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Abstract—With the increasing need for intelligent and secure
multimedia systems, infrared and visible image fusion (IVIF) has
garnered a lot of attention due to its ability to overcome the
limitations of a single sensor and integrate unique information
from different modalities. However, it is common to overlook
how the spatial frequency information of visible and infrared
images differs. A less thorough feature extraction may result
from many approaches’ inability to reconcile the extraction of
both global and local information. To solve the aforementioned
difficulties, we propose a dense multiscale fusion network DMNet.
Through a dual-stream collaborative feature decoupling, the
proposed network optimizes both the encoder–decoder network
and the diffusion model to extract multimodal information
more comprehensively. Specifically, the three-stage progressive
encoder sequentially integrates dense transformer block (DTB)
and dense invertible neural network block (DIB) to achieve
global feature extraction and multimodal feature decoupling. Our
proposed channel and spatial attention block (CSAB) selectively
focuses on the important feature maps to better capture the
critical information. Additionally, multiscale latent features are
extracted by the diffusion module (DM) to enhance the rep-
resentation of cross-modal latent features. As demonstrated by
extensive experiments, DMNet outperforms representative state-
of-the-art methods. Furthermore, we conduct sufficient ablation
experiments to validate each module’s effectiveness, and we
demonstrate that DMNet can enhance downstream infrared-
visible object detection performance. Our fused results and code
will be accessible at https://github.com/Pancy9476/DMNet.

Index Terms—Attention mechanism, dense network, diffusion
model, image fusion, invertible neural network, transformer.
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I. INTRODUCTION

MULTIMODAL image fusion is widely needed in
multimedia products. Due to hardware technological

restrictions, infrared (IR) images are usually visually blurred,
have low signal-to-noise ratio, low contrast, and low reso-
lution [1], while visible light (VIS) images are subject to
variations in weather changes, illumination, and other factors.
Fusing IR and VIS pictures helps lessen a single sensor’s
flaws and maximize the advantages of both sensors, thus
significantly improving image quality. Infrared-visible image
fusion technology is extensively applied in various fields such
as transportation, medicine, object detection, military actions,
and agriculture [2], [3].

In recent years, many researchers have explored the image
fusion field through deep learning methods [4], [5] to improve
the fusion effect. Over the past decades, image fusion tech-
nologies have evolved from traditional signal processing-based
methods (e.g., multiscale transforms, principal component
analysis, and sparse representation) [6] to learning-based
approaches [7]. Traditional methods rely heavily on hand-
crafted features and fail to fully adapt to complex image
distributions. In contrast, deep-learning-based methods offer
data-driven capabilities to automatically extract semantic fea-
tures, significantly improving fusion performance. Particularly,
feature fusion plays a pivotal role in determining the quality
of the fused image, as it directly affects how complementary
information from different modalities is integrated. Three
commonly used networks based on CNN [8], autoencoder
(AE) [9], and GAN [10] have been widely adopted.

Due to the differences in the spatial frequency (SF) features
of the visible and infrared images, it may lead to a uniform
luminance bias in the images, as shown in Fig. 1(a) and (b).
In Fig. 1(a), the infrared image clearly preserves target details
such as the person’s outline and cloud contours, even under
low-light and occluded conditions. In contrast, Fig. 1(b) shows
that the corresponding visible image suffers from significant
visual degradation due to poor illumination and fog. This SF
mismatch becomes more pronounced after fusion and may
degrade image quality if not handled appropriately. Infrared
images typically have lower spatial frequencies, while VIS
images have higher frequencies [11]. However, existing fusion
methods usually suffer from the problem of unreasonable
weight setting of different source images. In some methods,
the proportion of VIS images in the fused result is too large,
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Fig. 1. Schematic illustration of IVIF on the 00361 image pair from the
M3FD dataset. (a) Infrared. (b) Visible. (c) Diff-IF (INFFUS 2024). (d) Ours.

resulting in a wider brightness range of the final fused image,
which reduces the visual clarity and detail expression of the
image. As shown in Fig. 1(c), the enclosure behind the fog
is obscured and the cloud information in the IR image is
lost. Effectively fusing these two types of images requires the
ability to extract features from different scales.

To address the above problems, we develop a fusion
network called dense multiscale feature extraction (DMNet)
for extracting features at different frequencies and balancing
the weights of the source images to enhance the quality of
the fused images. As seen in Fig. 1(d), our method not only
effectively preserves the rich texture information from the
source images, but also retains the target information from the
infrared image. Unlike traditional simple cascade architectures,
we innovatively establish a bidirectional collaborative mecha-
nism between the encoder–decoder network and the diffusion
model. This mechanism enables comprehensive cross-modal
feature extraction through an improved dense feature enhance-
ment module and a channel-spatial attention-guided block.
The encoder adopts a three-stage progressive feature abstrac-
tion architecture, where the dense transformer block (DTB)
captures long-range dependencies, while the dense invertible
neural network block (DIB) facilitates cross-modal feature
decoupling through nonlinear mapping. Additionally, our
proposed channel and spatial attention block (CSAB) module
improves the model’s capacity to extract critical information
by selectively focusing on important feature maps through the
joint channel and spatial attention mechanism. The diffusion
modelis particularly suitable for fusing visible and infrared
images because the U-Net structure in its denoising network
can extract multiscale features. In addition, we train the
diffusion module by gradually adding and removing noise.
The procedure forces the model to concentrate on extracting
information from images at different scales. Since the training
process exposes the model to various noise levels, this makes
the model robust to noise in the input images.

Our proposed DMNet is collaboratively designed based
on theoretical motivations, skillfully integrating the diffusion
model, Transformer, invertible neural network, and attention
mechanism to achieve unified optimization of information
compression, modality decoupling, scale enhancement, and
detail refinement. Our high-quality fused images not only
retain the critical information from multisource images more
accurately, but also significantly enhance the performance
of downstream tasks. In applications such as autonomous
driving [12], object detection [13], and intelligent surveil-
lance [14], high-quality fused images can improve system
recognition accuracy and decision-making capabilities. Our
contribution is summarized as follows.

1) Considering the varying spatial frequencies of images,
we suggest an innovative network DMNet to extract fea-
tures at various spatial scales. On five popular datasets,
our method improves the quality of fused images more
than the state-of-the-art methods.

2) We innovatively employ the diffusion model as a feature
extraction module for infrared and visible image fusion
(IVIF) tasks. It highlights the multiscale features, crucial
important to improve the fusion performance.

3) Our proposed DTB and DIB have significant advan-
tages in multiscale feature extraction. The DTB utilizes
a self-attentive mechanism to strengthen the capture
of both local and global information, while the DIB
through invertible mapping retains more image details
and information. The combination of these two modules
significantly improves the quality of fused images.

4) We propose the CSAB to generate weighted attention
maps from channel and spatial dimensions. The CSAB
module selectively focuses on important feature maps
and suppresses unimportant features, thus enhancing the
model’s ability to capture critical information.

II. RELATED WORK

This section presents related work and background material
pertinent to the methodology presented in this work, includ-
ing deep-learning-based methods, diffusion models and INN
modules.

A. Deep-Learning-Based Methods

Deep learning networks, such as CNN, GAN, and AEs,
are commonly used to solve infrared-visible image fusion
problems. Compared to traditional methods, these networks
have significant advantages in terms of fast fusion speed
and clear fused images. LP-CNN [15] pioneered the use of
CNN for image fusion, while IFCNN [8] eliminates manually-
designed fusion rules. However, single CNN-based fusion
architectures still have some limitations, such as insufficient
feature extraction due to fewer convolutional layers, and
pooling operations that may lead to loss of advanced features.
To address these shortcomings, ReCoNet [16] introduces a
deformation module and an attention mechanism, effectively
enhancing robustness in misaligned scenarios. U2Fusion [17],
on the other hand, builds upon DenseNet and further pro-
poses a feature measurement framework, achieving multitask
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fusion through adaptive information evaluation. Nevertheless,
balancing local feature extraction and global context modeling
remains a key challenge for CNN-based methods.

The AE framework offers a novel solution by lever-
aging an encoder–decoder structure to achieve feature
disentanglement and reconstruction, making it another main-
stream approach. The classical DenseFuse [9] enhances
feature transmission using dense blocks, with its encoder
extracting multiscale features through dense connections.
CrossFuse [18] adopts a two-stage training (TST) strategy,
utilizing a cross-attention mechanism to strengthen feature
interactions within the encoder, thereby reducing redundant
information while preserving key details. MUFusion [19]
designs a memory unit architecture, where intermediate
fusion results are used to self-evolve and optimize network
parameters.

Since FusionGAN [20] first introduced GAN into image
fusion, the unsupervised learning capabilities of GAN have
gained significant attention in this field. However, a single
discriminator architecture often leads to modality weight
imbalance, prompting subsequent studies to refine adversar-
ial mechanisms for improved fusion control. For instance,
GANMcC [21] proposes a multiclass constraint discriminator,
which forces the fused result to retain a balanced distribution
of both modalities.

In recent years, Transformers and hybrid architectures
have become a research hotspot due to their superior
global modeling capabilities. CDDFuse [22] introduces a
correlation-driven feature decomposition network, incorporat-
ing Lite Transformer blocks to extract low-frequency global
features, thereby achieving cross-modal feature disentangle-
ment. EMMA [23] designs a Restormer-CNN hybrid block,
integrating geometric priors from natural imaging into self-
supervised training. These methods leverage multiscale feature
collaboration and prior knowledge embedding, providing new
perspectives for dynamic weight allocation and detail fidelity
in image fusion.

B. Diffusion Models

A type of generative model called the diffusion model
has just surfaced in the deep learning sector, and it cur-
rently shows notable benefits in image super-resolution, image
generation, and image restoration. This probabilistic model
perturbs the input data by incrementally adding Gaussian
noise during forward diffusion before learning to reverse the
process and retrieve the desired noise-free data from the noisy
samples [24]. During this procedure, features of different
spatial frequencies are extracted from the images. This feature
opens up the possibility of applying diffusion models to the
field of image fusion. Diffusion [25] pioneered the use of dif-
fusion modeling for infrared-visible image fusion by extracting
multichannel diffusion features through a denoising network
and generating three-channel color fused images through a
multichannel fusion module. The model introduces intensity
loss and multichannel gradient loss to preserve intensity and
texture information, hence improving the color accuracy of the
fused images.

C. Attention Mechanisms

Attention mechanisms have revolutionized various
fields [26], [27], [28] in deep learning by allowing models
to concentrate on the most pertinent parts of the input data.
Initially introduced in the context of machine translation [29],
attention mechanisms have since been adapted to numerous
other tasks, including image processing, where they help
models selectively concentrate on important features. In image
fusion, attention mechanisms play a crucial role by enhancing
the extraction and fusion of features from multiple sources.
Squeeze-and-excitation networks (SENets) [30] introduced
channel attention mechanisms that adaptively recalibrate the
channel-wise feature responses, significantly improving model
performance on image classification tasks. Similarly, the
convolutional block attention module (CBAM) [31] extended
this concept by integrating both channel and spatial attention,
further refining feature representation.

D. Invertible Neural Networks

Invertible Neural Networks have garnered significant atten-
tion in deep learning due to their unique capability of
achieving a fully reversible mapping between input and output
spaces. This characteristic enables the INN to retain complete
information about the input data, thereby facilitating high-
quality image reconstruction and synthesis. The concept of
the INN was first introduced with the nonlinear indepen-
dent components estimation (NICE) model [32]. The NICE
model leveraged a series of coupling layers that ensured the
invertibility of the network, allowing for efficient and lossless
data transformations. The RealNVP model [33] enhanced
the NICE architecture by incorporating a more sophisticated
coupling layer design, which further optimized the network’s
performance in generative tasks. Ardizzone et al. [34] made
significant contributions to the understanding and applica-
tion of INNs in their work on normalized flow models.
Radev et al. [35] showcased the efficacy of INNs in main-
taining detailed and accurate image representations. INet [36]
leverages INN to achieve lossless information processing in
multimodal medical image fusion. In addition to image fusion
and reconstruction, INNs have found applications in image
hiding and other areas of image processing.

III. PROPOSED METHOD

We present the workflow of our DMNet and the specific
structure of the individual modules in this section. Fig. 2
depicts the workflow in detail.

A. Overview

The proposed method is a hierarchical TST fusion frame-
work. In Training Stage I, a dual-branch parallel training
strategy is adopted, where visible and infrared images
are separately fed into an encoder–decoder network and
an independently optimized diffusion model. The encoder
follows a three-layer progressive feature abstraction architec-
ture: the improved DTB and DIB are designed to enhance
long-range dependency modeling and nonlocal feature dis-
entanglement, respectively; the CSAB module selectively
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Fig. 2. Framework of our DMNet method. (a) AE structure and diffusion module for feature decomposition and reconstruction of the source images in the
Training Stage I. (b) AE structure for obtaining the fused images in the Training Stage II.

focuses on important feature maps through a joint channel and
spatial attention mechanism. The diffusion model reconstructs
images through a noise-adding and denoising process while
extracting latent representations via the denoising network.
In Training Stage II, after passing through the DTB module,
the input images are separately processed by DIB and the
diffusion model (DM). DIB extracts detailed features, while
DM captures cross-modal latent representations. The features
from both pathways are then guided by CSAB before being
fed into the decoder to generate the final fused image.

B. DTB and DIB

For clarity of presentation in formulation, we define some
notation. The paired IR and VIS images of the aligned inputs
are represented as Iir ∈ R

H×W and Ivis ∈ R
H×W×3.

The structure of the DTB and the DIB is shown in Fig. 3.
We use the DTB to extract global basic features {�B

Iir
,�B

Ivis
}

applying self-attention on the feature dimension of infrared
and visible inputs from high-resolution input images {Iir, Ivis},
i.e.,

�B
Iir

= B(Iir), �B
Ivis

= B(Ivis) (1)

where B(·) and D(·) represent the DTB and the DIB,
respectively.

Given the texture and edge in the basic features are quite
significant for the process of image fusion, we want to preserve
as rich detail information as feasible after extracting the

global features, thus we utilize the DIB with affine coupling
layers [22]. The DIB enables the input and output features
generate each other, so that the input features can be more
effectively maintained. Therefore, it is regarded as a lossless
feature extraction block and well suited for this task. The DIB
then extracts the detailed information features from the global
basic features with the formula

�D
Iir

= D(
�B

Iir

)
, �D

Ivis
= D(

�B
Ivis

)
. (2)

As shown in Fig. 3, the DTB contains five transformer
layers and the DIB has three INN layers where each layer’s
output cascade is used as the input to the next layer. Each
layer outputs the same dimension. And ω and ψ are the tuning
parameters that we initially set to 1/5 and 1/3, respectively.

C. Denoising Network

We concatenate the source image in the channel dimension
and use the two-channel image as the input to the diffusion
module. The main core process of the diffusion module is
shown in Fig. 2. Gaussian noise is gradually added to the
image in the forward process, and finally presents a nearly pure
noise state P(

It | It−1
)
. The denoising process Q(

It−1 | It
)

gradually predicts and eliminates the noise through the denois-
ing network in the reverse process. Finally, the latent features
of the input image are extracted by the denoising network.

Motivated by previous works such as Diffusion [25] and
DANet [37], we adopt the channel-wise concatenation of
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Fig. 3. Structures of the DTB and dense INN block.

infrared and visible images as the input to the DDPM. This
design aims to enable the diffusion process to jointly perceive
both modalities. By fusing information at the channel level,
the forward noise addition and reverse denoising processes can
simultaneously capture modality-specific and complementary
patterns. This strategy allows the model to encode cross-modal
dependencies during the diffusion process and extract more
representative and informative latent features.

Specifically, the two-channel image I0 ∈ R
H×W×2, which is

concatenated from the source images, utilizes the bidirectional
process in the DDPM [25] to establish the distribution of the
two-channel data. The forward process gradually adds noise
over T time steps, while the reverse process removes noise
from the added data to recover the original data gradually.
Through both the forward and reverse processes, the diffusion
module learns the shared latent structure of the source images
and extracts features of different spatial frequencies [25].

Forward Diffusion Process: The forward process of the dif-
fusion module can be regarded as a Markov chain [38] driven
by nonequilibrium thermodynamics principles. Gaussian noise
is progressively introduced to the data samples at each time
step t (from 0 to T). The process of adding noise can be
expressed as the recursive formula

P(
It | It−1

) = N (√
αtIt−1, 1 − αt

)
(3)

where N denotes the normal distribution. It−1 and It denote
the noisy two-channel images generated after adding Gaussian
noise t − 1 and t steps, respectively. The variance table αt is
used to determine the variance of the Gaussian noise injected
at time step t. More specifically, after the first time step, I1
can be expressed as

I1 = √
1 − α1 × ε1 + √

α1 × I0 (4)

where εt ∈ R
H×W×2 is the Gaussian noise obeying a standard

normal distribution at the moment of time step t. From (3)
and (4) it can be deduced that

It = √
1 − ᾱt × ε + √

α1 × I0 (5)

where ᾱt = ∏t
i=1 αi. Based on the above deduction, we can

define the diffusion process from I0 to It as

P(
It | I0

) = N (√
ᾱtI0, 1 − ᾱt

)
. (6)

Fig. 4. Architecture of our proposed denoising network.

Reverse Diffusion Process: The original two-channel image
is obtained by applying a series of denoising operations using
a neural network [39]. Given that the transition from time
step t to t − 1 is a stochastic process, we employ Bayes’
theorem [35] to derive the image It−1 of the previous time
step from the known image It at the time step t. This process
can be formulated as

Q
(
It−1 | It

) = P
(
It | It−1

)
P
(
It−1 | I0

)

P
(
It | I0

) (7)

based on (3), (5), and (6), it can be deduced that

Q(
It−1 | It

) = N
(√

αtβt−1
βt

It +
√
ᾱt−1

(
1 − αt

)

βt
I0,

(
1 − αt

)
βt−1

βt

)
(8)

where I0 = (It − √
βt × ε)/

√
ᾱt, and βt = 1 − αt.

Structure of the Denoising Network: The purpose of the
denoising network is to predict and eliminate the noise added
during forward processing. The network structure of the
denoising network we designed is shown in Fig. 4. It follows
the U-Net architecture [40] used in SR3. In SR3 [25], the
expansion path of the backbone consists of five convolutional
layers that generate output feature maps at different scales.
This multiresolution structure enhances the model’s ability to
reconstruct the fused output, resulting in rich latent represen-
tations with high structural fidelity and perceptual quality. We
use one convolutional layer to fuse the multichannel diffusion
features generated by the five stages of the denoising network
and finally generate the latent feature maps �L

Ilf
. The denoising

network extracts the latent features from the global basic
features with the formula

�L
Ilf

= L(
Conv(C(�B

Iir
,�B

Ivis
))

)
(9)

where L(·) represents the DM, Conv(·) donates a convolution
operation, C(·) refers to channel concatenation. The input
dimensions in the second stage are the same as in the first
stage.
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Fig. 5. Structures of the CSAB.

D. CSAB

Inspired by [31], we design the CSAB. The CSAB is
a CNN-based attention module designed to enhance the
representation capacity and performance of the model. By
selectively attending to important feature maps and sup-
pressing unimportant features through the joint channel and
spatial attention mechanism, our CSAB improves the model’s
capacity to capture crucial data. As shown in Fig. 5, the
Channel Attention Module and the Spatial Attention Module
make up its two primary submodules.

The channel attention module generates two different
description vectors by performing global mixed pooling and
global max pooling on the input feature maps. They are
then fused through a shared multilayer perceptron (MLP).
Ultimately, the activation function sigmoid creates the channel
attention map, which enhances the feature map’s ability to
discriminate.

Using global max pooling and global mixed pooling on
the input feature maps in the channel dimension, the spatial
attention module creates two distinct spatial attention maps.
Then, they are fused by convolution operation. Ultimately,
the activation function sigmoid creates the spatial attention
maps, improving the model’s capacity to extract key spatial
information.

The CSAB is employed to improve the expressiveness of
the features. The detailed features extracted by DIB and the
latent feature maps extracted by DM are, respectively, feature-
enhanced by the CSAB module, and the expressions are

�A
Iir

= A(
�D

Iir

)
, �A

Ivis
= A(

�D
Ivis

)
, �A

Ilf
= A(

�L
Ilf

)
(10)

where A(·) represent the CSAB.

E. Encoder

The Encoder has five components: 1) a classical CNN block;
2) a DTB; 3) a DIB; 4) a CSAB; and 5) a DM. Each of
these components is designed to progressively extract and
refine features from the input image, enabling the network to
capture both low-level and high-level representations essential
for effective image fusion.

In Training Stage I: We embed the input images by a simple
convolution, then the global feature information {�B

Iir
,�B

Ivis
}

is extracted by the DTB, the detailed features {�D
Iir
,�D

Ivis
} are

extracted after the DIB, and finally the reconstructed important
features {�A

Iir
,�A

Ivis
} are obtained by the CSAB.

In Training Stage II: The global feature information
{�B

Iir
,�B

Ivis
} extracted by the DTB is used to extract detail

features {�D
Iir
,�D

Ivis
} and latent features �L

Ilf
through the DIB

and DM, respectively. Finally, the reconstructed detail features
{�A

Iir
,�A

Ivis
} and latent features �A

Ilf
are obtained through the

CSAB block.

F. Decoder

The Decoder plays a crucial role in reconstructing the
source and fused images from cross-modal features. Given
the inherent differences in modality between infrared and
visible images, it is essential for the Decoder to possess both
strong global modeling capabilities and precise local detail
reconstruction.

To achieve this, we design the Decoder as a hybrid
structure that combines Transformer and CNN modules. The
Transformer blocks enable the Decoder to capture global
contextual information and long-range dependencies, while
CNNs preserve local textures. This hybrid design has been
successfully adopted by recent state-of-the-art methods such
as CDDFuse [22] and DANet [37], validating its effectiveness
in fusion tasks.

Since the inputs are cross-modal, we aim to ensure stable
training of the model so that the Decoder may make use
of the features that the Encoder generated [41] for accurate
reconstruction [42]. To achieve this, we maintain a consistent
Decoder structure across the two stages of training. This
approach reduces the risk of information loss and consequently
enhances the quality of the fused images.

In Training Stage I: The important detailed features of the
decomposed infrared and visible image pairs are, respectively,
used as inputs to the Decoders, and the reconstructed infrared
and visible images are used as outputs, which is formulated
as

Iir′ = DE
(
�A

Iir

)
, Ivis′ = DE

(
�A

Ivis

)
(11)

where DE
(·) represents the Decoder.

In Training Stage II: We add the important detailed features
and the important latent features extracted by the CSAB as
the input to the Decoder, and the fused image is used as the
output, which is formulated as

F = DE
(
�A

Iir
+�A

Ivis
+�A

Ilf

)
. (12)
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G. Two-Stage Training

State-of-the-art supervised learning methods often struggle
with image fusion tasks due to the scarcity of ground truth. To
overcome the challenge, we have drawn inspiration from [22]
and employ a two-stage end-to-end learning approach to train
the DMNet. This helps to effectively address the difficulties
associated with image fusion. Specifically, the modules in the
network are trained in the first stage to ensure that each module
extracts and processes features efficiently so that better fusion
results can be obtained in the second stage. This strategy
effectively improves the robustness of the model and the
quality of the fused images.

In Training Stage I: The sets of visible and infrared images
{Iir, Ivis} are processed through the denoising network to
obtain latent feature maps. Meanwhile, features {�A

Iir
,�A

Ivis
}

are extracted from the infrared and visible image pairs {Iir, Ivis}
that are fed into the Encoder. After that, the original infrared
and visible images {Iir′ , Ivis′ } are, respectively, reconstruct
using these features by the Decoder.

In Training Stage II: We retain the encoder and decoder
parameters obtained from Stage I as the initial weights
and continue to train the entire network jointly. Pairs of
infrared-visible images {Iir, Ivis} are fed to an Encoder which
is almost well-trained for extracting features across various
frequency domains. The reconstructed detail features obtained
are summed with the reconstructed latent features to form the
fused features {�A

Iir
+ �A

Ivis
+ �A

Ilf
}. The final fused image F

is generated by processing the fused features by the Decoder.
Due to the two-stage learning process, our network enhances
the quality of the fused image by more effectively capturing
the finer details of the source images.

H. Loss Function

The loss function is not the same in the two training stages.
In Training Stage I: The loss of AE Lau is

Lau = Lvi + γ1Lir (13)

where Lvi and Lir denote the losses incurred during recon-
struction for visible and infrared images [22], respectively.
γ1 is the tuning parameter. And the reconstruction losses are
represented as

Lvi = LI
int

(
Ivi, Ivi′

) + λLSSIM
(
Ivi, Ivi′

)
(14)

LI
int

(
Ivi, Ivi′

) =|| Ivi − Ivi′ ||22 (15)

LSSIM
(
Ivi, Ivi′

) = 1 − SSIM
(
Ivi, Ivi′

)
(16)

where SSIM
(·) denotes the structural similarity index [43]. λ

is the tuning parameter. We can get Lir in the same way.
The loss of diffusion denoising process Ldm is defined as

Ldm =|| ξ − η
(√
ᾱtI0 + √

1 − ᾱtξ, t
) ||2 (17)

where ξ represents sampling noise following a standard normal
distribution, η

(· , ·) denotes the denoising network. And the
inputs of η

(· , ·) are the noisy image It and the time step t.
In Training Stage II: The total loss is

Ltotal = LII
int + Ldm + γ2Lgd (18)

where LII
int = (1/HW) || F − max

(
Iir, Ivis

)||1, the intensity
loss LII

int helps to retain the salient intensity features. The
definition of Ldm is the same as that in the first stage. γ2 is
the tuning parameter. Lgd is a gradient-based structural loss
that preserves more prominent edges and contours in the fused
image by aligning its gradient map with the stronger gradient
components from the source images. Lgd is defined as

Lgd = 1

HW
||| ∇F | −max

(| ∇Iir |, | ∇Ivis |) ||1 (19)

where ∇ denotes the Sobel gradient operator.

IV. EXPERIMENTS

In this section, we first introduce the experimental details,
including dataset selection, training settings, benchmarks, and
evaluation metrics. Subsequently, we conduct both quantitative
and qualitative analyses on five publicly available infrared-
visible datasets and three medical image datasets to evaluate
the proposed model. To further validate the performance of
our model and the superiority of its network design, we
compare it with eight state-of-the-art models. Finally, compre-
hensive ablation experiments are conducted to demonstrate the
rationality and effectiveness of the designed network and the
proposed modules.

A. Datasets and Metrics

Datasets: Our experiments utilize infrared and visible image
pairs from TNO [44], MSRS [45], RoadSence [46], and the
LLVIP dataset [47] to validate our fusion model. The MSRS
training set, which consists of 1083 pairs of visible and
infrared images, is used to train the model we propose. Then,
25 pairs of TNO, 361 pairs of MSRS, 221 pairs of RoadScene
and 3463 pairs of LLVIP test set images are used as the test
dataset to validate the fusion performance.

Benchmarks: We compare our method with eleven state-
of-the-art methods including DenseFuse [9], GANMcC [21],
SDNet [48], U2Fusion [17], ReCoNet [16], MUFusion [19],
CDDFuse [22], Diffusion [25], CrossFuse [18], EMMA [23],
Diff-IF [49], DANet [37], and INet [36]. Among them,
GANMcC is the fusion method based on generative models
(GAN), SDNet, U2Fusion, ReCoNet, and INet use fusion
methods based on CNN architectures, Diffusion is the
fusion method based on diffusion models, while DenseFuse,
MUFusion, CDDFuse, CrossFuse, and EMMA are fusion
methods based on AE architecture.

Evaluation Metrics: The objective metrics EN [50], SF [51],
AG [52], SD [53], CC [54], SCD [55], MI [56], VIF [57],
Qabf [58], and MS-SSIM [59] are employed to analyze the
performance of image fusion methods. EN, SF, AG, and SD
are nonreference evaluation metrics, which do not need the
fused image to calculate. CC, SCD, MI, VIF, Qabf, and MS-
SSIM are reference evaluation metrics, which need the fused
to calculate.

B. Implement Details

In the preprocessing stage, we randomly crop the visible
and infrared images into 128 × 128 blocks. To improve
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Fig. 6. Ten methods are compared qualitatively using the Bunker image pair from the TNO dataset.

Fig. 7. Ten methods are compared qualitatively using the 01493D picture pair from the MSRS dataset.

the efficiency of training the diffusion module, multichannel
diffusion features are generated by extracting the diffusion
features generated at three time steps, namely 5, 50, and 100,
as inspired by [25] and [39]. The first and second stages have
15 and 30 epochs, correspondingly, for a total of 45 epochs in
AE training. To reduce the loss, we adopt the Adam optimizer
with a 0.0001 initial learning rate. The suggested model is
implemented using PyTorch. Every experiment carried out on
an NVIDIA A100 Tensor Core GPU.

C. Fusion Performance Analysis

Figs. 6–9 give the visualization results for the four datasets,
TNO, MSRS, RoadScene, and LLVIP, respectively. To get a
clearer image of the performance of each method, we enlarge
the target information and texture features in the fused images
and visualize the results. Tables I–IV show the test results for
each of the four datasets, where bold portions represent the
best performance and underlined portions represent the second
best performance. Overall, our model usually performs better
than other methods.

Experiments on TNO Dataset: The qualitative and quan-
titative results on the TNO dataset are shown in Fig. 6 and
Table I. Our method more effectively combines the thermal
radiation information in the infrared image with the detailed
texture information in the visible image, and the fused image
has not only obvious infrared targets but also detailed texture
information in the visible image. The important features of
the two source images are not lost. A person in a bush is
highlighted in the infrared picture in Fig. 6, and the soldier
is retained in the fused image generated by all methods. The
target person in DenseFuse, U2Fusion, and ReCoNet is darker.
Some artifacts are observed along the edges of the soldier

in the results produced by EMMA, Diff-IF, and INet. The
edges of the turret in GANMcC, SDNet, CDDFuse, Diffusion,
CrossFuse, and DANet are blurred, and the detail information
is lost. The fusion image generated by MUFsion is somewhat
sharpened. In addition, our network obtains optimal results in
seven metrics and suboptimal results in two metrics. Although
our experimental results are slightly lower than other methods
on the MI metrics, this does not fully reflect the superiority
of our method. Our method excels in visual quality and detail
retention, which is verified in other critical metrics.

Experiments on MSRS Dataset: In Fig. 7, our method does
better in the aspect of retaining more texture detail features
from the source images. Specifically, in the red boxes of the
fused images generated by DenseFuse, GANMcC, SDNet,
ReCoNet, CrossFuse, and Diff-IF, the information of the leaves
is lost or the texture information of the leaves becomes
blurred. The fused images generated by GANMcC, U2Fusion,
SDNet, ReCoNet, and CrossFuse are too dark and the detail
information of the visible image is lost. The fused image
generated by MUFsion is sharpened severely and does not
match the human eye perception. The color of the human
figures in the fused images generated by DANet and INet
is distorted. Only the fused images generated by CDDFuse
and EMMA closely resemble our results. Table II shows that
our method obtains optimal results on seven metrics and
suboptimal results on the remaining three metrics. Our method
not only enhances the retention of critical details, but also
significantly improves the overall visual quality of the fused
images.

Experiments on RoadScene Dataset: We utilize the
Roadscene dataset consisting of 221 image pairs of IR and
VIS to verify the effectiveness of our method. The fused
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Fig. 8. Qualitative comparison of ten methods on the FLIR_06832 image pair from the RoadScene dataset.

Fig. 9. Qualitative comparison of ten methods on the 260210 image pair from the LLVIP dataset.

TABLE I
EXPERIMENTAL RESULTS ON THE TNO DATASET [44]

results of a quintessentially pair of IR and VIS images are
shown in Fig. 8. The fused images from ReCoNet, CDDFuse,
Diffusion, EMMA, Diff-IF, and DANet are too high contrast,
resulting in the loss of texture information of the cloud
in the red boxes. The fused images from by DenseFuse,
GANMcC, SDNet, and CrossFuse are too dark, making the
character information in the blue boxes unclear. The fused
images generated by MUFsion are still badly sharpened. The
color of the fused image generated by INet is distorted.
The fused image generated by U2Fusion retains the texture
detail information to some extent, but the target is not clear
and the boundary is blurred. In contrast, our method not
only pays good attention to the luminance information of the
source images, but also preserves the rich detailed texture
information. Table III shows that our method obtains optimal

results on eight metrics and suboptimal results on one metric.
Our method is comparatively lower than some other methods
for the metric MI. This is because the feature fusion strategy
of our method focuses on preserving luminance information
and texture details. Due to the large difference in luminance
information between the IR and VIS source images on the
RoadScene dataset, the fused features can be considered as a
tradeoff of the original feature maps, which results in lower
mutual information between our fused image and the infrared
image. However, our method achieves better performance than
other methods from the perspective of multimetric evaluation.

Experiments on LLVIP Dataset: LLVIP is a IR-VIS paired
dataset for low-light vision [47]. We validate the performance
of all fusion method on the test set consisting of 3463
IR-VIS image pair. In Fig. 9, the fused images generated
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TABLE II
EXPERIMENTAL RESULTS ON THE MSRS DATASET [45]

TABLE III
EXPERIMENTAL RESULTS ON THE ROADSCENE DATASET [46]

TABLE IV
EXPERIMENTAL RESULTS ON THE LLVIP DATASET [47]

by DenseFuse, ReCoNet, and CrossFuse are darker and the
texture detail information in the images are blurred. The
fused images from MUFsion, CDDFuse, Diffusion, Diff-IF,
and INet have lower contrast, which may lead to difficulties
for subsequent tasks (e.g., object detection and image seg-
mentation). We can observe in the red boxes that only our
method preserves the car wheel texture and detail information
well while retaining the appropriate luminance information.
Table IV shows that our method obtains optimal results on
eight metrics and suboptimal results on one metric. Compared
with the suboptimal method, our SF and SD sores are
improved by 0.366 and 2.574, respectively.

D. Ablation Studies

To validate the performance of our method, we conducted
a series of ablation experiments to explore the effects of
different modules, respectively. To verify the performance of
TST, we only conduct training stage 2 in AE1. Meanwhile,
to ensure fairness, we set the epoch of the training stage
2 to 45. In the ablation experiments, we adopt two strategies
for the different modules: some modules are directly removed,
while other complex modules (e.g., the diffusion module)
are replaced by simple convolutional layers. We not only
conduct separate ablation experiments for each module, but
also combine ablation experiments for different modules. From
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Fig. 10. Qualitative comparison of the ablation experiment for the fused results on the 00218D image pairs from the MSRS dataset.

TABLE V
ABLATION EXPERIMENT RESULTS IN THE DATASET OF MSRS. BOLD INDICATES THE BEST VALUE

TABLE VI
TEST RESULTS ON THE LLVIP DATASET USING DIFFERENT GRADIENT

OPERATORS DURING TRAINING

AE1 to AE14 denote the ablation experiments of different
modules, as detailed in Table V.

Qualitative Comparison: In Fig. 10, we can clearly observe
that the fused images without the DIB module have low
contrast and edge information is lost (e.g., AE7 and AE12).
The texture detail information of the fused images without
the DTB module is lost, e.g., the feature information is not
visible in the blue boxes of AE8, AE9, and AE11. From AE13
and AE14, it can be seen that the lack of DM module and
CSAB module leads to higher and lower brightness of the
fused image, respectively. When both DIB module and DTB
module are not simultaneously used, the quality of the fused
image becomes very worse. The image contrast becomes low,
brightness becomes high and a lot of texture information is
lost as shown in AE2, AE3, and AE10. The absence of other
combinations of different modules also degrades the quality
of the fused image to varying degrees. By combining the
advantages of all modules, our method well preserves the

Fig. 11. Visualization of feature maps before and after CSAB module on
image pairs 190015 and 190103 of the LLVIP dataset. The color bar represents
the activation intensity. (a) �D

Iir
+�D

Ivis
+�L

Ilf
. (b) HM(�D

Iir
+�D

Ivis
+�L

Ilf
).

(c) �A
Iir

+�A
Ivis

+�A
Ilf

. (d) HM(�A
Iir

+�A
Ivis

+�A
Ilf
).

detailed texture and luminance hierarchy of the source image
and presents better visual effects.

Quantitative Comparison: Synthesizing the ablation results
in Table V, the efficacy and rationality of every module
inside the network are validated by the network structure
we designed, which yields the best average results in eight
quality indicators and the second best average results in the
remaining two. Although the MI metrics are slightly improved
by removing the DTB module, in general, all other metrics
are decreased. The MS-SSIM metric of AE13 with the DM
module removed is only 0.005 higher than ours, yet all other
metrics decrease. In summary, our DMNet has the best fusion
performance.
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Fig. 12. Qualitative comparison of the object detection experiment for the fused results on the 02043 and 03437 image pairs from the M3FD dataset.

Operator Selection for Loss Function: We conducted abla-
tion studies to compare the performance of the Sobel operator
in the gradient loss function with other edge detection meth-
ods, such as Canny, LoG, and Roberts, in the image fusion
training process. As shown in Table VI, the LoG operator
achieves the best results in the SF and Qabf metrics, while the
Canny operator performs best in the SD metric. In contrast, the
Sobel operator consistently achieves the best or second-best
performance across all metrics. Overall, the Sobel operator
demonstrates the best comprehensive performance.

Visualization of Feature Maps: The results of the feature
map visualization before and after the two pairs of CSAB
modules are presented in Fig. 11, and their corresponding
heat maps (HMs) are shown. In these HMs, we can observe
that the CSAB module is able to enhance the focus on key
feature regions. In the feature maps processed by the CSAB
module, the higher weighted regions are usually focused on the
salient structural and target information in the image, which
are crucial for the image fusion task. For example, for the
pedestrian and vehicle information in Fig. 11, the HM weights
of these target regions are significantly increased after CSAB,
indicating that the CSAB module is strengthening its focus
on these critical information, thus improving the quality of
the fused image. Compared to the feature maps not processed
by the CSAB module, the HMs after CSAB show higher
attention, especially in the edge and detail parts of the image,
indicating that the module is able to effectively extract and
retain fine-grained information in the image, which is crucial
for further image analysis and understanding.

E. Experiments on Infrared-Visible Object Detection

We carry out IVIF object detection on the M3FD dataset,
categorized into six groups, such as People, Car, Bus, Motor,
Truck, and Lamp. The detector used for the object detection

is the pretrained YOLOv5x [60] and the metric used for
assessment is mAP@0.5.

Qualitative Comparison: The comparative analysis
presented in Fig. 12 visually underscores the superiority of
our method in object detection relative to other state-of-
the-art approaches. Obviously, our competitors often miss
at least one label or misidentify detection targets across
various scenarios, failing to correctly detect all relevant
objects. In contrast, our method is able to capture each target
more comprehensively. In the figure 02043, other methods
consistently fail to detect one or two occluded cars, whereas
only our method successfully detects all of them. In the
figure 03437, other methods either misclassify the security
booth as a truck or fail to recognize the person sitting inside,
while our method accurately detects these hard-to-recognize
targets. This clear advantage highlights the effectiveness of
our method in complex detection environments.

Quantitative Comparison: Our method gets the best
performance in five categories of recognition, as indicated
in Table VII, demonstrating its exceptional capabilities for
object detection applications. Specifically, our method shows
excellent performance in detecting the categories of person,
car, and bus, obtaining the best detection results. This indicates
that our method effectively captures valuable information in
image fusion and reflects it in the fused image, thus greatly
improving the accuracy of detecting hard-to-recognize targets.

F. Computational Complexity Discussion

We calculate the model parameters and average test time
on the MSRS dataset for different methods, as shown in
Table VIII. GANMcC processes stacked multisource images
on CPU, leading to a long test time. Diffusion and DANet,
both diffusion-based, also suffer from high time and parameter
costs due to iterative denoising and deep architectures. In
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TABLE VII
AP@0.5(%) VALUES FOR OBJECT DETECTION ON M3FD DATASET

CONSISTING OF 4200 PAIRS OF INFRARED-VISIBLE IMAGES

TABLE VIII
PARAMETERS, AVERAGE TEST TIME, AND SF OF DIFFERENT

METHODS ON THE MSRS DATASET

contrast, DIF achieves a smaller parameter count (23.736M)
by using a shallower U-Net backbone, but its fusion quality is
relatively worse. Our method balances accuracy and efficiency,
it leverages a diffusion module only for latent feature extrac-
tion while excluding it from the final fusion step, significantly
reducing complexity. This design balances model complexity
and performance, as heavier models generally perform better
on complex fusion tasks. Although diffusion-based methods
tend to have larger parameter sizes, they generally achieve
higher SF scores compared to other frameworks, indicating
stronger capabilities in preserving detailed and structural
information. Our method follows this trend and achieves
the highest SF score (14.655) among all compared methods.
Additionally, we optimize the number of sampling steps to
cut computation time. Although our model contains 386M
parameters, it is about 30M fewer than Diffusion and requires
only one-quarter of its inference time. Our approach processes
a pair of images in 1.5 s on average, achieving strong fusion
performance while maintaining practical efficiency. The peak
GPU memory consumption of our model during inference is
approximately 9.94 GB, making it feasible for deployment on
high-performance edge devices such as the NVIDIA Jetson
AGX Orin (32 GB RAM). In future work, we will also
consider introducing techniques such as model pruning and
quantization to further extend the applicability of our model
to lightweight embedded systems.

V. CONCLUSION

In this study, we propose a new AE architecture-based,
unsupervised end-to-end infrared-visible image fusion method,
called DMNet. Motivated by theoretical insights, we inno-
vatively integrate the diffusion model, transformer, and
invertible neural network into a unified and coordinated
architecture, thereby achieving more comprehensive feature
extraction. Specifically, the DTB module captures global-
based information, the DM module extracts potential features,
and the invertible neural network module is used to extract
detailed features, with the CSAB module selectively focus-
ing on important features. These extracted features are then
fused together. Numerous experiments show that the fusion
performance of our DMNet outperforms current state-of-the-
art methods, and both qualitative and quantitative results
validate the robustness, generality, and effectiveness of our
DMNet. Since our network uses both the diffusion model and
transformers, the computational volume is relatively large, and
the demand for computational resources is relatively high. In
the future, we will explore the improvement of our model to
reduce the amount of required computational resources while
maintaining the quality of the fused images.
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