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 a b s t r a c t

Cloud computing and virtualization technologies have significantly improved resource utilization in data cen-
ters. However, performance interference caused by resource contention remains a major challenge, particularly 
for compute-intensive batch applications, which are vital for large-scale data processing and task scheduling. 
Addressing performance interference in the modeling and scheduling of such applications still requires improve-
ment. Existing interference models often rely on stereotypical metrics and average values, ignoring the impact of 
temporal fluctuations, while conventional scheduling algorithms overlook interference dynamics, leading to sub-
optimal scheduling results. To overcome these limitations, this article investigates the key factors influencing the 
performance of compute-intensive workloads and introduces a novel performance interference model that incor-
porates temporal fluctuations. Furthermore, we propose a historical-data-driven scheduling method that accounts 
for both temporal dynamics and batch application interference characteristics. Experimental results demonstrate 
that the proposed performance interference model achieves higher accuracy and robustness against overfitting 
compared to existing models that neglect temporal variations. Additionally, our interference-aware scheduling 
algorithm significantly outperforms traditional methods in throughput, scheduling efficiency, and server load 
balancing, providing an effective solution to mitigate performance interference in cloud environments.

1.  Background

With the rapid development of cloud computing, its scalability, re-
liability, and cost-effectiveness have made multi-virtual machine (VM) 
co-location deployment a common practice for enhancing resource uti-
lization. As of 2025, approximately 94% of enterprises have migrated 
their workloads to the cloud [1]. However, cloud VMs require access 
to the host physical machine’s resources to execute workloads, result-
ing in incomplete performance isolation. The performance of VMs de-
pends heavily on the efficient allocation of shared physical resources; 
yet, resource contention frequently leads to performance degradation, 
a phenomenon termed performance interference [2]. Performance in-
terference between VMs can significantly diminish application through-
put and quality of service. Research by Maji et al. demonstrates that 
variations in interference intensity can increase the runtime of certain 
benchmarks, with network-intensive VMs experiencing up to a twofold 
increase, disk access rising by 4.5 times, and cache access escalating by 
5.5 times [3]. Batch applications play a pivotal role in cloud data center 
scheduling. By leveraging the parallel processing capabilities of multi-
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ple physical servers and VMs, the execution efficiency of batch tasks 
can be improved [4]. These tasks can be executed concurrently across 
different servers and VMs [5,6]. Nevertheless, when multiple applica-
tions compete for the same shared resources, significant performance 
interference can occur [7]. The primary function of batch programs is 
to execute computational tasks, hence they typically impose significant 
demands on CPU resources. However, such programs are not necessar-
ily confined to being CPU-intensive; some also exhibit specific require-
ments for memory resources. Furthermore, even for batch programs that 
are purely CPU-consuming, it remains uncertain whether additional re-
source consumption may arise from system-level factors when they are 
co-located with other workloads. We refer to such virtual machines host-
ing these workloads as compute-intensive VMs. The term "compute" is 
used here to emphasize their core functional attribute [8]. Undoubt-
edly, addressing performance interference in compute-intensive VMs is 
essential for enhancing the overall efficiency of cloud systems [9].

Accurate evaluation of performance interference is a prerequisite 
for effectively tackling this issue. This process generally entails mod-
eling performance interference to quantify or predict the degree of
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Table 1 
Summary of related works about interference modeling.
 Reference  Method  Quantitative metrics  Datasets
 [12]  Analytical/Statistical Modeling  latency, throughput  Public cloud workload traces
 [13]  Analytical/Empirical Modeling  execution time, throughput  Zephyr OS workloads
 [14]  Regression/Classification  latency, throughput  Multi-tenancy workload data
 [15]  Deep Learning Models  memory bandwidth usage, application performance  Memory access patterns
 [16]  Machine Learning Models  application performance  Cloud-native workload data
 [17]  Incremental Learning  workload performance under partial interference  Serverless workload traces
 [18]  Machine Learning Models  workload performance in heterogeneous settings  Data-analytics workloads
 [19]  Analytical/Diagnostic Modeling  task execution time, resource utilization  Apache Spark workloads

interference arising from contention for computational resources, fol-
lowed by the development of interference-aware scheduling algorithms 
to mitigate the problem. Constructing such models necessitates in-
depth research into the causes of interference and the precise iden-
tification of metrics that significantly affect VM performance. More-
over, appropriate functional relationships must be selected to reflect 
the quantitative interplay between these metrics and performance inter-
ference [10]. However, current modeling approaches for performance 
interference, as summarized, predominantly rely on static average val-
ues of specific indicators–such as LLC miss rate and CPU utilization–
while failing to incorporate a broader array of related indicators. This 
limitation significantly constrains the evaluation models. Some stud-
ies even depend on a single hardware counter, such as instructions 
per cycle (IPC), to assess performance interference [11]. Beyond met-
ric selection, existing research exclusively employs static average val-
ues for modeling, neglecting the dynamic variations of indicators in 
real-world environments. As analyzed in Section 3.2.2, quantifying dy-
namic changes cannot be equated with computations based on aver-
age values. For certain workloads operating on this kernel, branch mis-
prediction rates exhibit considerable variability, translation lookaside 
buffer (TLB) flushes occur frequently, and limitations in cache opti-
mization techniques result in performance fluctuations due to LLC con-
tention that may reach up to 40%. Thus, under this kernel, incorpo-
rating indicator fluctuations into the model is imperative. In contrast, 
time-series data can more effectively capture dynamic changes in re-
source usage and performance interference, providing a more accu-
rate depiction of complex behaviors evolving over time and thereby 
facilitating the development of more precise performance interference
models.

In interference-aware scheduling algorithms, interference is man-
aged by either assigning appropriate workloads to VMs or migrating 
VMs to ensure the operational efficiency of cloud systems, keeping per-
formance interference within acceptable limits [20]. Current related 
research reveals areas for improvement. For instance, many studies 
treat interference metrics as thresholds or aim to ensure deadlines are 
not exceeded, rather than focusing on enhancing throughput. Addi-
tionally, few studies integrate time-series data considerations into the 
scheduling approaches. Considering the improvement achieved by in-
corporating time-series data metrics into interference modeling, we be-
lieve it is worthwhile to incorporate temporal data considerations into 
scheduling to enable the determination and scheduling of appropriate
loads.

In this article, we focus on the performance interference issues 
of compute-intensive workloads, considering additional factors and 
metrics related to the performance degradation of compute-intensive 
applications, and incorporating time-series data variability into the 
performance interference modeling and interference-aware schedul-
ing for batch applications. The contributions of our research are as
follows:

(1) To address the limitations of traditional interference quantification 
methods that primarily rely on stereotypical metrics and average val-
ues, ignoring the impact of temporal fluctuations, we conducted ex-

tensive experiments using compute-intensive benchmark programs 
under various co-location scenarios. Through experimental analysis, 
we identified several key performance metrics that accurately cap-
ture the performance interference of batch applications and incor-
porated time-series variability to develop a novel and more precise 
interference quantification model.

(2) To overcome the shortcomings of conventional scheduling algo-
rithms that neglect temporal fluctuations and application-specific 
interference characteristics, we proposed an innovative scheduling 
algorithm for batch applications. This algorithm leverages histori-
cal data to account for temporal variations and interference differ-
ences in co-located application combinations, resulting in improved 
throughput, scheduling efficiency, and server load balancing.

(3) Through analysis using QQ(Quantile-Quantile) plots and quantifica-
tion accuracy, we demonstrate that the fitting degree and reliability 
of our performance interference quantification model outperform ex-
isting approaches. Furthermore, comparisons of results in real-world 
environments shows that our proposed scheduling algorithm out-
performs those that do not account for time-series data in terms of 
throughput, scheduling results, and server load balancing.

The structure of this article is as follows: Section 2 reviews related 
work pertinent to our study. Section 3 presents our research approach to 
compute-intensive load performance interference modeling. Section 4 
introduces the scheduling strategy we propose for batch applications. 
Section 5 discusses comparisons and analyses of the performance inter-
ference model and scheduling strategy. Section 6 concludes the article.

2.  Related work

Several review articles have summarized the current state of re-
search on performance interference in VMs. For instance, Ghorbian et al. 
[26,27] reviewed scheduling algorithms in serverless computing, exam-
ining resource conflicts, such as CPU time slice competition, and the 
resulting interference. They highlighted that the consequences of in-
terference can be quantified through metrics like latency and Service 
Level Agreement (SLA) violations, and noted that current studies employ 
resource-aware and data-aware approaches to optimize interference-
aware scheduling. Similarly, Tari et al. [28] categorized research on 
serverless auto-scaling mechanisms, identifying performance interfer-
ence as a key challenge in this domain and citing CPU isolation and 
memory grading as typical solutions. Strati et al. [29] also provided 
a summary of recent research in the increasingly prominent field of 
GPU performance interference. In the subsequent parts of this section, 
we synthesize research relevant to this article, presenting some of the 
representative studies on interference modeling and interference-aware 
scheduling in Tables 1 and 2, respectively.

2.1.  Performance interference modeling

The performance interference model should first identify the shared 
resource responsible for interference. Subsequently, appropriate met-
rics should be selected to construct a systematic quantitative model 
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Table 2 
Summary of related works about interference-aware scheduling.
 Strategy  Method Scheduling decision criteria 

metrics
Scheduling Improvement Dataset

 [20]  Heuristic algorithm predicted interference, pre-
dicted resource requirements

task assurance rate, priority assur-
ance rate, resource utilization

Google cluster data

 [21]  Heuristic algorithm predicted performance interfer-
ence

batch task throughput, QoS assur-
ance

Alibaba production cluster 24-
hour trace

 [22]  Reinforcement learning system state including resource 
utilization and energy consump-
tion

energy efficiency, service viola-
tion rate

Real workload traces from 800 
physical machines

 [23]  Traditional algorithm priority of tasks response time, throughput, re-
source utilization

not specified

 [24]  Traditional algorithmd (Queueing theory) priority policy task completion time, system 
throughput

not specified

 [11]  Heuristic algorithm task queues, deadlines, server 
capability, predicted execution 
time

processing time, cost, SLA viola-
tion rate, delay

CloudSimPlus simulated data

 [25]  Heuristic algorithm CPU resource reservation, dif-
ferentiated shares, node scoring

CPU utilization control, minimal 
interference with high-priority 
jobs

Not specified

[30]. Existing modeling approaches typically depend on hardware per-
formance counters to capture CPU, memory, network, and I/O usage 
metrics. These metrics are then used to build performance interference 
models, often using the average values of key metrics. For example, 
Koh et al. modeled interference for diverse VM types, such as memory-
intensive, disk-intensive, or hybrid, based on ten performance events 
[31]. However, interference characteristics vary significantly across 
workload types. Therefore, it is essential to model performance inter-
ference resulting from contention for specific resources. For instance, 
Lu et al. [32] and Tseng et al. [33] studied interference caused by 
I/O-intensive operations, while Tzenetopoulos et al. focused on interfer-
ence from co-locating compute-intensive workloads [18]. Beyond exam-
ining different resource demand patterns, some researchers categorize 
workloads by allocation strategies–such as priority or QoS–into types 
like best-effort, batch, latency-critical, and HPC. They then developed 
category-specific models [34]. For example, Shah et al. analyzed perfor-
mance interference in identifying HPC workloads on Apache Spark [19], 
Bu et al. proposed a linear interference prediction model for MapRe-
duce applications [35], and Pons et al. developed a regression model 
quantifying QoS degradation due to interference for latency-critical VMs
[12].

To quantify or predict the degree of performance interference for 
different workload types, researchers select various indicators for mod-
eling. Metrics related to inadequately isolated shared resources are cru-
cial. For example, the Last-Level Cache (LLC) miss rate often creates per-
formance bottlenecks and unpredictable interference, whether viewed 
from a VM or data center perspective [13,36]. Additionally, contention 
for shared resources such as memory bandwidth, network bandwidth, 
and disk bandwidth can also lead to performance degradation [14]. 
Metrics like these can be selected to quantify interference. For exam-
ple, Yao et al. utilized deep learning methods to select memory band-
width and similar metrics for interference quantification [15]. In ad-
dition to shared resource contention, workload-specific characteristics 
can also inform the selection of metrics. Baluta et al. incorporated the 
resource demand intensity of workloads into a layered queuing model 
to quantify interference [16]. Zhao et al. used tail latency for server-
less workloads, job completion times for short-term computing tasks, 
and Instructions Per Cycle (IPC) for latency-sensitive workloads to quan-
tify localized interference [17]. Xavier et al. developed an interference 
quantification model across-applications based on metrics such as av-
erage service time, arrival rate, execution time, and clock interrupt
rate [37].

2.2.  Interference-aware scheduling algorithm for batch applications

Current research on batch applications scheduling in cloud data cen-
ters primarily focuses on resource utilization [38], priority [23,24], and 
load balancing [39,40]. In the domain of interference-aware schedul-
ing, current research typically identifies and quantifies resource con-
tention and performance impacts between applications through perfor-
mance benchmarking, prior knowledge, or historical operational data, 
and then formulates scheduling strategies based on different optimiza-
tion approaches. However, existing interference-aware scheduling solu-
tions for batch applications generally follow three main optimization 
directions and rarely account for temporal fluctuations.

The one is to select the most optimal or relatively optimal allocation 
scenario to alleviate performance interference. This approach ensures 
that the chosen allocation scheme exhibits better interference perfor-
mance than other alternatives. For example, Verbowen et al. used an 
application performance interference prediction model combined with 
energy efficiency optimization to allocate applications to scenarios with 
relatively lower interference [22]. Similarly, Anu et al. proposed a per-
formance interference model for VM migration, selecting the VM to be 
migrated and the destination physical host based on the principle of min-
imum interference [41]. The models used in these studies are primarily 
based on the mean-value models [11], and do not consider scenarios 
with significant resource utilization fluctuations.

The second approach requires that the performance interference of 
the selected scheduling scheme does not exceed a predefined threshold 
[20]. For instance, in Jersak et al.’s scheduling method, a server is se-
lected as the final allocation scheme only if the performance interference 
of the VM to be scheduled, after allocation, does not exceed the thresh-
old [42]. Nabavinejad et al. introduced an interference-aware optimiza-
tion strategy to mitigate data skew in Hadoop, designing a dynamic in-
terference threshold [43]. Wang et al. proposed deciding whether to 
migrate the victim VM or the culprit VM based on the number of VMs 
exceeding the interference threshold [44].

The third is to ensure that batch applications meet deadlines [21,45]. 
This strategy is often employed when compute-intensive batch applica-
tions are co-located with other applications. When applications requir-
ing real-time response or interaction applications are co-located with 
non-interactive batch applications, the former, being delay-sensitive, 
may experience severe degradation or failure if not executed promptly, 
leading to SLA violations. To tackle this, a common strategy priori-
tizes the execution of latency-sensitive applications and schedules batch
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Fig. 1. The framework diagram of Section 3.

applications according to the minimum standard: meeting the SLA by 
completing execution before the deadline [22,25].

3.  Performance interference modeling of compute-intensive loads

3.1.  Modeling framework

In this section, we introduce our modeling approach and analyze ex-
perimental results to derive the final model. The framework diagram 
for this section is shown in Fig. 1. As summarized earlier, existing 
studies tend to use fixed performance metrics. Therefore, we investi-
gate whether additional performance metrics are associated with perfor-
mance interference. Furthermore, we analyze the temporal variability 
factor, which has been rarely considered in prior research. A quantita-
tive model typically consists of three key components: the model output, 
the model input, and the functional form.

The model output represents the target of the modeling process. In 
a performance interference quantification model, the output is the in-
terference measure. In this study, we define performance interference 
as the relative performance loss, calculated as the difference between 
the observed performance in a real environment and the ideal perfor-
mance under isolated conditions, divided by the ideal performance. For 
example, consider a physical machine (PM) hosting two VMs: one run-
ning workload A, and the other running workload bg. When workload A 
runs alone, its execution time is 𝑻𝑨. When both VMs run concurrently, 
the execution time of workload A becomes 𝑻𝑨&𝒃𝒈. The performance in-
terference experienced by workload A due to colocation can then be 
expressed as,

𝐼(𝐴&𝑏𝑔) =
𝑇𝐴&𝑏𝑔 − 𝑇𝐴

𝑇𝐴
, (1)

where 𝑰(𝑨&𝒃𝒈) represents the performance interference loss experi-
enced by workload A due to co-location with the background bench-
mark bg. The input of the model is the data that can affect the interfer-
ence measurement, and this part requires experimental analysis and val-
idation to ensure the critical factors affecting performance interference 
are captured accurately. Lastly, determining the functional form of the 
model involves exploring various mathematical relationships between 
inputs and the interference metric. This step evaluates the trade-offs be-
tween model accuracy and the ability to avoid overfitting, ensuring the 
model generalizes well across different scenarios.

3.2.  Modeling metrics analysis

In this subsection, we discuss the model inputs based on experimen-
tal analysis. To identify which data can affect the interference measure, 
we first need to determine which performance metrics are correlated 

with interference. Additionally, we explore whether there are other per-
formance metrics beyond traditional ones. Once the relevant perfor-
mance metrics are selected, we also investigate whether the time-series 
variations (not just the average values over a period) of these metrics 
affect the interference measure. The experiments in this section were 
conducted on a host machine running Linux 6.1, with hyper-threading 
explicitly disabled. The host is equipped with an Intel(R) Xeon(R) CPU 
E5-2620 v2, with a base frequency of 2.10GHz and 6 cores per physi-
cal CPU. Its cache hierarchy comprises 32KB L1 data cache (L1d) and 
L1 instruction cache (L1i) per core, 256KB L2 cache, and 15360KB L3 
cache. Two virtual machines (VMs) were configured on this host: one 
running a workload benchmark (referred to as the test benchmark), and 
the other executing a background benchmark. Both VMs share identical 
configurations, with cache sizes as follows: L1d: 32KB, L1i: 32KB, L2: 
4096KB, L3: 16384KB.

3.2.1.  Selection of performance metrics
Traditional performance metrics. CPU utilization [35] and LLC miss rate 
[13,44] are traditional metrics used in modeling performance interfer-
ence for compute-intensive workloads. CPU utilization reflects the ex-
tent to which a VM utilizes the CPU resources of the host. When a VM 
with high CPU utilization runs co-located with other VMs, contention 
for limited host CPU resources becomes more intense, leading to perfor-
mance degradation of co-located VMs. LLC miss rate refers to the prob-
ability that data required by a VM is not found in the last level cache 
of a processor. When VMs share computational resources, they contend 
with other VMs for limited cache resources, resulting in a decrease in 
cache hit rates and ultimately reducing their performance.

Other performance metrics . To analyze whether other performance met-
rics correlate with performance interference measurements, we conduct 
co-location tests where one VM runs the benchmark under test (from 
SPEC CPU2017) and the other runs a background benchmark, which 
could be either from SPEC CPU2017 or sysbench. For example, to in-
vestigate the performance interference characteristics of application A, 
we run it as the benchmark under test, co-located with different back-
ground benchmarks B, C, and D. Before the co-location tests, we run 
application A alone to collect its related performance metrics and exe-
cution time 𝑇𝐴, and we also run benchmarks B, C, and D individually 
to gather their respective performance metrics. Next, we perform co-
location experiments by running application A with benchmarks B, C, 
and D separately. We record the execution time of application A in these 
co-location scenarios: 𝑇𝐴&𝐵 , 𝑇𝐴&𝐶 , 𝑇𝐴&𝐷. Finally, the performance inter-
ference loss degree of program A after co-located with the background 
benchmark, as well as the relevant performance metrics collected when 
co-located or running separately, are listed line by line. For each pair, 
we compute the Pearson correlation coefficient to identify which per-
formance metrics are strongly correlated with the interference measure. 
Three performance metrics are found to have a high correlation with 
the interference measure, and we summarize the Pearson correlation co-
efficients between the different test benchmarks and their background 
benchmarks in Table 3.

For the cycles metric, it counts the number of processor clock cycles. 
When executing compute-intensive applications, the processor needs to 
execute a large number of instructions and operations, leading to a sig-
nificant amount of time spent on execution. As a result, the number of 
processor clock cycles increases, and thus, the cycles counter value is 
higher. This metric can serve as an indicator of the time complexity and 
resource demand of an application.

For the branch misprediction rate metric, when an application expe-
riences a branch misprediction, the processor must flush its instruction 
pipeline and re-execute the branch instruction. If another application 
is running concurrently, it may need to wait for the execution of the 
first application to complete before proceeding, a phenomenon known 
as "branch prediction contention." During co-located execution, two ap-
plications may contend for the processor’s branch prediction cache,
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Table 3 
Three metrics strongly correlated with interference measurement.

 lbm  nab  exchange2  deepsjeng  roms  leela  omnetpp  mcf  cactuBSSN
 cycles  0.86  0.57  0.45  0.78  0.67  0.68  0.85  0.83  0.58
 branch-misses-rates  0.5  0.54  0.43  0.41  0.5  0.51  0.47  0.5  0.59
 TLB-loads-misses  0.68  0.55  0.44  0.49  0.68  0.79  0.74  0.5  0.51

Table 4 
Changes in LLC misses and TLB misses for cactuBSSN under different co-location scenarios.

 alone  1 cactuBSSN  2 cactuBSSN  deepsjeng  imagick  sysbench CPU (threads=8)
 LLC misses  (%)  0.191399  0.217419  0.26062  0.241375  0.208661  0.203825
 TLB misses×10−3 (%)  0.0377  0.076  0.16  0.159  0.0483  0.0567

increasing the likelihood of branch mispredictions. This is especially 
evident when both applications have a high branch misprediction rate, 
further negatively impacting performance.

For the TLB (Translation Lookaside Buffer) load miss count metric, 
the CPU needs to translate virtual addresses to physical addresses to ac-
cess data from main memory. If the TLB has already cached the mapping 
between virtual and physical addresses, the CPU can directly use the 
physical address, avoiding expensive memory access operations. How-
ever, if the mapping is not in the TLB, the CPU must access the main 
memory, which can be time-consuming and lead to a decrease in CPU 
performance. When running co-located, two applications may contend 
for the same TLB cache, increasing the probability of TLB misses. If the 
TLB miss rates of two applications are both high, they may interfere 
with each other, causing further performance degradation.

Correlation analysis of LLC misses and TLB misses with interference. Un-
like the behavior in isolation, combined with the analysis in the pre-
ceding two parts of Section 3.2.1, LLC misses and TLB misses correlate 
with performance interference for compute-intensive workloads. We at-
tribute this to two factors, based on our analysis of SPEC CPU2017 and 
supplementary experiments (as shown in Table 4, averaged over 15 tri-
als): firstly, some benchmarks are compute-intensive while also being 
memory-sensitive; secondly, the pollution and superposition effects dur-
ing co-location.

First, we analyze the first reason. In SPEC CPU2017, mcf performs 
extensive linked list traversals and random memory accesses, making 
it cache-unfriendly. Imagick has large working sets and mixed access 
patterns, which also challenge the cache. Meanwhile, applications like
fotonik3d and roms handle large multidimensional arrays with non-
contiguous or strided accesses, increasing TLB pressure. Although the 
benchmarks in SPEC CPU2017 are all compute-intensive and minimize 
non-CPU resource use, the proportion of memory-sensitive applications 
remains considerable, reflecting real-world scenarios. Our experimen-
tal design must account for these factors; otherwise, the accuracy and 
practicality of our model for real-world cloud workloads would be com-
promised.

Next, we analyze the second reason. Benchmarks like cactuBSSN are 
very close to "pure" CPU resource consumption, with low memory in-
tensity. As shown in Table 4, experiments found that when co-located 
with itself (1 or 2 instances) or other applications (regardless of mem-
ory sensitivity), both LLC and TLB misses increase. Even with low mem-
ory intensity, such increases alter actual execution time: a lower LLC 
hit rate raises memory access counts, prolonging execution; TLB misses 
force the CPU to query in-memory multi-level page tables for address 
translation, a process requiring multiple memory accesses. We attribute 
this performance interference to two main factors. First, the pollution 
effect: even applications that are primarily CPU-bound with small work-
ing sets may experience frequent eviction of critical data from the cache 
(cache thrashing) due to other threads or loads from another VM. This 
leads to “induced cache misses,” which do not occur in isolation but 
emerge under interference. Second, the superposition effect plays a role: 

Table 5 
Changes in system-level behavior and its corresponding impact on LLC and TLB 
misses for cactuBSSN under different scenarios.

 1 VM  2 VMs  3 VMs  4 VMs  5 VMs
 LLC misses (%)  0.195  0.219  0.259  0.308  0.351
 TLB misses×10−3 (%)  0.038  0.077  0.16  0.183  0.267
 context-switches (times/second)  8650  12102  13750  14738  15351
 cpu-migrations (times/second)  59  67  162  165  150

the default configuration of SPEC CPU2017 6.X benchmarks employs 
multi-threaded execution. When multiple vCPUs from one VM run con-
currently with those from another VM, contention for TLB entries in-
tensifies. I/O operations from any application may cause TLB flushes 
or misses. Even if a single application exhibits a low TLB miss rate, the 
collective system pressure can still degrade performance. Moreover, in 
subsequent scheduling studies presented in later chapters, as the num-
ber of co-located applications and VMs increases, the impact of these 
two metrics on actual execution time becomes even more significant.

The relationship between system-level behavior and the increase in LLC and 
TLB misses. To further investigate the significant increase in LLC/TLB 
misses of compute-intensive, low memory-intensity applications in co-
located environments, we conducted quantitative experiments focusing 
on system-level scheduling behaviors, specifically context switches and 
CPU migrations. We first executed the cactuBSSN workload on an iso-
lated VM and collected the baseline metrics presented in Table 5. We 
then incrementally co-located this VM with additional instances run-
ning the same workload, gathering corresponding data for each config-
uration. Each scenario was repeated 15 times, with the average values 
recorded in Table 5. It can be observed that as the number of co-located 
VMs increases, the number of context switches rises from approximately 
8650 per second to about 15,351 per second. Each context switch leads 
to partial or complete replacement of the working set of the current 
process in the CPU cache, directly causing LLC and TLB misses. This 
mechanism explains why, even for compute-intensive applications with 
relatively low memory access intensity (such as cactuBSSN), the cache 
miss rate increases significantly with higher co-location intensity. Re-
garding CPU migrations, a notable trend emerges: while the migration 
count increases markedly from 1 to 3 co-located VMs, its growth rate 
diminishes sharply at 4 VMs, and the count even slightly decreases at 
5 VMs. We attribute this to the scheduler’s adaptive behavior under 
extreme resource contention. When CPU saturation is high, the per-
formance gain from migration may be outweighed by the overhead of 
cache and pipeline flushes. Consequently, the scheduler reduces such 
counterproductive migrations. Collectively, the above findings provide
empirical support for the previously proposed "pollution and superposi-
tion effect".

Next, we examined VM memory usage under various co-location sce-
narios. During the aforementioned experimental period, we monitored 
the %MEM readings of the qemu-kvm processes corresponding to each 
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VM via the top command on the host. These readings exhibited no cor-
relation with the number of co-located VMs. This observation remained 
true whether a VM was idle or executing the cactuBSSN workload; in 
some instances, the %MEM of a loaded VM was even lower than when 
idle. This indicates that under low memory-intensity workloads, the pro-
portion of physical memory (RSS) allocated by the host to each VM’s 
qemu-kvm process remains relatively stable. Subsequently, we mea-
sured memory usage from within the subject VM’s perspective using the 
free -h command. We first ran cactuBSSN on a single VM and recorded 
its internal memory statistics. We then incrementally co-located this VM 
with 1 to 4 other VMs running the same workload, collecting internal 
memory data at each step. The results showed that, from the viewpoint 
of the guest OS, the available virtual memory capacity and free memory 
statistics remained stable. Furthermore, analysis of data collected via 
the vmstat command revealed that the minimum and final free memory 
readings were almost identical across configurations from one to five 
co-located VMs. These findings collectively rule out significant memory 
pressure, large-scale page swapping, or other compulsory memory man-
agement operations due to memory overcommitment. In conclusion, we 
substantiate that the observed increase in LLC and TLB misses under 
such co-location scenarios is unrelated to non-trivial memory usage.

3.2.2.  Time series differences in performance metrics
Traditional modeling methods typically construct models based 

solely on the mean values of performance metrics, without considering 
the temporal variations in these metrics for co-located VMs. However, 
relying solely on the mean may not accurately predict the performance 
interference experienced by co-located VMs. For example, when VM A 
and VM B are co-located, the average CPU utilization of VM B is 75%. 
However, if the temporal pattern of CPU utilization differs, the resulting 
performance interference on VM A may also differ. To illustrate this, we 
set up two scenarios for VM B:
Scenario 1: Virtual machine B maintains a constant CPU utilization of 
60%.
Scenario 2: The CPU utilization of virtual machine B is 90% for half of 
the time and 30% for the other half.

We calculate the degree of interference that VM B causes to VM A 
in the two different scenarios. In the first scenario, where VM B main-
tains a constant CPU utilization of 60%, the interference in the two 
given period are denoted as 𝐼10.6 and 𝐼20.6, respectively. In the second 
scenario, where VM B fluctuates between 90% and 30% CPU utiliza-
tion, the interference during the first and second periods are denoted 
as 𝐼10.9 and 𝐼20.3, respectively. It is clear that the interference values sat-
isfy : 𝐼10.9>𝐼10.6 = 𝐼20.6>𝐼20.3. However, the sum of 𝐼10.6 and 𝐼20.6 may not 
be equal to the sum of 𝐼10.9 and 𝐼20.3. This is because the performance 
impact on VM A when co-located with a VM that has 90% CPU utiliza-
tion is significantly greater than when co-located with a VM at 60%. 
Additionally, the benefit of co-location with a VM at 30% utilization 
may not be sufficient to offset the performance loss incurred during the 
high-utilization (90%) period. In fact, co-location with a VM at 30% uti-
lization may have minimal impact on the performance of VM A, as CPU 
resources are likely sufficiently available.

We conducted an experiment to compare the two scenarios described 
above. As shown in Table 6, one VM ran the SPEC CPU2017 benchmarks 
[46], while the other VM ran the sysbench [47] CPU testing function. 
The SPEC VM executed the 607.cactuBSSN_s and 638.imagick_s resep-
arately, while the sysbench VM maintained approximately 60% CPU 
utilization throughout in Scenario 1. In Scenario 2, the sysbench VM 
maintained approximately 90% CPU utilization during the first half of 
execution and approximately 30% during the second half. The sysbench 
parameters are detailed in Table 6. The execution times for 607.cactuB-
SSN_s and 638.imagick_s under co-location in both scenarios are pre-
sented in Fig. 2. Each scenario was executed three times. The execution 
time of the two benchmarks in Scenario 1 is lower than that in Scenario 
2. This finding demonstrates that the sum of 𝐼10.6 and 𝐼20.6 in Scenario 1 
is less than that of 𝐼10.9 and 𝐼20.3 in Scenario 2. It also highlights that rely-

Table 6 
The settings for sysbench in two scenarios.

 cpu-max-prime  Scenario 1  Scenario 2
 threads time  threads1 time1 threads2 time2

 607.cactuBSSN_s  9999999  8 1200  18 600 4 600
 638.imagick_s  9999999  8 1200  18 600 4 600

Fig. 2. The execution time of 607.cactuBSSN_s and 638.imagick_s in two co-
location scenarios respectively.

ing solely on the mean values of performance metrics cannot accurately 
measure performance interference.

Therefore, we propose incorporating the temporal variation of the 
same performance metric from co-located VMs as an independent vari-
able in the model. For instance, if the workload on VM A runs standalone 
for 900 seconds, and the workload on VM B runs standalone for 2000

seconds, we calculate the similarity/difference between the temporal 
patterns of the relevant performance metrics from VM A during its 900 
seconds of standalone execution and from VM B during its first 900 
seconds of standalone execution. This measure of similarity/difference 
then included as an independent variable in the model. If VM B has 
already been running for 1100 seconds before VM A starts execution, 
the similarity/difference is calculated between the temporal patterns 
of the relevant performance metrics from VM A during its standalone 
execution and from VM B during its final 900 seconds of standalone 
execution.

3.3.  Modeling implementation

Based on the experimental analysis in Section 3.2, the average val-
ues of the five performance metrics and the temporal differences are 
added to the model input. The output of the model is shown in Eq.  (1). 
This section discusses the function relationship 𝑓 , and the model form is 
shown in Eq.  (2). Before introducing the equation, we need to introduce 
the concept of handling temporal differences: Dynamic Time Warping 
(DTW) [48]. DTW is an algorithm employed to measure the similarity 
between two time series. It performs elastic alignment along the tem-
poral dimension to accommodate sequences of differing lengths or out-
of-phase temporal progression. In this study, we apply DTW to compute 
the distance between the performance metric time series of two individ-
ual VMs during standalone operation, thereby capturing and quantifying 
the temporal fluctuation differences between the metrics. The form of 
Eq.  (2) is as follows,
𝐼(𝐴&𝑋) = 𝑓 (𝑥1, 𝑥2,… , 𝑥5, 𝐷(𝑎1&𝑥1),… , 𝐷(𝑎5&𝑥5)), (2)

where 𝐴 and 𝑋 represent the two co-located VMs. The variables 𝑥1 to 
𝑥5 denote the average values of CPU utilization, LLC miss rate, cycles, 
branch misprediction rate, and TLB load miss rate for the standalone 
workload on VM X. Similarly, the variables 𝑎1 to 𝑎5 represent the corre-
sponding average values of the five metrics for VM A when running 
standalone. The terms 𝐷(𝑎1&𝑥1) to 𝐷(𝑎5&𝑥5) represent the temporal 
DTW (Dynamic Time Warping) distances between the respective perfor-
mance metrics of VM A and X during standalone execution.The nature 
of the function 𝑓 , whether it exhibits a linear or nonlinear relationship, 
warrants further discussion. We need to comprehensively consider the
accuracy of different model forms (e.g., the degree of fitting) as well as 
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Fig. 3. Figure 3(a) and 3(b) show the QQ plots for the linear (LM) and nonlinear
(NLM) models of performance interference prediction for the VM running the 
607.cactuBSSN_s workload, respectively. Figure 3(c) and 3(d) show those for 
the VM running the 638.imagick_s workload, respectively.

their reliability (e.g., whether overfitting occurs) in the following sec-
tions.

We use Goodness of Fit [49] to evaluate the goodness of fit of the 
model to the data. In this study, the Goodness of Fit is measured using 
the coefficient of determination R2, which indicates the percentage of 
variance in the data explained by the model. The equations of R2 are 
shown in Eq.  (3)–(5):

𝑅2 = 1 −
𝑆𝑆res
𝑆𝑆tot

, (3)

𝑆𝑆res =
𝑛
∑

𝑖=1
(𝑦𝑖 − 𝑦̂𝑖)2, (4)

𝑆𝑆tot =
𝑛
∑

𝑖=1
(𝑦𝑖 − 𝑦̄)2, (5)

where 𝑦𝑖 is the actual observed value of the dependent variable, 𝑦̂𝑖 is the 
predicted value of the model, 𝑦̄ is the mean of the dependent variable, 
and 𝑛 is the sample size. Specifically, representing the proportion of to-
tal variance accounted for by the model and ranges from 0 to 1. Higher 
values, particularly those above 0.75, are generally considered accept-
able for indicating a good model fit. However, fitting the data well does 
not necessarily mean that the model is optimal. Issues such as overfit-
ting may lead to excellent fitting of the training data but poor predictive 
performance on new data. Therefore, in regression analysis, in addition 
to examining the goodness-of-fit, residual analysis should be conducted 
to assess issues related to the model’s reliability. Residual analysis in 
this study includes the use of QQ plots (quantile-quantile plots [50]). A 
QQ plot compares the residuals to theoretical quantiles, typically assum-
ing a normal distribution. If the residual points are evenly distributed 
around the theoretical quantiles, this suggests normality. Conversely, 
significant deviations indicate a violation of the normality assumption.

We set the loads of the VMs under test to 607.cactuBSSN_s and 
638.imagick_s, respectively, and performed co-location experiments 
with the VM running different workloads. Both nonlinear and linear 
models were used to predict the performance interference. It was found 
that the nonlinear model with an exponent of 4 achieved the best 
fit, with R2 values of 1 and 0.99, respectively. However, as shown in 
Fig. 3(b) and (d), the QQ plot trends indicate that the nonlinear model 
suffers from overfitting. In contrast, while the linear model produced 
R2 values of 0.85 and 0.88, the QQ plot trends showed that the residu-
als of the model approximately followed a normal distribution, with no 
signs of overfitting. Furthermore, with R2 values above 0.75, the fit is 
considered acceptable. The QQ plots for the linear and nonlinear per-

formance interference models for both workloads are shown in Fig. 3. 
After considering both the goodness of fit and the model’s accuracy and 
reliability, the linear function form is adopted for the model in Eq.  (2).

4.  Interference-aware scheduling algorithm for 
compute-intensive batch applications

4.1.  Performance interference in batch applications scheduling

As mentioned earlier, it is a common practice to place multiple batch 
applications on the same VM. These applications typically require high 
computational resource, involving extensive data processing and scien-
tific computing. The interference in co-located execution arises from 
competition for computational resources both between applications run-
ning on the same VM and between VMs hosted on the same physical 
host. Consider application A as a batch application being scheduled. In 
the remainder of this section, we define its performance interference at 
both the VM level and the physical machine level.

Consider a scheduling scenario where a VM runs multiple instances 
of application A alongside other co-located applications. The perfor-
mance of application A on this VM may deviate from its ideal state due 
to resource contention. For a single instance of A, we measure inter-
ference as the difference between its ideal execution time and its actual 
execution time. When multiple instances of A run on the same VM, their 
overall performance interference level is the average interference across 
all instances. We propose a formula to define the level of interference 
experienced by batch applications within a VM, as shown in Eq.  (6):

𝐼(𝐴|𝑉𝑀) = 1
𝑛
⋅

𝑛
∑

𝑖=1

𝑇 (𝐴𝑖|𝑉𝑀)
𝑇 (𝐴)

, (6)

where 𝐼(𝐴|𝑉𝑀) is the performance interference of 𝐴 in the virtual ma-
chine 𝑉𝑀 , 𝑛 is the number of 𝐴 instances in the virtual machine 𝑉𝑀 , 
𝑇 (𝐴) is the ideal execution time of 𝐴, and 𝑇 (𝐴𝑖|𝑉𝑀) is the actual exe-
cution time of the i-th instance of application 𝐴 in virtual machine 𝑉𝑀 .

How to evaluate the performance interference suffered by applica-
tion A when multiple applications A are running on a server is a chal-
lenging topic. Scheduling A to a server hosting more applications may 
not necessarily yield worse interference than scheduling it to one with 
fewer applications. This occurs because a server with a higher total ap-
plication count might still have VMs sparsely loaded, while allocating 
A to a server with fewer total applications could place it on a VM with 
high A-instance density, potentially worsening interference. Our tests 
(Table 7) demonstrate this: Server 1 (15 "perlbench" instances) achieved 
better performance for some instances than Server 2 (14 "perlbench" in-
stances) under identical VM configurations.

Based on the analysis, we conclude that the performance of appli-
cation A is not only related to the total number of applications on the 
server, but also to the co-location scenarios of each VM on the server 
and the number of applications running on the VM where application 
A is located. We propose the concept of overall performance interfer-
ence sensitivity for an application on a server, which is the weighted 
sum of the performance interference of each VM running application A. 
Since this part is used to evaluate the potential performance interfer-
ence an application A may face during scheduling, we emphasize the 
difficulty faced by VMs running more applications by assigning them 
higher weights, while giving lower weights to VMs running fewer ap-
plications. The denominator for the weight of a VM is the total number 
of applications across all VMs running application A, and the numera-
tor is the total number of applications running on that specific VM. The 
formula is as follows,

𝐼(𝐴|𝑆𝑒𝑟𝑣𝑒𝑟) =
𝑛
∑

𝑖=1
(
𝑁𝑖
𝑁

⋅ 𝐼(𝐴|𝑉𝑀𝑖)), (7)

where 𝐼(𝐴|𝑆𝑒𝑟𝑣𝑒𝑟) represents the overall performance interference sen-
sitivity of application A on server Server, 𝑉𝑀𝑖 is the i-th VM that is 
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Table 7 
The completion time of each application in different co-location scenarios.

 co-located scenarios  VM1  VM2  VM3  VM4  VM5
 Server1 (14 apps of perlbench)  vm1: 3, vm2: 3, vm3: 3, vm4: 3, vm5: 2  3054–3058  3061–3064  3063–3065  3048–3052  2208–2210
 Server2 (15 apps of perlbench)  vm1: 5, vm2: 4, vm3: 3, vm4: 2, vm5: 1  3187–3192  3059–3063  2600–2602  1978–1981  1151

running application A on Server, 𝑁𝑖 is the number of applications run-
ning on VM 𝑉𝑀𝑖 and 𝑁 is the total number of applications across all 
VMs on the server Server.

4.2.  Interference-aware scheduling based on historical information and 
temporal data DTW distance

The proposed server selection algorithm and the VM selection al-
gorithm are presented in Algorithm 1 and Algorithm 2. Our scheduling 
scheme first needs to collect prior historical information, which includes 
the actual completion time of each application in different co-location 
combinations and the time-series data of various performance metrics 
of the server throughout the entire running phase. We set up a scenario 
where five VMs on a server run three different applications: POV-Ray, 
NAB, and Perlbench. To further simulate performance fluctuations, we 
introduce a periodic load wave, which causes a 30% fluctuation in the 
host CPU utilization. We collected performance data for these three ap-
plications across 1500 different co-location combinations. A brief intro-
duction to the three applications is provided below:

• POV-Ray [51]: A ray tracing program used for image rendering, 
which is computation-intensive.

• NAB [52]: A computational application used to simulate numer-
ical models for biological molecules, which is also computation-
intensive.

• Perlbench [53]: Primarily used to evaluate the performance of script-
ing languages. However, in the SPEC benchmark, it is executed as a 
long-running batch job.
Based on prior historical information, our scheduling algorithm is 

divided into two parts: server selection algorithm and VM selection al-
gorithm. The framework diagram of the scheduling algorithm is shown 
in Fig. 4. The server selection algorithm evaluates the interference sen-
sitivity of the application to be scheduled on a server by analyzing the 
time-series data fluctuations of the server during a specific period. Based 
on the expected performance of the application on different servers, the 
algorithm decides which server is the most appropriate for scheduling 
the application. Once the server is chosen, the VM selection algorithm 
determines which VM within the selected server should host the appli-
cations. This decision is made based on the analysis of the number and 
type of applications running on each VM, aiming to allocate the appli-
cation to a VM where it will experience the least interference, taking 
into account the resource demands and potential contention with other 
co-located applications.

When the application to be scheduled arrives, for each server, calcu-
late the DTW distance of the time series data collected from that server 
and the time series data in the correlated co-occurrence combination 
with the same number of applications in the prior collection data, and 
normalize the calculated DTW distance of each performance counter. 
Then, for the specific application under consideration, removing the co-
located combinations without the application, we found that the overall 
performance interference sensitivity of the application corresponding to 
the prior data with the shortest distance was not significantly different 
from the performance interference sensitivity of the application on the 
current server. Therefore, the algorithm periodically calculates the DTW 
distance between the performance counters of each server and the rele-
vant prior data with the same number of applications, normalizes these 
values, compares the distances when the application to be scheduled 
appears, selects the set of prior data closest to the current server, con-
siders the overall performance interference degree of the application in 

Fig. 4. The framework diagram of Section 4.

this prior scenario as the that of the application on the current server, 
compares the expected overall performance interference sensitivity of 
the applications to be scheduled on each current server, and selects the 
server with the lowest overall interference sensitivity as the destination 
server.

After selecting the destination server, choose the destination VM. 
There are multiple VMs on candidate servers. The VM with the fewest 
applications is prioritized as the candidate VM. If multiple candidate 
VMs exist, an analysis of the application co-location combinations on 
each VM is performed. In our example scenario, we need to determine 
how the three specific applications are suitable for co-location. We de-
fined the following concepts and conducted an analysis based on these 
concepts. First, we assumed the scenario where a VM runs 5 application 
instances as the test load scenario, as shown in Table 8. Subsequently, we 
define the homogeneous interference attenuation coefficient to quantify 
the performance degradation of identical applications when co-located 
under the maximum load scenario:

𝛼𝑖 =
𝑇 𝑖
isolated

𝑇 𝑖
5-instances

, (8)

where 𝑇 𝑖
isolated is the completion time of a single instance of application 𝑖

in an isolated environment, and 𝑇 𝑖
5-instances is the total completion time of 

application 𝑖 instances under the test load scenario. Furthermore, under 
the maximum load scenario, the theoretical completion time of applica-
tion 𝑖 when co-located with a different application 𝑗, inferred based on 
the performance when all co-located applications are instances of 𝑖, is:

𝑇 co-loc
theory(𝑛𝑖 ⋅ 𝑖 ∣ 𝑛𝑗 ⋅ 𝑗) =

𝑇 𝑖
isolated

𝛼𝑖 ⋅
(

𝑛
𝑛𝑖

) , (9)

where 𝑛𝑖 is the number of instances of application 𝑖 on the VM, 𝑛𝑗 is 
the number of instances of application 𝑗 on the VM, and 𝑛 = 𝑛𝑖 + 𝑛𝑗 . We 
quantify the gain for this specific co-location combination by combining 
the theoretical performance with the actual performance observed in 
historical data:

𝐺(𝑛𝑖 ⋅ 𝑖 ∣ 𝑛𝑗 ⋅ 𝑗) =
𝑇 co-loc
theory(𝑛𝑖 ⋅ 𝑖 ∣ 𝑛𝑗 ⋅ 𝑗)

𝑇 co-loc
hist (𝑛𝑖 ⋅ 𝑖 ∣ 𝑛𝑗 ⋅ 𝑗)

− 1, (10)
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Table 8 
The completion time of each application in different co-location scenarios.
 Application  Run alone  Maximum load scenario

 same applications  3nab+2povray  3nab+2perlbench  3perlbench+2povray
 Nab  549  4800  4746  4698  \
 Perlbench  524  5802  \  5046  5832
 Povray  551  6298  5205  \  5989

where 𝑇 (𝑛𝑖.𝑖|𝑛𝑗 .𝑗)co-lochist  is the actual performance observed in historical 
data for this combination. A 𝐺 value greater than 0 indicates that, for 
the same total number of applications, the interference experienced by 
application 𝑖 when co-located with application set 𝐽 (here, primarily 
𝑗) is less than the scenario where all co-located applications are 𝑖. Con-
versely, a 𝐺 value less than 0 indicates greater interference. Based on our 
analysis of historical data, we determined that the interference effect of 
application co-location is fully manifested when 𝑛𝑖 = 3 and 𝑛𝑗 = 2. The 
𝐺 value under this specific configuration (𝐺(3𝑖.𝑖|2𝑗 .𝑗)) most intuitively 
reflects the gain (or loss) of the scenario where application 𝑖 and appli-
cation 𝑗 are co-located compared to the scenario where all co-located 
applications are 𝑖. Therefore, we define 𝐹 (𝑖|𝑗) as 𝐺(3𝑖.𝑖|2𝑗 .𝑗). A posi-
tive value of 𝐹 (𝑖|𝑗) indicates that application 𝑖 exhibits better perfor-
mance when co-located with application 𝑗 than when co-located with 
homogeneous instances. This implies that application 𝑖 is suitable for 
co-location with application 𝑗. The 𝐹  metric enables determination of 
compatible co-location partners for a given application based on mu-
tual interference characteristics. Furthermore, by evaluating the values 
from the perspective of other applications, 𝐹  facilitates assessment of 
an application’s co-location friendliness toward others. This framework 
guides destination VM selection. For instance, when a perlbench in-
stance arrives, consider scheduling it to a candidate VM hosting two
nab instances and one povray instance. The resulting gain is calculated 
as:

Gain = 2𝐹 (perlbench ∣ nab) + 𝐹 (perlbench ∣ povray). (11)

For subsequent candidate VMs, the 𝐺𝑎𝑖𝑛 is similarly computed. The VM 
exhibiting the maximum 𝐺𝑎𝑖𝑛 value is ultimately selected as the desti-
nation VM.

4.3.  Real-world case study

The scenario proposed in this article concerns batch task scheduling 
under the constraints of limited physical machines and VMs. To further 
illustrate the universality of this scenario, some real-world cases will 
be presented. Firstly, the scheduling of multiple MapReduce tasks in a 
classic Hadoop cluster may be similar to this scenario, where these tasks 
need to run on a limited number of physical servers and VMs. The same 
applies to Spark clusters. Another example is provided: a financial ser-
vices company utilizes a private cloud platform with a fixed VM pool to 
handle high-frequency trading [54]. We assume that this platform com-
prises 10 servers, each fixedly hosting 5 VMs, with each VM configured 
with multiple CPU cores. The task scheduling involves various types 
of compute-intensive batch tasks, such as risk analysis, portfolio opti-
mization, and market simulation. These tasks require high throughput 
to support massive trading decisions. The Performance metrics shown 
in Eq.  (2) for different task categories exhibit variations. Therefore, 
interference models are established for the VM running these different 
types of tasks, and server selection and VM selection are carried out 
in accordance with the scheduling algorithm in this section. The plat-
form executes batch tasks (e.g., risk analysis and market simulation) 
multiple times a day, with approximately 200 tasks executed each time. 
The interference-aware algorithm is conducive to reducing the total task 
completion time and increasing system throughput.

Algorithm 1 Interference-aware destination server selection algorithm.
Symbol:
𝑆: Set of servers {𝑠1, 𝑠2,… , 𝑠𝑑}
𝐻 : Historical dataset {(𝑋𝑖, 𝐼𝑖)} where

𝑋𝑖 = Time-series matrix of performance metrics
𝐼𝑖 = Interference sensitivity vector

𝑋new: Performance metrics time-series of new app
𝑀 : Set of performance metrics {𝑚1, 𝑚2,… , 𝑚𝐷} (e.g., CPU, LLC, 
Branch, TLB)
Input:
𝑆,𝐻,𝑋new
Output:
𝑠𝑑 : Selected target server
1: function SELECT_SERVER(𝑆,𝐻,𝑋new)
2:  min_sensitivity ← ∞
3:  𝑠𝑑 ← null
4:  for each server 𝑠 in 𝑆 do
5:  𝐻𝑠 ← {(𝑋, 𝐼) ∈ 𝐻 ∣ |VM𝑠| = |VMhist|} ⊳ Extract same-scale 
historical data

6:  distmin ← ∞
7:  for each (𝑋, 𝐼) in 𝐻𝑠 do
8:  𝑑 ← 0
9:  for each metric 𝑚 in 𝑀 do
10:  𝑋hist ← 𝑋[∶, metric_index(𝑚)]
11:  𝑋app ← 𝑋new[∶, metric_index(𝑚)]
12:  𝑑 ← 𝑑 + DTW(𝑋app, 𝑋hist)
13:  end for
14:  if 𝑑 < distmin then
15:  distmin ← 𝑑
16:  𝐼ref ← 𝐼 ⊳ Record sensitivity of closest match
17:  end if
18:  end for
19:  𝐼𝑠 ← 𝐼ref ⊳ Set current sensitivity
20:  sensitivity← ‖𝐼𝑠‖1 ⊳ L1 norm summation
21:  if sensitivity < min_sensitivity then
22:  min_sensitivity← sensitivity
23:  𝑠𝑑 ← 𝑠
24:  end if
25:  end for
26:  return 𝑠𝑑
27: end function

5.  Experiment

5.1.  Experimental setup

In the performance interference model experiment, the hardware 
setup remains the same as in Section 3.2. In the scheduling algorithm 
experiment, we established environments to demonstrate the effective-
ness of the scheduling algorithm, which include three scenarios with 
different numbers of servers: scenarios with 6 servers, 7 servers, and 8 
servers. Specifically, in the 6-server scenario, there is 1 control node 
and 5 scheduling nodes; in the 7-server scenario, there is 1 control 
node and 6 computing nodes; and in the 8-server scenario, there is 1 
control node and 7 computing nodes. In each of these scenarios, each
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Algorithm 2 Interference-aware destination VM selection algorithm.
Symbol:
𝑉 : Set of VMs {𝑣1, 𝑣2,… , 𝑣𝑘}
𝐴: Application types {𝑎1, 𝑎2,… , 𝑎𝑡}
𝐹 : Interference feature matrix (𝐹 [𝑖, 𝑗] = suppression factor of 𝑎𝑗 on 
𝑎𝑖)
𝑎new: Type of new application
Input:
𝑉 ,𝐴, 𝐹 , 𝑎new
Output:
𝑣𝑑 : Selected target VM
1: function SELECT_VM(𝑉 ,𝐴, 𝐹 , 𝑎new)
2:  minload ← min𝑣∈𝑉 |𝑣.apps| ⊳ Find minimum load
3:  𝑉candidate ← {𝑣 ∈ 𝑉 ∣ |𝑣.apps| = minload}
4:  if |𝑉candidate| = 1 then
5:  return 𝑉candidate[0]
6:  end if
7:  maxgain ← −∞
8:  𝑣𝑑 ← null
9:  for each 𝑣 in 𝑉candidate do
10:  gain ← 0
11:  for each app 𝑎 in 𝑣.apps do
12:  gain ← gain + 𝐹 [𝑎new, 𝑎] ⊳ Accumulate suppression
13:  end for
14:  if gain > maxgain then
15:  maxgain ← gain
16:  𝑣𝑑 ← 𝑣
17:  end if
18:  end for
19:  return 𝑣𝑑
20: end function

scheduling node hosts 5 VMs having the same configuration. The set-
tings for each server and VM remain the same as those in Section 3.2

5.1.1.  Validation and comparison of performance interference 
measurement models

In previous studies, most studies only validate the model’s goodness 
of fit, such as by examining the R2 value, or evaluate prediction accuracy 
under specific scenarios without investigating potential overfitting. Our 
comparison work, as described in Section 3.3, primarily contrasts the 
models based on their goodness of fit, accuracy, and reliability. In addi-
tion to the model we propose in Eq.  (2), we also compare a model that 
omits the metric of the temporal differences of the same performance 
metrics between co-located VMs, as shown in Eq.  (12):

𝐼(𝐴&𝑋) = 𝑏0 + 𝑏1.𝑥1 + 𝑏2.𝑥2 + 𝑏3.𝑥3 + 𝑏4.𝑥4 + 𝑏5.𝑥5, (12)

where 𝐴 and 𝑋 represent two co-located VMs, 𝑥1 to 𝑥5 represent the 
mean values of CPU utilization, LLC miss rate, cycles, branch mispre-
diction rate, and TLB miss rate for VM X when running in isolation, and 
𝑏0 to 𝑏5 are coefficients.

In addition to comparing Eq.  (2) and Eq.  (12), to highlight the 
advantages of our model over those proposed in existing research, we 
also analyze and compare the following models with Eq.  (2):
E𝑠: Liu et al. analyzed the use of LLC miss rate to quantify performance 
interference and developed a linear regression model based on LLC miss 
rate [36].
Mvei: Sun et al. proposed a model based on the LLC miss rate of VMs 
running in isolation, the current CPU utilization of the PM, the vCPU 
utilization of each VM deployed on the PM, and the number of VMs 
[55].
LRA: A regression model for quantifying interference based on LLC miss 
rate and CPU utilization [56].

5.1.2.  Scenarios and comparisons of scheduling algorithms
Execution Scenarios of Scheduling Algorithms.. Since our model incorpo-
rates performance counters such as LLC miss rate and branch mispre-
diction rate, which are difficult to simulate, it is only in a real-world 
environment that the effectiveness of the interference-aware scheduling 
algorithm can truly be demonstrated. We implemented the control end 
to receive and record the load information of servers and VMs sent by 
the scheduling end and to make decisions based on the scheduling algo-
rithm. On the scheduling nodes, servers periodically collect performance 
metrics and calculate the DTW distance against prior data, while VMs 
detect idle states and log the information of the running applications. 
The control and scheduling nodes communicate via the HTTP proto-
col. Before executing the scheduling algorithm, initial applications are 
evenly distributed across the VMs based on their number and type, and 
a list of applications to be scheduled is generated. These applications 
are scheduled at fixed intervals. Specifically, in this scenario, we aim to 
schedule 252 applications. Initially, each VM runs one application, and 
a new application arrives every 40 seconds. The algorithm determines 
which server and which VM the new application should be allocated to. 
The reason for this setup is that, once the entire allocation scheme is 
completed, each VM will be loaded with exactly one application to five 
applications. If further allocation occurs, some VMs will run more than 
five applications. This setup enables the algorithm to make allocation 
decisions under varying load conditions and facilitates a comprehensive 
evaluation of the overall performance.

Comparison of Scheduling Algorithms.. To demonstrate the feasibility of 
our algorithm, we also conducted experiments in scenarios with 6 and 
7 scheduling nodes, while keeping the total number of scheduled appli-
cations constant. Although increasing the number of nodes can alleviate 
congestion during application allocation which might otherwise dimin-
ish the value of the analysis, our actual testing revealed that shortening 
the allocation interval by just 5 seconds significantly increased appli-
cation distribution congestion. Therefore, we reduced the scheduling 
intervals to 35 seconds and 30 seconds respectively.

To validate our proposed scheduling algorithm, TS-DTW 
(Interference-Aware Scheduling based on Time Series Data DTW 
Distance), we also implemented the following algorithms for compari-
son:

1. MFF (Interference-Aware Scheduling Algorithm based on Mean Fit-
ting Function): This algorithm determines the allocation plan based 
on the output of a linear formula fitted with the average values of 
each indicator, without considering the temporal fluctuations of the 
indicators or the differences in interference characteristics of differ-
ent application combinations during co location operation [11].

2. NOL (Scheduling Algorithm based on the Number of Loads): The 
essence of this algorithm is to balance the load across cloud data 
center servers, without considering performance interference [45].

3. Round-bin Scheduling Algorithm (Round-bin Scheduling Algo-
rithm): Based on the round in scheduling method, applications are 
scheduled to run on servers and their VMs in rotation according to 
certain rules, without considering performance interference [57].

4. RA (Random Algorithm): This algorithm randomly decides the allo-
cation of applications to servers and VMs.

5.2.  Experimental results

5.2.1.  Validation and comparison of performance interference 
measurement models
Verify the effectiveness of measuring temporal differences.. In Section 3.1, 
we proposed a performance interference model based on five perfor-
mance metrics. Compared to existing research, our model additionally 
incorporates a metric quantifying the temporal differences of co-located 
VMs for the same performance indicator. To verify the effect of adding 
temporal difference measurement, we compared the models in Eq.  (2) 
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Fig. 5. Figure 5(a) and 5(b) are the QQ plots for the performance interference 
modeling of the VM with the 607.cactuBSSN_s load, using the model which con-
sidering temporal differences (TDM) in Eq.  (2) and which excluding temporal 
differences (NTDM) in Eq.  (12), respectively. Figure 5(c) and 5(d) are those of 
the VM with the 638.imagick_s load, using the model in Eq.  (2) and that in Eq. 
(12), respectively.

Table 9 
R2 values of the models in measuring performance 
interference for the VM with the load of 607.cactuB-
SSN_s or 638. imagick_s.
R2 Eq.  (2)  E𝑠  Mvei  LRA
 607.cactuBSSN_s  0.85  0.53  0.73  0.69
 638.imagick_s  0.88  0.55  0.76  0.65

and Eq.  (12). We configured the workloads of the VMs under test as 
607.cactuBSSN_s and 638.imagick_2 respectively, co-locating with the 
VM running different workloads. We then used the two models to mea-
sure their performance interference. When quantifying the performance 
interference for the VM running 607.cactuBSSN_s workload, the model 
fit, measured by R2, was 0.85 for Eq.  (2) and 0.81 for Eq.  (12). Sim-
ilarly, for the VM running 638.imagick_s workload, the R2 values were 
0.88 for Eq.  (2) and 0.84 for Eq.  (12). The QQ plots, used to assess 
model accuracy and reliability, are shown in Fig. 5. It can be observed 
that regardless of whether the workload on the VM was 607.cactuBSSN_s 
or 638.imagick_s, the model in Eq.  (2) demonstrated higher accuracy 
and reliability than the model in Eq.  (12). This result indicates that 
incorporating the temporal difference metric improves modeling per-
formance.

Compared with existing compute-intensive models.. We compare our 
model Eq.  (2) with E𝑠, Mvei, and LRA. These models, unlike ours, do not 
incorporate the time-series difference metric for the same performance 
indicators. Specifically, E𝑠 measures performance interference based on 
LLC miss rate. Mvei extends E𝑠 by adding the current host CPU utiliza-
tion and the sum of CPU utilizations of all co-located VMs; it models 
the relationship between host CPU utilization and performance inter-
ference using an exponential function. LRA, conversely, omits three of 
the metrics included in our model–metrics proposed in Section 3.1 that 
are rarely found in other performance interference models for compute-
intensive VMs. Through experiments, we compared the goodness-of-fit 
metric, R2, of these models in measuring the performance interference of 
the VM with the load of 607.cactuBSSN_s or 638.imagick_s. The results 
are shown in Table 9. It is evident that our proposed model achieves a 
better fit than the other models under comparison.

However, a high fit does not guarantee high model reliability or ac-
curacy. To evaluate potential overfitting, we compared the models using 
QQ plots, as shown in Figs. 6 and 7. The trends in the QQ plots clearly 

Fig. 6. The QQ plots of different forms of performance interference models for 
the VM with the load of 607.cactuBSSN_s, corresponding to Eq.  (2), E𝑠, Mvei, 
and LRA, respectively.

Fig. 7. The QQ plots of different forms of performance interference models for 
the VM with the load of 638.imagick_s, corresponding to Eq.  (2), E𝑠, Mvei, and 
LRA, respectively.

indicate that our model (Figs. 6(a) and 7(a)) exhibits significantly bet-
ter reliability and accuracy than the other compared models. Further 
analysis reveals that, besides the benefits of considering temporal differ-
ences, utilizing multiple metrics substantially enhances the model. If the 
model relies on a single metric, there is a higher risk of misrepresenta-
tion when quantifying interference for different co-located applications 
with varying interference characteristics. Although Mvei includes more 
metrics, it fundamentally models based on the CPU utilization metric, so 
a multi-metric approach is preferred for a more comprehensive capture 
of interference features.

5.2.2.  Comparison of scheduling algorithms
Comparison of throughput.. For each algorithm listed in Section 5.1.2, 
we executed 15 runs. We recorded the time taken from the place-
ment of the initial applications to the completion of the last application 
(makespan), and calculated the average makespan per algorithm. Algo-
rithm performance was compared using throughput, defined as the total 
number of applications executed divided by the makespan (measured in 
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Fig. 8. Throughput comparison of different algorithms under each host counts.

minutes), as shown in Eq.  (13):

𝑇ℎ𝑟𝑜𝑢𝑔ℎ𝑝𝑢𝑡 =
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑎𝑝𝑝𝑙𝑖𝑐𝑎𝑡𝑖𝑜𝑛𝑠

𝑀𝑎𝑘𝑒𝑠𝑝𝑎𝑛
. (13)

Under the experimental setup described in Section 5.1.2, scheduling 252 
applications onto 5 hosts, the throughput comparison is shown in Fig. 8. 
The height of the bar chart represents the mean after 15 runs, and the 
vertical line on each bar is used to show the degree of dispersion of 
these experimental results. We can easily observe that TS-DTW per-
formed the best, followed by MFF in second place, NOL in third place, 
and round-bin in fourth place. When the number of scheduling hosts 
increased to 6 or 7, the throughput of all algorithms increased, but 
their relative ranking remained unchanged. MFF’s slightly lower per-
formance is attributed to its use of average metric values to assess the 
current state. However, dynamic load fluctuations in the runtime en-
vironment cause state changes, meaning that each assessment may not 
always be accurate. Regarding the NOL algorithm, its scheduling deci-
sions primarily rely on the number of applications on servers and VMs, 
without accounting for the specific interference characteristics of differ-
ent application co-location combinations. As demonstrated in the third 
paragraph of Section 4.2, the actual runtime of applications varies sig-
nificantly under different co-location combinations. Failure to fully con-
sider this factor can result in poor co-location combinations leading to 
longer execution times, explaining NOL’s lower throughput compared 
to TS-DTW and MFF. As for the round-bin algorithm, it simply allocates 
applications in a fixed sequence without dynamic adjustment based on 
current conditions, resulting in the lowest performance among the four
algorithms.

Comparison of application allocation in VMs.. After comparing the 
throughput, we analyzed the application allocation for the other three 
algorithms shown in Fig. 9, except for the random algorithm and round-
bin algorithm, under different numbers of scheduling end hosts. All 15 
experiments obtained the same results, proving that the performance of 
these three algorithms is relatively stable. With five scheduling hosts 
(totalling 25 VMs), TS-DTW and MFF allocated the largest number of 
VMs running 9–10 applications. The distinction is that TS-DTW allo-
cated more VMs to 9 applications than MFF did, whereas the reverse 
was observed for VMs with 10 applications. Additionally, under TS-DW, 
some VMs were allocated 8 applications, in contrast to MFF, where some 
hosted 12. Given that TS-DTW outperformed MFF in throughput, the 
key difference between these algorithms is their consideration (or lack 
thereof) of time-series data fluctuations. The NOL algorithm, which tar-
gets a balanced number of applications per VM, exhibited a different dis-
tribution: some VMs received only 8 applications, while VMs with 11 or 
12 applications were relatively numerous, and the count of VMs with 9 
applications was lower than under the other two algorithms. Therefore, 

NOL performed worse than TS-DTW and MFF because it prioritizes load 
balancing while neglecting the performance-interference characteristics 
of specific co-location combinations; this omission led to substantially 
increased actual execution times and an accumulation of co-located ap-
plications. When the number of scheduling hosts increased to 6 or 7 
(30 and 35 VMs, respectively), TS-DTW allocated fewer applications per 
VM than the other algorithms, while MFF again demonstrated superior 
performance over NOL. Combining throughput results with allocation 
patterns indicates that algorithms ignoring specific co-location combi-
nations perform worse than those that account for them, and that algo-
rithms that neglect time-series fluctuations are less effective than those 
that incorporate them.

Comparison of server overload situations.. Following the analysis of VM 
application allocation, we analyzed server load conditions. Previous ex-
periments showed that application completion times vary greatly under 
different co-location combinations. If applications consistently experi-
ence long execution times, the real-time count of accumulated applica-
tions running on VMs will increase, leading to more severe resource 
constraints and performance interference on servers, worsening load 
conditions. To evaluate load under different host counts, we defined 
a threshold. When the real-time number of applications on a host ex-
ceeds this threshold, the server load is considered critical. This threshold 
was defined as the minimum value among the highest real-time appli-
cation counts observed on each compute host. Once the real-time ap-
plication count on a compute host exceeds this threshold, the host is 
considered saturated. We counted the results obtained from 15 exper-
iments and presented the median in Fig. 10. For the 5-host and 6-host 
scenarios, based on collected data, we set the threshold at 25. The re-
sulting saturation states are shown in Figs. 10(a) and 10(b), respectively. 
From the throughput analysis, we know that while the total number of 
applications is constant, shortening the allocation interval with more 
hosts alleviates assignment congestion, increasing throughput. Conse-
quently, saturation under 6 hosts was significantly lower than under 
5 hosts. However, the round-bin algorithm still reached its peak real-
time application count more frequently than NOL, NOL exceeded MFF, 
and MFF reached higher values than TS-DTW. When the number of 
hosts increased to 7, the saturation threshold was set to 23 based on 
collected data, with saturation states shown in Fig. 10(c). The satura-
tion ranking of the algorithms remained unchanged. Combining the first 
two comparative experiments, it is evident that considering co-location 
combination differences and timing difference factors influences 
server load conditions and consequently impacts the final scheduling
effectiveness.

5.3.  Algorithm overhead analysis

In this section, we analyze the time complexity of Algorithm 1 and 
Algorithm 2 to understand their computational overhead and scalabil-
ity. First, we analyze Algorithm 1. Let 𝑛 denote the number of servers, 
𝑚 denote the number of historical datasets per server, and 𝑇  denote the 
length of the time series. Calculating the Dynamic Time Warping (DTW) 
distance between two time series of length 𝑇  has a complexity of 𝑂(𝑇 2). 
For each server, computing the DTW distance against its 𝑚 historical 
datasets incurs a cost of 𝑂(𝑚 ⋅ 𝑇 2). Consequently, for 𝑛 servers, the over-
all time complexity is 𝑂(𝑛 ⋅ 𝑚 ⋅ 𝑇 2). In practical scenarios, this overhead 
can be mitigated through several optimization strategies, such as limit-
ing 𝑚 to only the most relevant or recent historical data, managing 𝑇  by 
sampling or aggregating the time series data and parallelizing the dis-
tance computations across servers. Next, we analyze Algorithm 2. Let 𝑘
denote the number of VMs per server. This algorithm involves simple 
comparisons and selections based on precomputed application counts, 
resulting in a time complexity of 𝑂(𝑘). In practice, since 𝑘 is typically 
small (e.g., 5 in our experiments), this overhead is negligible. The high 
efficiency of Algorithm 2 makes it suitable for real-time scheduling deci-
sions. Overall, the DTW distance computation in Algorithm 1 constitutes 
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Fig. 9. Application allocation on VMs of different scheduling algorithms under each host counts.

Fig. 10. The times of the servers reaches the peak load situation of different algorithms under each host counts.

the primary computational bottleneck. However, its overhead can be 
effectively managed by limiting the number of historical datasets, em-
ploying approximate DTW algorithms, or precomputing distances. Given 
that scheduling decisions are made periodically (e.g., every 40 seconds 
in our experiments), the computational overhead remains acceptable in 
most cloud environments. This analysis confirms that the proposed so-
lution is not only effective but also practically feasible for real-world
deployment.

6.  Conclusion

We proposed a performance interference measurement model for 
compute-intensive VM, which incorporates three additional perfor-
mance metrics compared to existing studies and takes account into the 
temporal differences of co-located VMs on the same metrics. We con-
ducted an analysis of the model’s fitting accuracy and verified its relia-
bility in terms of overfitting, with results showing that our model outper-
forms several existing models. Additionally, we proposed a scheduling 
algorithm that considers for the temporal fluctuations of performance 
metrics and interference characteristics of different co-location applica-
tion combinations. The results demonstrate that our algorithm outper-
forms scheduling methods based solely on load balancing or the aver-
age value of performance metric. This study focuses primarily on sce-
narios involving computational resource consumption, and we believe 
that our research approach could also be applied to performance in-
terference studies involving other resource types. Furthermore, there 
are areas for improvement in our research. For instance, more com-
plex models such as neural networks could be considered for perfor-
mance interference modeling, accompanied by a finer-grained analysis 
of resource-specific performance (e.g., memory) in co-location scenar-
ios. Especially for compute-intensive VMs that possess their own mem-
ory requirements, such an analysis would be particularly valuable. In 
terms of interference-aware scheduling, we could explore the design of 
a scheduling algorithm based on time-series data that does not rely on 
prior knowledge. Moreover, it would be valuable to investigate schedul-
ing algorithms for batch applications with dependencies, in which tasks 
are not independent.
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