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a b s t r a c t 

In this paper, we propose an efficient and discriminative saliency method that takes advantage of back- 

ground divergence and foreground compactness. Concretely, a graph is first constructed by introducing 

the concept of virtual node to effectively enhance the distinction between nodes along object boundaries 

and the similarity among object regions. A reasonable edge weight is defined by incorporating low-level 

features as well as deep features extracted from deep networks to measure the relationship between 

different regions. To remove incorrect outputs, two computational mechanisms are then developed to 

extract reliable background seeds and compact foreground regions, respectively. The saliency value of a 

node is calculated by fully considering the relationship between the corresponding node and the vir- 

tual background (foreground) node. As a result, two types of saliency maps are obtained and integrated 

into a uniform map. In order to achieve significant performance improvement consistently, we propose 

a robust saliency optimization mechanism, which subtly combine suppressed/active (SA) nodes and mid- 

level structure information based on manifold ranking. Extensive experimental results demonstrate that 

the proposed algorithm performs favorably against the state-of-art saliency detection methods in terms 

of different evaluation metrics on several benchmark datasets. 

© 2019 Elsevier B.V. All rights reserved. 
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1. Introduction 

Human visual system can effortlessly and accurately identify

the most important regions in a scene. The selective attention

mechanism can help with the high-level cognitive task. Therefore,

saliency detection to model biological visual systems has re-

ceived increasing interest from computer science, psychology and

neurobiology in recent years [1] . As an essential pre-processing

procedure, numerous saliency models have been applied to various

computer vision fields, such as image segmentation [2] , object

recognition [3] , forgery detection [4] , image/video compression

[5] and image retrieval [6] , and so on. 

Itti et al. [7] believed that human visual system paid more at-

tention to high-contrast regions and computed saliency via local

contrast. Based on this theory, contrast prior becomes one of the

most used principles to be adopted by various kinds of saliency

models [8,9] from either local or global view. For local methods

[10] , center-surround contrast is used to characterize saliency. Due
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o lack of global information, these methods tend to highlight the

oundaries of the salient objects while failing to detect internal

atches of the salient objects (see Fig. 1 (c)). On the other hand,

lobal contrast [11,12] , which prefers to exploit the global informa-

ion for saliency detection, can accurately determine the location of

he salient objects. However, the effectiveness of these methods in

niformly detecting the salient objects is limited when background

egions have similar appearance resulting from local information

eing ignored (see Fig. 1 (d)). 

Different from adopting contrast prior, many saliency methods

13–15] formulate their algorithms based on boundary prior, re-

arding that it is of high probability for image boundaries to be

ackground. Although these methods perform well in some cases,

hey also have several drawbacks. Firstly, it is not appropriate to

reat all regions on the boundary as background for the reason

hat sometimes the object may appear on the image boundary (see

ig. 1 (e)). Secondly, most of these methods are effective in uncom-

licated cases, but they still struggle in complex scenes due to the

eeble low-level features. 

For the shortcoming of low-level features, some methods

14,16] adopt task-driven models requiring supervised learn-

ng based on training samples with manual labels. The prime
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Fig. 1. The differences among various saliency models: including the local contrast based model CB [7] , the global contrast based model PCA [8] , the background prior based 

model MR [9] , deep learning based model DHSNet [14] and the objectness based model LPS [13] . 

Fig. 2. Pipeline of our algorithm. 
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xample is deep learning based methods, where deep features ex-

racted from deep neural networks are exploited due to their pow-

rful expressibility and strong capacity for discriminating the ob-

ects from the backgrounds. However, it is very expensive and time

onsuming to obtain an immense amount of manual label data. In

ddition, deep learning based methods often suffer from diluting

mage features due to convolutional and pooling layers [17] (see

ig. 1 (f)). On the other hand, a recent trend is to incorporate high-

evel features [18,19] to facilitate detection. A type of high-level

epresentation is the concept of objectness. The problem is that di-

ectly exploiting the objectness score to guide the saliency compu-

ation may lead to dissatisfactory results in complex scenes, espe-

ially provided that the correct salient objects cannot be predicted

y the objectness value [18,20,21] (see Fig. 1 (g)). 

To this end, we put forward an unsupervised graph-based

ethod for saliency detection. The pipeline of our method is pre-

ented in Fig. 2 . First, based on the superpixel segmentation, we

ollect the image border superpixels to construct a border set.

hen, a discriminative similarity metric is proposed by taking deep
eatures and traditional handcrafted features into consideration.

fter that, we introduce an automatic selection scheme based

n background divergence to get reliable background seeds in-

tead of simply using border set as background seeds [13,22] , and

ompute the saliency value of each node by finding the short-

st path from the corresponding node to the virtual background

ode, thereby generating the background-based saliency map. To

uppress the background noise, the foreground-based saliency map

s constructed. Specifically, highly confident compact foreground

eeds are generated by considering spatial compactness and vi-

ual rarity. Similar to the background-based saliency detection, the

aliency value of each node is measured by finding the short-

st path from the corresponding node to the virtual foreground

ode and the foreground-based saliency map then can be obtained.

urthermore, the two saliency maps are integrated by an unified

unction. Finally, based on manifold ranking, an improved saliency

ropagation mechanism, which introduces mid-level structure in-

ormation and suppressed/active nodes mainly taking objectness

ap into consideration, is proposed to refine the integrated result.
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The main contributions of this paper are as follows: 

• We propose a saliency detection algorithm based on back-

ground divergence and foreground compactness on a novel

graph structure, which introduces the background/foreground

seeds and the concept of virtual background/foreground node.

An automatic selection scheme based on background diver-

gence is proposed to get reliable background seeds from im-

age border. By taking spatial compactness and rarity of salient

objects into consideration, a compact and coherent foreground

region can be generated. 
• A robust saliency propagation mechanism based on manifold

ranking is proposed to refine saliency map. The experimen-

tal results demonstrate that it is of high versatility that can

improve other methods based propagation when applying our

propagation mechanism. 
• We also devise a new object-touching-boundary (OTB 

1 )

saliency dataset comprising 1044 images that salient objects

touch the image boundaries in each image. This dataset is

specifically designed to evaluate the performance of salient ob-

ject detection method on the scene that boundaries are adja-

cent to the salient objects. 

The remainder of this paper is organized as follows.

Section 2 describes the related work on salient object detec-

tion. Section 3 shows the detailed description of our proposed

salient object detection. The experimental results and performance

evaluation are presented in Section 4 . Finally, Section 5 concludes

the paper. 

2. Related work 

Literature of salient object detection is huge and we just discuss

the most related saliency detection methods in this section. 

Recently, boundary prior is one of the most widely used prin-

ciples to compute saliency. Yang et al. [13] computed the saliency

of image regions according to the relevance to boundary nodes via

manifold ranking. Wei et al. [23] estimated saliency value of each

region by measuring the shortest-path distance to the boundary.

Nevertheless, it may produce undesirable results if the object ap-

pears at image boundaries. In order to improve the effect, Wang

et al. [24] dropped the superpixels with strong edge out of the

border set to obtain the reliable background seeds. Li et al. [25] di-

rectly filtered out one boundary having the most distinctive color

distribution and regarded the rest of three as background query

seeds. Li et al. [20] removed the top 30% border pixels with high

color difference among border set. However, their computational

distinctiveness is confined to the border set instead of the entire

image. Faced with the issue, we propose an effective way to re-

move the untrustworthy superpixels in the border set based on di-

vergence background and define the rest of the border regions as

background seeds. 

A graph can be applied to represent relationships between im-

age elements with affinity measure. Harel et al. [26] adopted mul-

tiple features to extract saliency information on their graph based

visual saliency (GBVS) model. A hierarchical graph model was de-

veloped for saliency detection by combining context information

[27] . Wang et al. [28] measured the saliency by site entropy rate

on a full-connected graph. Gopalakrishnan et al. [29] exploited

the Markov random walks on the fully connected graph and the

sparsely connected graph to find the most salient seeds. Wang

et al. [30] exploited a novel graph structure and background pri-

ors for saliency detection. Besides, graph-based methods are usu-

ally combined with diffusion processes. Thus far, more and more
1 The dataset are available at our website: https://github.com/starry1614/OTB _ 

saliency _ dataset . 

f  

o  

c  
aliency methods have also been proposed by diffusing processes

o propagate saliency information throughout a graph with differ-

nt features and affinity measures. Zhang et al. [31] ranked the

imilarity of image elements with foreground or background cue

ia graph-based manifold ranking (MR). Li et al. [25] proposed a

obust background measure to characterize the spatial layout of

n image region with respect to the boundary regions and esti-

ated the saliency via regularized random walks ranking (RRWR).

un et al. [32] formulated saliency detection based on markov ab-

orption probabilities (MAP) on an image graph model. Based on

32] , an improved model for saliency detection is proposed via

bsorbing markov chain with learnt transition probability [33] . In

rder to make the obtained image regions have close spatial con-

istency, Kong et al. [34] proposed an extended random walk al-

orithm. Zeng et al. [35] formulated a Saliency Game among su-

erpixels and proposed an iterative random walk for saliency de-

ection on a graph model. All of them perform well, but they still

truggle in complex scenes for the reason that these propagation

ethods are all under the assumption that it has a high color con-

rast between background and foreground. In order to reduce the

ropagation error and simultaneously improve the detection accu-

acy, Chen et al. [36] introduced the concept of sink points into

anifold ranking for saliency detection. Inspired by these works,

e propose an extended manifold ranking (EMR) algorithm, which

ntroduces the mid-level information and suppressed/active nodes.

In addition, numerous generic object detection methods, which

im at generating the location of objects in an image, have been

pplied to salient region detection. In [37] , a saliency measure was

mplemented by combining the objectness values of many over-

apping windows. To improve saliency estimations, Chang et al.

18] presented an iterative optimization of energy functions, which

ombines saliency, objectness and interaction term. However, the

ackground regions could be falsely detected as foreground if

he objectness cannot predict the correct object. Recently, a co-

ransduction algorithm, namely label propagation saliency, is de-

ised for saliency detection via incorporating low-level features

nd the objectness measure [20] . All of them demonstrate that

bjectness is helpful to saliency detection. Instead of directly us-

ng objectness to compute saliency, we integrate foreground re-

ions based on saliency map with objectness to extract reliable

uppressed nodes and active nodes resulting in boosting the per-

ormance of salient region detection. 

With the rapid development of deep learning, more and more

esearchers have applied deep learning to the field of saliency

etection. Zhao et al. [38] proposed a multi-context deep learning

ramework for salient object detection, which global context and

ocal context are both taken into account. Li and Yu [39] predicted

he saliency score for each superpixel by using multiscale CNN

eatures. Lee et al. [40] designed a unified fully connected neural

etwork to estimate saliency value by combining both high-level

eature extracted from CNNs and low-level feature. Liu et al.

17] developed a architecture in a global to local and coarse to fine

anner, in which a rough map was generated by a CNN and then

nother network was designed to refine the map hierarchically

nd progressively via integrating local context information. Li et al.

41] develop a fully convolutional multiscale refinement network,

hich combines bottom-up and top-down information to generate

igh-quality saliency map and salient object contours. Wang et al.

42] proposed a new saliency model using recurrent fully con-

olutional networks, which enables automatic learning to refine

revious saliency map by correcting its previous errors. Hou et al.

43] proposed a new network by adding a series of short connec-

ions to the HED [44] architecture, which can effectively combine

eatures of different levels and enable the activation of each side

utput layer to fully highlight the salient object and accurately lo-

ate its boundary. Considering that not all contextual information

https://github.com/starry1614/OTB_saliency_dataset
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Fig. 3. Schematic illustration of proposed graph structure. 
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acilitates saliency detection, Liu et al. [45] designed a novel net-

ork to selectively attend to global or local contexts and construct

nformation context features for each pixel to facilitate the final

aliency detection. From the perspective of selectivity-invariance

ilemma, Su et al. [46] proposed a novel boundary-aware network

ith successive dilation for salient object detection. Li et al.

47] developed a saliency inference module based on a multi-

ilated depth-wise convolution architecture, which can quickly

nd directly infer saliency objects from multi-scale features. Sen

t al. [48] designed a Richer and Deeper Supervision (RDS) net-

ork, which can combine the features of the output on each side

ithout requiring too much extra computational space. In contrast

o the previous approach of aggregating side output features in a

inear fashion, Liu et al. [49] proposed a DNA module, which uses

 nonlinear side-output prediction aggregation to make better

se of the complementary information of various side-outputs.

ll of them had better ability of detecting saliency object due

o deep learning which can extract high-level features. However,

hese methods based on deep learning perform weakness in

btaining the clear object boundary of an image. In addition, it is

ifficult for deep learning to learn some prior knowledge, such as

ackground prior, compactness, which has proven to be effective

n saliency detection. In this paper, we combine the deep features

nd low-level features to facilitate saliency detection. 

. The proposed approach 

Firstly, we segment the image into N superpixels by the SLIC

ethod [50] and use them as the minimum processing units for

he reason that the superpixels cannot only capture the structural

nformation of an image but also speed up the processing. Then,

e construct a graph G = (V, E) , where each node v i ∈ V corre-

ponds to a superpixel and each edge e ij ∈ E connects two super-

ixels. 

Our graph is constructed by making two modifications on most

xisting methods [20,51] . First, they connect each node to its di-

ect spatial neighbors which share a boundary, as well as its medi-

te spatial neighbors which share a common boundary with direct

eighbors. However, each node is only connected to its direct spa-

ial neighboring nodes in this paper (as shown in Fig. 3 ). Further-

ore, inspired by [52] , we define two virtual nodes in this graph,

amely, virtual background node VT bp and virtual foreground node

T fp , which are used for predicting saliency value by computing

he shortest path between the node with virtual node. Specifically,

he edge weight between virtual background (foreground) node
nd well-defined background (foreground) seeds are allocated with

ero. In order to reduce the geodesic distance of similar superpix-

ls, we connect the well-defined seed nodes to the virtual node

nstead of associating boundary superpixels with each other. The

ationale behind is that not all boundary superpixels are back-

round regions and it may introduce errors for their mandatory

onnection. 

.1. Construction of edge weights of graphs 

In this work, we adopt FCN-32s feature to encode object ap-

earance, and choose the outputs of the conv5 as feature maps.

he reasonable reason behind it is that the features from the last

ayers of CNNs are full of semantic information of objects and have

trong powerful to discriminate the objects. Because of the exis-

ence of subsampling and pooling in the network, the resolution of

he feature maps in each layer is not same. Herein, we use bilinear

nterpolation to make sure that the feature maps have the same

esolution with input image. Hence, we can construct an affinity

etric in deep-level feature space: 

 

d 
i j = exp 

(
−

d d 
i j 

2 σ 2 
w 

)
= exp 

(
−

| f d 
i 

− f d 
j 
| 

2 σ 2 
w 

)
, (1)

ere f d 
i 

is the deep feature vector of superpixel i, σ w 

controls the

trength of weight between a pair of nodes. 

Although the high-level semantic deep features have strong su-

eriority in discriminating object, it cannot describe the low-level

etailed information, which is also important in detecting. There-

ore, we also employ some low-level features as a complement

o deep features. In this paper, our constructed low-level feature

pace includes color difference, spatial distance and edge informa-

ion. We denote the affinity between the i th superpixel and j th

uperpxiel in low-level feature space as a l 
i j 
, which is defined as

ollows: 

 

l 
i j = exp 

(
−

d l 
i j 

2 σ 2 
w 

)
= exp 

(
−d c (i j) + d s (i j) + d edge (i j) 

2 σ 2 
w 

)
, (2)

here d c ( ij ) indicates the color difference, d s ( ij ) represents the spa-

ial distance between the nodes i and j, d edge ( ij ) is the intervening

ontour magnitude [53] . The color difference is defined as 

 c (i j) = | c i − c j | . (3)

ere c i and c j are the mean value of superpxiel in CIELAB color

pace, which has been proved to be effective [13] . Most existing

ethods to compute the spatial distance generally adopt the Eu-

lidean distance, which is prone to cause a large difference espe-

ially between opposite image borders owing to their largest dis-

ance. However, the image borders are of high probability to be

ackground. To improve the detection performance, we measure

he spatial distance by combining sine spatial distance [54] and

eodesic distance: 

 s (i j) = sqrt 
(
min (X i j , I x − X i j ) 

2 + min (Y i j , I y − Y i j ) 
2 
)
, 

.t. X i j = | sin (π · | x i − x j ) | 
Y i j = | sin (π · | y i − y j | ) | 

(4) 

here x i and y i represent the normalized coordinates of node

 . The formulation makes sure that the spatial distance between

oundary superpixels especially the nodes at the opposite borders

f the image would be small. 

As for complex scene, it is difficult to distinguish the foreground

rom the background just based on color feature or both color dif-

erence and spatial contrast (as shown in Fig. 4 (b)–(c)). Fortunately,

e observe that it can produce a good result due to texture dis-

inction, which can pop out the entire contour of the tree and
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Fig. 4. Effects of edge weight by computing background saliency map. (a) Input; (b) Just using high-level feature; (c) Just considering color difference; (d) Considering color 

and spatial information; (e) Edge detection by [55] ; (f) Just using low-level information; (g) The background saliency map by using our edge weight; (h) Ground-truth. 

Fig. 5. Salient objects contact with image border: (a) Input; (b) Border set; (c) Use all boundary nodes based on Eq. 10 ; (d) Our background regions; (e) Our background- 

based saliency map; (f) Ground-truth. 
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bulls. Hence, we introduce the intervening image edge cues. The

intervening contour magnitude d edge ( ij ) is defined as 

d edge (i j) = max 
p∈ l ine (l oc i ,l oc j ) 

E(p) , (5)

where loc i represents the centroid location of superpixel i, line ( loc i ,

loc j ) is the line connecting node i and node j, p indicates the

pixel on the line. E ( p ) stands for the edge value on the edge map

E . However, there also exists a problem that d edge ( ij ) can be ex-

tremely large for the opposite image borders. In order to mitigate

this problem, we set d edge (i j) = λd c (i j) + (1 − λ) d s (i j) for d edge ( ij )

among all borders nodes. Here, we set λ = 0 . 5 . 

In this paper, we combine the low-level features and deep fea-

tures with a simple linear combination to measure the similarity

between superpixels i and j : 

a i j = exp 

(
−

τd d 
i j 

+ (1 − τ ) d l 
i j 

2 σ 2 
w 

)
. (6)

where τ is balance coefficient, and we set as 0.4. 

3.2. Salient object probability with background information 

3.2.1. Background seeds acquisition 

The nodes along boundary are usually employed as the back-

ground seeds because object is likely to appear at or near the cen-

ter of an image. Nevertheless, in some cases, the salient object may

also appear at the border regions, misleading the saliency value to

be 0 if the object is mistaken for background regions (as shown

in Fig. 5 (c)). Consequently, we propose an mechanism based on di-

vergence information to select robust background regions from the

border regions. 
The background regions present such situation that they usu-

lly have diverse appearances and widely distributed. Based on the

bove findings, we extract background seeds via divergence infor-

ation. [56] proposed the concept of color and texture scatter de-

ree, where color and texture similarity are computed according

o the form of Gaussian functions. Different from [56] using color

nd texture scatter to directly obtain saliency map, this paper gives

 unique definition of divergence based on edge weight and cen-

er prior, and we use the divergence information to extract back-

round seeds. According to edge weight, we define the divergence

f superpixel i as 

i v c (i ) = normalize 

( 

N ∑ 

j=1 

a i j · | s j − ρi | 
) 

, (7)

nd 

i = normalize 

( 

N ∑ 

j=1 

a i j · s j 

) 

. (8)

n Eqs. (7) and (8) , s j is the position of superpixel j; ρ i indicates

he mean position of superpixel i , which has been subjected to

eighting; and N is the number of superpixels; normalize ( x ) is a

unction that normalizes x . Considering that image center region

s more likely to be salient object, we introduce the center prior

uided divergence information, which is defined in the following

ormulation 

i v m 

(i ) = normalize 

( 

N ∑ 

j=1 

a i j · | s j − M| 
) 

, (9)
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Table 1 

Probability distribution on different datasets. 

Dataset Top (%) Down (%) Left (%) Right (%) 

ASD 0.2 1.6 0.3 0.5 

ECSSD 5.3 22.4 6.8 7 

DUT 2.48 14.4 5.2 4.3 

PASCAL-S 7.17 23.8 16 14.8 

HKU-IS 3.3 9.3 6.7 6.5 
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here M is the normalized spatial coordinate of the image center.

hen, the divergence value of superpixel i is finally measured using

i v (i ) = normalize ( Di v c (i ) + Di v m 

(i ) ) . (10)

n this formulation, the larger the Div ( i ) is, the more the corre-

ponding superpixel i is likely to be the background. 

Based on the divergence information, we can remove the un-

eliable background regions in border set by a threshold value. As

hown in Table 1 , we observer that there is different probabilities

f the object appearing at different boundaries. For example, the

robability of the object connecting with the down side is larger

han those of three sides. If we adopt the same threshold value for

ll border sides, the results may be not very accurate. Accordingly,

e choose different threshold values for different sides instead of

etting a single value. In specific, the superpixels are removed from

he border sets if their divergence values are lower than the mean

ivergence over the entire map for down side. For top side, we

et the threshold value is one third of the down side’ s, which is

lso twice for the left and right sides’ s for simplicity. Finally, we

an get the robust background seeds. As shown in Fig. 5 (d), our

ethod can suppress effectively such a situation that the object

n the border is mistaken as background. 

.2.2. Background-based saliency map 

According to the graph G with the above defined edge weight

nd the well-defined background seeds, the confidence of each su-

erpixel i as foreground can be computed by cumulating the edge

eights of the shortest path from i to the virtual background node

T bp : 

on 

bp 
i 

= min 

u 1 = v i , ... ,u k = V T bp 

k −1 ∑ 

j=1 

m u j u j+1 
, (11) 

here m i j = 1 − a i j . The magnitude of con 
bp 
i 

represents the differ-

nce between superpixel i and the well-defined background region,

n other words, the larger the con 
bp 
i 

is, the lower the probability of

uperpixel i belonging to background is. For a node representing a

ackground superpixel, the confidence of superpixel i is normally

ower resulting from the shorter of the path to the virtual back-

round node and the smaller of the edge weights over the short-

st path. Similarly, it is usually larger for a node representing a

oreground node. As shown in Fig. 5 (e), the method of the short-

st path to the virtual node with the help of the select background

odes works well. 

.3. Salient object probability with foreground information 

.3.1. Foreground seeds acquisition 

While the background-based saliency map can pop out the ob-

ect well whereas in some cases due to some true background

uperpixels not being involved in the background seeds and the

aint difference between background and foreground (as shown

n Fig. 5 (e)). Therefore, we exploit foreground seeds to construct

oreground-based map to inhibit background noises. 

To obtain foreground regions, many researchers select the su-

erpixels, having larger saliency values than an adaptive threshold,
s foreground seeds [13,24] . As we know, visual rarity captures the

act that human eyes are often attracted to the rare features in an

mage but not to the common features. Different from previous

ethods, we consider the spatial compactness of salient objects

nd visual rarity and used the parametric maximum flow method

o obtain reliable foreground regions. The foreground regions can

e obtained by solving the following optimization problem: 

f ∗ = arg min 

f 

( 

N ∑ 

i =1 

(− ln S bp 
i 

+ ηR i ) f i + 

∑ 

1 <i< j<N 

b i j f i f j 

) 

, (12) 

here f i ∈ {0, 1} indicates whether the corresponding superpixel i

elongs to the foreground region, S 
bp 
i 

is saliency value of super-

ixel i in background-based saliency map, R i indicates visual rarity

f superpixel i , b i j = exp(−(S 
bp 
i 

− S 
bp 
j 

) / 2 σ 2 
b 
) and σ 2 

b 
= 0 . 1 . Accord-

ng to the visual rarity, image background have strong tendency to

apture larger area than salient object in an image while super-

ixels with rare color features are more likely to be salient fore-

round. Based on above considerations, visual rarity of superpixel

 can be defined as: 

R (i ) = normal 

( 

N ∑ 

j=1 

a 1 i j + 

N ∑ 

j=1 

a 2 i j 

) 

, 

.t. a 1 
i j 

= 

{
a i j j ∈ N i 

0 otherwise 

a 2 
i j 

= 

{
a i j d c (i, j) < φ

0 otherwise 

(13) 

here N i denotes the spatial neighbors of node i, d c ( i, j ) denotes

he color distance between the nodes i and j , and φ is a con-

tant. As shown in Fig. 6 (e)–(f), our method can yield more com-

act foreground regions than those by adaptive threshold or using

q. (12) without introducing rare term. In addition, our results can

ore accurately highlight the salient objects. 

.3.2. Foreground-based saliency map 

Similarly, we can also compute the confidence of each super-

ixel i as background by accumulating the edge weights of the

hortest path from i to the virtual foreground node VT fp : 

on 

f p 
i 

= min 

u 1 = v i , ··· ,u k = V T f p 

k −1 ∑ 

j=1 

m u j u j+1 
. (14) 

f the con 
f p 
i 

is smaller, it represents a higher similarity between i

nd the reliable foreground regions, which also means that it has a

igher confidence to be foreground. As shown in Fig. 6 (g), the un-

esired highlighted background regions in the background-based

aliency map are greatly suppressed in the foreground-based one

wing to the contrast to the foreground seeds. 

.4. Saliency integration and refinement 

.4.1. Integration 

The background-based saliency map can highlight the object,

owever, the background noise may be not strongly suppressed

ue to the incompleteness of the background type in the back-

round node set (as shown in Fig. 7 (b)). On the other hand, the

oreground-based saliency map contains most of the foreground

nd can suppress the background noise well when the background

uper pixel and the foreground node set are compared, however,

mall feature differences are amplified in the foreground-based

aliency map during comparison because the foreground object

eatures are not exactly the same (as shown in Fig. 7 (c)). This sug-

ests that a complementary combination of them could generate
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Fig. 6. The effect of the proposed foreground-based saliency map: (a) Input; (b) Ground-truth; (c) Background-based saliency map; (d) Foreground regions generated by 

adaptive threshold; (e) Foreground regions generated without introducing rare; (f) Foreground regions generated by the proposed method; (g) Foreground-based saliency 

map. 

Fig. 7. Improvement effects of foreground regions: (a) Input; (b) Background-based saliency map; (c) Foreground-based saliency map; (d) Integration saliency map; (e) 

Refinement saliency map; (f) Ground-truth. 
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better results. Based on [24] , we use the following formulation to

incorporate them: 

S IM 

i = con 

bp 
i 

× (1 − exp(−κ × con 

f p 
i 

)) , (15)

where κ weights the two saliency maps. As shown in Fig. 7 (d), the

integrated saliency map can not only highlight the salient object

uniformly but also significantly restrain the noises. 

3.4.2. Refinement based on extended manifold ranking (EMR) 

In order to further optimize saliency maps, we propose an Ex-

tended Manifold Ranking (EMR) on graphic model. To improve the

performance, two extensions are made upon [13] . First, we intro-

duce the suppressed nodes and active nodes into the data man-

ifold. The suppressed nodes will never disseminate information

to the neighboring nodes during diffusion, and active nodes oth-

erwise. 
 f = diag{ ξ1 , . . . , ξN } , where ξi = 0 if the corresponding

superpixel i is a suppressed node and an active node is repre-

sented by ξi = 1 . Different from [36] , which defined so-called sink

points mainly based on center weight, we adopt objectness map
57] and integrated map to determine suppressed nodes and ac-

ive nodes. Herein, the higher threshold of the two-level Ostu’ s

daptive threshold method [55] is conducted on objectness map

OM) and the integrated map (IM), to respectively obtain fg OM 

and

g IM 

. After that, we assume that the union set f g T = f g OM 

⋃ 

f g IM 

is

ighly confident object regions, in other words, the regions in the

omplement of fg T are more likely to be background. Therefore, we

et ξi = 1 if the superpixel i ∈ fg T and 0 otherwise. 

In addition, the appearance of manifold ranking is based on the

ypothesis that the background has a high contrast with objects,

hich determines that it is easy to imprecisely pop out salient ob-

ects when the scene is complex and low-contrast between fore-

round and background. Accordingly, we merge a quantity of su-

erpixels together into much bigger regions using the mid-level

lustering algorithm [58] . As a result, the nodes with the same

lusters would have the similar value. Therefore, the mid-level

imilarity matrix P = [ p i j ] N×N can be defined as: 

p i j = w i j + q i j , (16)
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Fig. 8. Parameters Setting. (a) the number of superpixels N , (b) σ 2 
w (in Eq. (6) ), (c) κ (in Eq. (15) ), (d) ∂ (in Eq. (21)). 
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nd 

 i j = 

{
1 i and j are in the same cluster, 
0 otherwise 

(17) 

 i j = 

{
a i j j ∈ N i . 

0 otherwise 
(18) 

Where N i denotes the spatial neighbors of node i . Based on

bove definitions, the optimal ranking of queries are computed by

olving the following optimization problem: 

f ∗ = arg min 

f 

1 

2 

( 

n ∑ 

i, j=1 

p i j ‖ 

ξi f i √ 

d i 
− ξ j f j √ 

d j 
‖ 

2 + μ
n ∑ 

i =1 

‖ ξi f i − S IM 

i ‖ 

2 

) 

, 

(19) 

here the parameter μ controls the balance of the smoothness

onstraint (the first term) and the fitting constraint (the second

erm). The minimum solution is computed by setting the deriva-

ive of the above function to be zero. The resulted ranking function

an be written as: 

f ∗ = (I − ∂T 
 f ) 
−1 s, (20)

here I is an identity matrix, ∂ = 1 / (1 + μ) . and T is the normal-

zed Laplacian matrix, T = D 

−1 / 2 P D 

−1 / 2 . Here, D = diag{ d 1 , . . . , d N }
s a normalized degree matrix and d i = 

∑ 

j p i j . We can get another

anking function by using the unnormalized Laplacian matrix in

q. (20) inspired by [13] which can achieve better performance:

f ∗ = (D − ∂P 
 f ) 
−1 s. (21)
he saliency of each node is defined as its ranking score computed

y Eq. (21) which is rewritten as 

f ∗ = Bs. (22) 

he learnt optimal affinity matrix B is equal to (D − ∂P 
 f ) 
−1 .

he effectiveness of our refinement is illustrated in Fig. 7 (e). Our

ethod is able to detect the foreground uniformly and extract the

ell-defined object boundary. 

. Experimental results 

To evaluate our saliency detection algorithm, we conduct a se-

ies of experiments on six benchmark datasets with pixel-wise

anually labeled ground truth, including ASD [59] , DUT-OMRON

13] , ECSSD [60] , SOD [61] , PASCAL-S [62] and HKU-IS [39] . ASD

ncludes 10 0 0 images selecting from the MSRA salient object

atabase [63] , which covers a large variety of scenarios. This

ataset usually has only one salient object in an image and there

re strong contrast between backgrounds and foregrounds. DUT-

MRON consists of 5168 images natural images carefully labeled

y five users. So far, none of existing saliency methods can achieve

 high accuracy on this dataset. ECSSD contains 10 0 0 semantically

eaningful and structurally complex images acquired from the In-

ernet with pixel-level saliency labeling. SOD consists of 300 im-

ges selected from the Berkeley Segmenttation dataset with la-

eled ground truth. The dataset is rather difficult with different

iases such as number of salient objects, image clutter and center-

iases and so on. PASCAL-S contains 850 natural images labeled by

2 users. The dataset was built on the validation set of the PASCAL
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VOC 2010 segmentation challeng. HKU-IS contains 4 4 47 challeng-

ing images with low contrast and multiple salient objects. 

Although many datasets have been designed for saliency de-

tection in different scenarios, there are few data sets on object-

boundary contact. The detection on the scene where salient object

touches the boundary has always been a big problem in the salient

object detection community. Therefore, it is necessary to design

such a dataset to test the performance of salient object detection

method in handling such scenarios. In this paper, we devise a new

OTB saliency dataset, which contains 1044 images. These images

are collected from MSRA10K [9] , ECSSD, PASCAL-S, Judd-A [64] and

Imgsal [65] . All of the datasets come with human-labeled pixel-

wise ground truth. To the best of our knowledge, the designed OTB

is the largest dataset to evaluate the performance of salient object

detection method on the scene that boundaries are adjacent to the

salient objects. 

4.1. Evaluation metrics and parameters 

4.1.1. Evaluation metrics 

To compare the performance, we adopt several evaluation crite-

rions including the precision-recall (PR) curve, the F-measure, area

under the ROC (receiver operating characteristic) curve (AUC), and

mean absolute error (MAE). 

A given saliency map can be converted into several binary maps

by segmenting it with a threshold varying from 0 to 255 [59] .

And then, a pair of precision and recall values can be generated

by comparing the binary map and the ground truth. A PR curve

is then obtained by varying the threshold from 0 to 1. Fore com-

prehensively assessing the salient object detection model, we also

compute the maximal F-measure, which is a harmonic mean of

precision and recall. Here the F-measure is defined as: 

F β = 

(1 + β2 ) · precision · recall 

β2 · precision + recall 
, (23)

where we set β2 = 0 . 3 to emphasize precision [9] . To better eval-

uate the results, we also introduce the Ared Under Curve (AUC)

which sums the area under of the receiver operating characteristic

(ROC) curve. The ROC curve is achieved by true positive rates and

false positive rates obtained when we compute the PR curve. 

Note that the PR curve is limited to detecting the true posi-

tive pixels and neglecting the correct negative elements detected.

To address such issue, we employ the mean absolute error (MAE)

as another evaluation criterion, which is defined as the average

pixel-wise absolute difference between the ground truth (G) and

saliency map (S) [66] . 

MAE = 

1 

W × H 

W ∑ 

x =1 

H ∑ 

y =1 

| S(x, y ) − G (x, y ) | , (24)

where W and H are the width and height of the saliency map S ,

respectively. 

4.1.2. Parameters setup 

There are four key parameters in our proposed method: the

number of superpixels N , σ 2 
w 

(in Eq. (6) ), κ (in Eq. (15) ) and ∂ 
(in Eq. (21) ). We test different values for these parameters on the

10 0 0-image ASD database using MAE and F-measure. As shown in

Fig. 8 , We set N = 350 , σ 2 
w 

= 0 . 1 , κ = 4 and ∂ = 0 . 99 . 

4.2. Comparison with state-of-the-art 

4.2.1. Comparison with conventional methods 

We extensively present comparison of the proposed algorithm

against thirteen state-of-the-art conventional saliency detection

methods including GS [23] , MR [13] , BFS [24] , BSCA [67] , LPS [20] ,
B [68] , NCS [69] , RR [25] , SP [70] , SRD [71] , SBD [72] , SG [73] ,

CRR [74] . The experiments are conducted on the six datasets ASD,

CSSD, DUT-OMRON, PASCAL-S, SOD, and HKU-IS. The results are

hown in Fig. 9 and Table 2 . 

As reported in Fig. 9 and Table 2 , we can note that our method

ignificantly outperforms other state-of-the-art algorithms on all of

he dataset in terms of all evaluation metrics. Take the challenging

CSSD dataset for example, our PR curve is better than others with

ominant advantages, and its F-measure, AUC and MAE exceed

he second best method with large gaps. Specifically, it improves

y 6.91% and 2.04% over the second best method in terms of F-

easure and AUC, respectively, and its MAE is 12.2% lower than

he second best. Besides, some methods may have high precision

alue, but they suffer from low recall, such as MR on DUT-OMRON

nd SBD on HKU-IS. Comparatively, our method achieves more bal-

nced relationship between precision and recall, thus, we can ob-

ain the best F-measure and AUC on all the datasets. The promising

esults of the proposed method validate the strong robustness and

apacity of our method contributed by the robust computational

echanism to extract reliable background seeds and compact fore-

round regions, the reasonable edge weight combining high-level

emantic information and low-level information, as well as the ap-

ropriate refinement. 

.2.2. Comparsion with learning based methods 

We also compare our method against thirteen state-of-the-art

earning saliency detection methods, namely BL [75] , HDCT [19] ,

ILPS [76] , DRFI [14] , MDF [39] , LEGS [77] , MCDL [38] , DLC [78] ,

HSNet [17] , SCSD-HS [79] , UCF [80] , PAGR [81] and PiCANet [45] ,

nd the latter nine algorithms are deep learning based methods.

heir experimental results are summarized in Fig. 10 and Table 3 . 

Compared with non-deep learning based methods, such as BL,

DCL, MILPS and DRFI, our method can still maintain significant

dvantages against the comparison learning based methods. Take

he PASCAL-S as example, its F-measure is 3.37% higher than the

est BL (0.7278 to 0.7041), its AUC is 0.99% higher than the best

RFI (0.79253 to 0.78474) and its MAE is 15.1% lower than the best

RFI (0.17829 to 0.21003). For deep learning based methods, un-

urprisingly the overall performances of these methods are signif-

cantly higher than those of the conventional methods in Table 2 ,

ue to the high-level features involved in their learning processes.

s shown in Table 3 , the proposed method is competitive with

eep learning based approaches. For example, the F-meausres and

UCs of our model are better than MCDL on all datasets except

or ECSSD. In addition, we note that deep learning based meth-

ds seem sensitive to the training tactics used. For DCL, it gains

6.1% in F-measure and 3.4% in AUC than our method on SOD

ataset, possibly due to their deep contrast network using the

SRA-B dataset for training. Nevertheless, DCL loses 0.52% in AUC

ompared with our proposed method on DUT-OMRON dataset. The

omparative results can reveal the shortcoming of supervised ap-

roach while unsupervised method can make up for it. 

.2.3. Visual comparison 

Fig. 11 shows some visual comparisons on different methods

ith several types of images. For single-object images shown in

he first two rows, our method can uniformly detect the salient ob-

ect with few thinly scattered regions. In addition, we can observe

hat the proposed method can also effectively handle the challeng-

ng cases where background is complex or shares similar pattern

ith foreground. For example, as shown in third and fourth rows,

ompared with other methods, our approach can perform better

o distinguish between background and foreground regions with

imilar appearance. Due to the reasonable edge weight combining

ith robust background and foreground seeds, our algorithm can

ffectively assign different value to the dissimilar nodes resulting
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Fig. 9. Quantitative evaluations against the state-of-the-art conventional methods on six datasets. 
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n separating them successfully. For images with multiple objects

hown in last two rows, some methods could not highlight the in-

egrity of the objects or include undesired background noises into

he final results. Comparatively, our method has a great ability to

op out all the salient objects successfully. The extended manifold

anking algorithm can further enhance the performance, thus de-

ecting more accurate salient objects even in complex scene. 

.3. Validation of the proposed approach 

In order to illustrate the effectiveness of the selective mecha-

ism for the salient objects which are touching the border of im-

ges, we compute the performance for the final saliency maps on

he proposed OTB dataset. We compare with MR [13] , LPS [20] ,

AP [32] . For fair comparison, all their edge weights are set the

ame with our method. As shown the dotted lines in Fig. 12 (a),

ur method outperforms those competitive methods. In addition,

e further introduce our selective mechanism to these methods

y replacing their background seeds with our background seeds

o evaluate its generality. As can be seen from the solid lines in

ig. 12 (a), their performance can be further improved, which illus-

rates the effectiveness of our selective mechanism. Furthermore,

e also evaluate some deep learning baselines (MCDL, MDF) on
he OTB dataset. It can be seen from Fig. 12 (a) that we can get

 similar effect to the deep learning algorithms, which further

emonstrates the effectiveness of the proposed method. Fig. 12 (b)

rovides the visualization results. 

To further demonstrate the effectiveness of the graph, we com-

are the performance evaluation of the proposed graph with the

xisting graphs (2-ring, 3-ring, 4-ring) for saliency detection using

he proposed background seeds. Quantitative evaluation on ECSSD

ataset is shown in Fig. 13 (a). In this paper, we set the edge weight

s zero between virtual nodes and seed nodes. Hence, it may not

e appropriate to choose too long graph connection. As can be ob-

erved, our method outperforms other methods, which proves the

ffectiveness of the proposed graph model. 

We also examine different edge weight computation methods

sing different features in Fig. 13 (b). We compute the performance

valuation of the final saliency maps on ECSSD dataset. According

o Fig. 13 (b), we can know that the integrated features outperform

ingle feature. This is because the integrated features take both

igh-level semantic and low-level detailed information into con-

ideration. 

To evaluate the effectiveness of our method to obtain fore-

round seeds, we also compute the performance evaluation for fi-

al saliency maps on ECSSD dataset. As reported in Fig. 13 (c), the
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Fig. 10. Quantitative evaluations against the state-of-the-art learning based methods on six datasets. 

Fig. 11. Visual comparison on six datasets. 
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Fig. 12. Effects of our background selective mechanism. (a) Quantitative comparison results. (b) The visualization result, from left to right: Input, MR, MR ∗ , LPS, LPS ∗ , MAP, 

MAP ∗ , Ours and Ground-truth. 

Fig. 13. (a) Effects of the proposed graph structure; (b) Effects of the edge weight; (c) Effects of the proposed foreground regions calculation mechanism. 
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Table 2 

Quantitative results of proposed method against the state-of-the-art conventional methods in terms of F-measure, AUC and MAE. 

Metric Ours GS MR BFS BSCA LPS MB NCS RR SP SRD SBD SG RCRR 

(A)ASD F-measure ↑ a 0.934 0.875 0.912 0.8373 0.909 0.905 0.865 0.9255 0.914 0.8944 0.9153 0.9237 0.9218 0.9157 

AUC ↑ 0.88699 0.87683 0.8632 0.85076 0.87436 0.85409 0.85543 0.87262 0.8662 0.84456 0.8657 0.86565 0.8725 0.8662 

MAE ↓ a 0.061733 0.10725 0.07512 0.14168 0.085774 0.071469 0.090757 0.06455 0.0738 0.063158 0.078317 0.049042 0.06947 0.073787 

Metric Ours GS MR BFS BSCA LPS MB NCS RR SP SRD SBD SG RCRR 

(B)DUT F-measure ↑ a 0.6711 0.5559 0.61 0.5391 0.617 0.5558 0.5888 0.6331 0.6127 0.6007 0.6296 0.646 0.6365 0.6105 

AUC ↑ 0.84374 0.81397 0.78133 0.78579 0.80817 0.76708 0.79304 0.79834 0.78179 0.74065 0.77313 0.79008 0.7963 0.77975 

MAE ↓ a 0.13822 0.17322 0.18745 0.17715 0.19073 0.18697 0.15664 0.1704 0.18452 0.14423 0.15219 0.12063 0.177 0.18231 

Metric Ours GS MR BFS BSCA LPS MB NCS RR SP SRD SBD SG RCRR 

(C)SOD F-measure ↑ a 0.7155 0.6205 0.6363 0.618 0.6541 0.6208 0.6449 0.672 0.6438 0.631 0.6398 0.6604 0.6553 0.6461 

AUC ↑ 0.75421 0.7313 0.71406 0.71338 0.7387 0.70284 0.71543 0.72079 0.71296 0.6669 0.68933 0.67099 0.71049 0.71404 

MAE ↓ a 0.20263 0.25066 0.25932 0.26464 0.25128 0.26136 0.23338 0.24785 0.25952 0.24031 0.24782 0.23263 0.25125 0.25639 

Metric Ours GS MR BFS BSCA LPS MB NCS RR SP SRD SBD SG RCRR 

(D)ECSSD F-measure ↑ a 0.8104 0.661 0.736 0.6967 0.758 0.709 0.713 0.7413 0.744 0.7193 0.7312 0.7411 0.7465 0.74 

AUC ↑ 0.83183 0.78894 0.78994 0.78359 0.81523 0.78247 0.78327 0.7975 0.7959 0.74447 0.77377 0.76085 0.7953 0.79317 

MAE ↓ a 0.13362 0.20581 0.18919 0.20717 0.18243 0.19588 0.17407 0.18585 0.1837 0.17206 0.182 0.15209 0.18148 0.18404 

Metric Ours GS MR BFS BSCA LPS MB NCS RR SP SRD SBD SG RCRR 

(E)PASCAL-S F-measure ↑ a 0.7278 0.6202 0.6608 0.6261 0.6655 0.6248 0.6634 0.6908 0.6506 0.6677 0.6862 0.6528 0.6489 0.6483 

AUC ↑ 0.79253 0.75055 0.73829 0.73226 0.75321 0.72158 0.72565 0.73124 0.73158 0.66698 0.70734 0.69618 0.74427 0.7464 

MAE ↓ a 0.17829 0.24168 0.24209 0.25901 0.2391 0.2531 0.21878 0.24849 0.24774 0.23663 0.24382 0.21844 0.22743 0.22768 

Metric Ours GS MR BFS BSCA LPS MB NCS RR SP SRD SBD SG RCRR 

(F)HKU-IS F-measure ↑ a 0.7903 0.6772 0.7065 0.659 0.7192 0.6726 0.6962 0.7214 0.7131 0.6759 0.7196 0.7516 0.7321 0.7127 

AUC ↑ 0.8479 0.82389 0.78699 0.79387 0.82173 0.75233 0.80432 0.7998 0.7963 0.7286 0.7798 0.78255 0.80841 0.7966 

MAE ↓ a 0.11818 0.16814 0.17809 0.18474 0.17476 0.1635 0.14819 0.16667 0.17174 0.15553 0.15961 0.12095 0.16514 0.171 

a The up-arrow ↑ indicates the larger value achieved, the better performance is, while the down-arrow ↓ indicates the smaller, the better. b The best three results are highlighted with bold, italic and bold-italic fonts, 

respectively. 

Table 3 

Quantitative results of proposed method against the state-of-the-art learning based methods in terms of F-measure, AUC and MAE. 

Metric Ours BL HDCT MILPS DRFI MDF ∗ LEGS ∗ MCDL ∗ DCL ∗ DSHNet ∗ SCSD-HS ∗ UCF ∗ PAGR ∗ PiCANet ∗

(A)ASD F-measure ↑ a 0.934 0.902 0.8874 0.9236 0.9166 0.9339 – 0.9256 0.948 0.9572 – – - - 

AUC ↑ 0.88699 0.8837 0.87922 0.88209 0.88878 0.87697 – 0.87996 0.89086 0.89206 – – - - 

MAE ↓ a 0.061733 0.1291 0.11487 0.071659 0.090207 0.034564 – 0.037854 0.034822 0.021496 – – - - 

Metric Ours BL HDCT MILPS DRFI MDF ∗ LEGS ∗ MCDL ∗ DCL ∗ DSHNet ∗ SCSD-HS ∗ UCF ∗ PAGR ∗ PiCANet ∗

(B)DUT F-measure ↑ a 0.6711 0.5798 0.6214 0.6389 0.6641 0.6944 – – 0.7336 0.9029 0.7539 0.7342 0.7709 0.7663 

AUC ↑ 0.84374 0.8155 0.83864 0.81438 0.8521 0.79498 – – 0.83939 0.90066 0.88235 0.86378 0.81294 0.86812 

MAE ↓ a 0.13822 0.2401 0.16692 0.1675 0.14959 0.09157 – – 0.094847 0.027392 0.19343 0.13222 0.070943 0.067896 

Metric Ours BL HDCT MILPS DRFI MDF ∗ LEGS ∗ MCDL ∗ DCL ∗ DSHNet ∗ SCSD-HS ∗ UCF ∗ PAGR ∗ PiCANet ∗

(C)SOD F-measure ↑ a 0.7155 0.6679 0.6692 0.6744 0.6992 0.784 0.7321 0.7178 0.831 0.8221 0.7932 0.7982 0.8358 0.8364 

AUC ↑ 0.75421 0.75208 0.76335 0.73538 0.75192 0.72012 0.72929 0.72671 0.77796 0.7656 0.80012 0.79442 0.74096 0.77962 

MAE ↓ a 0.20263 0.26703 0.22876 0.24263 0.22348 0.15875 0.1949 0.17794 0.13084 0.12729 0.22159 0.16428 0.14473 0.10121 

Metric Ours BL HDCT MILPS DRFI MDF ∗ LEGS ∗ MCDL ∗ DCL ∗ DSHNet ∗ SCSD-HS ∗ UCF ∗ PAGR ∗ PiCANet ∗

(D)ECSSD F-measure ↑ a 0.8104 0.7544 0.7392 0.7581 0.7819 0.8316 0.8274 0.832 0.8977 0.9055 0.8648 0.9105 0.9268 0.9262 

AUC ↑ 0.83183 0.8173 0.81752 0.80768 0.82702 0.79911 0.81495 0.82063 0.85488 0.85364 0.86158 0.86552 0.84955 0.86718 

MAE ↓ a 0.13362 0.2169 0.19632 0.17734 0.17019 0.10491 0.118 0.098632 0.077529 0.058819 0.19188 0.077651 0.060868 0.046417 

Metric Ours BL HDCT MILPS DRFI MDF ∗ LEGS ∗ MCDL ∗ DCL ∗ DSHNet ∗ SCSD-HS ∗ UCF ∗ PAGR ∗ PiCANet ∗

(E)PASCAL-S F-measure ↑ a 0.7278 0.7041 0.6483 0.6625 0.6898 0.7636 0.7543 0.727 0.8105 0.8242 0.7785 0.8278 0.8513 0.8592 

AUC ↑ 0.79253 0.76545 0.76335 0.74986 0.78474 0.74726 0.7793 0.77667 0.82206 0.8106 0.83439 0.83762 0.8093 0.83733 

MAE ↓ a 0.17829 0.26115 0.22876 0.23944 0.21003 0.14526 0.15553 0.14555 0.11521 0.0938 0.2197 0.12631 0.092241 0.077885 

Metric Ours BL HDCT MILPS DRFI MDF ∗ LEGS ∗ MCDL ∗ DCL ∗ DSHNet ∗ SCSD-HS ∗ UCF ∗ PAGR ∗ PiCANet ∗

(F)HKU-IS F-measure ↑ a 0.7903 0.7104 0.7409 0.745 0.7772 – – 0.7786 0.8929 0.8895 0.8707 0.8856 0.9176 0.9171 

AUC ↑ 0.8479 0.83546 0.83292 0.82925 0.85155 – – 0.80835 0.87657 0.86588 0.88636 0.8837 0.86704 0.88607 

MAE ↓ a 0.11818 0.21357 0.1647 0.15754 0.1445 – – 0.10193 0.063428 0.052966 0.17727 0.07405 0.047511 0.041715 

a The up-arrow ↑ indicates the larger value achieved, the better performance is, while the down-arrow ↓ indicates the smaller, the better. b The best three results are highlighted with bold, italic and bold-italic fonts, 

respectively. c The ∗: deep learning based method. 
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Fig. 14. Performance of the proposed method with different design options on different datasets. 
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a  
lue curve provides the performance of the method with a sin-

le threshold (FS). Similarly, the green curve gives the performance

f the method without the rarity term (FWR), and the red curve

resents the performance of the final map with rarity term (Ours).

he final result can produce better performance than FS and FWR,

hich demonstrates that our method with rarity term can facili-

ate the saliency detection. 

Since we refine the saliency map based on the EMR algo-

ithm, we evaluate the contributions of separate components in

MR algorithm on four datasets (ASD, ECSSD, SOD and PASCAL-

 datasets). Fig. 14 shows the performance of each step in

he proposed method, i.e., background-based saliency map (BS),

oreground-based saliency map (FS), integrated saliency map (IS),
efinement with manifold ranking (FMR), refinement with mani-

old ranking and mid-level information (FMRM), refinement with

anifold ranking and suppressed/active nodes (FMRSA). Combin-

ng all these steps makes the system more robust and achieve bet-

er performance. In addition, we also compare with the refinement

ith manifold ranking and sink point (FMRS). Accordingly to ex-

erimental data, the overall performance of our method is better

han FMRS, which proves the robustness of our method. Further-

ore, in order to demonstrate that our refinement method is of

igh versatility that can improve other methods based propaga-

ion when applying our propagation mechanism, we apply our re-

nement mechanism to optimize state-of-the-art results on ASD

nd ECSSD datasets, including GS [23] , SF [66] , MC [82] . For
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Fig. 15. Performance of different methods and their optimized version by different approaches on ASD and ECSSD dataset. 
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different methods, we use their final saliency map as the in-

put coarse saliency map. We then apply the optimization meth-

ods to refine them. For fair comparison, we adopt the proposed

foreground seeds selection method to obtain foreground seeds for

manifold ranking (MR) [13] ; for MR+sink, we mainly adopt [36] to

refine the maps. Performance variation can be clearly observed in

Fig. 15 . We can see that all of them are significantly improved to

a similar level after our method. In addition, we can also find that

our performance is better than those optimized by MR [13] or the

method introducing sink points into manifold ranking (MR+sink)
36] . The results illustrate the powerful versatility of our refinment

echanism. 

.4. Running time 

The Running time test is conducted on a 64-bit PC with Intel

ore i5-4460 CPU @ 3.20GHz and 8GB RAM. All the tested codes

re provided by the authors and run unchanged in MATLAB R2015a

ith some C++ mex implementations. Average running time is

omputed on the ASD dataset. We choose several competitive
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Fig. 16. Some failure examples. (a) Input; (b) background-based saliency maps; (c) foreground-based saliency map; (d) Final saliency maps; (e) Ground-truth. 

Table 4 

Running average time test results (seconds per image) on ASD. 

Method LPS MR RR BFS MDF MCDL Our 

Times 3.376 0.715 3.56 7.513 112.472 6.415 t 1: 3.1524 t 2: 1.307 
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ccuracy methods or those akin to ours, and the results are shown

n Table 4 . Note that Table 4 dispalys the average time of our

ethod for extracting deep features t 1 and the holistic method

akes only 1.307s to process one image without considering ex-

racting deep features. Although being slower than traditional

ethods, our method still outperforms them both considering the

verall evaluation performances. In addition, we can clearly see

hat the proposed algorithm is faster than other deep learning

ethods. 

.5. Limitation and analysis 

Although our method can perform well in most cases, it still

uffers from accurately guaranteeing the completeness of the

alient objects in some challenging scenarios in Fig. 16 . This is

ecause our model design emphasizes the high-level discrimina-

ive image knowledge of objects against the background. Since we

dopt unsupervised scheme, we will investigate weakly supervised

earning to achieve a better performance in our future work. 

. Conclusions 

This paper proposes a novel graph structure for salient object

etection in which both background divergence and foreground

ompactness are utilized. First, we construct a novel graph and de-

ne a reasonable edge weight, which considers low-level feature

nd high-level semantic information. Additionally, two maps are

alculated by reliable background seeds and compact foreground

egions with two automatic selection schemes. Finally, a robust op-

imization mechanism is proposed to further refine the final map.

xperimental results demonstrate that the proposed method can

chieve favorable performance. 
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