
Accuracy = (6)
TP + FP + TN + FN
TP
Sensitivity = ——— 7
ensitivity TP T EN (7)
TN
ity — N
Specificity TN+ FP ®)
TP x TN) — (FP x FN
e (TP X TN) - (FP x FN)

/(TP + FP)(TP + EN)(TN + FP)(TN + FN)
©)

where TP, TN, FP, and FN represent the number of true positives
(correctly identified positive samples), true negatives (correctly
identified negative samples), false positives (negative samples
misclassified as positive), and false negatives (positive samples
misclassified as negative), respectively. Additionally, the ROC
can reflect the predictor’s generalization capability to some
extent. We employed AUC (Area Under the Curve) to represent
the area beneath the ROC curve. The value closer to 1 indicates
a higher level of robustness in the model.
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E. Baseline Approaches

To evaluate the performance of our model, we compared
GenoM7GNet against a range of existing baseline methods,
including iRNA-m7G, m7GFinder, m7GPredictor, XG-m7G,
m7G-IFL, m7G-DLSTM, THRONE, and m7G-autoBioSeqpy.
iRNA-m7G, m7GFinder, and m7GPredictor employ SVM-
based algorithms and leverage multiple feature subsets for the
identification of m7G sites [20], [21], [22]. Both XG-m7G and
m7G-IFL employ XGBoost-based approaches for the detection
of m7G sites [23], [24]. m7G-DLSTM adopts deep learning
techniques, utilizing Long Short-Term Memory (LSTM) se-
quences for feature extraction, learning, and classification [25].
THRONE is a machine learning-based three-layer ensemble
predictor for m7G site identification [26]. m7G-autoBioSeqpy
introduces autoBioSeqpy to employ a variety of deep learning
methodologies for m7G site classification [27]. These baseline
methods provide a comprehensive and multi-faceted benchmark
for our evaluation.

III. RESULTS
A. Hyperparameter Selection

Hyperparameter fine-tuning is crucial in deep learning, since
it can optimize model performance. For the overarching param-
eters of our model, we chose a batch size of 64, a learning rate of
Se-6, and an epoch number of 100 as the training parameters for
the GenoM7GNet model. To achieve better model performance,
we adopted a linear learning rate warm-up strategy, where the
learning rate linearly increases from null to the target value and
then linearly decreases to zero throughout the training process.
The training was conducted on a single NVIDIA A100 SXM4 40
GB GPU, with the GenoM7GNet model taking approximately
30 minutes to train when the epoch count was set to 100. The
model’s accuracy fluctuations in predicting the training and
validation sets during the training process are depicted in Fig. 3.

In our selection of hyperparameters for the one-dimensional
CNN classifier, we assessed the model performance with distinct
hyperparameters, including the number of convolutional layers,
number of kernels, kernel size, maximum pooling size, and
dropout rate post-convolution. Ultimately, we opted for the
one-dimensional CNN with two convolutional layers, the first
and second of which contain 72 and 200 kernels, respectively.
Both layers employ a kernel size of 3, a maximum pooling size
of 2, and a dropout rate of 0.2 post-convolution.

B. Model Performance Evaluation

Our GenoM7GNet model consists of a pretrained BERT
model and a 1D CNN classifier, and it exhibited excellent
performance in predicting m7G sites, with an accuracy of 0.953,
sensitivity of 0.932, specificity of 0.976, and MCC of 0.907. In
addition, the confusion matrix and ROC curve obtained from
the test set evaluation of this model are shown in Fig. 4, with an
AUC value of 0.983. These results indicate that the BERT model,
pretrained on the human genome data, possesses strong nu-
cleotide language comprehension, enabling effective extraction
of hidden features from biological sequences. Additionally, they
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Fig. 3. The learning curve of the GenoM7GNet model during the training
process.

also demonstrate the outstanding effectiveness and performance
of the 1D CNN in local feature extraction and classification of
sequence data.

C. Visualization and Motif Discovery Based on BERT
Embedding Layer

In our study, we utilized BERT as the embedding layer to
extract hidden information from positive and negative samples.
BERT is built on the Transformer architecture, with its core
component being the attention mechanism. By visualizing the
attention weights assigned to each token within the BERT em-
bedding layer, we can gain an intuitive understanding of sample
sequences related to m7G sites. Positions with higher attention
scores may contain more critical information. We set the coor-
dinate of the central ‘G’ base in the sequence to zero, which
facilitates our observation of attention distribution surrounding
the m7G site. Fig. 5(a) and (b) depicted the attention heatmaps
for positive and negative samples over sequence positions, and
Fig. 5(c) presented the average attention score curve for both
positive and negative samples. Although there are overarching
similarities in the attention score for both samples, discrepancies
are evident at specific positions.

The attention scores can to some extent reflect the importance
of sub-sequences. Hence, we can also leverage them to identify
motifs of biological significance. Specifically, we first identified
regions of high attention in the input sequence consecutively, and
then employed the Aho-Corasick algorithm for multi-pattern
matching to locate instances of motif patterns within the se-
quence. Subsequently, we conducted a hypergeometric test to
find motifs significantly enriched in positive sequences, filtering
out motif instances that have p-values less than 0.005. Finally, we
aligned and merged similar motifs using the Smith-Waterman
algorithm. Using a window size of 31, we identified three
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Visualization of attention scores at the m7G site for positive and negative samples. (a) and (b) Heatmaps depicting attention scores at various positions

for both positive and negative samples. (c) Comparison of the average attention scores across different positions for positive and negative samples.

Fig. 6.  Sequence logo representation of the discovered motif at the m7G site.

motif instances associated with m7G sites in RNA. These are
represented as sequence logos in Fig. 6.

D. Comparison to Previous Works on m7G Site Prediction

As previously mentioned, predicting m7G sites using RNA
sequences is a valuable and appealing research topic, and experts
have developed numerous advanced predictors. To demonstrate
the capability of our model in predicting m7G sites, it is essential
to compare with the previously most advanced predictors. In
our study, we compared our GenoM7GNet model with sev-
eral of the most advanced predictors available today, including
iRNA-m7G, m7GFinder, m7GPredictor, XG-m7G, m7G-IFL,
m7G-DLSTM, THRONE, and m7G-autoBioSeqpy [20], [21],
[22],[23], [24], [25],[26], [27]. We applied the same datasets and

= GenoM7GNet
. m7G-IFL
B m7GFinder

mm XG-m7G
mm iRNA-m7G
= m7GPredictor

B m7G-DLSTM
s THRONE
s m7G-autoBioSeqpy
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Metrics
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Fig. 7.
models.

Performance comparison of our model with other state-of-the-art

evaluation metrics to guarantee an unbiased and fair comparison.
The comparative results of the performance of each model are
presented in Fig. 7. Compared with the most advanced models
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Fig. 9. Performance comparison between our model and other available state-of-the-art models on the independent dataset.

previously available, our model’s accuracy, specificity, MCC,
and AUC improved by 0.3%, 2.5%, 0.7%, and 0.9%, respec-
tively. This significantly demonstrates the superior performance
of our model in predicting m7G sites.

To assess the stability of our model’s performance, we calcu-
lated 95% confidence intervals for accuracy, specificity, sensi-
tivity, MCC, and AUC metrics, respectively, employing 30 data
sets generated via cross-validation and random selection. Then,
we used a t-distribution-based approach for these calculations,
expressed by the formula

5
\/ﬁ?
where  represents the sample mean, s the sample standard
deviation, n the sample size, and ¢* the critical value from
the t-distribution. To visually display the distribution and sta-
bility of the model performance metrics, we generated plots
that include the 95% confidence intervals for each metric. As
presented in Fig. 8, a more intuitive understanding of the model
evaluation results is depicted. By calculating the confidence
intervals, we demonstrate the statistical significance of the model
performance, which reveal clearly its potential variability range.
However, it is important to note that these metrics are not entirely
independent, which means that the chosen final model may not
necessarily have all indicators within the confidence intervals.

In addition, we tested our model on an independent dataset
derived from m7GHub [21], which includes a more diverse

CIl=z+t"x (10)

and cross-species collection of m7G site data. We randomly
selected a portion of m7G sites from different categories to
form the positive samples. These positive samples consisted of
741 unique RNA sequences, each 41-bp in length, containing
m7G sites. Negative samples were generated using the same
method as the benchmark dataset, matching the positive samples
in both quantity and length but without m7G sites. The test
results demonstrated that our GenoM7GNet model achieved
an accuracy, sensitivity, specificity, MCC, and AUC of 0.902,
0.880, 0.874, 0.880, and 0.964, respectively. We compared these
results with those from available state-of-the-art models [20],
[21], [22], [25], as shown in Fig. 9. The findings indicate that
our model consistently exhibits superior performance in terms of
accuracy, specificity, MCC, and ROC curve. This suggests that
GenoM7GNet not only has higher predictive performance but
also strong generalization capabilities in predicting m7G sites.

E. Discussion on GenoM7GNet

In this sub-section, to better illustrate the function of each
component of the GenoM7GNet model and the impact of hy-
perparameter selection, we conduct a discussion by deforming
various parts of the model and adjusting the hyperparameters.

1) Embedding Layer: To substantiate the enhanced capabil-
ity of DNABERT pre-trained on the human genome in extracting
hidden information from RNA sequences, we conducted a com-
parative analysis between the performance of BERT pre-trained
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TABLE I
COMPARISON OF PRE-TRAINED BERT MODELS

Pre-trained BERT Model =~ ACC SN SP MCC AUC
BERT(natural languages) 0.891 0.892 0.890 0.781  0.936
DNABERT(3-mer) 0934 0953 0915 0.868 0.975
DNABERT (4-mer) 0926 0925 0926 0851 0.973
DNABERT(5-mer) 0945 0949 0942 0.890 0.977
DNABERT(6-mer) 0953 0.932 0976 0.907 0.984
TABLE I
TRAINING PARAMETERS OF WORD2VEC

Parameters Value

Corpus Human Genome

Reference Genome Version ~ GRCh38.p13

Strategy Continuous Bag of Words (CBOW)

Representation 6-mer

Epochs 20

Window Size 9

Negative Sampling 5

Minimum Count 5

Vector Size 100

on natural language and DNABERT pretrained on different
k-mers. It is clearly shown in Table I that DNABERT indeed
exhibits a more powerful capacity to extract hidden information
from RNA sequences. Additionally, the model pre-trained on
6-mer representations demonstrated superior performance.

In our model, a BERT model pre-trained on the human
genome is employed as the embedding layer. To evaluate its role
and functionality, we compared it with two common embedding
methods. The first is one-hot encoding, which maps different
nucleotides into discrete vector representations. The second is
the word2vec embedding model; we constructed a word2vec
model trained on the same human genome data as DNABERT to
be used as the embedding layer. This aimed to examine whether
the dynamic BERT embedding exhibits excellent performance.
The parameters of the word2vec model are detailed in Table II.

We used various classifiers to learn and classify the outputs of
these two embedding layers and evaluated them using the same
metrics. The results are presented in Table III. By comparing
with the pre-trained BERT embedding in Table I, it can be seen
that models using BERT embeddings performed better overall
compared to those using one-hot encoding and static word2vec
embedding methods. This suggests that BERT embeddings dy-
namically generated from nucleotide sequences have superior
capabilities to extract critical features to identify m7G sites.
Moreover, it was observed that models using one-hot encod-
ing generally outperformed those using word2vec embeddings.
We speculate that this is due to the inability of word2vec to
handle polysemous words and its ignorance of crucial features
of nucleotide sequences during training.

In GenoM7GNet, when generating the output vectors from the
embedding layer, we chose to sum the last four layers of BERT
and then output. The rationale behind this is that merging the out-
puts from multiple layers can yield a more comprehensive and
rich representation. To verify its effectiveness, we constructed
models by summing the output vectors from different numbers
of final layers and subsequently tested the predictive accuracy.
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TABLE III
PERFORMANCE COMPARISON OF MODELS COMPOSED OF DIFFERENT
EMBEDDING METHODS AND CLASSIFIERS

Embedding Classifier ACC SN SP MCC AUC
Fully Connected 0.898 0.901 0.896 0.797 0.938
1D CNN 0918 0914 0.923 0.835 0.964
2D CNN 0.883 0.919 0.848 0.768 0.939
BiLSTM 0.879 0.860 0.896 0.757 0.929
One-hot  BiLSTM+1D CNN  0.914 0.920 0.907 0.827 0.941
BiLSTM+2D CNN  0.867 0.850 0.884 0.735 0.921
1D CNN+Attention 0.832 0.792 0.870 0.665 0.898
2D CNN+Attention 0.887 0.924 0.847 0.775 0.948
BiLSTM+Attention 0.867 0.891 0.839 0.732 0.929
Fully Connected 0.820 0.852 0.769 0.639 0.878
1D CNN 0.871 0.776 0.950 0.745 0.937
2D CNN 0.840 0.846 0.833 0.680 0.915
BiLSTM 0.875 0.873 0.877 0.749 0.927
Word2vec BiLSTM+1D CNN  0.816 0.773 0.859 0.635 0.876
BiLSTM+2D CNN  0.875 0.906 0.849 0.752 0.924
1D CNN+Attention 0.801 0.780 0.823 0.603 0.858
2D CNN+Attention 0.801 0.790 0.813 0.602 0.838
BiLSTM+Attention 0.867 0.841 0.862 0.735 0.900
DNABERT 1DCNN 0.953 0.932 0.976 0.907 0.984
TABLE IV

COMPARISON OF MODEL PERFORMANCE WITH DIFFERENT SUMMATION
LAYERS IN BERT EMBEDDING

Sum Layers ACC SN SP MCC AUC
Last 1layer ~ 0.902 0900 0.904 0.805 0.961
Last 2 layers  0.926 0912 0939 0.852 0.962
Last 3 layers  0.941 0.969 0911 0.884 0.969
Last 4 layers  0.953 0.932 0.976 0.907 0.984
Last 5 layers  0.926 0906 0.945 0.852  0.968
Last 6 layers 0910 0.905 0915 0.820 0.942
TABLE V
COMPARISON OF DIFFERENT CLASSIFIERS
Classifier ACC SN SP MCC AUC
Fully Connected 0.863 0.845 0.850 0.724  0.928
1D CNN 0.953 0932 0976 0.907 0.984
2D CNN 0910 0.895 0924 0.820 0.946
BiLSTM 0.906 0949 0.858 0.813 0.951
BiLSTM+1D CNN 0.902 0865 0.938 0.806 0.930
BiLSTM+2D CNN 0934 0917 0948 0.867 0.960
1D CNN+Attention 0910 0.908 0913 0.820 0.953
2D CNN+Attention  0.895 0.892 0.897 0.789  0.950
BiLSTM+Attention ~ 0906 0.893 0.920 0.813  0.929

Table IV shows the final tests results, proving that it exhibits
optimal performance when the summing layer number is 4. This
implies that its output can better integrate both local and global
features of RNA sequences.

2) Classifier: To showcase the exceptional local feature
learning and classification capabilities of 1D CNN, we attempted
various advanced deep learning architectures for the identifica-
tion of m7G sites, such as BILSTM, CNN, attention mechanism,
and their combinations. Through continuous hyperparameter
adjustment and optimization of the various models and their
blends, we found that the one-dimensional CNN demonstrated
the most stable and outstanding performance, as shown in
Table V.

For this outcome, our analysis suggests that the task may
predominantly rely on local features within the sequence,
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making 1D CNNs more effective than models requiring longer-
term dependencies (such as BILSTM or attention mechanisms).
Conversely, 2D CNNs, which are generally more suited for
processing data with spatial relationships, might not effectively
capture the dynamic features of time series. Additionally, the
dataset in this task is not large, and simpler models may perform
better than stacked models due to the latter’s tendency to overfit
the training data. Simpler models are likely easier to generalize
to unseen samples with limited data available.

To assess the effects of various parameters and strategies in
the 1D CNN on model performance, we constructed prediction
models with 1D CNN classifiers of different parameters. First,
we tested the impact of different numbers of layers and sizes
of convolutional kernels on model predictive accuracy. The
results of which are shown in Fig. 10. It was observed that
the models exhibit optimal performance when the number of
layers is set to either two or three. This phenomenon can be
attributed to the fact that different convolutional layer depths
extract and analyze features at varying levels of abstraction.
Yet an excessive number of layers may complicate the model,
leading to overfitting and information loss. Moreover, 1D CNNs
with a kernel size of 3 generally outperformed with other sizes.
This is presumably because, in this task, a kernel size of 3 is
sufficiently capable of capturing local contextual features while
avoiding the introduction of excessive irrelevant information,
thus preventing interference and overfitting.

We also compared the effects on model performance of differ-
ent dropout rates in the CNN with or without normalization. As
can be seen from Fig. 11, incorporating dropout strategies can
effectively prevent overfitting, thereby improving the model’s
generalization performance. However, a high dropout rate may
prevent the model from obtaining sufficient information. Batch
normalization can effectively address the issue of internal co-
variate shift in the model, thereby improving model performance
and accelerating model training speed.

IV. CONCLUSION

To efficiently identify the m7G sites, this paper proposes a
novel deep learning model called GenoM7GNet. By utilizing
a BERT model pre-trained with the nucleotide language, more

IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, VOL. 21, NO. 6, NOVEMBER/DECEMBER 2024

—8— with normalization
—®— no normalization
0.94 -
0.92 -
>
3
£ 0.901
I3
O
<
0.88
0.86
084 1 T T T T T T T T T T T
0 005 01 015 02 0.25 0.3 0.35 040 0.45 0.50
Dropout rate
Fig. 11.  Line graph depicting the impact of dropout rates and batch normal-

ization on model accuracy in the 1D CNN classifier.

rich and reliable hidden information and features were extracted.
Compared to BERT models pre-trained on natural language,
our model demonstrates superior capability in extracting RNA
sequence information, making it more suitable for biological
sequence processing and analysis. Predictive results indicated
that our proposed GenoM7GNet model exhibits efficient and
outstanding performance in the identification of m7G sites,
surpassing other state-of-the-art models. This model will assist
medical professionals in drug development and cancer treat-
ment, advancing the further development of precision medicine.

However, our approach has certain limitations. Due to the
limited current research on the m7G site, the dataset we can
utilize is relatively small. Consequently, our model might not
be able to gather more biological insights on the m7G sites
from the results. In future research, we plan to gather more
extensive and higher-quality m7G site data, and adjust our model
training strategies, while incorporating more advanced deep
learning methods to further enhance the accuracy and efficiency
of prediction.
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