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Abstract—Many recent works utilize scheduling to minimize the Flow Completion Time (FCT) in Data Center Networks (DCN), like

PIAS using Shortest Job First (SJF) scheduling and pFabric using Shortest Remaining Size First (SRSF) scheduling. However, they

only consider the flow size information, without consideration of available bandwidth of the network, leading to inferior performance

when the network is congested. Besides, information on flow size is hard to obtain in practice. Moreover, although a centralized

scheduler may have optimal scheduling decisions, it suffers from high system overhead. Therefore, a new DCN scheme is expected

which is deployment-friendly and implements SRTF scheduling in a distributed manner. In this paper, we propose D-SRTF, a

light-weight yet effective DCN scheme to implement SRTF scheduling. D-SRTF determines the remaining time of each flow according

to the estimated remaining flow size and the available bandwidth, in order to determine the priority of each flow. Switches perform Strict

Priority (SP) scheduling according to the priority of each flow, in order to realize SRTF scheduling. Experiments show that D-SRTF

performs better than the currently best implementable scheme, PIAS, and could perform better than pFabric if information on flow

size is available.

Index Terms—Data center networks, network protocols, scheduling

Ç

1 INTRODUCTION

1.1 Background

IN the era of cloud computing, tremendous amount of
services, like web service, social networking, data mining,

Hadoop, recommendation systems and data storage, are
deployed in cloud data centers, and they all rely on high
performance data centers to improve the quality of service
(QoS) [1], [2], [3], [4], [5], [6]. Each service generates large
amount of network flows consisting of numbers of packets,
and minimizing the average flow completion time (FCT)
has always been one of the most important goals for data
center networks (DCN). A lot of works have been proposed
to minimize average FCT, like DCTCP [4] which reduces
queue length of switch buffers, HULL [5] which trades net-
work bandwidth for low latency, and so on. These works
follow a ”fair-share” manner, as flows can evenly share the
link capacity.

Some recent works, like PDQ [1], have shown that,
through prioritizing short flows over long flows, the average
FCT could be further reduced, with shortest job first (SJF)
scheduling. pFabric [3] considers the remaining flow size
and performs shortest remaining size first (SRSF) scheduling
to approximate shortest remaining time first (SRTF)

scheduling, and achieves theoretically the best performance.
However, these works assume that the flow size is known as
a priori. In fact, it is difficult to obtain the flow size informa-
tion, thus schemes with this assumption are hard to realize
in practice [7]. Then PIAS [7], an information-agnostic flow
scheduling scheme is proposed. PIAS does not rely on flow
size information, and leverages multiple priority queues in
existing commodity switches to implement the multiple
level feedback queue (MLFQ), so that a flow is demoted
from the highest priority queue to the lowest during its life-
time based on its bytes sent. Since short flows are short-lived,
they are likely to finish transmission in the first few high pri-
ority queues, thus in general, PIASmimics SJF.

However, all above works and many recent proposals
implicitly assume that each flow can use the whole link
capacity for transmission. But this is not true in many sce-
narios. For example, (1) some bandwidth is reserved for
special usage, like delivering the control traffic in SDN area
[8], or (2) in multiple-service scenario [8], [9], [10], [11],
when multiple services co-exist in the network, the traffic
for each service can only use a portion of the link capacity.
As a result, existing works fail to capture the real-time avail-
able bandwidth for flow transmission and scheduling, thus
simply scheduling a short flow (or a flow with shorter
remaining size) over a long flow (or a flow with longer
remaining size) will lead to inferior networking perfor-
mance (see Section 3.1.2). Therefore we need to estimate the
available bandwidth of each flow, decide the remaining
time according to the remaining flow size and the available
bandwidth, and schedule the flows with the shortest
remaining time first.

However, to realize SRTF scheduling in practice, we face
the following challenges.

First, flow size is unknown for many applications, thus
it is hard to obtain the remaining flow size.
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Second, bandwidth measurement will increase the bur-
den and is hard to realize. Usually, to measure the available
bandwidth, we need to measure the overall throughput of
all existing flows on one link, and the available bandwidth
is the difference between the overall throughput and the
link capacity. However, since DCN is dynamic, it is difficult
and expensive to accurately measure the overall throughput
on each link, let alone find the least available bandwidth of
all links on a flow’s path, which is the bottleneck.

Third, ideal SRTF assumes a centralized scheduler
which knows the state of the whole system [3]. However,
this is impossible for DCN which is a distributed net-
work system, where such a centralized scheduler would
induce significant overhead and delay the scheduling
decisions.

Therefore, an effective DCN scheme should be:
(1) Information-agnostic: The scheme could not assume that
flow sizes and bandwidth are known from applications.
(2) Distributed scheduling: Although a centralized scheduler
could deliver optimal solution in theory [3], it suffers from
high overhead and delays the scheduling decisions, espe-
cially for short flows which dominate the DCN traffic [4],
[5]. So scheduling decisions should be made in a distributed
manner. (3) Deployment-friendly: The scheme should work
with existing commodity switches, and be compatible with
legacy TCP/IP stacks. (4) FCT minimization: The scheme
should minimize the overall FCT. Since short flows domi-
nate the DCN traffic and are more delay-sensitive [4], [5],
[7], [12], it is also expected that the scheme could signifi-
cantly reduce the average FCT and tail FCT for short flows,
without jeopardizing the performance of long flows much.

1.2 Our Contributions

In this paper, we propose D-SRTF, a light-weight yet effective
DCN scheme to implement SRTF scheduling in a distrib-
uted manner. D-SRTF solves aforementioned problems as
follows.

� D-SRTF utilizes the bytes sent of each flow to esti-
mate the remaining flow size, which is light-weight.

� D-SRTF implements DCTCP [4] as the congestion
control scheme (which is already deployed by many
production data centers [13], [14]). In DCTCP, each
sender maintains a congestion indicator to estimate
the congestion extent of the network for congestion
control. D-SRTF leverages this congestion indicator
in DCTCP to estimate the available bandwidth.

� D-SRTF calculates the remaining time of each flow
as the remaining flow size over the available band-
width. At each sender, D-SRTF sets a fixed set of
thresholds for flow remaining time, and assigns
priorities to packets based on the remaining time
and thresholds. The less remaining time a flow has,
the higher priority is assigned to packets of the flow.

� In each switch port, D-SRTF sets multiple queues
with different priorities (as shown in Fig. 4c), and
packets are enqueued into the queue that matches
the priority in the packet header. D-SRTF implements
strict priority scheduling among these queues to
deliver packets with the highest priority first. In this
case, packets with less remaining time will be

delivered first in general, thus D-SRTF realizes SRTF
scheduling in a distributed manner.

We also conduct extensive experiments to show the
performance of D-SRTF. We first run a web search work-
load [4] and a data mining workload [15] separately on
one of the most widely deployed topologies, Leaf-Spine
topology, to compare D-SRTF with PIAS [7] which is cur-
rently the best deployment friendly scheme that mimics
SJF scheduling. Then we add two more workloads, a cache
workload [16], a Hadoop workload [16], and run four
workloads together to explore the performance of D-SRTF
in heterogeneous workloads. Experiment results shown
that D-SRTF performs better than PIAS and other schemes.
For example, D-SRTF improves the FCT of short flows for
web search workload by 8�13 percent and improves the
99th percentile by 12�33 percent, when compared to PIAS,
and in data mining workload, D-SRTF has only 1.6 percent
performance gap to pFabric, which is currently the best
(but not supported by existing commodity switches) DCN
scheme, and if information on flow size is available which
is the case for pFabric, D-SRTF could perform better
than pFabric.

Besides, we also implement some targeted experiments
to explore the properties of D-SRTF, and the experiment
results show that D-SRTF is robust to different network set-
tings, and the estimations about remaining flow size and
available bandwidth are effective.

The rest of this paper is organized as follows. Related
works are summarized in Section 2. We introduce the moti-
vation for D-SRTF in Section 3. We describe the algorithm
design in detail, and analyze the properties of D-SRTF in
Section 4. Extensive experiments are conducted to show the
superior performance of D-SRTF in Section 5. Finally the
paper is concluded in Section 6.

2 RELATED WORKS

Lots of works have been proposed using effective scheduling
schemes, to decrease FCT, which is always the motivation to
improveDCNperformance.

DeTail [17] prioritizes latency-sensitive flows and distrib-
utes network load, which can reduce the FCT tail. PDQ [1]
leverages switch arbitration and performs flow scheduling
in a distributed manner, based on explicit rate control, so as
to reduce FCT and meet deadlines. L2DCT [2] considers
bytes sent information and approximates the Least Attained
Service (LAS) scheduling scheme, which reduces FCT.
Karuna [18] considers the scenarios of mixed flows with
and without deadlines, and proposes a systematic solution
which sets minimum bandwidth for deadline flows to meet
their deadline just in time and leaves remaining bandwidth
to deadline-free flows, which satisfies the requirements of
both types of flows. PASE [6] synthesizes self-adjusting end-
points, in-network prioritization and arbitration for better
performance. pFabric [3] is theoretically the best DCN
scheme, which performs shortest remaining size first sched-
uling. pFabric requires packets to carry their priority num-
ber, and switches implement priority-based scheduling
scheme. Fastpass [19] proposes a scalable timeslot allocation
algorithm to determine when to send packets at endpoint.
[20] discusses about using multiple layers of queueing
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in intermediate servers and network switches. [21] utilizes
Least Slack Time First (LSTF) scheduling to approximate
the state-of-the-art works which achieves various goals like
reducing average FCT, tail latency and ensuring fairness.

However, most of existing works assume that the flow
size is known at the flow start, which is not true for many
applications. PIAS [7] is proposed which mimics the short-
est job first discipline on the premise that flow size is
unknown. PIAS tags packets according to the bytes sent and
leverages multiple priority queues in switches to prioritize
short flows, which achieves good results. Aemon [22] con-
siders the information-agnostic scenario with flow size
unknown while there are some flows with deadlines and
some without, and proposes a new mix-flow transport
based on flow urgency.

While PIAS, pFabric and other works achieve good results,
they fail to consider the varying available bandwidth [23] for
flow scheduling, which leads to inferior performance. OurD-
SRTF differs from other works in that we consider the avail-
able bandwidth to calculate the remaining time explicitly
in order to realize SRTF scheduling, andD-SRTF is also on the
premise that flow size is unknown, which applies to the
information-agnostic scenario.

Some other works use different scheduling schemes for
different DCN scenarios. For example, MQ-ECN [9] utilizes
round-robin schedulers to ensure the fairness amongdifferent
services in DCN, which sets a dynamic threshold for the
queue length of the traffic for each service in switch port.
TCN [8] generalizes MQ-ECN so that it can support different
kinds of schedulers like round-robin schedulers, weighted
fair queueing scheduler and strict priority scheduler. DEME
[10] decouples packet marking from enqueuing to ensure ser-
vice level fairness in the multiple-service multiple-queue
scenario. DemePro [11] extends DEME [10] with proactive
congestion control, which further improves the DCN perfor-
mance. Falloc [24] proposes a fair network bandwidth alloca-
tion scheme based on a cooperative game approach, which
can achieve the bandwidth fairness while balancing the
tradeoff between bandwidth guarantee and proportional
bandwidth sharing. TATS [25] proposes a time-aware task
scheduling (TATS) algorithmwhich investigates the temporal
variation to schedule task. Like TATS, our work also consid-
ers the bandwidth variation to determine the flow priority for
scheduling. There are also some recent works [26], [27], [28],
[29], [30], [31] to improve the co-flow performance in DCN.
For example, Varys [27] proposes a co-flow scheduling
algorithm based on concurrent open shop scheduling with
coupled resources problem, and solves the inter-coflow
scheduling with effective heuristics. D-CLAS [26] considers
the problem of unknown co-flow information, and proposes

Discretized Coflow-Aware Least-Attained Service (D-CLAS)
which separates co-flows to different priority queues and
schedules thembased on the bytes they have sent.

3 MOTIVATION

In this section, we first leverage case studies to show the
advantages of SRTF scheduling over SJF scheduling and
SRSF scheduling, which shows the importance of using
remaining flow size and the available bandwidth for flow
scheduling. Then we discuss about the difficulties of
applying SRTF scheduling in practice, which motivates our
D-SRTF design.

3.1 Case Studies

Consider a simple topology in Fig. 2. This ”many to one”
pattern mimics many typical data center applications. For
examples, (1) in storage clusters, many storage nodes
respond to a data query from a single node; (2) in web
search, servers respond to a query submitted by one client;
or (3) in MapReduce [32], multiple Mappers transfer key-
value pairs to the same Reducer [33].

3.1.1 SRTF versus SJF

In this case study, we have two TCP senders and one TCP
receiver. Each of the two senders is sending one TCP flow
to the receiver through the switch. Assume the size of Flow
1 (from Sender 1) is 4 Gb, and the size of Flow 2 (from
Sender 2) is 3 Gb. All link capacity is 1 Gbps, and Flow 1
starts at time 0, and Flow 2 starts 2 seconds later. The link
from the switch to the receiver will become the bottleneck,
thus the scheduling in the switch will have significant
impact on the performance of networking, i.e., average flow
completion time. The scheduling results of different
schemes are shown in Fig. 1. Note that, for both SRTF and
SJF, each flow can use the whole link capacity, so this
comparison shows the superiority of using remaining flow
size instead of total flow size for flow scheduling.

For information aware SJF (in Fig. 1a), flow sizes are
known. When Flow 2 starts, scheduler knows that Flow 2 is
shorter than Flow 1, thus stops Flow 1 and schedules Flow 2
first. As a result, FCTs of Flow 1 and Flow 2 are 7 s and 3 s,
thus the average FCT is 5 s.

Fig. 1. SRTF versus SJF scheduling.

Fig. 2. Topology for case studies.
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For information agnostic SJF (in Fig. 1b), flow sizes are
unknown (PIAS [7] implements the information agnostic SJF
scheduling which always first schedules the flow with less
bytes sent). Thus, when Flow 2 starts, scheduler stops Flow 1
and schedules Flow 2 first (the bytes sent of Flow 1 are 2 Gb
while the bytes sent of Flow 2 are 0). But when Flow 2 trans-
mits for 2 seconds, its bytes sent become 2 Gb, the same
as Flow 1. So next, Flow 1 and Flow 2 will share the band-
width, and each flow has 0.5 Gbps bandwidth. This is
because, once Flow 1 is scheduled to deliver packets, Flow 2
will become the one with less bytes sent and scheduler has to
stop Flow 1 to transmit Flow 2. It also applies if Flow 2 is
scheduled first. This ”fair sharing” lasts for 2 seconds until
Flow 2 finishes. Then Flow 1 will utilize the whole link capac-
ity to transmit the remaining 1 Gb. As a result, FCTs of Flow 1
and Flow 2 are 7 s and 4 s, thus the average FCT is 5.5 s.

For SRTF (in Fig. 1c), when Flow 2 starts, scheduler
knows that Flow 1 has less remaining time (2=1 ¼ 2s) than
Flow 2 (3=1 ¼ 3s), so it will first transmit the remaining
2 Gb of Flow 1, then transmit Flow 2. As a result, FCTs of
Flow 1 and Flow 2 are 4 s and 5 s, thus the average FCT is
4.5 s, which is shorter than both information aware SJF and
information agnostic SJF.

Remark 1. It is better to use the remaining flow size
(instead of total flow size) for scheduling.

3.1.2 SRTF versus SRSF

In this section, we leverage case study to show the perfor-
mance difference between SRTF scheduling and SRSF
scheduling (pFabric [3] utilizes SRSF scheduling). Note that
SRTF considers both the remaining flow size and the avail-
able bandwidth, while SRSF only considers the remaining
flow size. So the case study in this section shows the impact
of available bandwidth on the performance of scheduling
schemes (we also validate this in Section 5.6.3).

In this case study, we also leverage the topology in Fig. 2.
All link capacity is 1 Gbps. Flow 1 (4 Gb) starts at time 0 and
Flow 2 (3 Gb) starts at time 2 s. At the same time when Flow 2
starts, the available bandwidth between sender 1 and
the switch drops to 0.5 Gbps, and this condition lasts for
3 seconds, and after 3 s, the available bandwidth on this link
rises back to 1 Gbps. This mimics many DCN scenarios, like
(1) DCN system administrator reserves some bandwidth for
special usage, like delivering the control traffic in SDN area
[8], (2) in multiple-service scenario [8], [9], [10], [11], when
traffic from different services coexists in the network, each
service needs to be limited to a certain amount of bandwidth
(a portion of the link capacity) to ensure service-level fairness.

The scheduling results of SRTF and SRSF are shown
in Fig. 3.

For SRSF (in Fig. 3a), when Flow 2 starts, Flow 1 has trans-
mitted 2 Gb and has 2 Gb remaining, while Flow 2 has 3 Gb
remaining. Thus, SRSF scheduler will schedule Flow 1 first.
However, the available bandwidth for Flow 1 is only
0.5 Gbps, so Flow 2 will share another 0.5 Gbps bandwidth.
This sharing lasts for 3 seconds until the available bandwidth
for Flow 1 rises back to 1 Gbps. Then Flow 1 has 0.5 Gb
remaining and Flow 2 has 1.5 Gb remaining, thus SRSF sched-
uler will schedule Flow 1 first using 1Gbps bandwidth. After
0.5 s, Flow 1 finishes, and Flow 2 will use 1 Gbps bandwidth

to transmit the remaining 1.5 Gb, which lasts for 1.5 s. As
a result, FCTs of Flow 1 and Flow 2 are 5.5 s and 5 s, thus the
average FCT is 5.25 s.

For SRTF (in Fig. 3b), when Flow 2 starts, Flow 1 has
transmitted 2 Gb and has 2 Gb remaining, while Flow 2 has
3 Gb remaining. Since the available bandwidth for Flow 1 is
only 0.5 Gbps, while the available bandwidth for Flow 2 is
1 Gbps, thus the remaining times for Flow 1 and Flow 2 are
(2/0.5=4) s and (3/1=3) s. Therefore SRTF scheduler will
schedule Flow 2 first, which will end 3 s later.1 When Flow
2 finishes, the available bandwidth for Flow 1 rises to
1 Gbps, thus Flow 1 will need another 2 s to transmit the
remaining 2 Gb. As a result, FCTs of Flow 1 and Flow 2 are
7 s and 3 s, thus the average FCT is 5 s, which is shorter
than that achieved by SRSF.

Remark 2. It is important to know the available bandwidth
for scheduling.

3.2 Discussion

In previous section, we have shown that it is better to utilize
the remaining flow size and the available bandwidth for
flow scheduling, and if information aware, a centralized
scheduler which knows the global state could implement
SRTF scheduling that achieves better performance than
SRSF and SJF. However, it is difficult to implement the ideal
SRTF in practice, due to the following reasons.

Unknown Remaining Flow Sizes. Inmany cases, the flow size
is not available. For example, (1) for chunk transfer in HTTP
1.1 [34], each flow consists of multiple chucks which are
generated dynamically, so the total flow size is unknown at
the transmission start. (2) in database query response, partial
query results are transferred before all results are obtained
[12], thus flow size is also unknown at the beginning of
data transfer.

Difficulty in Measuring Available Bandwidth. In multi-layer
DCN topology, each flow has to traverse multiple links
from the sender to the receiver, and among all these links,
any one could become the bottleneck for flow transmission.
Thus, to know the available bandwidth of each flow, we
need to measure the available bandwidth of all links that
the flow passes, and find the smallest one (bottleneck) as
the available bandwidth for this flow. The measurement
overhead is very high. Besides, since DCN is dominated by
short flows and traffic burst is inevitable [7], available band-
width may change frequently and dramatically, which
further increases the difficulty of bandwidth measurement.

Fig. 3. SRTF versus SRSF scheduling.

1. Assume that at time 2 s, the scheduler knows that the available
bandwidth for Flow 1 will rise back to 1 Gbps after 3 seconds, then the
remaining time for Flow 1 is 3þ ð2� 0:5 � 3Þ=1 ¼ 3:5 s, which is still
longer than that for Flow 2. So SRTF scheduler will also schedule Flow
2 first.
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Shortcomings of Centralized Scheduler. To implement ideal
SRTF scheduling, the scheduler should collect the remain-
ing time statistics of all flows. Thus a single centralized
scheduler is necessary, so that it can compare the remaining
time of all flows and schedule the flow with the shortest
remaining time first. However, in practise, such centralized
scheduler would incur high transmission and computa-
tion overhead, since each sender has to send the remain-
ing time information to the centralized scheduler, which
costs bandwidth, and the scheduler has to compare the
remaining time of all flows to find the shortest one, which is
computation-intensive and could delay the scheduling deci-
sions. Thus, a distributed scheduler is preferred to alleviate
aforementioned problems, which reduces the transmission
cost and computation overhead.

In next section, we solve all these problems by proposing
D-SRTF scheme.

4 D-SRTF DESIGN

4.1 System Model

While the real-world DCN system is much more complex,
we outline the architecture and simplify the model as in
Fig. 4, which is widely used in existing works like [2], [4],
[7], and can capture the essential elements of a real-world
DCN for evaluating the performance of the proposed
scheme. More specifically, we leverage a DCN architecture
shown in Fig. 4a, which is one of the state-of-the-art topolo-
gies, Leaf-Spine topology [35]. Servers (hosts) are inter-
connected by layers of switches that form the network fab-
ric. Each switch has multiple ports2 to deliver packets, as
shown in Fig. 4b. There are multiple queues in each switch
port buffer, as shown in Fig. 4c, and these queues have
different priorities (in the example in Fig. 4c, Queue 1 has
the highest priority and Queue 3 has the lowest). Packets
are classified and enqueued to corresponding queues, and
packets in the highest priority queues will be delivered first.

4.2 Design Rationale

Note that scheduling without flow size information is non-
clairvoyant scheduling [36], and Least Attained Service is
effective in reducing the average FCT [37]. LAS estimates the
remaining time of a job via the time the job has attained. LAS
is also effective in DCN area, since the sizes of flows follow
the heavy-tailed distributions [38], [39], i.e., the majority of
flows are short flows, but the majority of bytes come from
a small number of long flows.

D-SRTF is partially motivated by LAS in estimating the
remaining time of each flow, but could not directly imple-
menting LAS in practice. The reasons are explained as
follows.

First, each packet needs to carry the remaining time
information in packet header for switches to compare, to
perform scheduling. However, to store accurate values of
remaining time, a large number of reserved bits in packet
header should be utilized, which is not expected.

Second, without centralized scheduler, each switch
needs to perform scheduling independently. Assume
each packet can carry the remaining time information.
Thus when each packet enqueues, the switch needs
to compare the remaining time of each flow for schedul-
ing, but this is not supported in current commodity
switches [12].

D-SRTF solves above two problems with the following
two techniques.

First, D-SRTF classifies flows into several fixed categories
according to the remaining time of each flow, and tags each
sent packet based on the classified categories. Thus, instead
of carrying the accurate flow remaining time, D-SRTF lets
packets to carry the category ID (or say, priority) for
switches to schedule. Much fewer bits in packet headers are
required to carry the category ID. For example, to denote
8 categories, 3 bits are enough (23 ¼ 8).

Second, D-SRTF utilizes the multiple priority queues in
current commodity switches, which currently support up to
8 queues per switch port [3]. D-SRTF sets different priorities
to different queues, and enqueues the packets to corre-
sponding queues according to the priority (category ID) of
each packet. Then D-SRTF performs strict priority schedul-
ing to realize SRTF scheduling.

Consequently, in general, flows with less remaining time
have higher priority tagged (by TCP senders) in packet
header, and are enqueued into higher priority queues in
switch ports, thus are delivered first, therefore SRTF sched-
uling is realized.

However, some challenges need to be solved to make
D-SRTF work. (1) How to classify flows into different cate-
gories? The common practice is to set several fixed thresh-
olds for the value of remaining time, like PIAS [12].
However, PIAS determines the thresholds based on the
flow size distributions of individual workloads, thus any set
of thresholds for one workload is less effective for another
workload. Therefore, a general version of thresholds are
expected. (2) How to make sure that D-SRTF is compatible
with legacy TCP/IP stacks?

In next sections, we will describe the detailed mechanism
of D-SRTF to address all above challenges.

Fig. 4. System model.

2. We classify ports into ingress ports and egress ports for better expla-
nation for their functions.
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4.3 Detailed Mechanism

At the core, D-SRTF’s mechanism consists of remaining
time calculation, priority setting and switch design.

4.3.1 Remaining Time Calculation

To calculate the remaining time of each flow, we need to
estimate the remaining size of the flow and the available
bandwidth. Note that, we expect the estimation technique
to be light-weight without incurring high overhead. Thus,
estimating flow size using complex predicting algorithm
and measuring link utilization to calculate the available
bandwidth are beyond our consideration in this paper.

Estimating Remaining Flow Size.Many recentworks [4], [15],
[16] have shown that the flow sizes of DCN traffic follow
heavy-tailed distribution, which means the majority of flows
in DCN are short flows but the majority of bytes come from a
small number of long flows. Therefore, without flow size
information, it is still possible to use the number of bytes sent
to distinguish between short flows and long flows.

For short flows, both the number of bytes sent and the
number of remaining bytes are small numbers and their dif-
ference is also small. So, the number of bytes sent could be a
close approximation of the remaining flow size during their
short lifetime. In fact, both favor short flows that can complete
quickly. Note that it is impossible for short flows to have a
large number of bytes sent. So, it is impossible to misclassify
short flows as long flows. In contrast, it is possible to misclas-
sify long flows as short flows in the very beginning of their
lifetime. However, the impact on other real short flows is
insignificant because the number of long flows is very small
compared to the number of short flows and the duration of
misclassification is also short. As the number of bytes sent is
increasing, the difference between the number of bytes sent
and the remaining flow size is diminishing. Although, after a
certain period of time, the number of bytes sent could exceed
the remaining flow size, the impact of this difference becomes
insignificant near the end of long flows because the number of
long flows is small such that the competition among long
flows becomes very light.

Thus, the bytes sent of each flow is a good candidate to
estimate the remaining flow size. In this case, we can use
the number of bytes sent as the estimated remaining size,
and the number of bytes sent can be easily counted by TCP
senders when packets are delivered.

Estimating Available Bandwidth. At TCP senders, D-SRTF
leverages the feedback from network to estimate the avail-
able bandwidth. Note that the majority of existing works
[2], [7], [8], [9] implement DCTCP [4] for congestion control.
That is, if the queue length exceeds a threshold, switches
will mark packets using ECN [40] marking scheme, and
if the TCP receivers receive marked packets, they will also
mark the returned ACKs. When TCP senders receive the
ACKs, they will calculate the percentage of marked ACKs
corresponding to the last window of packets, and estimate
the network congestion extent, and perform congestion
control accordingly, as follows:

a ð1� gÞ � aþ g� F (1)

CWND CWND� ð1� a=2Þ; (2)

where a (in ½0; 1Þ) is the estimator of network congestion
extent, g (typically set to 0.0625) is the weight given to new

samples against the previous estimation of a, F is the
fraction (or percentage) of marked ACKs corresponding to
the last window of packets, and CWND is the congestion
window size.

We find that a is suitable for estimating the available
bandwidth. This is because a reflects the congestion extent
of the network. According to Eqn (1), a is calculated based
on F , the fraction of marked packets. Basically, a packet is
marked only when the total queue length exceeds the
threshold. Therefore, a small value of a indicates small per-
centage of packet marking and short time during which the
queue length exceeds the threshold, thus low network
congestion extent. When a ¼ 0, no packet is marked, that is,
the queue length is shorter than the threshold, or there is no
packet in the queue (even though some bandwidth has
been utilized). In a distributed networking system, a TCP
sender is agnostic to the network dynamics, so it probes the
network with the additive-increase/multiplicative-decrease
(AIMD) algorithm to update the window size. Therefore,
when there is no packet marking, from the TCP sender’s
point of view, the link is “empty” and the sender can
additively increase the window size according to the AIMD
algorithm employed by current TCP. A positive value
(non-zero) of a indicates the network experiences some
extent of congestion. For example, a ¼ 0:2 means, on aver-
age (according to exponential weighted moving average
(EWMA) in Eqn (1)), 20 percent of packets are marked
inside the network, indicating network congestion, while
80 percent of packets are not marked, therefore it is
safe to utilize 80 percent of the network capacity. When
a ¼ 1, all packets are marked, meaning that the queue
length always exceeds the threshold, indicating highest
network congestion extent and no available bandwidth,
thus congestion control has to be performed aggressively
at end host.

As a result, D-SRTF estimates the available bandwidth
as B L� ð1� aÞwhere B is the estimated available band-
width and L is the link capacity.

Then, we can calculate the remaining time by dividing
remaining flow size over the available bandwidth.

4.3.2 Priority Setting

Given the remaining time of each flow, we need to set the
priority for each packet to classify each flow to different
categories. Since current commodity switches support up to
8 queues in each switch port, we set 8 priorities for flow
scheduling, from 0 to 7, to match the number of queues,
where 0 denotes the highest priority and 7 denotes the lowest.
In this case, we need 7 thresholds.

Motivated by [26], we utilize the following exponential
thresholds:3

Ti  T0 � Ei; i 2 ½0; 6�; (3)

3. PIAS [7] formulates the threshold setting problem as a Sum-of-
Linear-Ratios (SoLR) problem [41], and uses M/M/1 queues to sim-
plify the analysis and gets a closed form solution. Since the formulation
considers the traffic load and flow size distribution, each set of thresh-
olds can only achieve good results for the given traffic load and flow
size distribution, but not for other traffic loads or flow size
distributions.
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where Ti is the ith threshold, and E determines how much
the remaining time of one category is longer than that of
another. In this paper, we use T0 ¼ 120ms and E ¼ 3, which
are the best combinations according to our extensive experi-
ments. We find that this threshold setting works well in our
experiments with practical production workloads. Thus,

� if the remaining time of a flow is smaller than T0, the
priority is set to 0;

� if the remaining time of a flow is larger than or equal
to T6, the priority is set to 7;

� otherwise, the priority is set to (iþ 1), if the remain-
ing time is in ½Ti; Tiþ1Þ.

Given the priority of each flow, TCP senders set the
priority to the Differentiated Services Code Point (DSCP)
field in the IP header. Thus, when the packet reaches the
switch port, it will be enqueued into the queue that matches
the packet’s DSCP field.

Note that this set of thresholds are distributed to all TCP
senders, thus D-SRTF relieves switch’s burden of imple-
menting SRTF by comparing the remaining time, which
is not supported by current commodity switches. In this
case, D-SRTFworks well in a distributed manner.

4.3.3 Switch Design

With packets enqueued into distinct queues according to their
prioritieswhich reflect the remaining time,D-SRTF’s switches
perform strict priority scheduling, which is a built-in function
of existing commodity switches [6]. In this case, packets in the
highest priority queues are scheduled first, i.e., flowswith the
shortest remaining timewill be delivered first.

Besides, when the queue length in each switch port buffer
exceeds the queue length threshold (as that in DCTCP),
we also perform ECNmarking on subsequent packets, which
has two major functions inD-SRTF. First, by marking packets
and performing congestion control at senders, the queue
length can be kept low, which alleviates the risk of buffer
congestion and overflow. Second, by marking packets, TCP
senders can obtain the feedback from network to know the
network congestion extent, which is useful for estimating
the available bandwidth, as described in Section 4.3.1.

4.4 Analysis and Discussion

In this section, we discuss the implementation issues and
some properties of D-SRTF.

Implementation Compatible with Commodity Switches and
Legacy TCP/IP Stacks. All operations in D-SRTF are sup-
ported by existing commodity switches and TCP/IP stacks,
in that, (1) bytes sent can be tracked as the data is delivered,
consistent with [7]; (2) the congestion extent estimator a is
updated per window of packets, which is supported and
widely utilized by the majority of recent schemes imple-
menting DCTCP; (3) thresholds are distributed to all end
hosts, and by comparing the remaining time and the thresh-
olds, the priority can be determined for each packet, and is
set into the DSCP field in the packet header; (4) each switch
sets a threshold for the port buffer queue length, and per-
forms ECN marking on packets when the queue length
exceeds the threshold, which are supported by DCTCP and
have already been widely deployed in many production
data centers [13], [14].

Local Decision. According to [3], in terms of minimizing
FCT, SRTF is optimal in single link, but sub-optimal in multi-
ple links, and there is no simple optimal scheme for simulta-
neously scheduling flows across multiple links. Therefore,
like PIAS [7] and pFabric [3], D-SRTF makes local decisions
on each switch. These local decisions work well in most cases
[3], and only experience some performance loss at high load,
like, over 90 percent [6],while inmost cases, DCN is operating
at moderate loads, like, 30 percent [42]. Our experiments in
Section 5.2 confirm thatD-SRTFworkswell in practice.

Network Congestion Aware Scheduling. Although both
D-SRTF and PIAS implement strict priority scheduling in
switches, they mimic different scheduling schemes. PIAS
only considers the flow size (bytes sent) information and
mimics shortest job first scheduling. On the contrary,D-SRTF
mimics shortest remaining time first scheduling, so D-SRTF
considers not only the flow size attribute, but also the state of
the network (i.e., the available bandwidth). The consideration
of network state makes D-SRTF better react to the network
dynamics. Therefore, (1) if one flow encounters congestion, its
available bandwidth is low, so the estimated remaining time
is high, thus the priority is low. In this case, the flow could be
enqueued to lower priority queue in switches, allowing other
flows in higher priority queues (or say, with less remaining
time) to be delivered first. (2) On the contrary, if the flow has
large amount of available bandwidth, its remaining time is
low and its priority is high, and will be enqueued to higher
priority queues in switches and will be delivered first. These
could not be realized by the scheduling schemes which only
consider flow size information but ignore the available band-
width, like PIASwhichmimics shortest job first scheduling or
pFabric which adopts shortest remaining flow size first
scheduling.

5 EVALUATION

In this section, we conduct extensive experiments in NS2
[43] to evaluate the performance of D-SRTF. We mainly
compare D-SRTF with the following three deployment-
friendly DCN schemes:

� DCTCP [4] which adopts a simple First in First out
(FIFO) scheduling.

� L2DCT [2] which approximates the Least Attained
Service scheduling.

� PIAS [7] which mimics shortest job first scheduling.
We compare all four schemes in average Flow Completion

Time. To ensure fair comparison between these four schemes,
we employ the same settings as those in the PIAS paper, like
the same Leaf-Spine topology, the sameworkloads and so on.
Note that PIAS relies on the flow size distribution of each
workload to determine the thresholds for priority setting.
Thus, for fair comparison, we first compare D-SRTF with
PIAS (andDCTCP and L2DCT) in two separate network envi-
ronment settings, each with one distinct workload. Then we
compare all schemes in a mixed workload environment, so as
to evaluate the robustness of D-SRTF. Our experiments need
to answer the following key questions:

How does D-SRTF Perform in Reducing FCT? Generally,
D-SRTF performs better than all other three schemes,
and improves the overall average FCT by 2�11 percent
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compared to PIAS. D-SRTF also improves the performa-
nce for short flows. For example, D-SRTF improves the
FCT for short flows by 8�13 percent and improves the
99th percentile by 12�33 percent, when compared to PIAS
in web search workload. For long flows, D-SRTF performs
similar with PIAS.

How does D-SRTF Perform in Individual Workload and
Mixed Workloads? Generally, D-SRTF performs better than
PIAS (and DCTCP and L2DCT) in individual workload.
In ‘the mixed workload scenario, the performance improve-
ment is also significant.

How does D-SRTF Perform in Different DCN Topologies?
We evaluate the performance of D-SRTF on both Leaf-Spine
and Fat-tree topologies, and the experiment results show
that D-SRTF outperforms other schemes in both network
topologies.

How does D-SRTF Perform Compared with Ideal Information-
aware Schemes? D-SRTF has only 1.6 percent performance gap
to the ideal information-aware scheme, pFabric [3], in FCT of
short flows,while PIAS has 4.9 percent performance gap.

At last, we also conduct several sets of targeted experi-
ments to explore the properties of D-SRTF, and the results
show that D-SRTF is robust to different network settings,
like different numbers of queues in switch ports, and
D-SRTF’s estimations for remaining flow size and the avail-
able bandwidth are effective.

5.1 Experiment Setup

Parameters. Unless stated explicitly, relevant parameters are
set to the default values shown in Table 1. For PIAS and
L2DCT, all relevant parameters are set to the default values
in their original papers [2], [7].

Network Topology. Experiments are running on Leaf-
Spine topology shown in Fig. 4a. In our experiments, we
have 12 Leaf (Top-of-Rack (ToR)) switches, 12 Spine (Core)
switches and 144 hosts (servers). Each Leaf switch connects
to 12 Spine switches through 10 Gbps uplinks, and connects
to 12 hosts through 10 Gbps downlinks, thus forming a non-
blocking network. We utilize the widely used ECMP [44]
for routing and load balancing in the multi-path environ-
ment. Currently, the widely used commodity switches sup-
port up to 8 queues per port, so in our experiments, we set
8 queues for each switch port.

Workloads. In this paper, we run four different workloads
for experiments, including aweb search workload [4], a cache
workload [16], a data mining workload [15] and a Hadoop
workload [16], and the respective flow size distributions are
shown in Fig. 5. For each workload, the inter-flow arriving
interval t is inversely proportional to the network Load, i.e.,

‘ ¼ C � Load

Mean Flow Size
; t ¼ 1

‘
; (4)

where C is the link capacity, so ‘ represents the number of
flows arriving in unit time. As we can see, the higher the
load, the lower the inter-flow arriving interval, leading to
higher flow contention. And the inter-flow arriving inter-
vals for different workloads are also different, i.e., propor-
tional to the mean flow size.

For fair comparison with PIAS which relies on the flow
size distribution to determine the flow demotion thresholds,
we first run the web search workload and the data mining
workload separately based on above experiment settings, as
that in the PIAS paper. Each of the experiments lasts for
50,000 flows. Then, to mimic real scenario, we mix all four
workloads together to evaluate the practical performance,
and we also generate totally 50,000 flows. For each work-
load, the inter-flow arriving interval is proportional to its
mean flow size, thus the smaller mean flow size, the smaller
inter-flow arriving interval, and the larger number of flows
given the same experiment running time for all workloads.
Table 2 shows the mean flow size and the number of flows
for each workload, in the mixed workload scenario.

Congestion Control. D-SRTF leverages the congestion
control scheme of DCTCP at TCP senders. PIAS also utilizes
the congestion control scheme of DCTCP, while L2DCT
extends DCTCP to update the window size according to the
bytes sent of each flow, thus mimics LAS. We set initial and
minimum value of TCP RTO to 5ms for all schemes, as
many recent works recommend [8], [9], [13]. Initial TCP
window size is set to 10 packets.

Comparison Metrics. According to the flow sizes, we
divide all flows into three classes including short flows
((0,100] KB), medium flows ((100 KB,10 MB]) and long flows
((10 MB,1)), and compute the average FCT for each class.
For example, in the mixed workload scenario, the numbers
in the brackets in Table 2 denote the numbers of flows in
each class, e.g., cache workload has 26,505 flows in total,
among which there are 16,034 short flows, 10,253 medium
flows and 218 long flows. We compare the overall average

TABLE 1
Default Parameter Setting

Parameter Value

Link capacity 10 Gbps
Packet size 1.5 KB
Port buffer size 200 packets
Queue length threshold for port buffer 65 packets
g (in Eq. (1)) 0.0625
T0 (in Eq. (3)) 120 ms
E (in Eq. (3)) 3

Fig. 5. Flow size distributions for individual workload.

TABLE 2
Mean Flow Size and Number of Flows of Individual

Workloads in Mixed Workload Scenario

Workload MFS (KB) Number of Flows (S/M/L)

Cache 914 26,505 (16,034/10,253/218)
Web Search 1,671 14,453 (7,881/6,180/392)
Hadoop 4,149 5,829 (4,131/1,523/175)
Data Mining 7,495 3,213 (2,638/420/155)
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FCT for all flows, the average FCT of flows in each class, and
the 99th percentile FCTs of short flows.

5.2 Performance in FCT

We conduct experiments for the four schemes based on the
aforementioned experiment setup, and the comparison
results are shown in Figs. 6 and 7. For the sake of easy
comparison of performance with reference to PIAS, which
is one of the best-performing schemes in the literature, we
normalize all results to those achieved by PIAS. For exam-
ple, if the FCTs for DCTCP, L2DCT, PIAS and D-SRTF are
2.8s, 2.4s, 2s and 1.6s, the normalized FCTs are 1.4, 1.2,
1 and 0.8 respectively (normalized FCTs for PIAS are always
1). According to the comparison results, we have the follow-
ing observations:

Overall.As shown in Figs. 6a and 7a,D-SRTF generally per-
forms best across all loads. For example, for web searchwork-
load, D-SRTF has about 11 percent lower FCT at 30 percent
load and 2 percent lower FCT at 90 percent load, when

compared with PIAS. When compared with DCTCP and
L2DCT, the performance improvement is more significant.
For example, for web search workload, D-SRTF has average
20 percent lower FCT than L2DCT and 25 percent lower FCT
thanDCTCP. For dataminingworkload,D-SRTF also outper-
forms all other three schemes.

Short Flows. D-SRTFperforms better thanPIAS, and greatly
outperforms L2DCT and DCTCP for short flows. For exam-
ple, for web search workload, D-SRTF improves the FCT for
short flows by 8�13 percent and improves the 99th percentile
by 12�33 percent, when compared to PIAS. Since short flows
dominate the data traffic in DCN and are more delay-
sensitive, it is more important and meaningful for D-SRTF to
improve the performance of short flows without jeopardizing
the performance of long flows much [7]. For data mining
workload, the performance improvement is less significant.
This is expected, since the data mining workload is more
skewed. In fact, 80 percent of the flows in data mining work-
load are smaller than 10 packets (which is the initial TCP

Fig. 6. Comparison of FCT for web search workload.

Fig. 7. Comparison of FCT for data mining workload.
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window size), thus they finish transmission in the first win-
dow. Since both PIAS and D-SRTF set the priority of packets
in the first window to the highest, therefore, their perfor-
mance is similar in short flows in dataminingworkload.

Medium Flows.Although the advantage ofD-SRTF dimin-
ishes for medium flows, it still manages to outperform PIAS
by about 10 percent for web search workload and 4 percent
for data mining workload, in terms of average FCT.
The improvement towards DCTCP and L2DCT is more
significant.

Long Flows. In general, D-SRTF performs similar to PIAS
in long flows. For web search workload, D-SRTF performs
slightly worse than PIAS at high load. This is because, web
search workload is less skewed, so it is likely that more
flows are contending for the link capacity. As D-SRTF gives
more priorities to short flows than PIAS, the performance
in long flows is slightly degraded. However, in data mining
workload, D-SRTF performs better. Since data mining
workload is more skewed, so there is less contending
among flows, thus D-SRTF performs better than PIAS.

5.3 Performance in Mixed Workloads

It is common for one data center to host many different
applications. To mimic the mixed workload scenario, we
run four workloads (web search [4], data mining [15], cache
[16] and Hadoop [16]) together, and the results are shown
in Fig. 8. For PIAS, we run two experiments, one with the
demotion thresholds for web search workload (PIAS-WS),
and the other with the demotion thresholds for data mining
workload (PIAS-DM). All values are normalized to the
results achieved by PIAS-WS.

As we can see, in mixed workloads, D-SRTF also outper-
forms other schemes. For example, D-SRTF has 5 percent
lower average FCT than PIAS-WS across all loads, and has
1�7 percent lower FCT than PIAS-DM from low load to
high load. The improvement for short flows is more signifi-
cant. D-SRTF has up to 10 percent lower FCT than PIAS-WS
and PIAS-DM in short flows, and more than 40 percent
improvement towards L2DCT and DCTCP. D-SRTF also
reduces the tail latency (99th percentile FCTs of short flows)

by 15�20 percent compared to PIAS-WS and PIAS-DM, and
more than 60 percent compared to L2DCT and DCTCP.
Meanwhile, D-SRTF also reserves its superiority in medium
flows and long flows. We also present the CDF of the FCT in
Fig. 9. As we can see, D-SRTF improves the performance of
short flowswhilemaintains the performance of long flows.

Moreover, we also break down the comparison into
individual workload, to examine D-SRTF’s performance for
each workload in the mixed workload scenario, and the
results are shown in Fig. 10. As we can see, D-SRTF still
reserves its superiority for each workload. Thus, D-SRTF
is robust to different workloads.

5.4 Impact of Network Topology

We also repeat the experiment in Section 5.3 on another
popular topology, Fat-Tree topology shown in Fig. 11, to
examine the impact of network topology on the perfor-
mance of D-SRTF, and the results are shown in Fig. 12. As
we can see, similar to the results of experiments running on
Leaf-Spine topology, D-SRTF performs better than PIAS
and other schemes, in all cases. Therefore, D-SRTF is robust
to different network topologies.

5.5 Comparison with Ideal Information Aware
Scheme

We also compare D-SRTF with an ideal information aware
scheme, pFabric [3]. pFabric assumes that the remaining

Fig. 8. Comparison of FCT in mixed workloads. PIAS-DM denotes the PIAS scheme with the demotion thresholds for data mining workload, and
PIAS-WS represents the PIAS scheme with the demotion thresholds for web search workload.

Fig. 9. Comparison of CDF of FCT in mixed workloads scenario.
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flow size is known and piggybacks this information in
packet header, so that switches can implement shortest
remaining flow size first scheduling. Since pFabric has
significantly superior performance in short flows, we repeat
the experiments in Section 5.3 with mixed workloads and
compare D-SRTF with PIAS-DM, PIAS-WS and pFabric,
in short flows, and the results are shown in Fig. 13.

In general, D-SRTF performs better than PIAS-DM and
PIAS-WS, and is comparable to pFabric. Particularly in data
mining workload, D-SRTF has only 1.6 percent performance
gap to pFabric. This is expected, since data mining work-
load is more skewed than other workloads, so short flows

can finish transmission within the first few windows, lead-
ing to less bandwidth contention with other flows, therefore
near to optimal performance. Since web search workload is
less skewed, so it is more likely that short flows coexist with
long flows in the same priority queue. Therefore, short
flows have to share link capacity with long flows, so the
performance improvement is less significant. pFabric, on
the other size, is information aware, i.e., explicitly knows
the size of all flows, thus is not affected by such problem.

5.6 D-SRTF Deep Dive

Finally, we implement several sets of targeted experiments,
to evaluate the properties of D-SRTF.

5.6.1 Impact of Number of Queues in Switch Port Buffers

As we leverage the multiple queues in switch port buffers to
schedule packets, the number of priorities is restricted by
the number of queues. Even though current commodity
switches support up to 8 queues per port, in some cases,

Fig. 11. Fat-Tree topology.

Fig. 10. Comparison of FCT for individual workload in mixed workloads scenario. DCTCP’s performance is outside the plotted range of (a).

Fig. 12. Comparison of FCT in mixed workloads in Fat-Tree topology.

Fig. 13. Comparison with ideal information aware scheme (pFabric) in terms of FCT of short flows.
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network operators may reserve some queues for other pur-
poses. For example, in SDN area, some strict high priority
queues are utilized to deliver the control traffic [8]. In this
case, the number of queues available for flow scheduling is
limited. To demonstrate D-SRTF’s robustness, we repeat the
experiments in Section 5.3 with different numbers of
queues, and the results are shown in Fig. 14.

In general, the performances with different numbers of
queues are similar, and the more queues we use, the better
results we can obtain, as shown in Fig. 14a. This is expected,
since the more queues we use, the more priorities we have,
therefore the better flows are segregated, thus the better
scheduling and overall performance are achieved. Besides,
the performance in short flows are almost the same. This is
because short flows are likely to be finished in the highest
priority queue. The major difference lies in medium flows
and long flows. When we use less queues, e.g., 2 queues,
long flows are more likely to share the link bandwidth with
short flows and medium flows, thus the performance of
long flows can be improved, as shown in Fig. 14d.

It is also expected that in the future, switch port buffers can
support more queues. To evaluate D-SRTF’s performance in
more queues, we add another set of experiments with 16
queues in each switch port. Thus, we have 16 priorities for
packets for flow scheduling, and the results are also shown in
Fig. 14. As we can see,D-SRTF’s performance with 16 queues
is almost the same as that with 8 queues, which indicates that
D-SRTF is robust to different numbers of queues.

5.6.2 Effectiveness of Remaining Flow Size Estimation

With the heavy-tailed distribution, D-SRTF estimates the
remaining flow size via the bytes sent. Here, we evaluate
the effectiveness of this remaining flow size estimation,

by adding a new scheme, D-SRTF-IA, which is a revised
version of D-SRTF with Information Aware. That is, in
D-SRTF-IA, we assume that the flow size is known at the
flow start, and TCP senders can record the bytes sent, thus
the remaining flow size is the flow size minus the bytes
sent. All other mechanisms in D-SRTF-IA are the same with
those in D-SRTF. We compare the performance of these two
schemes, and the results are shown in Fig. 15. As we can
see, with remaining flow size known, D-SRTF-IA performs
better than D-SRTF, but the gap is within 8 percent, which
indicates that our estimation is effective. Particularly, we
find that D-SRTF performs almost the same with D-SRTF-
IA in short flows. This is because the length of short flows
is small, thus the gap between the estimated remaining flow
size (using bytes sent) and the real one is small, therefore
our estimation functions well for short flows. Considering
that short flows dominate the DCN traffic, our estimation is
useful in practice.

5.6.3 Effectiveness of Bandwidth Estimation

To evaluate the effectiveness of bandwidth estimation, we
compare D-SRTF-IA with pFabric. Note that, both D-SRTF-
IA and pFabric assume that the remaining flow size is
known, and the difference is that pFabric only considers the
remaining flow size for scheduling, while D-SRTF-IA con-
siders both the remaining flow size and the available band-
width for scheduling. We repeat the experiment with mixed
workloads, and the comparison results are shown in Fig. 16.
As we can see, D-SRTF-IA performs better than pFabric,
which indicates that our light-weight estimation for band-
width is effective.

6 CONCLUSION

Minimizing FCT is always one of the objectives to improve
DCN performance, and many existing works approximate
SRTF scheduling to minimize FCT. However, they fail to
consider the available bandwidth for flow scheduling, lead-
ing to sub-optimal solution in the dynamic DCN. Moreover,
without flow size information and with the difficulty to
measure the available bandwidth, it is hard to estimate the
remaining time for each flow, to perform SRTF scheduling.
Moreover, centralized scheduler could incur large overhead

Fig. 14. D-SRTF’s sensitivity to the number of queues in switch port.

Fig. 15. Effectiveness of remaining flow size estimation.

Fig. 16. Effectiveness of bandwidth estimation (Comparison of overall
FCT).
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and delay the scheduling decision. To solve these problems,
we propose D-SRTF, a light-weight yet effective DCN scheme
to implement SRTF scheduling in a distributed manner.
D-SRTF uses the bytes sent to estimate the remaining size of
each flow, and leverages the congestion indicator to calcu-
late the available bandwidth. Thus the remaining time of
each flow is calculated as the estimated remaining size over
the available bandwidth. D-SRTF realizes SRTF scheduling
in a distributed manner, in that, D-SRTF determines the
priority for the packets of each flow at senders, based on the
remaining time and a set of thresholds distributed to all
senders. Upon receiving packets, switches enqueue the
packets to the queue corresponding to the priority of pack-
ets, and adopt strict priority scheduling among all queues
in each switch port buffer. Experiments with various work-
loads demonstrate the superiority of D-SRTF over existing
DCN schemes. For example, for web search workload,
D-SRTF improves the FCT for short flows by 8�12 percent
and improves the 99th percentile by 12�21 percent when
compared to PIAS, and in data mining workload, D-SRTF
has only 1.6 percent performance gap to pFabric, and if
information on flow size is known, D-SRTF could perform
better than pFabric.
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