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survey, we systematically review vehicle trajectory collection, preprocessing, analytics, and applications.

First, we focus on the standard techniques for vehicle trajectory collection and corresponding datasets. Next,

we introduce representative approaches for the latest advances in vehicle trajectory processing. We further

discuss individual travel behavior and collective mobility analytics using vehicle trajectory. Since private cars

constitute the majority of urban vehicles and form the basis for many recent research findings, we emphasize

analytics based on private car trajectory data. We then compile vehicle trajectory-boosted applications from

the perspective of computing vehicle trajectory. Finally, we go through unresolved problems with vehicle

trajectory and outline potential future research directions.
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1 Introduction

Urban vehicles have been on the rise in many cities during the past few years while the growing
number of vehicles supports people’s daily travel needs, such as running errands, commuting,
shopping, and traveling [77, 81, 116, 173]. The rapid increase of urban vehicles provides consid-
erable convenience for people’s work and life, it also brings several challenges to cities, such
as traffic congestion [91], environmental pollution [66], transportation safety [78], and parking
difficulties [240]. Meanwhile, vehicles traveling in cities have led to a substantial increase in
the volume and variety of vehicle trajectory collected from scalable sensors [120, 131], such as
cameras, radio frequency identification (RFID), global positioning system (GPS) devices,
and on-board diagnostics (OBD) systems. The vehicle trajectory contains valuable knowledge
on human mobility patterns and travel preferences, offering excellent opportunities to solve the
aforementioned problems [35, 152]. Consequently, vehicle trajectory processing and analytics
can provide effective services for a series of applications, including smart city management [126],
intelligent transportation systems [117], and location-based social networks [36].

Vehicle trajectory has garnered broad interest from academia and industry. Schol-
ars have provided several surveys related to trajectory data from different perspectives
[1, 3, 6, 158, 164, 180, 181]. For instance, Sousa et al. [164] surveyed vehicle trajectory similarity,
including vehicle trajectory representations, similarity computation methods, and analysis
applications. The authors in [181] categorized the spatio-temporal and introduced the deep
learning methods for various trajectory data mining. However, these works did not discuss
real-world vehicle trajectory collection. Alternatively, some existing surveys focused on vehicle
trajectory analytics and applications [6]. For example, Rettore et al. [158] sorted out vehicular
data sources and how they may be used and leveraged to deliver urban applications and services.
Additionally, the authors in [1, 3, 180] discussed the recent developments in trajectory data
management research, including trajectory preprocessing, storage, tools for trajectory analytics,
and applications. Alsahfi et al. [3]. reviewed trajectory data models and indexing techniques,
emphasizing the need for efficient storage and retrieval mechanisms. Alam et al. [1] discussed
the trajectory data in spatio-temporal database systems, highlighting its role in applications
like traffic management and urban planning. Wang et al. [180] focused on the advancements in
trajectory query processing and privacy-preserving techniques. Nevertheless, existing surveys do
not take travel behavior and mobility analysis into account, resulting in a lack of a comprehensive
analysis of vehicle mobility. A systematic understanding of vehicle trajectory is necessary to
depict the whole ecosystem, from data collection and processing to analytics and applications.

In this article, we aim at providing a systematic review of vehicle trajectory collection, prepro-
cessing, mobility analytics, and applications to bridge the existing gap. Specifically, our survey
seeks to answer the following questions: In which ways and with what devices can collect the
vehicle trajectory? How to process these trajectory data and mine the knowledge contained therein?
What are the typical application scenarios of vehicle trajectory? To that end, this work presents a
survey of the ecosystem of vehicle trajectory. We first discuss the mainstream methods for vehicle
trajectory collection and present various vehicle trajectory datasets. Next, we explore recent
advances in vehicle trajectory processing by introducing representative methods. Following this,
we elaborate on individual travel behavior and collective mobility analytics. Notably, we pay
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Fig. 1. Overall framework.

particular attention to analytics based on private car trajectory data, as private cars constitute the
majority of urban vehicles and have been the focus of emerging research findings in recent years.
Subsequently, we summarize the vehicle trajectory-boosted applications from the perspective of
vehicle trajectory computing. Finally, we discuss the open issues related to vehicle trajectory and
foresee future research directions.

The framework of this article is shown in Figure 1. We focus on taxis, ride-hailing services, pri-
vate cars, buses, trucks, and connected autonomous vehicles (CAVs), as depicted in Table 2.
In Section 2, we present vehicle trajectory collection methods and datasets. Next, we discuss re-
cent progress in vehicle trajectory processing techniques in Section 3. After that, in Section 4, we
introduce vehicle trajectory analytics. Additionally, in Section 5, we summarize vehicle-boosted
applications. In Section 6, we outline the current open issues and foresee future research directions.
Finally, we conclude the survey in Section 7.
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(a) Cameras in [169] (b) RFID in [19] (c) GPS and OBD in [202]

Fig. 2. Sensors for vehicle trajectory collection.

Table 1. Comparison of Vehicle Trajectory Collection Sensors

Sensors Type Deployer Scale Cost Collected information

Cameras Static Government Citywide High Vehicle flow and speed

RFID Static Government, enterprises Regional High Vehicle identification and flow

GPS Mobile Enterprises, individuals Million Low Longitude, latitude, altitude, and speed

OBD Mobile Enterprises, individuals Million Low Speed, acceleration, and steering direction

2 Vehicle Trajectory Collection and Datasets

In this section, we explore the methods for collecting vehicle trajectory, as well as various datasets
that provide a foundation for subsequent analysis. Understanding these collection methods is cru-
cial as they directly influence the quality of the vehicle trajectory processing and analysis.

2.1 Vehicle Trajectory Collection

Vehicle trajectory collection mainly relies on fixed sensors, mobile sensors, or a combination of
these two [62, 63]. As illustrated in Figure 2, fixed sensors, which are pre-installed on the road or
infrastructure such as loop detectors [194] and surveillance cameras [220, 230], can be utilized to
extract vehicle trajectory. Mobile sensors refer to Global Navigation Satellite System (GNSS)
device and OBD [16, 202, 203], which are equipped in vehicles to record the trajectory data. As a
combination of fixed sensors and mobile sensors, the authors in [19, 247] proposed to use Elec-

tronic Registration Identification (ERI) to conduct vehicle trajectory acquisition. Table 1 shows
the comparison of various vehicle trajectory collection methods.

Cameras. Modern smart cities and intelligent transportation systems depend heavily on
real-time traffic monitoring [101]. Due to their value in managing and regulating traffic, security
camera use has expanded quickly in recent years. As shown in Figure 2(a), a property pre-deployed
surveillance camera can recognize individual vehicles. For instance, the authors in [230] proposed
a queue length estimation model from cameras to extract vehicle trajectory. Yu et al. [220]
collected the vehicle trajectory from a surveillance camera, as being called the camera-based
trajectory. However, they could only determine traffic densities from the images by counting the
number of pixels in the camera’s images. While not covering the road segments without cameras,
millions of camera-based trajectories can be utilized to predict the transitions between urban
regions. To resolve this issue, the authors in [171] suggested using the installed traffic cameras as
a sensor network to follow vehicle travel and try to reconstruct large-scale vehicle trajectories or
estimate citywide traffic flow based on the insufficient camera-based trajectories.

RFID. Using RFID technology, vehicles can be accurately identified. As shown in Figure 2(b),
every vehicle has an RFID tag attached, and critical roadways and crossroads have RFID scanners
as acquisition points built into the infrastructure. Passive RFID tags on vehicles are activated, and
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passing records are created when the vehicle approaches an RFID reader (an acquisition point).
Similar to video surveillance, this is collecting traffic data at a fixed site. Video surveillance and
RFID both have advantages over one another. For instance, they assist in precisely identifying
a specific vehicle and record information about all vehicles operating on roadways. Notably, the
RFID-based trajectory collection technique offers benefits over video surveillance, such as a long
recognition distance, high identification accuracy, quick reading speed, low production cost, and
more, making it suited for collecting urban traffic data [19].

GPS. GPS is a frequently utilized worldwide approach for vehicle location in the trajectory
gathering process since it can deliver precise and dependable vehicle localization and navigation
performance in urban situations [203]. As shown in Figure 2(c), GPS devices, often integrated
with OBD systems, are installed in vehicles to collect trajectory data [199]. These devices record
essential information such as longitude, latitude, altitude, and speed over time. The deployment of
GPS devices is highly scalable, capable of covering millions of vehicles, and is relatively low-cost
compared to fixed sensors. The accuracy and reliability of GPS data make it an essential tool in
intelligent transportation systems, enabling precise vehicle tracking and enhancing traffic man-
agement efficiency.

OBD. Using the OBD, we can collect vehicle trajectory from on-board sensors to monitor traffic
events in urban regions. The authors in [203] proposed a new paradigm of GPS and OBD Integra-

tion (GOI), as shown in Figure 2(c), which offers a feasible way for large-scale trajectory collection
especially suitable for private cars. TrajData, a systematic approach based solely on plug-and-play
OBD devices, was developed by Xiao et al. [202]. They aggregated vehicle data from multiple
sources using low-cost commercial-off-the-shelf (COTS) GPS and OBD modules.

2.2 Vehicle Trajectory Datasets

Vehicle trajectory represents vehicles’ spatial and temporal locations as they travel [9], offering
vital information for facilitating various applications (e.g., smart city, intelligent transportation,
and location-based social networks) [102, 164]. Table 2 provides the overview of vehicle trajec-
tory datasets collected from different sources. We divide the vehicle trajectory sources into the
following categories: taxis, ride-hailing vehicles, private cars, buses, trucks, and CAV.

Taxi, typically equipped with GPS devices and operating under regulatory supervision,
naturally generate large-scale and high-frequency trajectory data [33, 132, 189]. The scale of taxi
trajectory datasets is generally large due to both the large number of taxis and their extended oper-
ation time [34, 84]. Representative taxi trajectory datasets include T-Drive [224], TaxiNYC [184],
TaxiUrbComp [176], TaxiPorto [160], and the more recent SynMob [228]. T-Drive contains
4.96 million trajectories collected from over 33,000 taxis in Beijing, China, spanning three months.
The example of taxi trajectories for T-Drive dataset is illustrated in Table 3. TaxiNYC focuses on
New York, U.S., and includes more than 160 million trajectories from both yellow and green taxis,
continuously updated over 12 months. TaxiUrbComp involves 12.8 million trajectories generated
by 35,300 taxis in Chengdu and Beijing over two months. TaxiPorto comprises 1.7 million trajec-
tories recorded by 442 taxis in Porto, Portugal, over an entire year, with GPS traces logged every
15 seconds, enabling analyses of recurring urban mobility patterns such as daily commuting flows.
Meanwhile, SynMob is a synthetic dataset of 2 million trajectories across one month, offering
a complementary source of data for model training and validation without the privacy concerns
inherent in real-world data. Due to their richness, taxi trajectory datasets are widely employed in
numerous transportation and urban planning tasks, including but not limited to traffic flow predic-
tion [121, 241], traffic management [84], route optimization [18], and urban function classification
[71, 257]. They provide insights into spatiotemporal travel patterns, informing decision-making
to enhance mobility, reduce congestion, and improve overall transportation efficiency.
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Table 2. Overview of Vehicle Trajectory Datasets

Source Dataset Public Sensors Statistics Time Span Collection Site

Taxi

T-Drive[224] � GPS 33,000 taxis, 4.96 million trajectories 3 Months Beijing, China

TaxiNYC[184] � GPS 160 million trajectories 12 Months New York, U.S.

TaxiUrbComp[176] � GPS 35,300 taxis, 12.8 million trajectories 2 Months Chengdu and Beijing, China

TaxiPorto[160] � GPS 442 taxis, 1.7 million trajectories 1 Year Porto, Portugal

SynMob[228] � Synthetic GPS 2 million trajectories 1 Month -

Ride-hailing

DiDiChuXing[216] - GPS 5,674,266 million trajectories 12 Months Chengdu and Xi’an, China

UberNYC[88] � GPS 18.8 million trajectories 12 Months New York, U.S.

Grab-Posisi[88] � GPS 84,000 trajectories 18 Months Southeast Asia

Private Car

PriSH[174] - GPS 1,275 cars, 114 million trajectories 10 Months Shanghai, China

PriFX[32] - GPS, OBD 74 cars, 4,859 trajectories 7 Months Shanghai, China

PriIta[51] - GPS 779,000 cars, 128 million trajectories 1 Month The whole Italy

PriTraj[198] � GPS, OBD 60,000 cars, 10 million trajectories 12 Months China

Bus

SCD[150] - RFID, GPS 40 million trajectories 14 Days Beijing, China

BusGPS[147] - GPS 1,809 buse, 67,709 trajectories 28 Days Beijing, China

BusTra[64] - GPS 40 buse, 31,500 trajectories 2 Months Singapore

BusXA[133] - GPS 5,000 buses, 75 million trajectories 1 Month Xi’an, China

Truck

TruckSC[125] - GPS 63 trucks, 679,849 trajectories 1 Month Sichuan, China

TruckTJ[25] � GPS 940,000 trajectories 1 Month Tianjin, China

Greek[25] � GPS 50 trucks, 276 trajectories 33 Days Athens, Greece

CAV

Argoverse[12] � GPS, Cameras 324,557 trajectories 41 Days Miami and Pittsburgh, U.S.

ApolloScape[134] � GPS, Cameras 100,000 trajectories 155 Minutes BeiJing, China

LyftCA[69] � GPS 20 vehicles and 170,000 trajectories 4 Months Palo Alto, California, U.S.

Table 3. An Example of Taxi Trajectories in T-Drive

Datasets

ID Timestamp Longitude Latitude

10009 2008/2/2 13:39 116.26991 39.95215
10009 2008/2/2 13:49 116.30055 39.96021
10009 2008/2/2 13:59 116.31418 39.96519
10010 2008/2/2 13:44 116.56454 40.07186
10010 2008/2/2 13:54 116.56753 40.06372
10010 2008/2/2 14:04 116.5829 40.06109

Ride-hailing. Ride-hailing services, also
known as carpool services, refer to the
process in which a customer requests a
customized ride through an online third-
party platform, such as the well-known
Uber and Didi. Representative ride-hailing
trajectory datasets include UberNYC,1

DiDiChuXing,2 and Grab-Posisi [88].
UberNYC, a service offered by the NYC
Taxi & Limousine Commission (TLC)
in collaboration with Uber, encompasses

nearly 4.5 million Uber pickups in New York City from April to September 2014, plus 14.3
million trips from January to June 2015. DiDiChuXing provides the original trajectories and
order information of special-vehicle fleets operating primarily in Chengdu and Xi’an, China.
Meanwhile, Grab-Posisi contains around 84,000 trajectories collected over 18 months across
Southeast Asia. Drawing from these datasets, extensive research has emerged on topics such as
traffic demand prediction [159, 216] and travel time estimation [111, 176].

After appropriate handling of users’ privacy concerns, the PriTraj3 dataset publicly provides
both GPS and OBD trajectories of more than 60,000 private cars from over 20 cities in China.
Table 4 presents sample trips from this dataset. Other private car trajectory datasets include
PriSH [174], PriFX [32], and PriIta [51], which are either non-public or partially public. PriSH

contains 114,030,503 records from 1,275 private cars in Shanghai between July 2014 and April

1https://github.com/fivethirtyeight/uber-tlc-foil-response
2https://gaia.didichuxing.com
3https://github.com/HunanUniversityZhuXiao/PrivateCarTrajectoryData
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Table 4. An Example of Private Car Trajectory Trips

ID Stay time Move time Stay Longtitude Stay Latitude Stay Duration

97811 2018/09/01 09:19:22 2018/09/01 09:38:03 113.779126 22.728238 00:18:41

97811 2018/09/01 09:52:45 2018/09/01 16:36:00 113.783398 22.698229 06:42:15

97811 2018/09/01 16:48:39 2018/09/01 17:54:23 113.784248 22.698069 01:05:54

104783 2018/09/03 14:30:44 2018/09/03 14:39:39 113.876633 22.518154 00:08:55

104783 2018/09/03 14:57:39 2018/09/03 17:29:11 113.895668 22.533185 02:31:42

104783 2018/09/03 17:32:23 2018/09/03 19:01:05 113.898268 22.543391 01:28:42

2015. PriFX data, collected from July 2014 to January 2015 in Shanghai’s Fengxian district,
integrate OBD and GPS information. PriIta was mainly gathered for insurance purposes and
covers 128,363,000 journeys from 779,000 private cars in Italy. Leveraging these diverse datasets,
researchers have pursued a wide range of studies, including semantic travel pattern mining [174],
human mobility discovery [51], vehicle flow prediction [119], road network construction [76],
and stay duration prediction [17].

Bus plays a crucial role in urban transportation systems [142]. Representative datasets include
SCD [150] and BusGPS [147], both collected in Beijing, China. SCD comprises over 40 million
bus trajectories, while BusGPS includes 67,709 trajectories from 1,809 buses. BusTra records
the trajectories of five bus routes in Singapore between 6 May and 7 July, 2017, whereas BusXA

compiles more than 75 million trajectories from over 5,000 buses in Xi’an, China. For other
open-source bus datasets, see the data platform.4 Existing studies utilizing bus trajectory data
focus on mobility pattern prediction [150], travel time estimation [64, 133, 147], and mobility event
detection [5].

Truck trajectories, typically recorded via GPS devices installed on heavy-duty diesel vehicles,
serve as key data sources for analyzing emission patterns and other transportation-related
impacts. They enable policymakers to develop targeted measures that alleviate negative ex-
ternalities such as air pollution and congestion. Representative datasets include TruckSC

[125], TruckTJ [25], and Greek [25], each highlighting different operational contexts for heavy
trucks. Specifically, TruckSC contains 679,849 trajectories collected over one month in Sichuan,
China, while TruckTJ includes 940,000 trajectories in Tianjin, China, also within a one-month
span. Greek presents a smaller-scale dataset, 276 trajectories from 50 trucks, recorded over 33
days in Athens, Greece. These truck trajectory datasets provide critical insights for advancing
environmental sustainability [151], improving logistics efficiency [96], and enhancing congestion
management [52, 99].

Connected autonomous vehicles (CAV). Two notable CAV datasets include Argoverse5

[12] and ApolloScape6 [134], alongside LyftCA7 [69]. Argoverse stands as the first large-scale
autonomous driving dataset offering HD maps with geometric and semantic annotations. Apol-

loScape provides manually annotated trajectories, LiDAR point clouds, and camera-based images
collected under various lighting and traffic conditions, featuring cyclists, pedestrians, and auto-
mobiles in complex urban environments. Meanwhile, LyftCA comprises approximately 170,000
scenarios acquired from 20 Lyft self-driving vehicles over four months in Palo Alto, California;
each scenario lasts 25 seconds and includes perceptual outputs of the self-driving system. These
datasets underpin the development of algorithms for perception [10, 206], navigation [48], control

4https://data.world/datasets/bus
5https://github.com/argoai/argoverse-api
6http://apolloscape.auto/trajectory.html
7https://level-5.global/level5/data/
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Table 5. Overview of Vehicle Trajectory Generation Data Methods

Reference Methods
Evaluation Metrics

Similarity Privacy Diversity

He [65] Transfer Learning � - -

Ouyang [146] Generative Adversarial Network, Convolutional Neural Network � - -

SVAE [74] Variational Autoencoder, Long Short-Term Memory network � - �

MoveSim [45] Generative Adversarial Network, Convolutional Neural Network � � -

TrajGAIL [28] Generative Adversarial Imitation Learning, Recurrent Neural Network � - -

TrajGen [11] Generative Adversarial Network, Map Matching � - -

STULIG [251] Variational Autoencoder, Convolutional Neural Network � - -

Wang [192] Gated Recurrent Unit, Mixture Density Network � - -

Benarous [8] Long Short-Term Memory network, Variable-order Markov model � � �

ActSTD [226] Generative Adversarial Imitation Learning, Neural Differential Equations � - -

Jiang [85] Generative Adversarial Network, A∗ Search Algorithm - - �

TrajGDM [29] Diffusion Model, Transformer, Long Short-Term Memory network � � �

DiffTraj [259] Diffusion Model, Convolutional Neural Network � � �

[166], and simulation [233], ultimately advancing the deployment of safe autonomous driving
systems [205].

3 Vehicle Trajectory Processing

Building on the data collection methods discussed in Section 2, this Section delves into the recent
advancements in vehicle trajectory processing techniques to enhance the usability and capability
of the vehicle trajectory, including vehicle trajectory generation (Section 3.1), vehicle trajectory
recovery (Section 3.2) and vehicle trajectory compression (Section 3.3).

3.1 Vehicle Trajectory Generation

Vehicle trajectory generation aims at producing synthetic vehicle trajectories similar to real-world
trajectories, serving a dual purpose. (i) It provides an effective solution to address data deficiencies.
Data collection can be costly or challenging in practical scenarios, leading to insufficient data
to meet application requirements. Trajectory data generation technology resolves this issue by
providing sufficient synthetic yet realistic data, fostering diverse applications. (ii) It addresses the
privacy leakage problem. During trajectory data collection, private information such as vehicle
ownership details, locations, and personal data may be included in real-world vehicle trajectories.
To safeguard privacy while maintaining the qualities of real data, trajectory data generation can
replace or remove privacy-sensitive data while ensuring a tolerable level of resemblance. Table 5
presents the overview of vehicle trajectory generation methods.

Evaluation metrics. Generating synthetic vehicle trajectories requires realistically repro-
ducing the mobility patterns, keeping the diversity of trajectories, and protecting privacy.
Determining the quality of synthetic data can be difficult as it is not always evident how to do
so. As shown in Table 5, generating synthetic vehicle trajectories can be evaluated in terms of
three aspects: similarity, privacy, and diversity. The similarity is a widely-used evaluation index,
while the similarity evaluation methods in various application scenarios are usually different.
Privacy is another important evaluation metric used to measure whether the model can effectively
protect users’ sensitive information and is not easy to reidentify. Diversity evaluates if a dataset
consists of a single repeating diary by determining whether the produced diaries have the same
diversity of diaries as the original diaries. Benarous et al. [8] investigated the usage of several
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synthetic data production models for extended location sequences and provided a road map for
establishing synthetic data creation strategies. They evaluated the effectiveness of the various
models using various criteria, including privacy, statistical similarity, per-instance similarity, and
diversity.

Trajectory generation methods. Trajectory generation has been tackled using various
techniques, including generative adversarial networks (GANs), variational autoencoders

(VAEs), sequence-to-sequence (Seq2Seq) models, partially observable Markov decision

processes (POMDPs), and transfer learning. These methods address the spatial and temporal
complexities of human mobility, with each offering unique contributions and perspectives. For
examples, Ouyang et al. [146] converted spatial locations into a 2D matrix and employed GANs to
generate data points, which were later reconstructed into sequential trajectories. This approach
highlighted the potential of GANs in modeling discrete spatial data. Building on this, Huang et al.
[74] combined VAEs to learn latent trajectory features with Seq2Seq models to ensure coherent
temporal patterns, improving trajectory realism. Extending this line of work, Feng et al. [45]
introduced a self-attention-based network to capture temporal dynamics and pre-trained GANs to
generate trajectories that respect mobility regularities. He et al. [65] shifted the focus to transfer
learning by leveraging data from multiple source cities to predict travel paths for target cities, show-
casing the utility of cross-city mobility knowledge transfer. Choi et al. [28] approached trajectory
generation through POMDPs, framing it as an imitation learning problem. Cao et al. [11] further
diversified the methods by separating spatial and temporal components: Seq2Seq models handled
temporal information, while GANs generated spatial features, ensuring modular and flexible tra-
jectory generation. Recently, Jiang et al. [85] proposed TS-TrajGen, a two-stage GAN framework
that integrates domain-specific knowledge to generate continuous trajectories over road networks,
emphasizing seamless spatial continuity. Yuan et al. [226] added to this by modeling the dynamics
of activity-based mobility, combining continuous flow transitions with updates at activity loca-
tions. Similarly, Zhu et al. [259] introduced DiffTraj, which utilizes diffusion models to reconstruct
trajectories from noise, effectively capturing both spatial and temporal features through reverse
denoising.

In summary, these methods collectively advance trajectory generation by addressing diverse
aspects of human mobility, from spatial discretization to activity-based modeling, cross-city trans-
fer, and spatio-temporal regularities. Each builds on previous insights, creating a comprehensive
framework for realistic and adaptable synthetic trajectory data generation.

3.2 Vehicle Trajectory Recovery

A high sampling rate of trajectories is essential for urban applications based on vehicle trajectory.
However, due to communication loss and storage limitations, massive trajectories are collected at
a low sampling rate in realistic conditions. To address such data sparsity issues, trajectory recov-
ery/interpolation/reconstruction/completion/imputation and data cleaning methods are proposed.
These methods infer missing data or impute unobserved data, thereby improving the completeness
of the trajectory data. Table 6 provides an overview of vehicle trajectory recovery methods.

Statistical methods. Vehicle trajectory recovery is to impute missing or unobserved data
for low-sampling-rate trajectories and rebuild high-quality trajectories. Provided that vehicles
are moving with uniform speeds [68] and the traffic follows a probability distribution, statistical
methods are designed to utilize the statistical features of the probability distribution to model
multi-dimensional spatio-temporal correlations of trajectory data. In this line, various statistical
methods have been proposed to achieve the goal of trajectory data imputation. For instance,
Chen et al. [21] addressed missing data recovery as a tensor completion issue and suggested a
three-procedure architecture. In so doing, it allows for discovering traffic patterns to solve the
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Table 6. Overview of Vehicle Trajectory Recovery Methods

Category Reference Methods Evaluation metrics

STD [21] Tensor Decomposition RMSE, MAE, MRE

nGPF-VSE [208] Generalized Error Distribution, Particle Filter RMSE

Statistic BGCP [20] Bayesian Probabilistic Matrix Factorization MAPE, RMSE

Kaur [90] Boosting Regressor, Bias Correction MSB, MSPE, MAPE

ST-TRPCA [47] Principal Component Analysis, Attention Mechanism MAE, RMSE, MAPE

DHTR [178] Kalman Filter, Attention Mechanism nDTW, LCSS, EDR

Bi-GTPPP [195] Long Short-Term Memory network Recall, F1, MAP

MTrajRec [157] Multi-task Learning, Gated Recurrent Unit MAE, RMSE, Recall

Deep Learning AttnMove [197] Attention Mechanism Recall, MAP, Distance

R2C-TrA [198] Transfer Learning RMSE

STCPA [212] Self-attention RMSE

GraphMM [127] Conditional Model, Graph Neural Network, Accuracy, R-LCS

RNTrajRec [24] Graph Attention Network, Transformer MAE, RMSE, Recall, Precision, F1

TERI [22] Transformer, Contrastive Learning Precision, Recall

LightTR [128] Federated Learning, Gated Recurrent Unit Precision, Recall, MAE, RMSE

RMSE=Root Mean Squared Error, MAE=Mean Absolute Error, MRE=Mean Relative Error, MAPE=Mean Absolute

Percentage Error, MSB=Mean Squared Bias, MSPE=Mean Squared Prediction Error, nDTW=normalized Dynamic Time

Warping, LCSS=Longest Common Subsequence, EDR=Endpoint Detection and Response, R-LCS=Ratio of Longest

Common Subsequence.

data recovery problem. To compute the non-Gaussian probability density during the vehicle state
estimation, Xiao et al. [208] regarded the noise in the trajectory to be non-Gaussian and took
advantage of the generalized error distribution. In [20], the authors used a Bayesian probabilistic
matrix factorization model to determine the spatio-temporal correlations for trajectory data
imputation. Regarding realizing a computationally efficient data imputation, Kaur et al. [90]
provided a dual-stage error-corrected boosting regressor-based imputation strategy that also
evaluated the uncertainty around imputed values. Tensor robust principal component analysis
was used by Feng et al. [47] to capture the spatial and temporal correlations in trajectories for
data recovery.

Deep learning methods. Existing methods explore trajectory data’s spatial, temporal, and
contextual relationships to improve data imputation processes. Initially, Wang et al. [178] utilize
both spatial and temporal attention to capture spatio-temporal correlations, in which the improved
Kalman filter is integrated to calibrate noise for trajectory recovery. Subsequently, Ren et al. [157]
attempt to leverage multi-task learning to learn sequential dependencies from low sampling-rate
trajectories and solve the map-constrained trajectory recovery problem. Xia et al. [197] intro-
duced an attention mechanism to exploit intra-trajectory and inter-trajectory correlations from
long-term history for trajectory recovery. Rempe et al. [156] utilized deep convolutional neural net-
works to capture spatio-temporal correlations between urban grids for trajectory recovery. Yuan
et al. [227] tried to learn the distribution of incomplete data and utilized a generative adversarial
network to generate the corresponding imputed data. Xiao et al. [198] integrate ensemble learning
and transfer learning to construct a fine-grained prediction model to implement vehicle trajectory
recovery. Xu et al. [212] provide the STCPA to the trajectory speed imputation. Through the atten-
tion mechanism, STCPA captures intricate traffic connections between the spatial and temporal
dimensions, assisting in mitigating the data sparsity problem. Liu et al. [127] propose GraphMM,
which is a graph-based approach that leverages graph neural networks and conditional models
to align road segments and trajectories in latent space, effectively capturing correlations in road
and trajectory graph topologies with efficient training and inference algorithms for scalability.
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Table 7. Overview of Vehicle Trajectory Compression Methods

Category Reference Methods Mode Evaluation Metrics

GRTS [98] Segment Heuristic Online RE, CC

SQUISH [144] Priority Queue Online SED, Speed

Long [129] Binary Search Offline AD

Line Simplification

BQS [124] Bounded Quadrant System Online CR, PP

REST [244] Greedy Algorithm, Douglas-Peucker Offline SRS, CR

Lin [110] Synchronous Euclidean Distance Offline CR, AE, RT

RLTS [190] Reinforcement Learning, Markov Decision Process Online SED

MARL4TS [191] Multi-Agent Reinforcement Learning Online CR, RT

Sandu [161] Douglas-Peucker Offline DC, ASE

COMPRESS [61] Spatio-temporal Decomposer Offline CR, RT

Yang [215] Trajectories Representation Offline CR, RT

Map Matching CiNCT [95] Suffix Arrays Offline CR, RT

TrajCompressor [14] Heading Change Compression Online CR, RT

UTCQ [104] Referential Representation Offline CR, RT, MC

TRACE [103] Referential Representation Online CR, RT, MC

RE=Reduction Efficiency, CC=Computational Costs, SED=Synchronous Euclidean Distance, AD=Angular Difference,

CR=Compression Ratios, PP=Pruning Power, SRS=Size of Reference Set, AE=Average Errors, RT=Running Time,

MC=Memory Cost, DC=Degree of Compression, ASE=Average Synchronous Error.

Chen et al. [24] propose a RNTrajRec framework to combine road network representation with
GPS trajectory representation for trajectory recovery. To address trajectory recovery without
previous knowledge, Chen et al. [22] present a TERI framework, a two-stage technique that first
detects recovery positions and then imputes the missing data points. Most recently, Liu et al. [128]
propose LightTR, a framework for federated trajectory recovery based on a client-server archi-
tecture, to trajectory recovery while maintaining the privacy and decentralization of the data in
each client.

To sum up, statistical methods aim at discovering specific patterns or distribution charac-
teristics inherent in the trajectory data to achieve trajectory recovery. Deep learning methods
attempt to implement trajectory recovery by exploring the spatio-temporal correlations in an
end-to-end manner, which relies on a training model and has higher data volume and quality
requirements.

3.3 Vehicle Trajectory Compression

During trajectory collecting, several Internet-of-Vehicle devices send massive amounts of vehicle
trajectory to the data center [246], which poses various sustainable problems concerning storage,
transmission, and processing [14, 16]. Many trajectory data compression methodologies are pro-
posed to resolve these problems [137]. They are mainly categorized into line simplification meth-
ods and map-matching methods. Table 7 presents the overview of vehicle trajectory compression
methods.

Line simplification methods. Line simplification techniques aim at reducing trajectory data
by eliminating unnecessary or irrelevant points, typically using distance-based measurements.
These methods play a crucial role in optimizing storage, transmission, and analysis of trajectory
data. For instance, Lange et al. [98] proposed an online approach using dead reckoning to
maximize message delivery over wireless networks while reducing data points. Muckell et al.
[144] employed a priority queue to compress GPS trajectory streams, removing low-information
points based on synchronized Euclidean distance estimation. Similarly, Long et al. [129] focused
on direction-preserving trajectory simplification, using dynamic programming and binary search
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to minimize direction-based errors in the simplified trajectory. Liu et al. [124] introduced the
Bounded Quadrant System algorithm, designed for resource-constrained environments, to
produce error-bounded simplified trajectories. Zhao et al. [244] represented raw trajectories
as a series of sub-trajectories, leveraging greedy and dynamic programming algorithms for
reference trajectory construction and compression. In related work, Lin et al. [110] also employed
synchronous Euclidean distance as an error metric for simplification.

Later, Wang et al. [190, 191] treated trajectory simplification as a sequential decision process,
applying reinforcement learning to determine which points to drop, eliminating the need for
human-defined rules. In summary, line simplification methods have evolved from heuristic-based
approaches to advanced algorithms like dynamic programming and reinforcement learning. These
methods effectively balance data reduction with the preservation of essential trajectory features,
catering to diverse application scenarios and resource constraints.

Map-matching methods. Map-matching algorithms project trajectories onto road networks,
representing them as sequences of road segments to reduce storage requirements while pre-
serving spatial and temporal relationships [23, 252]. Sandu et al. [161] laid the foundation
for trajectory compression in road networks by integrating the Douglas-Peucker technique,
enabling compression with predictable error bounds. Building on this, Han et al. [61] extended
the approach by separating trajectories into spatial routes and temporal sequences, allowing for
parallel compression tailored to each component. Yang et al. [215] took a different direction by
introducing a distance-time pair representation for trajectories in road networks. Koide et al. [95]
further refined these ideas by treating trajectories as sequences of road edges, employing pattern
matching and sub-path extraction to enhance compression while maintaining trajectory integrity.
Expanding the focus to mobile applications, Chen et al. [14] developed a lightweight online
map-matching system. Their approach utilized vehicle heading data to align noisy GPS points
efficiently and introduced a compressor leveraging heading changes at junctions for compact
trajectory representation. Building on this practical application, Li et al. [104] addressed the
challenge of compressing uncertain trajectories, proposing a referential representation. They later
extended this work to an online setting [103], incorporating speed-based and multi-reference
techniques to balance compression ratio and processing speed.

In summary, map-matching methods have evolved from foundational compression techniques
to sophisticated algorithms leveraging spatial, temporal, and contextual road network data. These
methods effectively reduce storage requirements and enhance trajectory utility, although they rely
on updated road network data and can have high computational costs.

4 Vehicle Trajectory Analytics

With a foundation of robust data collection and advanced processing techniques established
in Sections 2 and 3, we now move on to the analytics of vehicle trajectory. This Section anal-
yses individual travel behavior and collective mobility patterns derived from the processed
trajectory data. Understanding these analytics is crucial for deriving meaningful insights that
can inform various applications, from traffic management to urban planning. Notably, we pay
particular attention to analytics based on private car trajectory data, as private cars constitute
the majority of urban vehicles and have been the focus of emerging research findings in recent
years.

4.1 Individual Travel Behavior

Trajectories consist of multiple spatio-temporal points, reflecting individual travel behaviors.
Figure 3 illustrates this, where each location represents a stay behavior, and the paths between
them denote move behaviors. This subsection reviews studies on both move and stay behaviors.
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Fig. 3. Individual travel behavior analytics.

4.1.1 Move Behavior. Move behav-
ior can be quantified by mobility met-
rics [163], such as move time and route,
as presented in Table 8. Move time,
also known as travel time, is the pri-
mary feature of a vehicle when travel-
ing from the origin to the destination.
The estimated time of arrival (ETA)
or travel time estimation is one of the
crucial areas in vehicle trajectory ana-
lytics [67].

In the following, we elaborate on
the four latest models of ETA. To spec-
ify, the DeepOD model was developed

by Yuan et al. [223] to completely utilize past trajectories, road networks, weather, and traffic
conditions data for ETA. Hong et al. [67] leveraged heterogeneous information graphs in the ETA
task. They proposed a network based on vehicle trajectory to analyze traffic behavior patterns
simultaneously. Jin et al. [89]proposed a spatiotemporal graph search framework to estimate travel
time. The combined spatio-temporal correlations of intersections and road segments are gathered
using a hierarchical neural architecture search approach with internal and exterior search space.
Fu et al. [49] developed CompactETA, a real-time ETA learning system that offered an accurate
online travel time inference within 100 microseconds. From the upper part of Table 8, we can
conclude that the main techniques for ETA have been deep graph learning over the past two years.

Apart from move time of the move behavior, many scholars have analyzed mobility metrics
during the routes of the vehicle’s travel, such as move route, mile, and speed. In [218], the
authors stated that discovering common movement paths would be essential for comprehending
the principles behind travel behavior. They used extended label propagation clustering to find
frequent paths and created association rules to extract frequent move paths over time. Su et al.
[165] developed a personalized route description system that uses previous trajectory data to
produce higher-quality customized route descriptions for urban commuters. Todi et al. proposed
a path-planning algorithm [170]. They created random trees with long short-term memory to
forecast the course of obstacles in a real-world setting and integrated it with a probabilistic and dy-
namic planning framework. The uncertainty problem, particularly, has received special attention
in move path planning. Zyner et al. [260] developed a method for predicting multi-modal routes
with uncertainty. The multi-modal data is processed using a mixed-density network. In [26], the
authors examined the problem of determining a priory shortest paths in a bus network under trip
time uncertainty, where residents who use public transportation as their routing options are less
flexible than those of private car drivers. Besides, move mileage and speed are two critical features
of the move behavior. Vehicle miles traveled (VMT), which refers to the total number of miles
driven by vehicles, is one of the most significant performance indicators for traffic planning.
In [39], the authors calculated statewide VMT by functional class of routes through Maryland
using extensive vehicle GPS trajectory data. For the moving speed, the authors in [167] predicted
bus speed by identifying critical intrinsic and extrinsic factors influencing bus speed and their
importance in various conditions. They investigate spatial, temporal, and contextual connections
to extract features for training the model to achieve accurate bus speed prediction.

4.1.2 Stay Behavior. Stay behavior can be observed in people’s daily travel. Specifically, many
people travel from different parts of the city, arrive, and “stay” in several regions to participate in
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Table 8. Studies on Move Behavior Analytics

Metric Reference Data Source Methods Remarks

Move Time

DeepOD [223] Ride-hailing TG Road network OD ETA with external data.

HetETA [67] Ride-hailing HIN ETA considering traffic behavior pattern.

CompactETA [49] Ride-hailing GAT A fast inference system for real-time ETA.

Auto-STDGCN [89] Taxi NAS, GCN Hierarchical neural search for path ETA.

Move Route

Zheng [26] Bus PTA Route Planning under travel time uncertainty.

Yu [218] Taxi LPC, AR Frequent route discovery for urban travel flow.

PerRD [165] Taxi, bus KT A system to generate customized route descriptions.

Fan [39] Truck SPAH Miles travelled estimation based on Spark.

Zyner [260] CAV MDN Multi-modal route prediction with uncertainty.

TG=Temporal Graph, HIN=Heterogeneous Information Network, GAT=Graph Attention Network, MDN=Mixture

Density Network, NAS=Neural Architecture Search, PTA=Polynomial-Time Algorithm, LPC=Label Propagation

Clustering, KT=Knowledge Trees, AR=Association Rule, SPAH=Shortest Path Algorithm Heuristic.

their activities [201]. Such stay behaviors, in essence, indicate the visit locations of vehicles and
represent people’s travel demand and preferences [115]. Existing works on stay behavior inference
have focused on two aspects, i.e., stay location [40] and stay time [7].

On the location level, many scholars analyzed the user’s stay behavior for location prediction
[42]. In [15], the authors devised a semantic-aware technique for predicting user stay locations.
They retrieved user interests to reflect the user’s preference for various visit places. The user
interests were then input into a semantic-aware recurrent neural network to capture users’ travel
patterns. Hu et al. [72] developed a platform for globally applicable stay point-based location
analytics that obtains stay points with customizable parameters, stay points with locations,
extracts location profiles, and visualizes analysis findings. They demonstrated three applications
based on the combination of these capabilities: illegal location finding and popular location
ranking. Wei et al. modeled the stay behavior with generative adversarial imitation learning and
integrated the stochastic constraints from system dynamics in the learning process [193]. They
were the first to learn to model the state transition of moving agents with system dynamics. In
[130], by concurrently collecting the regularity and preference based on the stay time, location,
frequency, and duration features, the authors proposed a deep neural network to forecast the
stay location of private cars. In [13], the authors proposed a topic-based station-free data mining
approach to understand shared bike riders’ stay behavior better. Fan et al. [40] proposed a
location prediction approach that uses stay feature extraction. The approach built historical
trajectory connections using trajectory data. They applied location discovery methods to convert
the historical trajectory links into stay point links, then used density-based spatial clustering of
applications with noise to cluster the stay points to generate clustering linkages. Huang et al.
[75] explored how different private car users traveled. They obtained stay features from private
car trajectories using DBSCAN, which is most likely to match stay locations, in other words,
frequently-visit places. The key findings in [75] indicate that private car users with fewer FVPs
are more likely to exhibit travel regularity, and their travel behavior is relatively fixed.

Regarding the time level, we define the stay time as two categories: stay duration and stay
time, the former is exact time when the stay starts or ends, while the later is duration of the stay.
As depicted in Table 9, most studies of stay time focus on private cars. Private cars tend to stay in
specific regions during daily driving [75, 174]. Therefore, most studies on the analysis of private car
trajectories focus on the stay behavior. Zhang [238] et al. proposed an RNN-based encoder model to
address the difficulties in stay time prediction, namely the associated randomness and uncertainty.
The prediction model uses neural arithmetic logic units to increase the neural network’s capability
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Table 9. Studies on Stay Behavior Analytics

Metric Reference Data Source Methods Remarks

Stay Location

Sem-LSTM [15] Private car DBSCAN Semantic stay location prediction based on AOI.

SALON [72] Truck, taxi DBSACN A stay point-based location analysis platform.

MoveSD [193] Cameras GAIL Location prediction based on system dynamics.

DeepRP [130] Private car AM Location prediction with regularity and preference.

Stay Time

Li [107] Taxi VD The predictability analysis of stay time.

SOI [17] Private car KDE Stay duration prediction.

MSFD [115] Private car SSE Regular travel behavior analysis.

Zhang [238] Private car RNN, NALU Stay duration prediction in various time scales.

DBSCAN=Density-Based Spatial Clustering of Applications with Noise, AOI = area of interest, AM=Attention

Mechanism, KPCA=Kernel Principal Component Analysis, GAIL=Generative Adversarial Imitation Learning,

VD=Voronoi Diagram, KDE=Kernal Density Estimation, SSE=the Sum of Squares due to Error, NALU=Neural

Arithmetic Logic Units.

to handle linear relationships and, more crucially, lessen the effect of sparsity and unpredictability
on staying events while forecasting stay time. In [17], the authors proposed the stay-of-interest
model for forecasting the stay duration. The goal is to predict how long a private car would stay
in a specific location, which is essential information for car services like semantic travel analysis
and innovative recommendation services. The authors in [107] investigated the prediction of stay
duration using real-world taxi trajectories. They computed the entropy, provided the bounds of
predictability in vehicle stay time, and observed that the average stay duration followed the same
pattern across days. Considering the substantial correlation between stay location and stay time,
many researchers investigate how to integrate these two metrics. For instance, Liu et al. [115]
explored the stay behavior in light of three stay features, i.e., stay location frequency, stay time, and
stay duration. Based on the sum of the squared errors, they specifically got the fitting distribution
of stay characteristics. Baumann et al. [7] first drew the normal probability of arrival time and
duration predictability vectors, then predicted the time and duration of users at their stay locations.

Most of the existing studies of stay behavior are focused on private cars. The reason is that one
can extract fine-grained stay behavior from private car trajectory data, while other trajectories,
such as taxis and buses, do not contain meaningful information on stay behavior. The reasons
behind this can be explained as follows: (i) The private car trajectory data offers easy-to-extract
attributes characterizing people’s stay behavior as it is straightforward to retrieve the stay
location and stay duration from the time series trajectory trips. Recall Table 4, the private car
dataset records the trajectory trip, which indicates the stay time, location, and duration. (ii) Public
transportation such as buses travel along with predefined routes on a preset schedule. Their
stay locations are preset, and the stay times are often unchanged. Their departure/routing
choices are less flexible than private cars [26]. Those trajectories of buses help design but fail
to provide essential information for investigating stay behaviors. (iii) Taxis and ride-hailing cars
offer transportation for a single passenger or a small group of passengers; these vehicles’ stay
behaviors are primarily focused on picking up and dropping off passengers. As such, trajectory
data of taxis and ride-hailing cars contain incomplete data on stay behavior due to a lack of
information related to stay behavior, especially stay time.

To summarize, understanding stay behavior is an intriguing problem as it provides not only
essential information about people’s daily travel but also benefits broad applications such as POI
recommendations, parking lot settings, and urban planning. On this point, the stay behavior
deserves further exploration, and private car trajectory offers the best dataset that properly
reflects people’s stay behavior when looking into the current variety of vehicle trajectory.
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Table 10. Overview of Collective Mobility Analytics

Category Main focus Reference Data source Methods Remarks

Naveh [145] Bus TF Weekly periodicity of movement pattern.

Movement IERP [210] Private car KPCA Regular travel behavior during workdays.

Wang [179] Taxi PR Multiscale time-span traffic patterns.

Behavioral Wang [175] Private car KDE Daily aggregation pattern prediction.

Pattern Aggregation VBGMM [200] Private car BGM Evolution of urban region attractiveness.

Discovery Yu [217] Taxi Cluster Daily hotspot patterns discovery.

Li[105] Taxi Statistics Emission patterns of traffic analysis zones.

Emission Yu [221] Camera Statistics Uneven distribution of vehicle emissions

Cheng [25] Truck Statistics Summarize 16 pollutant emission patterns.

JMDI [168] Taxi RL Citywide traffic flow estimation.

Traffic flow Zhao [245] Probe car PBNN, GAN Estimate queue length and traffic flow.

MBA-STNet [138] Taxi BNN, GAN Multi-task learning for traffic flow prediction.

Traffic Riascos [149] Taxi Statistics Dynamical analysis on spatial activity of taxis.

Flow O-D Flow CAS–CNN [234] Rail metro CNN Short-term O-D demand prediction.

Transitions MG-GAN [118] Private car GAN Regional transfer flow prediction

PGCM [100] Bus GCN, BNN Confidence interval bus demand prediction.

Travel Demand DTCNN [37] Taxi CNN Citywide traffic demand prediction.

MLRNN [232] Taxi RNN Region-level taxi demand prediction.

TF=Tensor Factorization, KPCA=Kernel PCA, PR=Pattern Recognition, KDE=Kernel Density Estimation,

BGM=Bayesian Gaussian Mixture, RL=Reinforcement Learning, PT=Probability Theory, O-D=Origin-Destination,

CNN=Convolutional Neural Network, BNN=Bayesian Neural Network, GAN=Generative Adversarial Network.

4.2 Collective Mobility Analytics

The collective mobility analysis can be divided into two categories. One is behavioral pattern dis-
covery, which focuses on the spatio-temporal evolution regularity of vehicle travel behavior, such
as movement patterns, aggregation patterns, and emission patterns. The other is traffic flow tran-
sitions, which indicate the dynamic migration characteristics of vehicle groups traveling across ur-
ban regions, including traffic flow prediction, origin-destination (O-D) flow analysis, and travel
demand estimation. Table 10 presents the overview of collective mobility analytics.

4.2.1 Behavioral Pattern Discovery. The vehicle trajectory contains a wealth of user behavior
parameters that allow the discovery of vehicle behavioral patterns that support a wide range of
applications, from transportation management to urban computing.

Movement pattern discovery aims at finding out spatio-temporal regularity from the vehicle
trajectory dataset. In [148], Barabási et al. unveiled two distinct mobility patterns, i.e., returners
and explorers. As shown in Figure 4(a), the distance traveled by returners and explorers is
estimated by the total radius of gyration rд . For instance, the traveled distance of a two-returner
is mainly determined by the two frequently-visited places, namely the FVPs ( see the circles in
Figure 4(a)), which typically respond to the residence and working place. A two-explorer, on the
other hand, frequently goes between many different locations, e.g., occasionally-visited places.
Naveh et al. [145] studied spatio-temporal movement patterns derived from large-scale urban
public transportation trajectory data. They discovered that public transportation mobility patterns
were geographically more limited, with identifiable peaks and valleys in their temporal profiles.
Xiao et al. [210] investigated the regular travel patterns based on large-scale private car trajectory
data. Their findings are two-folds, (i) showing that private car movement in urban regions has
a degree of regularity. One such viewpoint is consistent with people’s everyday travel patterns,
as proved by the results in [148, 209]; (ii) revealing the spatio-temporal coupling correlation of
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(a) e returners and explorers paerns [148]. (b) Time-scale interactive movement paerns [179].

(c) Vehicle aggregations in Shenzhen [200]. (d) Emission paern discovered in Beijing [105].

Fig. 4. Behavioral patterns. (a) Returners limit much of their mobility to a few locations, typically correspond-

ing to their FVPs, while the mobility of explorers cannot be reduced to a few locations and spread to many

OVPs. (b) The real-time interactive traffic patterns based on taxi trajectories present various time-scale mo-

bility. (c) Private car trajectory data gives enough information to illustrate the spatiotemporal development

of the urban aggregation effect. (d) Vehicle emissions denoted by different colors. Widths of lines between

urban regions show various patterns over time.

urban hot regions by exploring private car users’ arrive-stay-leave (ASL) behaviors [119]. Wang
et al. [179] exploited the real-time interactive urban traffic patterns based on massive taxi GPS
trajectories and discovered various time-scale traffic patterns, which are shown in Figure 4(b).

Aggregation patterns stem from the fact that vehicles driving in cities are frequently concen-
trated in certain regions such as residential, workplaces, and hotspots, producing an aggregation
effect, displaying the spatiotemporal pattern of vehicle collective movement in various urban
regions. Wang et al. [175] first utilized private car trajectory data to study the spatio-temporal
evolution of aggregation patterns in urban environments. On this basis, Xiao et al. [200, 201]
clarified the distinction between the weekend and weekday aggregation patterns, and they
continued to investigate the weekend private vehicle aggregation impact by using a deep learning
technique. Figure 4(c) illustrates the shifting strength of the aggregation effect in Shenzhen City
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based on private car trajectory data, with deep red and deep blue indicating the aggregation core
and boundary of the aggregation region, respectively. Following the First Law of Geography,
the deep red eventually fades into deep blue. The above works [175, 200, 201] demonstrate that
compared with the trajectory data of taxi and public transportation, the private car trajectory data
is more suitable to reflect the spatio-temporal aggregation pattern during the evolution of urban
traffic since it exhibits stay behavior (recall Section 4.1.2). In this line, large numbers of vehicles,
the majority of which being private cars, drive to and stay for certain periods in FVPs (see in
Figure 4(c)), and their time-varying aggregation patterns are tightly related to the formation and
disappearance of urban hot zones. The authors in [217] studied the spatio-temporal distribution
of the hotspots based on the taxi trajectory dataset. Yu et al. [217] studied the hotspot detection
problem using an enhanced quality threshold clustering method based on a neighborhood
association, which could generate effective and reasonable urban hotspots from taxi trajectory
data and offer helpful information to traffic control systems.

Emission pattern discovery concentrates on exploring the emission periodicity for low-
carbon urban planning. Cheng et al. [25] tried to estimate the heavy-duty diesel truck emission
inventory and examine the peculiarities of their spatio-temporal evolution based on truck trajecto-
ries. They also did the hotspot and local-outlier analysis to determine the spatio-temporal shifting
trend of pollutant emission intensity and cluster and outlier patterns. Yu et al. [221] evaluated and
studied regional traffic emission characteristics based on the trajectory gathered by automatic li-
cense plate recognition detectors. Li et al. [105] established traffic analysis zones and used them as
an analytical unit to investigate Beijing’s spatial and temporal dynamic emission patterns using
taxi GPS data. The representative results are shown in Figure 4(d). They discovered that traffic
analysis zones featuring commercial regions, entertainment venues, and transit hubs have more
significant emissions than other zones. Additionally, they demonstrated that the three types of
taxi emission patterns, corresponding to the hours of 0:00–3:00, 3:00–6:00, and 6:00–24:00, could
be distinguished.

4.2.2 Traffic Flow Transitions. Many scholars investigate traffic flow transitions based on the
collective vehicle trajectory dataset, including traffic flow prediction, O-D flow analysis, and travel
demand estimation.

Traffic flow prediction is a research highlight in mining vehicle trajectory datasets since it
helps a variety of transportation operations and urban applications [83]. Zhan et al. [231] pre-
sented a hybrid system to predict citywide traffic flow based on taxi trajectory that combines
machine learning methods and traffic flow theory. Tang et al. [168] focused on real-time traffic
flow inference based on dense taxi trajectories and incomplete trajectories captured by camera
surveillance systems. Xing et al. [211] attempted to estimate the traffic flows using taxi trajecto-
ries and small-scale license plate recognition data based on ensemble support vector regression.
Using probability theory, Zhao et al. [245] calculated the traffic flow distribution based on the
trajectory data from ride-sharing cars. Moreover, Liu et al. [119] studied the private car flows in
irregular regions and proposed a multigraph-dense convolutional network to predict private car
flows by exploiting spatio-temporal semantic information.

Origin-Destination (O-D) flow analysis is an essential technique to reveal traffic dynamics,
which concentrates on the types and intensity of traffic in the city change along with the time
[82]. Riascos et al. [149] studied the vehicle flow transition probabilities based on taxi trips. They
generated origin-destination matrices that described the overall activity of the taxi flow, identi-
fied high-demand zones, and then examined the likelihood of transition between high-demand
zones. Zhang et al. [234] investigated the challenge of predicting short-term origin-destination
flow based on train trajectory and suggested a channel-wise attentive split convolutional neural
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network model to estimate the origin-destination flow. Liu et al. [118] investigated private car
transitions between urban regions based on multi-source data and proposed multiple graph-based
generative adversarial networks to predict private car transitions.

Travel demand estimation can help the government and businesses make better management
and operational choices by delivering data-driven insights [30, 37, 216]. Yao et al. [216] argued that
travel demand is influenced by the spatial, temporal, and semantic views, and then they leveraged
CNN, LSTM, and graph embedding to model correlations in the three views. Du et al. [37] hold the
same opinion that traffic demand is affected by various factors and proposed a dynamic transition
CNN approach to estimate travel demand. Chu et al. [30] mainly analyzed travel demands’ complex
spatial distributions and temporal dynamics and proposed a multi-scale convolutional long short-
term memory network to model and forecast the travel demand.

5 Vehicle Trajectory-boosted Applications

Building upon the insights gained from vehicle trajectory analytics in Section 4, this Section ex-
plores the applications that are enhanced by vehicle trajectory. We summarize various applications
where trajectory data plays a critical role, providing a deep understanding of how to mine and uti-
lize knowledge from vehicle trajectories. These applications range from traffic prediction and route
recommendation to anomaly detection [43, 93, 243].

5.1 Traffic Prediction

Traffic-related prediction tasks mainly include predicting flow [135], demand [37], speed [59], and
condition [109]. With vehicle trajectory-driven insights, precise traffic prediction could aid in im-
proved management and decision-making on the part of the government [143, 182, 183, 185, 186].
Existing related works usually focus on traffic prediction in three entities: stations, road segments,
and regions [113, 140].

The station level is based on road sensors, intersections, or actual/virtual stations for traffic
prediction. In [58], the authors proposed an online learning collaborative method to predict traf-
fic flow in road intersections. Du et al. [37] discovered virtual stations in cities by density-peak
clustering. They proposed a dynamic transition convolutional neural network to forecast traffic
demand in virtual stations. Gong et al. [55] used the online latent space technique for the metro
systems to handle the difficulty of predicting the distribution of population flows over the whole
network. Zhang et al. [234] presented a channel-wise attentive split–convolutional network for
forecasting short-term origin-destination flows in the metro system.

Urban road segments have regular traffic congestion near the city center during rush hours,
making it critical to estimate traffic flow on road segments [114]. Anwar et al. [4] proposed a
complete framework for capturing flow evolution by progressively updating partitions in an
effective two-layer technique. In [153], using partially observed traffic data, the authors created
a reliable network-wide traffic state imputation framework. Mallah et al. [135] used a deep neural
network trained to anticipate multi-tasks with data from connected vehicles to predict short-term
traffic flow on a particular road section. Miao et al. [139] proposed the first unified replay-based
continuous learning framework for spatio-temporal prediction on streadming data, such as
traffic flow.

Traffic flow-based vehicle trajectory can be modeled as tensors. Some authors divided the spatial
range into grids and sliced the temporal sections equally to form tensors of next time intervals [57].
Each grid has a number that represents the number of trips to or from that zone. For example, Guo
et al. [57] divided a city into a grid map and represented crowd flows data in each grid. Graph-based
modeling can effectively handle non-Euclidean data. In this regard, Geng et al. [54] encoded non-
Euclidean correlations between zones into multiple graphs, including neighborhood, functional
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similarity, and transportation connectivity graphs. They proposed a spatio-temporal convolution
network based on multiple graphs for traffic demand prediction.

5.2 Route Recommendation

Route recommendations are designed to recommend cruise routes to taxis or private cars so they
can rapidly discover and pick up passengers or find the best route to destinations. Most of the
existing work on route recommendation focuses on taxis in cities [18, 56, 79, 154, 172].

Tu et al. [172] developed a system for electric taxi drivers that suggests routes that consider
both cruising and station recharging. In their work, taxi trip information, such as the likelihood
of picking up passengers and the distribution of destinations, is learned from the GPS trajectories.
Guo et al. [56] employed a force-directed strategy to address the issue of ride-on-demand services’
requesting route recommendations. Ji et al. [79] proposed a deep reinforcement learning approach
to make dynamic route recommendations for available taxis. They were the first to consider
real-time internal and exterior spatio-temporal characteristics to recommend a dynamic taxi
route. Qu et al. [154] put out a strategy for recommending taxi routes termed adaptive shortest
anticipated cruising route. To determine the probable cruising distance of taxis, they consider the
load distribution between passengers and taxis and introduce the shortest anticipated cruising
distance. Yuen et al. [229] developed a route recommendation system to forecast the path that has
the best likelihood of discovering appropriate consumers while remaining within the permitted
detour distances. Chen et al. [18] proposed a parallel split-and-combine method to allow taxis to
find routes based on their locations. The resultant capability is aimed toward several applications,
such as ridesharing, location-based services, and route planning and suggestion.

5.3 Trajectory-User Linking

Trajectory-User Linking (TUL) is a newly-introduced mining task based on trajectory data[41,
239], which aims at linking unknown trajectories to users who generate them, enabling broad
applications ranging from personalized location-based recommendation [53] to potential crimi-
nal identification [44, 87]. TUL is introduced in [53], which correlates unlabeled trajectories to
their potential users and gradually steps into the hot topic of spatio-temporal data mining. TULER
[53] is proposed by utilizing RNN-based models to learn the trajectory sequence for capturing
the dependencies and linking them to users. TULVEA [250] incorporates variational autoencoder
into the TUL task, leveraging a semi-supervised framework to learn the hierarchical semantics
of sequence trajectories. However, the data sparsity issue remains in dense trajectories, and most
works usually ignore it. In the follow-up, DeepTUL [136] uses the attentive recurrent network to
learn the multi-periodic properties of human mobility for more accurate user-trajectories match-
ing. Still, the RNN-based model used in DeepTUL has limited performance in capturing long-term
dependencies.

A few works focus on identifying users from different mobility datasets. Feng et al. [46] then
developed a co-attention mechanism and a multi-modal embedding network to address the low-
quality issue with mobility data. Dealing with the massive number of users, TULSN [219] proposed
a Siamese network to capture semantic information in the trajectory and only requires small-scale
labeled trajectory data to complete training.

5.4 Anomaly Detection and Prediction

Urban anomalies, if not properly addressed, can lead to significant risks, including loss of life
and property [92]. To help prevent such adverse outcomes, a growing number of data-driven
frameworks now leverage big data and machine learning techniques to automatically detect
and predict these anomalies [237]. Accurate anomaly detection is critical for governments and
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local communities, as it underpins the development of smart city applications–from intelligent
transportation systems to public safety management [73].

Many studies focus on vehicle trajectories [236]; for instance, [112] frames anomaly detection
as a hypothesis-testing problem and introduces a novel fault localization indicator using special-
ized mathematical methods. Beyond vehicle trajectories, Lam et al. [97] devised a clustering-based
detection strategy that harnesses publicly available bike-sharing data to identify spatio-temporal
events deviating from normal daily patterns. When a cluster is determined to be out of the ordinary,
an anomalous event is flagged for that time and location. Alfeo et al. [2] focused on densely pop-
ulated urban regions, examining their behavior over time to uncover anomalies. They evaluated
the method’s effectiveness in handling smaller anomalies by assessing the relationship between
an anomaly index and observed urban incidents. Chiang et al. [27] introduced a technique that
identifies congestion based on bus trajectories, spotlighting anomalous traffic health conditions
and the structural traits of congestion cascades. Meanwhile, Zhu et al. [258] presented a method
integrating location-specific time series decomposition and outlier detection for uncovering urban
events. These events are defined as anomalies that substantially diverge from the forecasts derived
from established trend and periodicity patterns.

In summary, researchers have developed a wide spectrum of approaches for identifying and
understanding urban anomalies. Such efforts are pivotal for building resilient and responsive smart
city systems, guiding policymakers and communities in proactively managing urban challenges.

5.5 Urban Planning

In recent years, urban planning applications based on vehicle trajectories have mainly focused on
the regional level, such as urban functional region identification and region attractiveness discov-
ery. Different functional regions in a city, such as residential, business, and educational regions, are
fostered by urbanization and contemporary civilization [225]. The urban functional region reflects
the city’s spatial structures, which is critical to urban planning [253]. In recent years, researchers
have combined vehicle trajectories and other multi-source heterogeneous data to identify urban
functional regions. Zhang et al. [235] focused on learning an embedding space from urban data
for urban regions, including taxi trajectory, street block, and POI. They presented a multi-view
joint learning technique to learn complete and representative urban area embeddings. Insightful
information on the architecture and dynamics of cities can be gained from the quantitative rep-
resentations of urban regions that aid in better examining the linkages between urban features.
Fu et al. [50] defined urban form as a synthesis of urban functions and related community portfo-
lios. They suggested a collective learning strategy to model individual-level heterogeneous human
mobility data to identify and quantify the urban forms of residential communities. Liu et al. [123]
proposed a bi-clustering method to partition the bike stations into urban functional regions. For
the construction of the bike system, it is intended to group bike stations with comparable POI
features and near geographic distances.

Numerous people go by vehicle to designated functional regions, where they then stop and
stay for a while, causing the attractiveness of such functional regions to change over time [200].
Utilizing latent activity taxi trajectories, Yuan et al. [225] identified urban functional regions that
served as a calibration for urban development. In [200], the authors uncovered the appeal of met-
ropolitan regions by analyzing private automobile trajectory statistics. This is the first study to
use private car trajectory data to examine urban region attractiveness, offering a fresh viewpoint
on understanding the evolution of urban mobility. Besides, exploring the urban aggregation effect
contributes to urban planning. Xiao et al. [201] developed a spatio-temporal attention network
to understand the dynamic aggregation effect of private cars. Wang et al. [175] investigated the
stay behavior and urban aggregation effect based on large-scale private car trajectory data. Those
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works on regional aggregation discovery provide essential information for understanding urban
dynamics and facilitate various applications in urban planning.

6 Open Issues and Future Directions

Despite significant advancements in vehicle trajectory collection, processing, analytics, and ap-
plications, several open issues and future directions remain to be addressed. These include chal-
lenges related to privacy preservation, data sparsity, multi-source heterogeneous data fusion, and
uncertainty in trajectory computing. Additionally, emerging areas such as vehicle carbon footprint
estimation, urban socioeconomics, intercity mobility mining, vehicle trajectory with digital twin
technology and large language models present promising avenues for future research. This section
outlines these open issues and explores potential directions for advancing the field.

6.1 Open Issues

Vehicle trajectory analysis while offering remarkable insights and practical applications still faces
several outstanding challenges that limit its effectiveness and scalability. These challenges encom-
pass data privacy, sparsity, multi-source heterogeneous data fusion, and uncertainty in trajectory
computing. This subsection delves into these pressing issues, highlighting their impact on current
methodologies and identifying research gaps that would be addressed.

Vehicle Trajectory Privacy Preservation. Researchers have turned their attention in recent
years from protecting location privacy in the trajectory to protecting vehicle owners’ trajectory
privacy [80, 122]. In this line, the emerging Federated Learning (FL) is proposed to solve data
security exchange and privacy protection in distributed environments, and several studies have
applied federal learning to vehicle trajectory privacy preservation [141, 249]. Federated learning
requires that the training data owned by different consortium parties must share the same feature
space, which limits the practicability of FL [60]. This problem is addressed by federated transfer
learning, which instead of using differential privacy, applies homomorphic encryption and
polynomial approximation to provide a safer and more dependable solution for vehicle trajectory
[108]. Federated transfer learning participants may have their own feature space based on the
properties of transfer learning, making it appropriate for more trajectory data privacy protection
varieties. However, how to carefully design federated transfer learning methods for trajectory
privacy preservation is an open issue.

Sparsity in Vehicle Trajectory. According to the sparsity origins of the vehicle trajectory,
the authors in [255] categorize the sparsity into two scenarios in spatio-temporal data, intrin-
sic sparsity, and fake sparsity. Vehicle trajectory is spontaneously dense, which is caused by the
sparse dispersion of sensor equipment. Talking about vehicle sparse trajectory data usually means
fake-sparsity vehicle trajectory. Existing studies address sparsity problem by applying generative
adversarial networks [118], deep factorization machines [254], and natural language processing
[162] methods. So far, sparsity remains a challenge in vehicle trajectory due to the uncertainty of
information in the process of trajectory acquisition.

Multi-source Heterogeneous Data Fusion. Multi-source heterogeneous data fusion com-
bines many dataset types into a standardized format, improving performance for applications that
use vehicle trajectory [187]. Combining many sources of heterogeneous data is a workable solu-
tion to the problem of limited sensor coverage and the lack of precise information for validation.
There are mainly three types of multi-source heterogeneous data in the cities, including spatio-
temporal static data (AOI, POI and road network, etc.), spatial static time dynamic data (weather,
events, holidays, etc.) and spatio-temporal dynamic data (vehicle trajectory) [248]. However, there
is no unified architecture for integrating the above multi-source heterogeneous data in real-time
and efficiently. Such a common architecture is needed to serve a wide variety of applications.
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Uncertainty in Trajectory Computing. Uncertainty quantification is a vital problem that
has been brought up by the high dynamics and diverse interactions in trajectory computing [256].
Research interest in assessing prediction uncertainty has increased recently [38]. However, few
works have made efforts to quantify the spatio-temporal uncertainty for vehicle trajectory com-
puting. Epistemic uncertainty and aleatoric uncertainty are two types of uncertainty. Epistemic
uncertainty results from a lack of understanding of the training data. Inherent unpredictability
in data observations is captured by aleatoric uncertainty. It would be interesting to investigate
how to quantify the above two categories of uncertainties in different vehicle trajectory-based
applications for a better decision.

6.2 Future Directions

Looking ahead, vehicle trajectory research holds immense promise in advancing intelligent trans-
portation systems and informing urban policy. Recent technological strides, ranging from vehicle
carbon footprint estimation to emerging paradigms such as digital twins and large language mod-
els, offer exciting opportunities to push the boundaries of what can be achieved with trajectory
data. This subsection explores these prospective directions, illuminating how novel techniques and
interdisciplinary approaches could catalyze the next wave of breakthroughs in vehicle trajectory
analytics and applications.

Vehicle Carbon Footprint Estimation. With the proposal of the “Dual Carbon”, i.e., Peak
Carbon Dioxide Emissions and Carbon Neutrality [117, 242], increasing attention has been given
to carbon footprint and carbon neutrality of road traffic based on urban vehicle trajectory [204].
In this line, the followings provide two main open issues that can be regarded as future directions.

(1) Carbon footprint calculation. The reasonable measurement method is the premise of
slowing down road traffic’s carbon footprint rate effectively. The carbon footprint of
road traffic is calculated based on urban vehicle trajectory. Compared with the traditional
top-down measurement method, the heterogeneity and spatial and temporal differences of
urban vehicle carbon emissions can be clearly and standardized to control carbon emission
reduction in the key link. However, due to the limitation of technical background, fuel type
and other parameters of vehicle trajectory cannot be obtained, which poses a new challenge
to carbon footprint measurement. In addition, the electrification of public transport has
made road traffic carbon emission-reduction focus on private cars, which are still dominated
by traditional fuels. It has become an essential goal of low-carbon emission reduction to
develop urban vehicle emission models, compile vehicle emission inventory of urban road
traffic, and measure individual traffic carbon footprint based on urban private car trajectory
data.

(2) Individual carbon trading. As carbon emission reduction at the individual level, personal
carbon trading is significant to achieving carbon neutrality efficiently. Urban vehicle trajec-
tory can be combined with blockchain, cloud computing, artificial intelligence, and other
high-tech network information technologies to build a personal carbon trading market
and achieve “bottom-up” carbon reduction and carbon control. However, establishing an
individual carbon trading market depends on real-time trajectory data acquisition.

Vehicle Trajectory-driven Urban Socioeconomics. Vehicle trajectory can provide fine-
grained information for urban socioeconomic in a multi-level structure. Urban socioeconomics
has a series of indicators, such as neighborhood-level indicators (economic activeness, resident
consumption, etc) and street-level indicators (POIs, commercial activeness, etc) [106, 196]. In the
neighborhood region-level urban structure, the trajectories generated by vehicles moving between
the neighborhood regions of different categories can reflect the dynamic correlations between
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these regions. In the street-level urban structure, combing POI indicators and vehicle trajectory
provides support for mining semantic interactions between streets.

Intercity Mobility Mining from Vehicle Trajectory. The majority of the current research
on urban mobility based on trajectory data is focused on analyzing urban mobility patterns
[207]. Human intercity or intercity travel behavior has received very little consideration. In
addition to moving within a city, individuals often travel between cities in their vehicles [209].
This clearly illustrates how urban social functional regions are evolving. Due to the accelerated
economic expansion and urbanization, neighboring cities now perform a variety of tasks within
big, multi-city economic areas. Since individuals must travel between these nearby cities to
work in various functional regions, this logically improves intercity mobility. Analyzing intercity
mobility using vehicle trajectory offers a chance to investigate intercity traffic and its connection
to the growth of new urban agglomerations.

Vehicle Trajectory Enabled Digital Twin for ITS. The Digital Twin, as an emerging
technology, has attracted the interest of the traffic community, and it is considered one of the
most effective solutions for intelligent transportation systems (ITSs). The vehicle trajectory
datasets are considered the cornerstone of the digital twin for the intelligent transportation
system. How to utilize vehicle trajectory datasets to build the digital twin of complex traffic
scenes, and achieve the perfect integration and accurate mutual feedback between physical space
and digital space, is a frontier scientific problem that needs to be solved urgently. Some studies
have been conducted to investigate how to build a virtual digital space mapping the real traffic
system [70, 188]. However, it is still challenging to twin the real-world traffic system based on
the vehicle trajectory datasets since it is difficult to express the dynamic traffic elements and the
operation, evolution, and interaction laws between them only through models.

Large Language Model-empowered Vehicle Trajectory Analysis. Large Language

Models (LLMs) have shown tremendous potential in various domains, including natural lan-
guage processing [155, 214], computer vision [94, 222], time series analytics [121, 213], and
urban planing [86]. In the context of vehicle trajectory analysis, LLMs could offer new ways to
understand complex trajectory data [177]. By leveraging the capabilities of LLMs, researchers
could enhance the analysis of trajectory data, enabling more accurate predictions, anomaly
detection, and improved decision-making [31]. LLMs assist in extracting semantic information
from trajectory data and identifying patterns and trends that may not be evident through tradi-
tional methods. Furthermore, they facilitate the integration of multi-modal data [120], helping to
create comprehensive vehicle travel behavior analysis models. As LLMs continue to evolve, their
application in vehicle trajectory analysis holds the promise of unlocking new insights and driving
innovations in transportation research and urban planning. However, effectively incorporating
LLMs into trajectory analysis frameworks presents challenges, such as managing computational
resources and maintaining the interpretability of the models. Addressing these challenges will be
crucial for realizing the full potential of LLMs in this field.

7 Conclusion

This study provides a comprehensive overview of vehicle trajectory collection, processing, analyt-
ics, and applications. Specifically, we reviewed various data collection technologies and offered an
overview of different vehicle trajectory datasets to give readers a thorough background. Next, we
elaborated on vehicle trajectory processing techniques by introducing their representative meth-
ods and analyzing their pros and cons. We then categorized vehicle trajectory analysis technolo-
gies into individual travel behavior and collective mobility analytics based on the scope of analysis
objectives. Furthermore, we systematically analyzed existing vehicle trajectory analysis technolo-
gies to help researchers quickly understand the current landscape. Following this, we summarized
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vehicle trajectory-boosted applications to offer a deeper understanding of how to mine and uti-
lize knowledge from vehicle trajectory. Finally, we discussed the remaining challenges and future
research directions related to vehicle trajectory.
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