
33

Rethinking Computer Architectures and Software Systems
for Phase-Change Memory

CHENGWEN WU and GUANGYAN ZHANG, Tsinghua University
KEQIN LI, State University of New York

With dramatic growth of data and rapid enhancement of computing powers, data accesses become the
bottleneck restricting overall performance of a computer system. Emerging phase-change memory (PCM) is
byte-addressable like DRAM, persistent like hard disks and Flash SSD, and about four orders of magnitude
faster than hard disks or Flash SSDs for typical file system I/Os. The maturity of PCM from research to
production provides a new opportunity for improving the I/O performance of a system. However, PCM also
has some weaknesses, for example, long write latency, limited write endurance, and high active energy.
Existing processor cache systems, main memory systems, and online storage systems are unable to leverage
the advantages of PCM, and/or to mitigate PCM’s drawbacks. The reason behind this incompetence is that
they are designed and optimized for SRAM, DRAM memory, and hard drives, respectively, instead of PCM
memory. There have been some efforts concentrating on rethinking computer architectures and software
systems for PCM. This article presents a detailed survey and review of the areas of computer architecture
and software systems that are oriented to PCM devices. First, we identify key technical challenges that
need to be addressed before this memory technology can be leveraged, in the form of processor cache, main
memory, and online storage, to build high-performance computer systems. Second, we examine various
designs of computer architectures and software systems that are PCM aware. Finally, we obtain several
helpful observations and propose a few suggestions on how to leverage PCM to optimize the performance of
a computer system.

Categories and Subject Descriptors: H.3.2 [Information Storage and Retrieval]: Information Storage

General Terms: Design, Algorithms, Management

Additional Key Words and Phrases: Computer architecture, energy consumption, I/O performance, phase-
change memory, system software, write lifetime

ACM Reference Format:
Chengwen Wu, Guangyan Zhang, and Keqin Li. 2016. Rethinking computer architectures and software
systems for phase-change memory. J. Emerg. Technol. Comput. Syst. 12, 4, Article 33 (May 2016), 40 pages.
DOI: http://dx.doi.org/10.1145/2893186

1. INTRODUCTION

Currently, to deal with the high demands of data-intensive applications, it is easy for
modern and large-scale systems built by commercial processors to provide unbalanced

This work is supported by the National Natural Science Foundation of China under Grants 61170008,
61272055, 61433008, and U1435216; the National Grand Fundamental Research 973 Program of China
under Grant 2014CB340402; and the National High Technology Research and Development Program of
China under Grant 2013AA01A210.
Authors’ addresses: C. Wu and G. Zhang (corresponding author), Department of Computer Science
and Technology, Tsinghua University, Beijing 100084, China; email: wcw14@mails.tsinghua.edu.cn,
gyzh@tsinghua.edu.cn; K. Li, Department of Computer Science, State University of New York, New Paltz,
New York 12561; email: lik@newpaltz.edu.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies show this notice on the first page or initial screen of a display along with the full citation. Copyrights for
components of this work owned by others than ACM must be honored. Abstracting with credit is permitted.
To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component of this
work in other works requires prior specific permission and/or a fee. Permissions may be requested from
Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212)
869-0481, or permissions@acm.org.
c© 2016 ACM 1550-4832/2016/05-ART33 $15.00
DOI: http://dx.doi.org/10.1145/2893186

ACM Journal on Emerging Technologies in Computing Systems, Vol. 12, No. 4, Article 33, Publication date: May 2016.

http://dx.doi.org/10.1145/2893186
http://dx.doi.org/10.1145/2893186


33:2 C. Wu et al.

Fig. 1. Typical access latency (ns) of various devices (from Yang et al. [2015]).

computing resources with oversupplied CPU cycles and increasingly long latency of
data accesses. In recent years, multicore technology has improved computing powers
significantly, which aggravates the performance limitation of the memory hierarchy.
Moreover, many applications, especially those in the server space, have large working
sets, hence require high memory capacity. The demand for greater memory capacity is
expected to continue into the future, even for commodity systems. On the other hand,
multiple applications tend to be executed on a computer system simultaneously, which
makes different data-access patterns interleaved. Furthermore, several applications
are also I/O intensive, hence require a high-performance storage system. Consequently,
the memory hierarchy plays a critical role in determining overall performance of a
computer system.

The memory hierarchy of modern computers is designed such that the layers closer to
the processor cores provide shorter latency, whereas those layers farther away provide
higher capacity, albeit with longer access latency. For many years, static random-access
memory (SRAM), dynamic random-access memory (DRAM), and rotating disks have
served as the bedrock technologies for designing processor cache, main memory, and
online storage, respectively. However, continued use of these technologies poses several
challenges. While SRAM provides very low latency, it has the drawbacks of high-
leakage power consumption and low density [Wu et al. 2009a]. While DRAM provides
low latency, it suffers from high power consumption (especially leakage power) and
scalability problems [Arden 2009]. While hard disk drives provide low cost-per-gigabyte
of storage, they suffer from high-access latencies (several orders of magnitude higher
than main memory) and also consume a significant amount of power. In IBM servers,
for instance, about 50% of the energy is spent in off-chip memory hierarchy [Lefurgy
et al. 2003]. While replacing rotating disks with flash memory in the form of solid-state
disks (SSDs) can provide a large performance boost for storage, there is still a wide
gap in the performance between main memory and online storage systems (Figure 1).
In order to improve the overall performance of a computer system, it is necessary to
narrow the performance gap between main memory and online storage.

One way to address the performance, capacity, power, and scalability problems of the
traditional memory and storage technologies is to use phase-change memory (PCM).
PCM is a nonvolatile memory technology that is being actively explored by academia
and industry, and is closest to large-scale production. PCM stores data with phase-
change material that can be in one of two states—crystalline or amorphous. It reads
data by detecting the resistance of phase-change material in one state and attributing
it to the state of a bit. The performance of PCM is between DRAM and online storage
(Figure 1). The latency of PCM-based main memory is closer to that of DRAM [Park
et al. 2010]. Since PCM is up to four orders of magnitude faster than today’s hard
disks for typical file system I/Os, incorporating PCM will improve the performance of
a system when a page fault occurs [Qureshi et al. 2009]. Existing evaluation results
show that PCM has some obvious advantages, such as high performance, high density,
and low idle energy consumption.

ACM Journal on Emerging Technologies in Computing Systems, Vol. 12, No. 4, Article 33, Publication date: May 2016.



Rethinking Computer Architectures and Software Systems for Phase-Change Memory 33:3

In recent years, there have been exciting research achievements in each layer across
the memory hierarchy to explore how to take advantage of PCM. Some representative
efforts are listed as follows. From these achievements, we can safely predict that PCM
will bring a significant and positive impact on the performance of a computer system
when PCM is used widely.

—Processor Cache: Hybrid nonvolatile memory caches including SRAM, PCM, and
magnetic RAM (MRAM) [Wu et al. 2009a, 2009b]; Pure PCM processor cache system
[Joo et al. 2010].

—Main Memory: Hybrid main memory architecture with PCM and DRAM [Qureshi
et al. 2009]; main memory systems using PCM [Lee et al. 2009; Zhou et al. 2009].

—Online Storage: Using PCM as disk cache in servers [Roberts 2011]; using PCM as
solid state storage subsystems [Lu et al. 2012]; Flash file systems based on hybrid
architecture of PCM and Flash [Park et al. 2008].

While PCM provides several benefits, it also poses certain key challenges that need to
be addressed before this memory technology can be leveraged to build high-performance
computer systems. Current processor cache systems, main memory systems, and stor-
age system software are unable to adapt to PCM’s characteristics well, because they
are designed and optimized for SRAM, DRAM memory, and hard drives, instead of
PCM memory. On the one hand, there are significant differences between PCM and
DRAM that is used in main memory for many years. PCM is nonvolatile and has limited
write endurance. These differences lead to the need to optimize or even redesign main
memory system for PCM. On the other hand, PCM is byte-addressable and obviously
faster than hard disks or Flash SSDs. Consequently, it is necessary to optimize the
design of file systems designed for HDD or SSD when using PCM in the form of solid-
state storage. In a word, the maturity of PCM from research to production provides
new opportunities and challenges for designing computer architectures and software
systems.

This article provides a detailed survey and review of the areas of computer archi-
tecture and software systems that are oriented to PCM devices. The contributions of
this article are as follows. First, we identify key technical challenges that need to be
addressed before this memory technology can be leveraged, in the form of processor
cache, main memory, and online storage, to build high-performance computer systems.
Second, we examine various designs of computer architectures and software systems
that are PCM aware. Finally, we obtain several helpful observations and propose a few
suggestions on how to leverage PCM to optimize the performance of a computer system.

This survey is restricted to advantages, challenges, and solutions when PCM is
incorporated in computer systems. We largely ignore the details of PCM material
and working mechanisms unless they affect designs of computer systems. Instead, we
analyze advantages and challenges brought by PCM’s external attributes, for example,
performance, energy consumption, and write endurance. On the other hand, to design a
well-engineered system, it is necessary to pay attention to many diverse goals, and the
system designer must decide how to weigh different axes of interest during the design
phase. This article focuses on how to design a system that adapts to PCM devices well
while ignoring many other important considerations in the design of computer systems.
The survey aims at guiding people to understand how choices made by different system
designers affect the ability of computer systems to leverage advantages of PCM, and
avoid or alleviate the shortcoming of PCM.

The rest of the article is organized as follows. Section 2 describes device attributes of
PCM, identifies technical challenges to use PCM in processor cache, main memory, and
online storage, and compares PCM with other resistive memory technologies. Section 3
summarizes the works of applying PCM to processor cache. Section 4 analyzes

ACM Journal on Emerging Technologies in Computing Systems, Vol. 12, No. 4, Article 33, Publication date: May 2016.



33:4 C. Wu et al.

Fig. 2. A single of DRAM extracted from Drepper [2007].

performance, lifetime, and energy consumption optimizations for PCM as main
memory. Section 5 discusses how to design and optimize software systems for PCM
as storage devices. Some studies on using PCM as both main memory and storage
are provided in Section 6. We provide our conclusions and some prospective research
directions in Section 7.

2. DEVICE ATTRIBUTES AND TECHNICAL CHALLENGES

In this section, we first analyze attributes of PCM devices. Next, we discuss prospective
applications of PCM devices, which is still an open issue. Then, we identify tech-
nical challenges when designing computer architectures and software systems for
PCM. Finally, we give a comparison between PCM and other new resistive memory
technologies.

2.1. PCM Attributes

2.1.1. Review of DRAM. To clearly describe attributes of PCM devices, we first review
DRAM, which has been used in main memory for over 30 years. A typical DRAM cell
has one capacitor and one transistor, as shown in Figure 2. The capacitor keeps the
state of the DRAM cell, while the transistor is used to provide access to the state of the
cell. When the state of the cell is read, the access line (AL) will be raised. This either
causes a current to flow on the data line (DL) or not, depending on the charge in the
capacitor. When the cell is written, the DL is appropriately set, then the AL will be
raised for a time long enough to charge or drain the capacitor.

Being a type of charge-based memory, DRAM has some drawbacks. First, DRAM is
hard to scale. The capacitor should be large enough for reliable state detection. Also, the
access transistor should be large enough for low leakage and long retention time. Hence,
it is difficult to improve the density and capacity of DRAM further. Second, DRAM is
very energy-consuming [Drepper 2007]. In order to address the problem of current
leakage, DRAM cells have to be refreshed frequently (every 64ms in most current
DRAM devices). Furthermore, each read operation must be followed by an operation
to recharge the capacitor, since the capacitor is discharged by read operations.

2.1.2. Properties of Phase Change Materials. Phase change materials have two meta-
stable states—one amorphous, the other crystalline. They can be rapidly and

ACM Journal on Emerging Technologies in Computing Systems, Vol. 12, No. 4, Article 33, Publication date: May 2016.



Rethinking Computer Architectures and Software Systems for Phase-Change Memory 33:5

Fig. 3. Time and voltage temperature required to program PCM (from Raoux et al. [2008]).

repeatedly switched between the two states by applying heat using electrical pulses.
The optical and electronic properties can vary significantly between the amorphous
and crystalline states; the difference and repeated switching allows data storage.
Although related surveys of using phase change material to store information began
in the 1960s, the technological success of optical storage based on phase change
materials was only enabled after the discovery of a new class of materials that fulfilled
all the requirements for this technology. It was found that semiconductor alloys along
the pseudobinary line between GeTe and Sb2Te3 had large optical contrast and could
be rapidly and repeatedly switched between the amorphous, low-reflectivity and
crystalline, high-reflectivity phases using laser pulses [Yamada et al. 1987]. Ge2Sb2Te5
(GST) is the most widely studied phase change material. It can crystallize in less than
100ns [Raoux et al. 2008]. Phase change material is the core part of PCM technology,
and its properties to a large extent determine its functionality and success.

2.1.3. Principles of PCM. In contrast to DRAM, PCM is a resistance-based memory tech-
nology. The principle of PCM is to store data via different resistances of PCM materials
in two phases. The SET operation is achieved by crystallizing the material and RESET
by making it amorphous. These two operations are performed by heating the material
with different voltage and time [Dong et al. 2009a]. As shown in Figure 3, SET oper-
ations are achieved by applying moderate power for a long series of electrical pulses,
while RESET operations are achieved by a short duration of high-powered electrical
pulses. In addition, the SET operation tends to dictate the write speed performance
of PCM technology, since the required duration of this pulse depends on the crystal-
lization speed of the phase change material. The RESET operation tends to be fairly
current- and power-hungry; thus, care must be taken to choose an access device capable
of delivering high current and power without requiring a significantly larger footprint
than the PCM element itself. The read operation is performed by measuring the device
resistance at low voltage, which does not alter the state of the memory cell.

2.1.4. Design of PCM Devices. Device design and integration are key components of
PCM technology, which determine the PCM functionality, production cost, and the
size of the access device (storage density). Before we begin our design, we should
make clear the influences of different parameters of phase change material on devices,
which will help us choose the best phase change material for the devices. We list
some important parameters of phase change materials and their influences on PCM
device performance in Table I. Much effort has been devoted to optimizing phase change
materials for specific applications with different requirements for memory functionality
such as switching speed, data retention, endurance, and switching power. The failure
mechanisms of PCM devices are also an important issue that we need to take into

ACM Journal on Emerging Technologies in Computing Systems, Vol. 12, No. 4, Article 33, Publication date: May 2016.



33:6 C. Wu et al.

Table I. Some Material Parameters and Their Influences on Device
Performance (data from Burr et al. [2010])

Phase change material parameter Influence on PCM device performance
Crystallization temperature Data retention and archival lifetime

Thermal stability of the amorphous phase SET power
Melting temperature RESET power

Resistivity in amorphous and crystalline phases On/off ratio, SET and RESET current
Threshold voltage SET voltage and reading voltage

Thermal conductivity in both phases SET and RESET power
Crystallization speed SET pulse duration (thus power), data rate
Melt-quenching speed RESET pulse duration (thus power)

consideration when designing PCM devices. One case is that the cell can no longer be
switched to the low-resistance state; another is elemental segregation, in particular, Sb
(antimony) enrichment in the switching region caused by electromigration, which leads
to poor data retention when the cell can no longer be switched to the high-resistance
state. Another important aspect is the cell design, which requires the consideration
of many factors, such as number of required process steps, parameter window for
each process step, availability of the required deposition methods (e.g., atomic layer
deposition of phase change materials), and other aspects of manufacturability [Raoux
et al. 2014].

2.1.5. Single-Level Cells and Multilevel Cells. As discussed earlier, phase change material
can switch between two phases; thus, the PCM cell can store two possible values, that
is, a single bit. This traditional use of a memory cell is called single-level cell (SLC). A
PCM cell’s feature of being in different degrees of partial crystallization enables more
than one bit to be stored in each cell, which can increase the storage capabilities of
a single PCM cell. Several prototypes have demonstrated the multilevel cell (MLC)
[Burr et al. 2008; Lee et al. 2009]. For example, in a MLC design proposed by Lin et al.
[2009], two bits are stored in a single MLC, effectively doubling the storage capacity
of the memory for the same area cost. The MLC property can be used to multiply the
memory capacity at the cell level. MLC PCM requires high current when performing a
RESET operation, which shortens its endurance significantly. To relieve this problem,
Jiang et al. [2012] proposed elastic RESET (ER), which reduces RESET current to
construct non-2n-state MLC PCM and effectively reduces the RESET energy so that
the PCM endurance can be extended exponentially. Since the value written to the cell
can drift over time, MLC PCM is prone to a unique type of soft errors. Seong et al.
[2013] proposed trilevel-cell PCM and demonstrated its ability to achieve a 105× lower
soft error rate than four-level-cell PCM and 36.4% performance improvement over the
four-level-cell PCM. The trilevel-cell PCM shows a 1.33× higher information density
than single-level-cell PCM while achieving the soft error rate of DRAM. Liu et al. [2014]
observed that, by lowering the retention guarantee of PCM, one can obtain a significant
write latency reduction. Based on this observation, they proposed a dual-retention PCM
architecture that meets the durability requirement for persistent store while relaxing
the retention requirement of working memory in return for write-latency reduction.

2.1.6. Summary of PCM Attributes. Table II shows the attributes of PCM by a comparison
with other kinds of memory and storage technologies. Those data are cited from Qureshi
et al. [2009], Mogul et al. [2009], Burr et al. [2008], Dong et al. [2008], Kryder and Kim
[2009], and Lewis and Lee [2009]. Compared to DRAM and NAND Flash, emerging
PCM devices have some unique characteristics as follows.

—Scalability. Without the need for large capacitors, PCM offers a density advantage
over DRAM. IBM demonstrated a 20nm device prototype in 2008 [Raoux et al. 2008],

ACM Journal on Emerging Technologies in Computing Systems, Vol. 12, No. 4, Article 33, Publication date: May 2016.



Rethinking Computer Architectures and Software Systems for Phase-Change Memory 33:7

Table II. Comparison of Various Storage Techniques

SRAM DRAM PCM NAND Flash Disk
Maturity Product Product Advanced

development
Product Product

Cell size >100F2 6-8F2 8-16F2 4-5F2 (2/3)F2

Byte-accessible Yes Yes Yes No No
Read latency <10ns 10-60ns 48ns 25us 8.5ms
Write latency <10ns 10-60ns 40-150ns 200us 9.5ms

Energy per bit access >1pJ 2pJ 100pJ 10nJ 100-1000mJ
Standby power Yes Yes No No Yes

Endurance (# of writes
per bit)

>1015 >1015 108 104 >1015

Nonvolatility No No Yes Yes Yes

which is expected to scale down to 9nm in 2022 [ITRS 2007]. In contrast, DRAM
probably will not be able to scale down beyond the 40nm technology [Raoux et al.
2008; Lee et al. 2009]. Given this scaling advantage and multiple bits per cell feature,
PCM can enable more memory capacity for the same chip area, or potentially a lower
price per capacity.

—Performance. PCM is byte addressable and has better performance than NAND
Flash. Compared to DRAM, PCM’s read latency is close, while its write latency
is about an order of magnitude slower [Lee et al. 2009]. Since PCM can be written
without Flash’s expensive ERASE operations, its sequential and random access have
similar performance. The SET latency is the longest and determines the write per-
formance. The reason behind this difference is shown in Figure 3. Latencies of 150ns
for SET and 40ns for RESET operations have been demonstrated. The read latency
is 48ns.

—Energy Consumption. The dynamic power (power used to switch cell states) con-
sumed by PCM is actually higher than DRAM. The read operation to a PCM cell
dissipates 40μW. Write energy mainly depends on the RESET operation, which dissi-
pates 480μW, while SET dissipates 90μW. Constant refreshes due to current leakage
make DRAM power-consuming. The nonvolatile nature enables PCM not to require
any refresh; thus, static power consumption becomes negligible when compared to
DRAM.

—Endurance. Endurance refers to the limited number of writes that a PCM can sustain.
The reason behind write endurance is that PCM writes cause the thermal expansion
and contraction of PCM material, which degrades the contact between electrode and
storage. Consequently, currents are no more reliably injected into the cell. Beyond
the write endurance, the content in a PCM cell can still be read, but it can no longer
be changed. aThe current write endurance of PCM varies between 107 (for MLC) and
109 (for SLC) writes, but we can conservatively assume 108 as a reasonable reference
value [Lee et al. 2009; Zhou et al. 2009]. In other words, PCM’s write endurance is
orders of magnitude higher than Flash.

From this discussion, it should be clear that PCM has emerged as a leading con-
tender to take the role of the next-generation memory technology. Impressive progress
has been made in basic materials, device engineering, and chip-level demonstrations,
including the potential for MLC programming and 3D-stacking [Kau et al. 2009]. When
designing computer architectures and software systems for computer systems incorpo-
rating PCM, we can take advantage of PCM’s good attributes of byte-addressability, low
read latency, no power overhead in an idle period, and nonvolatility, and avoid PCM’s
disadvantages of high write latency, high-access energy consumption, and limited write
lifetime.

ACM Journal on Emerging Technologies in Computing Systems, Vol. 12, No. 4, Article 33, Publication date: May 2016.



33:8 C. Wu et al.

2.2. Technical Challenges

Since the performance of PCM is between DRAM and Flash technologies (Figure 1)
[Qureshi et al. 2009], which are dominantly used as main memory and solid-state stor-
age, respectively, it is desirable to use PCM in main memory or in online storage. PCM
combines the best features of DRAM (read and write bandwidths) with those of NAND
Flash memory (such as retention); thus, it satisfies the many stringent requirements
that are necessary for enterprise applications. This provides an opportunity for opti-
mizing overall performance of a computer system. In addition, people are also seeking
the solutions of applying PCM to processor cache.

When PCM is used in processor cache, main memory, and online storage, however,
we also encounter different technical challenges. We need to seek architectural and
system-level solutions before PCM can enable a revolution in next-generation computer
systems. Incorporating PCM into which level of computer storage hierarchy is still an
open issue. The main possible applications for PCM memory include being used as
processor cache, main memory, solid-state storage, and as both main memory and
storage.

2.2.1. Challenges When Used as Processor Cache. Traditional multilevel SRAM-based
cache hierarchies have the drawbacks of low density, high-leakage power, and com-
plicated design complexity, which lead people to seek solutions by using new memory
technology (e.g., PCM) as an alternative or a supplement to SRAM. However, there
remain a large amount of issues to be addressed before we employ PCM to cache
hierarchy. The potential challenges when applying PCM as processor cache are as
follows.

—Performance Optimization. When using PCM as processor cache, its performance is
hard to match SRAM, especially its write performance (see Table II). Therefore, it
is necessary to explore corresponding methods to optimize system performance as
much as possible when employing PCM into cache systems.

—Lifetime Prolongation. The most stringent requirement for PCM to replace SRAM
is write endurance. The read/write endurance for SRAM is infinite. The read en-
durance is not a likely problem for PCM. However, the required write endurance
for PCM to replace SRAM is 1018, which is out of reach for PCM (even all exist-
ing NVM technologies). Luckily, since PCM is nonvolatile compared with SRAM,
we can exploit this feature to trade data retention for improved endurance. Fur-
ther work is required in this direction before PCM can be applied to processor
cache.

2.2.2. Challenges When Used as Main Memory. Due to the advantage of PCM in the capac-
ity scaling capability over DRAM, PCM is considered a replacement or enhancement for
DRAM. Before PCM can be declared a suitable successor or a supplement for DRAM,
a lot of research is required to address the current limitations of PCM’s access latency,
write endurance, and energy consumption [Lee et al. 2009, 2010]. Accordingly, the fol-
lowing technical challenges are required to be addressed when PCM is used as main
memory.

—Performance Optimization. When PCM is incorporated into main memory, its access
times have to be considered. Current projections show that when serving read re-
quests, PCM is about 2-4× slower than DRAM. The latency to write a line in PCM
memory is more than an order of magnitude higher than in DRAM. This means that
a PCM-based main memory system is likely to have higher access latency, therefore
requiring optimization of overall system performance.

ACM Journal on Emerging Technologies in Computing Systems, Vol. 12, No. 4, Article 33, Publication date: May 2016.



Rethinking Computer Architectures and Software Systems for Phase-Change Memory 33:9

—Lifetime Prolongation. PCM cells are projected to endure 10–100 million writes [ITRS
2007]. After that, the content of PCM cells can be read, but cannot be changed. This
means that the lifetime of a PCM system would be limited due to endurance-related
wear-out. When not used wisely, PCM may become faulty after a short period of time.

—Active Energy Saving. The static power consumed by PCM is very low, but the dy-
namic energy consumption is obviously higher than DRAM. Writes especially con-
sume significantly high energy, owing to the need to heat them in order to switch
their state. Therefore, it is desirable to seek solutions to saving active energy con-
sumption, especially for write-intensive workloads. PCM attributes provide some
opportunities to achieve this goal. For instance, it allows writing of a single bit of
PCM, while multiple banks are accessed for every DRAM write operation.

—Nonvolatility Leveraging. Existing main memory systems are dominantly built with
DRAM, which is a volatile memory. Existing memory management designs are based
on the assumption that the memory device is volatile. However, PCM devices are non-
volatile. This nonvolatility may provide some obvious benefits. For example, the time
to boot a computer will become very short if PCM stores the operating system of a
computer system. This requires that the memory management system can make a
distinction between PCM and DRAM, and enable their advantages. Moreover, guar-
anteeing data consistency is a new challenging problem when exploiting nonvolatile
PCM in main memory. We should consider how to obtain high throughput while
providing strong consistency guarantees.

If the preceding technical challenges can be addressed effectively, PCM could be a
successor to DRAM as the main memory of future computer systems. At least, PCM
can be used in the DRAM-and-PCM hybrid architecture, in which DRAM is disad-
vantageous. On the other hand, the introduction of last-level cache (LLC) may help
us alleviate these problems, especially when LLC becomes much larger. However, the
benefit we can get from LLC mainly depends on the locality of applications and the
used caching algorithm.

2.2.3. Challenges When Used as Solid-State Storage. Since PCM is nonvolatile, one can
use it to build SSDs. Compared with Flash-based SSDs, PCM-based SSDs offer great
advantages of high performance, byte accessibility, superior endurance, and low static
energy consumption. PCM offers a viable alternative to flash memory for building
SSDs.

However, existing software systems, such as file systems and database systems, are
designed and optimized for hard disks. Some systems are optimized for Flash SSDs.
Consequently, we need to rethink core algorithms and software implementations in on-
line storage for PCM. When using PCM-based SSDs, the following technical challenges
need to be addressed.

—Leveraging Byte-addressability. PCM is persistent and byte-addressable. PCM-based
storage systems can write only a few bytes of data in places in which a traditional
block-based file system would write kilobytes. A new challenge is understanding how
storage software exploits the attribute of byte-addressability to eliminate write am-
plification, and further improving write performance and prolonging PCM lifetime.

—Exploiting High-Access Performance Efficiently. Some of existing OS software archi-
tecture techniques, such as page cache policy and the read/write granularity, are
designed for the efficient use of traditional HDD and SSD. However, since the access
latency of PCM is several orders of magnitude shorter than these traditional storage
devices, we should rethink these techniques when applying PCM as the secondary
storage.

ACM Journal on Emerging Technologies in Computing Systems, Vol. 12, No. 4, Article 33, Publication date: May 2016.



33:10 C. Wu et al.

—Maximizing Performance Advantage with Limited Endurance and Size. The most
attractive advantage of PCM-based SSDs is their low access latencies. However,
there are also some restrictions in the scenario in which PCM-based SSDs are used.
First, the lifetime of a PCM system would be limited due to endurance-related wear-
out. Second, due to the cost restriction, the size of PCM-based SSDs deployed in a
computer system will also be limited. In this scenario, it is challenging to maximize
PCM’s performance advantage with the restriction of its limited endurance and size.

—Optimizing Performance and Energy Efficiency Simultaneously. With PCM, there is
obvious disparity in performance and energy efficiency. First, PCM writes, compared
to its read operations, incur higher energy consumption, higher latency, and lower
bandwidth. Second, there are obvious asymmetries between two kinds of writes—
the SET latency is over three times the RESET latency, while the RESET operation
dissipates about 1.5 times higher energy. With those complex attributes of PCM, it is
difficult to optimize overall system performance and energy efficiency simultaneously
by designing data presentation and data layout wisely.

If these challenges are addressed, PCM may someday replace flash memory or at
least some of its uses for the purpose of high performance. Until then, PCM could also
be used in flash and PCM hybrid architectures to counter some of the disadvantages
of flash memory.

2.2.4. Challenges When Used as Both Main Memory and Storage. From the preceding anal-
yses, we can see that PCM can be used as main memory or solid-state storage. An
intuitive idea is that, in a PCM-based system, a portion of PCM is used as main mem-
ory while the other portion is used as online storage. In such a PCM-based system, to
make a satisfactory trade-off between performance and cost, those two portions will
have to be managed in an integrated manner. Due to more complex architectures, some
new challenges are to be addressed.

—Dynamic Partitioning between Memory and Storage. The integration of resource
management will allow the system to flexibly provision the available PCM resources
across the memory and storage boundary. It is challenging to design a dynamic
scheme that changes the status of a portion of PCM from memory to storage, or from
storage to memory for better performance and reliability.

—Lifetime Enhancement. Using PCM as memory and storage simultaneously, the sys-
tem may crash more easily since memory wear-out and storage wear-out can both
result in the problem.

—Energy Efficiency Improvement. Apart from the lifetime issue mentioned earlier, en-
ergy consumption is another problem to be solved. Although using PCM as storage
will consume less energy than those traditional storage devices, the energy con-
sumption of memory is still larger. Thus, further efforts should be made to reduce
the energy consumption for the whole system.

—System Overhead Reduction. In a realization of the idea, the physical memory re-
source manager will need to bookkeep the status of the storage resources as well as
the memory resources. The implementation of integrated management may intro-
duce a new layer of resource control, which will incur system overheads. Thus, we
need to tackle this problem carefully to get good system performance.

2.3. Other Resistive Memory Technologies

Here, we provide a brief introduction of some other resistive memory technologies,
discuss their features, and compare them with PCM.

Spin transfer torque RAM (STT-RAM) utilizes a magnetic tunnel junction (MTJ) as
memory storage. An MTJ consists of two ferromagnetic layers separated by an oxide

ACM Journal on Emerging Technologies in Computing Systems, Vol. 12, No. 4, Article 33, Publication date: May 2016.



Rethinking Computer Architectures and Software Systems for Phase-Change Memory 33:11

Table III. Comparison of Different Resistive Memory Technologies [Mittal et al. 2015]

PCM STT-RAM RRAM
Cell size (F2) 4–12 6–50 4–10

Write Endurance (# of writes per bit) 108–109 4 × 1012 1012

Speed (R/W) Slow/very slow Fast/slow Fast/slow
Leakage Power Low Low Low

Dynamic Energy (R/W) Medium/high Low/high Low/high
Retention Period N/A N/A (unless relaxed) N/A

barrier layer. The magnetization direction of one ferromagnetic layer is fixed, while that
of the other ferromagnetic layer can be altered by passing a current. The resistance
of the MTJ is determined by the relative magnetization direction of these two layers.
If the two layers have different directions, the resistance of the MTJ is high and vice
versa. Using this property, a binary value is stored in an STT-RAM cell.

A typical Resistive RAM (RRAM) design uses a unipolar switching. In this design,
the SET and RESET operations are conducted by using short and long pulses, or by
using high and low voltage with the same voltage polarity.

Table III lists the characteristics of different resistive memory technologies. As we
can see from the table, STT-RAM has a lower density than PCM and RRAM, but its
access latency and write endurance are much better than PCM. RRAM has a longer
write endurance and shorter access latency than PCM and its density is comparable
to PCM, but its operation energy consumption is larger than PCM. Based on these
comparisons, we can conclude that none of the existing resistive memory technologies
outperforms all the others on all parameters, which requires us to exploit the cor-
responding memory technologies according to the specific applications. For example,
PCM is more appropriate to employ in main memory or online storage than STT-RAM
and RRAM, while STT-RAM and RRAM are more suitable for the design of processor
cache.

3. USING PCM IN PROCESSOR CACHE

Traditionally, SRAM has been used as processor cache, due to its desirable properties
such as very high write endurance, low access latency, efficient dynamic energy, and
manufacturability. However, SRAM also suffers from large leakage power consumption
and low density. Thus, using SRAM to design caches consumes a significant fraction
of chip area and power budget. The introduction of PCM to processor cache can help
alleviate these SRAM problems, but it also introduces challenges of much longer access
latency and limited endurance compared to SRAM. To make PCM as processor cache
practical, these challenges need to be addressed.

3.1. Hybrid Cache Hierarchy

When we design cache hierarchy, one idea is that we can use multiple memory technolo-
gies to get the best of them. Although the physical material and read/write properties
of different memory technologies are varied, the similarity in the peripheral circuits
allows similar operation from a logic designer’s point of view. Still, the limitations of
hybrid designs are that, from the perspective of manufacturing, they may incur higher
cost of integration, verification, and testing than homogeneous caches. Mittal et al.
[2015] compared different hybrid caches and found that SRAM + PCM caches offer
higher area efficiency than SRAM + eDRAM and SRAM + STT-RAM caches. However,
an important limitation of SRAM + PCM hybrid caches is the large write latency gap
between SRAM and PCM; hence, a hit in different portions of an SRAM + PCM hybrid
cache may lead to vastly different latencies. Variable hit latency adds complications
and unpredictability to scheduling of dependent instructions.

ACM Journal on Emerging Technologies in Computing Systems, Vol. 12, No. 4, Article 33, Publication date: May 2016.



33:12 C. Wu et al.

Guo et al. [2012] proposed Wear-Resistant Hybrid Cache Architecture (WRHCA),
which splits L2 cache into two parts, that is, a small L2 SRAM cache and a large PCM
cache. The goal of their design is to make use of PCM to build a cache with large
capacity and low power consumption, while keeping low write traffic to PCM to extend
its lifetime. They recorded the read and write times of a newly loaded cache line to
predict if this line of data belongs to dead on load (DOL) data or write-intensive (WI)
data. The DOL data will be evicted as soon as possible, while WI data are mapped to
SRAM or written back to memory. Therefore, their scheme can reduce the number of
writes to PCM, hence improve the lifetime and save energy.

Wu et al. [2009a] proposed a hybrid L2 cache architecture, which divides L2 cache into
large-read (PCM) and small-write (SRAM) regions of different memory technologies.
To fully explore performance enhancement, a proper cache line replacement and data
migration policy between the two regions was proposed. To be more specific, they
utilized a counter to record the access frequency of cache lines in the read region;
when it exceeds a threshold, the line is swapped with another line in the write region.
In addition, to save energy, they kept the read region in state-preserving low-leakage
(drowsy) mode. Apart from the one-level hybrid cache hierarchy, Wu et al. [2009a]
proposed interlevel hybrid cache hierarchies in which different memory technologies
are applied in different cache levels according to their properties. L1 and L2 cache
use SRAM due to its performance advantages. L3 cache is hybrid by using eDRAM,
STT-RAM, or PCM, or another option is that L3 uses eDRAM or STT-RAM, and L4
uses PCM due to its slow speed and high density. The experimental results show that
the intralevel hybrid cache hierarchies can achieve 18% IPC improvement and up to
70% reduction in power consumption compared to a pure SRAM cache hierarchy.

3.2. Pure PCM Cache Hierarchy

Joo et al. [2010] explored a set of techniques to prolong a pure PCM cache’s lifetime,
which enable the pure PCM as a drop-in replacement of an SRAM cache. They exploited
a read-before-write scheme, which can eliminate redundant writes by performing a pre-
read operation. Since a read operation is much cheaper than write, we can achieve high
performance when there are many redundant writes. To further reduce the number of
writes to PCM cells, they employed a data-inverting scheme in the PCM cache write
logic, that is, a value will be written in an inverted form if it requires less numbers to be
written. To solve the uneven write distribution in a cache block, they further proposed
a bit-level shifting technique, which spreads out the writes over the whole PCM cells
in a cache block. In this wear leveling scheme, a bit-line shifter is used to decide the
number of bits by which input data is shifted before being written.

3.3. Summary

The works in applying PCM to processor cache systems mainly addressed the two
main challenges, that is, poor performance and limited endurance of PCM compared
to SRAM. As we discussed earlier, hybrid and pure PCM are two available cache ar-
chitectures. Compared to pure PCM cache architecture, we think that hybrid cache
architecture has greater potential, since it can get the best of different memory tech-
nologies to boost overall performance. Of course, pure PCM cache architecture is also
worth exploring. The work of Joo et al. [2010] is just the beginning. We would like to
see further work in this direction.

For performance reasons, PCM or some other new memory technologies are often
applied in the lower-level cache. In addition, we can utilize the nonvolatile feature of
PCM (e.g., data retention) to enhance performance.

ACM Journal on Emerging Technologies in Computing Systems, Vol. 12, No. 4, Article 33, Publication date: May 2016.



Rethinking Computer Architectures and Software Systems for Phase-Change Memory 33:13

Fig. 4. Three alternative proposals for PCM-based main memory system (from Chen et al. [2011b]).

4. USING PCM IN MAIN MEMORY

To exploit PCM in main memory as a DRAM alternative, PCM must be architected
to address its drawback of comparatively long latencies, high-energy writes, and finite
endurance. The goals are that under representative workloads, read and write latencies
cannot be too much longer than DRAM; energy consumption is identical to or lower
than DRAM; and the lifetime can reach at least several years.

4.1. Performance Optimization

As shown in Figure 4, PCM-based main memory systems have three architectural
alternatives:

—PCM-only Main Memory Systems. PCM is used to replace DRAM to achieve larger
main memory capacity [Lee et al. 2009].

—Hybrid Main Memory with Caching Architecture. In addition to PCM, a small amount
of DRAM is included in this kind of system so that frequently accessed data can be
kept in the DRAM buffer, which can improve its access performance [Qureshi et al.
2009].

—Hybrid Main Memory with Tiering Architecture. PCM and DRAM are arranged hor-
izontally to store different data, and can be directly accessed at the same level by
users [Park et al. 2010; Mogul et al. 2009].

For each alternative, researchers proposed different approaches to optimizing the
overall performance of main memory systems.

4.1.1. PCM-Only Main Memory Systems. Figure 5 shows the architecture of PCM array,
which is similar to those for existing memory technologies. PCM cells in this architec-
ture are hierarchically organized into banks, blocks, and subblocks with local, global

ACM Journal on Emerging Technologies in Computing Systems, Vol. 12, No. 4, Article 33, Publication date: May 2016.



33:14 C. Wu et al.

Fig. 5. PCM array architecture.

decoding for row, column addresses. Sense amplifiers (S/As) and word drivers (W/Ds)
are multiplexed across blocks. Within the memory architecture, a row is in active state
only when it is read from the array and latched in a buffer. In addition, memory access
operations read data from and write data to the buffer directly. An access that requires
an unbuffered row must evict the current row and read the desired row. Separate sens-
ing and buffering enable multiplexed sense amplifiers. Local wordline decoders activate
lines across multiple subblocks. A subset of these subblocks’ data pass through local
and global bitline decoders for sensing and buffering. This distributed bitline decoding
enables buffer widths narrower than the total number of bitlines. The buffer width
is a critical parameter in the design phase, which determines the required number of
expensive current sense amplifiers.

Through the fundamental understanding of PCM technology parameters, Lee et al.
[2009] proposed an area-neutral buffer reorganization approach that makes PCM a
scalable DRAM alternative. They reorganized a single wide buffer into multiple nar-
row buffers to reduce both energy costs and access latencies. Narrow-buffer rows can
mitigate write energy. However, narrow rows also negatively impact spatial locality,
opportunities for write coalescing and, finally, application performance. The number of
sense amplifiers decreases linearly with buffer width, significantly reducing the area
since fewer of these large circuits are required. Considering area neutrality, narrower
buffers mean more buffer rows. Multiple buffer rows can exploit locality for coalescing
writes, hence hiding their latency.

Through experiments, Lee et al. [2009] found four 512B-wide buffers most effective
for optimizing average latency and energy consumption across the workloads used in
the experiments. A baseline PCM system is 1.6× slower and requires 2.2× more energy
than a DRAM system. PCM buffer reorganizations reduce application execution time

ACM Journal on Emerging Technologies in Computing Systems, Vol. 12, No. 4, Article 33, Publication date: May 2016.



Rethinking Computer Architectures and Software Systems for Phase-Change Memory 33:15

Fig. 6. The hybrid main memory of Qureshi et al. [2009].

from 1.6× to 1.2× and memory energy consumption from 2.2× to 1.0× relative to
DRAM-based systems.

Due to poor performance under write-intensive workloads, the PCM-only main mem-
ory system should not be regarded as an independent solution. Instead, it should be
used in a more complex memory architecture. It is necessary to redesign an entire
hierarchy to overcome PCM shortcomings. The analysis in this survey is a step toward
a fundamentally new memory hierarchy with deep implications across the hardware–
software interface.

4.1.2. Hybrid Main Memory with Caching Architecture. Qureshi et al. [2009] proposed a sim-
ple architecture for a system using DRAM as a buffer for PCM. Much of the subsequent
work assumes that the DRAM-boosted PCM main memory uses this architecture. In
such an architecture (Figure 6), PCM is managed by the operating system via a page
table. Being a buffer and an access interface of PCM, DRAM is managed by the DRAM
controller, and is transparent to applications. The managing granularity of PCM and
DRAM is one page. When reading a page, the system first checks it in the DRAM. If
not found, the system retrieves it from PCM and even disks, then loads it into the
DRAM. By increasing the size of a DRAM buffer, one can overcome the low-speed
drawback of PCM. By performing experimental evaluation under different application
workloads, Qureshi et al. [2009] pointed out that a memory system with 1GB DRAM
and 32GB PCM has performance 3.0 times that of an 8GB DRAM memory system,
while a memory system with 32GB DRAM has only 3.3 times performance.

The lazy-write technology can reduce the number of writes to PCM and improve
performance. When fetching a page from a hard disk, the system writes the page to
DRAM directly, while not writing it to PCM. A position is reserved in PCM. The page
is written back to PCM on the eviction of the row from DRAM.

In order to endure high latencies of PCM writes, a write queue is introduced. With
regard to the write speed of existing PCM, a write queue with a size of 100 pages is
sufficient to avoid a write bottleneck [Qureshi et al. 2009]. In the traditional main
memory, if a PCM write operation is being executed, the incoming read requests have
to wait until this write operation is completed. The improved method is to process the

ACM Journal on Emerging Technologies in Computing Systems, Vol. 12, No. 4, Article 33, Publication date: May 2016.



33:16 C. Wu et al.

read operation first, while postponing the ongoing write. Once the read operation is
completed, the frozen write operation will be continued according to the record in the
write queue. In order to save energy, a threshold can be set adaptively. If the time that
a write operation has spent, when a read request arrives, is higher than the threshold,
the write will continue, rather than being frozen. Through the experiments, Qureshi
et al. [2010] proved that this technology can reduce read latency by 75% and improve
overall system performance by 46%.

Yoon et al. [2012] found that the miss rate of a buffer row can approximately reflect
the role of the row on the performance. They proposed that the memory controller
maintains a count of the row buffer misses for recently used rows in PCM. When the
numbers of row buffer misses and accesses for a row exceed certain thresholds, the row
is cached in DRAM. They used an adaptive method to adjust those thresholds.

4.1.3. Hybrid Main Memory with Tiering Architecture. In a tiering hybrid main memory sys-
tem, PCM and DRAM can be directly accessed by the operating system. Joining of PCM
increases the capacity of main memory. Compared with the preceding architecture of
DRAM as the buffer, such an architecture can use the capacity of DRAM. But imple-
mentations are much more complex, some of which may generate a greater cost. Due
to the difference in the capacity, performance, reliability, and volatility between DRAM
and PCM, some intelligence will be required to decide what pages should migrate to
PCM and when, according to the access pattern of the page.

Applying this intelligence, the OS appears to be the best place, which can choose the
pages that have the best return on investment for migration. However, these pages
should not be the kernel private address space that cannot be migrated easily, but
should be the pages aimed for user address space and file system buffering, which
consume most of DRAM.

A simple method is to use the segment type. The operating system allocates DRAM
memory for the pages of the heap and stack segments, and PCM memory for other
pages [Park et al. 2010]. This method performs better only when the ratio of DRAM
and PCM is close to that of the heap and stack segments and other segments. Another
solution [Mogul et al. 2009] is to use several heuristics. They include some tests that
use static information, for example, page types, file types, file reference modes, and
application-supplied page attributes. They also include some tests that use dynamic
information, for example, file names and page history.

The preceding methods use all kinds of information from the operating system. Some
other projects only take advantage of the information from the memory controller. A
typical idea is to keep track of the access history of each page, and to write those pages
with more accesses to DRAM. Dhiman et al. [2009] proposed recording the reference
number of each page (using the SRAM cache to accelerate counting). When the write
number of a page reaches the threshold, the page is migrated into DRAM. Ramos et al.
[2011] proposed considering access number and access frequency comprehensively.
They apply the multilevel LRU queues to promote the pages whose access number
exceeds a certain threshold to the next queue. The pages of the several highest level
are stored in DRAM.

In addition, it is worthwhile to note that if the data in PCM and DRAM are exclusive,
the partial-write technology, mentioned in Section 3.2.1, cannot be used. When a page
is evicted from DRAM into PCM, the system has to write a whole page even if the page
has not been modified, which may increase the write number.

4.2. Lifetime Prolongation

Prolonging the PCM lifetime mainly consists of two technical ideas: reducing wear and
wear leveling. Both techniques can be applied at the same time. The PCM lifetime has
extended to a few years owing to the modern technology.

ACM Journal on Emerging Technologies in Computing Systems, Vol. 12, No. 4, Article 33, Publication date: May 2016.



Rethinking Computer Architectures and Software Systems for Phase-Change Memory 33:17

4.2.1. Reducing Wear on PCM. The amount of write times to a PCM unit is limited.
Thus, decreasing PCM writes means reducing wear, which can be accomplished by
changing the structure of the cache, using DRAM buffer (described in Section 3.1).
There are also some other solutions, such as reducing the number of redundant writes,
applications avoiding writes proactively, and so on.

Partial writes are useful to reduce redundant writes [Lee et al. 2009; Qureshi et al.
2009]. Main memory is divided into smaller blocks (e.g., 4B or 64B), and dirty bits are
added for DRAM [Qureshi et al. 2009] or CPU [Lee et al. 2009] to trace whether a
block is dirty. It synchronizes only small blocks that are dirty, instead of the whole line.
This method reduces the number of writes, while it cannot eliminate redundant writes
completely.

One solution to eliminating redundant writes completely is comparing every bit
before a write and updating only changed bits [Zhou et al. 2009; Chen et al. 2011a].
It is implemented by adding an XNOR gate to compare new data with old data when
writing. Yang et al. [2007] indicated that the extra reads for bit comparison bring
only 1% performance overhead and 0.5% energy consumption. They proposed a data
comparison write (DCW) scheme, which performs the read operation before the write
operation to know the previously stored data in the selected persistent RAM (PRAM)
cell. If the input data and the previously stored data are the same, no write operation
is required. If not, the write operation is the same as the conventional write scheme.
Based on DCW, Cho and Lee [2009] proposed Flip-N-Write, a simple but effective
micro-architecture to improve PRAM’s endurance. Its key idea is to replace a write
operation with a read-modify-write operation to skip bit programming action if not
needed (e.g., writing a “0” on “0”), and to limit the maximum number of bits to program
by introducing a “flip bit” that indicates whether the associated PRAM word has been
flipped or not. FlipMin [Jacobvitz et al. 2013] exploits coset coding to extend PCM’s
lifetime. The main function of coset coding is to perform a one-to-many mapping from
each dataword to a coset of vectors. The fact of having various possible vectors provides
the flexibility to choose the vector to write that optimizes lifetime. Compared with Flip-
N-Write, FlipMin can further reduce the number of bits that flip per write. Qureshi
et al. [2009] suggested that applications should proactively avoid writes to the main
memory. For example, streaming applications with poor reuse do not benefit from the
capacity boost provided by PCM. Thus, they added an extra bit called page level bypass
(PLB), and assumed that the OS can turn on/off PLB for each application using a
configuration bit. If the PLB bit is turned on, all pages of that application bypass the
PCM storage to reduce wear. Wang et al. [2015] proposed a write-activity-aware page
table management (WAPTM) scheme for PCM-based embedded systems, which aims
to improve the system lifespan by reducing unnecessary writes in SLC PCM-based
main memory. In contrast to compiler-based techniques, WAPTM utilizes architectural
advances and is a pure OS-level technique. Their scheme includes two simple, yet
effective, techniques: Smart-Init and Best-Fit. Smart-Init is mainly used to reduce
bit flips when memory pages are accessed for the first time, and resets at most one
bit in each page table entry (PTE), instead of 32 for 32b architecture. Best-Fit is an
algorithm for allocating page frames, which requires the PTE as a parameter to find
an appropriate free page frame and avoid bit flips in PCM cells when the process is
running.

When a cache line is in dirty state and will not be used by the program again, we
can view the cache line as useless. Bock et al. [2011] defined the write-back operation
of the useless cache line as useless write-backs. Since the data will not be used again,
the write-back operation can be safely avoided, thus improving the lifetime of PCM.
SoftPCM [Fang et al. 2012] focuses on reducing write traffic of PCM in application-
specific hardware for video applications. Based on the error tolerance characteristic of
video applications, it relaxes the integrity of pixel data written into PCM. If the new

ACM Journal on Emerging Technologies in Computing Systems, Vol. 12, No. 4, Article 33, Publication date: May 2016.



33:18 C. Wu et al.

Fig. 7. High-level overview of the dual-phase compression technique (from Baek et al. [2012]).

data to be written is similar to the old, one can just ignore the write;thus, the lifetime
of PCM can be improved.

Data compression is another kind of technique that can be used to reduce the write
traffic to PCM. Sun et al. [2011] noted that the prior works such as DCW, Flip-N-Write,
and so on, mainly based on the “bit-level” temporal locality. These methods find the
redundant bits by comparing the value of the new data and the old. In some cases,
however, these methods cannot work efficiently because they ignore the pattern of
data. For example, two data, “11110000” and “11111111,” are written into the same
memory space and evict each other repeatedly. The bit-level temporal locality cannot
be found in the last four bits. However, there exits the frequent-value locality in data,
which can be exploited to reduce the writes. Baek et al. [2012] proposed the dual-
phase compression technique (DPC) to improve the lifetime of hybrid DRAM/PCM
main memory architectures. As shown in Figure 7, the DPC can be divided into two
distinct phases. The first phase optimizes the DRAM cache accesses by utilizing a
simplified, low-latency, word-level compression algorithm. The second phase exploits a
bit-level compression algorithm to further reduce the number of PCM accesses. Delta-
Compressed Caching [Du et al. 2013] can be used to reduce the writes of DRAM/PCM
memory systems, which employs a new data-compression technique for modified data
of DRAM cache and writes them back to PCM memory. Meanwhile, this kind of scheme
can be applied to existing main memory compression frameworks. The experiments
show that the delta compression technique reduces the number of PCM writes by
54.3%, and improves system performance and energy consumption by 24.4% and 11.0%,
respectively, when given 14 representative memory-intensive workloads.

4.2.2. Wear Leveling. The key idea behind the method of wear leveling is changing
the mapping from the virtual address space to the physical address space repeatedly,
so that the write operations can be evenly distributed to the entire address space.
Algebraic-based and request-based are the two kinds of classical algorithms on wear
leveling. The obvious difference is that the former aims to design a general-purpose
method that applies to any case, thus it does not take the access times of each block
(a page or a cache line generally) into consideration; while the latter focuses on the
dynamic wear leveling according to the access times of each block. When implemented,
the latter has to maintain a reference table, which brings storage and access overheads;
while the former needs to consider whether it can work well in the worst case.

Zhou et al. [2009] proposed an algebraic-based mapping algorithm called the row-
shifting method. It shifts one byte in the current row every 256 writes. To achieve this
goal, a circuit of row shifter and a register used to record the rotation offset should be
added to the main memory array. Qureshi et al. [2009] proposed a fine-grained wear-
leveling (FGWL) algorithm. Before writing a page, a pseudo-random number generator
is consulted to get a random value as rotate number; all lines within the page are
shifted by this rotate number. The rotate number is also stored in PCM, which can be

ACM Journal on Emerging Technologies in Computing Systems, Vol. 12, No. 4, Article 33, Publication date: May 2016.



Rethinking Computer Architectures and Software Systems for Phase-Change Memory 33:19

Fig. 8. Start-Gap wear leveling on a memory containing 16 lines (from Qureshi et al. [2009]).

referred to when the page is read. The implementation of the algorithm is simple, and
balances writes within a page, but fails to keep the balance among pages. Intra-line
flipping (ILF) [Zhao et al. 2014b] is a bit-level wear-leveling scheme, and the cost of
this scheme is negligible. To swap the writes on hot and cold bits, ILF periodically flips
the bit mapping in a memory line. Since the mapping is flipped in a regular manner
without any counter or addressing mapping table, the flipping operation can be done
very efficiently. ILF is furthermore compatible with many existing coarser-grained
wear-leveling strategies, which can help us gain more endurance enhancement.

A typical optimization is Start-Gap Wear-leveling [Qureshi et al. 2009]. In this opti-
mization, an extra spare memory line Gapline is added to the end of the main memory.
Figure 8 shows an example of this scheme. Every �=100 writes to main memory, Start-
Gap moves one line from its location to a neighboring location, that is, the Gapline ex-
changes with the front line. When the Gapline reaches the start of the main memory, it
exchanges with the last line so that the contents of all lines have shifted by exactly one
location. By the movement mentioned earlier, the whole main memory can be rotated
repeatedly, which can distribute the writes uniformly to the whole main memory. To
solve the problem of heavily written lines being spatially nearby, they proposed two
simple schemes for address-space randomization, which provides a (pseudo) random
mapping of a given logical address to an intermediate address. In this way, all regions
are likely to get write traffic very close to the average. The experimental results show
that this Start-Gap scheme enhances the system endurance to 97%, which is an ideal
condition. Curling-PCM [Liu et al. 2013] is a similar method applied first in embedded
systems. The basic idea of the scheme is to periodically move the data of hot areas into
the large cold areas within the PCM chip when given application-specific hot areas.
Through this method, write traffic to hot areas can be evenly distributed so that the
wear leveling can be achieved. FGWL [Qureshi et al. 2009] and Start-Gap [Qureshi
et al. 2009] assume that PCM cells have the same endurance ability. However, Dong
et al. [2011b] found that different PCM cells in the same chip may vary in endurance
ability (perhaps due to nonuniform programming current), which is referred to as
endurance variation; thus, it is obvious that balance writes will result in endurance
degradation because the weakest cell retires earlier. Based on that, [Dong et al. 2011b]
proposed wear rate leveling (WRL), a variant of wear leveling, which is used to balance
wear rates (i.e., writes traffic/endurance) of cells across the PCM chip. Further, the

ACM Journal on Emerging Technologies in Computing Systems, Vol. 12, No. 4, Article 33, Publication date: May 2016.



33:20 C. Wu et al.

Max Hyperweight Rematching algorithm was proposed to co-optimize PCM lifetime
and memory data migration overhead. Process variation refers to the variation in the
attributes of transistors (e.g., length, width, oxide thickness) when integrated circuits
are fabricated. With process variation, critical parameters shift from designed values.
PCM cells require different minimum RESET and SET currents, therefore deliver vari-
ous performance, energy, and endurance characteristics. Different from the approach of
redistributing write operation, Zhao et al. [2014a] proposed SLC-enabled wear leveling
(SEWL), a dynamic threshold-guided approach together with several SLC replacement
policies to dynamically convert MLC pages to SLC mode to relieve risky cells from poor
endurance and dense writes. In parallel, for the rest of the MLC pages, swapping was
conducted to balance write operations.

The segment-swapping algorithm proposed by Zhou et al. [2009] is request-based. In
this scheme, memory segments of high- and low-write accesses are swapped periodi-
cally. This process is implemented in the memory controller, which keeps track of each
segment’s writes counts and mapping table between the virtual and physical segment
numbers. The optimal segment size is 1MB, and the optimal swap interval is every
2M writes in each segment. The energy overhead of the method is comparatively high,
however. Dhiman et al. [2009] introduced a wear-leveling algorithm based on the page
write counts to their PDRAM memory system. To help level wears of the PCM, the
memory controller maintains a table of the number of write accesses. To reduce time
and energy overheads for updating PCM access tables, they introduced a small SRAM-
based cache in the controller, which caches the updates to the table, hence reducing the
consequent number of PCM accesses. If the number of writes to any PCM page exceeds
a given threshold, the controller generates a “page swap” interrupt to the processor,
and allocates a new page from the DRAM allocator to the new page, then copies the
contents of the old page to the new one. When the threshold equals to one, copying the
page that is about to be written to the DRAM is something similar to DRAM buffer
[Qureshi et al. 2009]. The difference lies in that the latter has to load the page into
PCM whenever reading a page. If the threshold is set higher, the cost of copying the
whole page can be avoided for just several accesses.

Hu et al. [2013] proposed software-enabled wear-leveling techniques in embedded
systems, which are similar to Dhiman’s. Their Software Wear-Leveling (SWL) algo-
rithm is a polynomial-time algorithm and does not have hardware overhead. The idea
of SWL is to use the Optimal Data Allocation (ODA) algorithm to generate the data
allocation for each region of a program first. Then, one will know which variables are
allocated into PCM in each region. SWL uses an array to keep track of the number of
writes on each address of the PCM. With the help of this array, one can find an address
assignment in PCM for each variable so that the number of writes on each address is
less than or equal to the threshold � and the total moving cost is minimal. It comes
naturally from the thought of an algorithm based on write accesses. However, since
it is necessary to maintain a write counter per page, the overheads in performance
and storage are comparatively high. The data-access pattern in embedded systems is
fixed. Based on this observation, Long et al. [2014] proposed a space-based wear lev-
eling at the software compiler level to enhance the lifetime of PCM-based embedded
systems. Their key idea is to transform write traffic from a frequently written variable
into an array, so that a large number of writes to the same memory location is evenly
distributed to multiple memory locations.

To ease the memory pressure of smartphones, Zhong et al. [2014] implemented NVM-
Swap, which builds a swap area for smartphone systems with NVM. Specifically, they
proposed copy-on-write swap-in (COWS), so that read requests can get data directly
from the swap area with zero memory copy. When a swapped-out page is accessed again,
COWS sets up the page table mapping and returns the page in NVM directly, without

ACM Journal on Emerging Technologies in Computing Systems, Vol. 12, No. 4, Article 33, Publication date: May 2016.



Rethinking Computer Architectures and Software Systems for Phase-Change Memory 33:21

first copying the page out of the swap area. When a write happens to that page, COWS
does actual swap-in by copying the page from NVM to DRAM. In addition, to make
the NVM-Swap practical, Heap-Wear was introduced to distribute pages evenly across
the whole NVM space, so that the lifetime of NVM-Swap can be further improved.
Zhong et al. [2015] found that traditional wear-leveling techniques are not applicable
to smartphone applications, which have vastly different data-access patterns. They
noted that identifying a code page is easy, and that a code page is read only, making it
a perfect candidate for swapping to write-limited NVRAM. Thus, they proposed nCode,
which exploits NVRAM’s byte addressable to execute the code page directly in the swap
area, without being swapped back to main memory, further improving the endurance
of NVRAM.

Fan et al. [2014] proposed WL-Reviver, a framework that allows any in-PCM wear-
leveling scheme to keep delivering its designed leveling service even after failures occur
in its working address space. WL-Reviver is a lightweight framework with very low
overhead, which can efficiently revive a wear-leveling scheme without compromising
the wear-leveling effect of this scheme.

4.2.3. Preventing Malicious Wear-Out. Traditional wear-leveling algorithms take only typ-
ical applications into account. However, a malicious application may constantly write
to the same place in PCM, hence wearing out the PCM units in a short time. Some
work [Seong et al. 2010a; Seznec 2010] implied that (1) using traditional algorithms,
such as Start-Gap [Qureshi et al. 2009] and Segment Swapping [Zhou et al. 2009],
the PCM can endure only a few minutes or several dozen hours; and (2) changing the
mapping between the physical address and the physical PCM periodically can hide the
real address, which helps to ease the problem. They [Seong et al. 2010a; Seznec 2010]
also proposed the corresponding address remapping algorithm, respectively.

Security Refresh [Seong et al. 2010a] divides the memory into several subregions.
The subregion index, the real address, is the result of the memory address XOR a value
k, which is produced by a random number generator periodically. Every certain number
of writes, the data of the block is moved to the new address, which was generated by
XORing its corresponding memory address with a key k. After several operations,
the whole region will be mapped to the new address generated by the operation of
XORing. Another scheme [Seznec 2010] is similar to Security Refresh. They both can
help transform the traditional wear-leveling algorithms into the algorithm that is able
to resist malicious attacks.

Qureshi et al. [2011] further pointed out that the reason why Start-Gap wear leveling
is attacked is its slow shift speed. It will not be so vulnerable to malicious attacks, even
if we just accelerate the speed (reduce the value of �). They found that the percentage
of the number of most frequently written lines to the number of total writes within a
period of time (attack density) can be used to distinguish malicious attacks from normal
applications. In addition, they used the information of attack density for implementing
Adaptive Wear Leveling (AWL) algorithms. In the normal case, AWL incurs negligible
write overhead and can endure attacks for several years.

4.2.4. Tolerance to Unit Fault. In reality, lifetimes of different PCM units are not strictly
the same, but they follow a certain distribution. Moreover, some units have a very short
lifetime. Meanwhile, the lifetime of a system depends on the unit that has the shortest
lifetime, which makes the real lifetime of a system shorter than the theoretical lifetime.
On the other hand, since there must be some units that finally wear out, none of the
wear-leveling algorithms will work perfectly. Hence, it is necessary to keep the system
working normally, even if some of the units were worn out.

Conventional fault-tolerance covers soft faults and hard faults. Soft faults are the
result of changing temperature, which makes the data stored change over time. But

ACM Journal on Emerging Technologies in Computing Systems, Vol. 12, No. 4, Article 33, Publication date: May 2016.



33:22 C. Wu et al.

this kind of fault occurs rarely in PCM. The cause of hard faults is that, when the write
times exceed their limits, the PCM cannot be written any more, due to the material
changes. Since soft faults seldom occur, we mainly discuss how to solve hard faults, as
follows.

When hard faults happen on PCM, although we cannot rewrite the data, we can still
read the data correctly. Hence, the read-write-read method can be used to detect hard
faults [Schechter et al. 2010]. Based on this method, error-correcting pointers (ECPs),
which record the error address and the real value to correct the faults, will incur lower
overheads and longer lifetime than the traditional ECC [Schechter et al. 2010]. Six
ECP entries per 512B can endure 6 errors. To save space, Qureshi [2011] attached only
one ECP per block, using a global Hash list to record other ECP. Qureshi’s method (Pay-
As-You-Go) reduces the storage overhead of error collection by a factor of 3.1 compared
to ECP-6, while still obtaining 13% longer lifetime.

Yoon et al. [2011] used fine-grained remapping with ECC and embedded pointers
(FREE-p) to protect against both hard and soft faults. Furthermore, they proposed
fine-grained remapping, which means a smaller block size (64B). When the number
of errors exceeded the ECC’s tolerance per block, they remapped blocks with a stored
pointer to the new block. Note that the old block is not completely broken, the unbroken
units can be used to replicate block pointers (i.e., 8b pointer will be replicated 8 times).
The advantage of the method is that it can be implemented completely in memory
controller, which can endure both hard and soft faults. Zombie [Azevedoy et al. 2013]
allowed an error-correction mechanism to reuse good blocks (spare blocks) in disabled
pages by pairing them with the blocks (primary blocks) in working pages. In this way,
the spare block increases the error-correction resources of its primary block and keeps
it alive longer. Moreover, in Zombie, there are two new error-correction mechanisms,
ZombieMLC and ZombieXOR. ZombieSLC mechanisms use existing schemes for in-
trinsic block error correction. ZombieMLC is a new encoding mechanism, which can
tolerate both stuck-at failures and drift.

Former wear-leveling and salvaging schemes have not been designed and integrated
to work cooperatively to achieve the best PCM device lifetime. Simple integration of
these approaches (e.g., Schechter et al. [2010]) will result in a noncontiguous PCM
space. Jiang et al. [2013] proposed LLS, a Line-Level mapping and Salvaging design,
which integrates wear-leveling and salvaging schemes, and copes well with modern
OSes. Their scheme masks lower-level failures from OSes and applications by allocating
a dynamic portion of total space in a PCM device as backup space, and mapping failed
lines to backup PCM; meanwhile, LLS will construct a continuous PCM space.

The works mentioned earlier mainly tackle the problem of recovering from transient
faults, and are not suitable for stuck-at faults. In addition, a failed cell with a stuck-at
value is still readable. Based on this attribute, SAFER [Seong et al. 2010b] utilizes
the failed bit to store data, which reduces the hardware overhead for error recovery.
SAFER partitions a data block dynamically while ensuring that there is at most one
fail bit per partition, and uses single-error correction techniques per partition for fail
recovery. Further, SAFER needs to repartition the block if it contains two fail bits.
Still, SAFER’s space efficiency and fault-tolerant capability are not so desirable. Fan
et al. [2013] proposed Aegis, an improved recovery solution with a systematic partition
scheme using fewer groups to accommodate more faults compared with SAFER. Based
on the observation that on a Cartesian plane any two different points on a line uniquely
determine slope of the line, we can keep at most only one point on the original line to
stay on a new line of a different slope when we change the slope of the line. Figure 9
shows an example of their partition scheme. The uniqueness of Aegis’s partition scheme
lies on the repartition scheme, which separates any two faults in the same group into

ACM Journal on Emerging Technologies in Computing Systems, Vol. 12, No. 4, Article 33, Publication date: May 2016.



Rethinking Computer Architectures and Software Systems for Phase-Change Memory 33:23

Fig. 9. Illustrating how bits in a 32b data block are partitioned into 7 groups, each of 5b. For (a), the partition
configuration adopts slope k = 0, and (b) represents a different configuration using slope k = 1. In total, there
are 7 configuration in the partition scheme defined by the A × B rectangle (5×7). The bits, each represented
by a symbol, are mapped into a Cartesian plane. As the (5 × 7) rectangle contains three more positions than
the 32b in the block, the three dotted symbols on the top right are unmapped. Different symbols are used to
distinguish bits in different groups (from Fan et al. [2013]).

two different groups and helps to evenly distribute faults in a block across different
groups, hence, promoting wear leveling within each block.

4.3. Active Energy Saving

4.3.1. Reduction of the Number of Writes. The main energy consumption of PCM comes
from write operations. By reducing write times, energy consumption will be saved. Some
optimization methods (e.g., changing cache structures, using DRAM buffers described
in Section 3.1) can reduce write times. The ways to reduce the total number of wear,
described in Section 3.2.1, include reducing redundant writes and adding a PLB switch.
Refer to the earlier sections for more details.

4.3.2. Out-of-Position Writes. Chen et al. [2011a] noticed that RESET and SET opera-
tions need different power. Generally, the RESET operation requires about 1.5 times
higher power than SET. Thus, it is meaningful to reduce as many as possible RESET
operations. They pointed out that, compared with writing in position, it is more desir-
able to pick a free block to write in. To determine a good out-of-position PCM block, they
devised a locality-sensitive hashing (LSH)-based algorithm, which can reduce RESET
operations and get an additional 22.9% power savings.

4.3.3. Mapping and Buffering Data in MLC PCM. MLC PCM can store multiple bits per
cell, which offers higher bit density. However, this kind of feature incurs higher latency
and energy consumption of a memory access. Wang et al. [2011] noted that there are
significant value-dependent energy variations in programming MLC PCM, for exam-
ple, for a 2b MLC PCM, the average energy consumption for state “00,” “01,” “10,” and
“11” are 36PJ, 307PJ, 547PJ, and 20PJ respectively. Thus, they proposed an energy-
efficient PCM architecture using data encoding write to reduce system overall energy
consumption. Furthermore, they adopted DCW to enhance the effectiveness of their
scheme. Yoon et al. [2013] proposed a new approach to mapping and buffering data
in MLC PCM to improve the performance and energy efficiency of a memory system.
The latency and energy consumption to read or write to MLC PCM vary depending on
the resistance state of the MLC. They exploit this asymmetry between the different

ACM Journal on Emerging Technologies in Computing Systems, Vol. 12, No. 4, Article 33, Publication date: May 2016.



33:24 C. Wu et al.

bits by decoupling the bits and mapping them to logically separate memory addresses.
The method improves system performance by 19.2%, and memory energy efficiency by
14.4% over the state-of-the-art MLC PCM baseline system, which does not employ bit
decoupling. Zhao et al. [2015] found that dynamic state remapping (DSR) generates lo-
cally optimal remapping decisions without considering the similarity between the new
data and the old data stored in the memory. Therefore, when redundant write elimina-
tion (RWE) is applied, DSR may not be optimal, since it possibly introduces more tran-
sitions and more energy consumption. Based on that, they proposed a profiling-based
state remapping scheme for MLC PCM, which can achieve 10.6% energy reduction, on
average, within negligible hardware and performance overhead.

4.4. Consistency

While we can take fullest advantage of low latency and high bandwidths of PCM,
we also face challenges of not sacrificing data reliability and consistency that users
demand from storage. In particular, we need certain mechanisms to recover data to
its last consistent state when a system failure or a crash occurs. In general, there are
issues that need to be addressed by software for correctly implementing consistency.

4.4.1. Persistence Ordering. Updating persistent data structures imposes additional
constraints on the ordering of statements due to the possibility of failure at arbitrary
points in the program. Note that persistence ordering requires that the updates must
be propagated all the way to the persistent memory in the specified order. It is not
sufficient to just order the global visibility of these updates as in typical memory con-
sistency protocols. Additional hardware support may be needed to ensure this memory
behavior.

BPFS [Condit et al. 2009] exploits a new mechanism called epoch barriers for or-
dering of updates. In its scheme, a cache line is tagged with an epoch number, and
the cache hardware is modified to guarantee that memory updates due to write-backs
are always done in epoch order. In Mnemosyne [Volos et al. 2011], a combination of
noncached write mode, cache-line flush instructions, and memory barriers was used to
address the correctness of ordering of writes. Moraru et al. [2013] proposed a cache-line
countermechanism, which is more general and flexible. In their scheme, applications
themselves control the ordering of updates by delaying making those updates that
depend on something still in the CPU caches, which requires less intrusive hardware
support compared with BPFS’s epoch barriers. Venkataraman et al. [2011] provided
a software primitive flush, which combines with tracking recently written data to en-
sure the order of writes. In Mnemosyne [Volos et al. 2011], a novel implementation
of persistent logs based on ordering primitives has been proposed. Doshi and Varman
[2012] used ordering primitives sparingly, and only to ensure that the update trail of
a transaction has been logged to a power-safe region of persistent memory before the
transaction commits. The persistent log structures in Mnemosyne can be simplified
and adopted in their scheme. Yang et al. [2015] observed that the operations to main-
tain memory writes to NVM in a certain order incur significant overhead; thus, they
proposed NV-Tree , a consistent and cache-optimized B+Tree variant that reduces CPU
cache-line flush for keeping data consistency in NVM. Specifically, NV-Tree decouples
tree nodes into two parts, leaf nodes (LNs) as critical data and internal nodes (INs) as
reconstructable data. By selectively enforcing consistency, adopting unsorted LN and
organizing IN cache-optimized layout, NV-Tree can reduce the number of cache-line
flushes under write-intensive workloads by more than 90% compared to CDDS-Tree
[Venkataraman et al. 2011].

ACM Journal on Emerging Technologies in Computing Systems, Vol. 12, No. 4, Article 33, Publication date: May 2016.



Rethinking Computer Architectures and Software Systems for Phase-Change Memory 33:25

4.4.2. Persistence Atomicity. Transactional semantics require that updates to a set of
related records must always occur as a group; either all the records must be updated
or none should be updated.

BPFS [Condit et al. 2009] uses short-circuit shadow paging to keep atomic updates
for tree-structured file systems. A copy-on-write scheme was used for the update of
the blocks. In Mnemosyne [Volos et al. 2011], a software transactional memory (STM)
system was exploited to control the executing applications to ensure the atomicity.
Versioning is also a good way to handle atomicity. Consistent and Durable Data Struc-
tures (CDDS) [Venkataraman et al. 2011] designs a persistent multiversioning B-Tree
that maintains several versions of a database at any instant. Every update to the data
structure results in the creation of a new version. After all the modifications for an up-
date have been made persistent, the most recent consistent version number is updated
atomically.

4.4.3. Persistence Protection. Programming bugs in a persistent memory system can be
insidious. Not only does the persistent nature of the changes make it impossible to sim-
ply reboot to a consistent memory state, but subtle pointer dependencies between data
structures spread over volatile and nonvolatile memory regions of memory, increasing
the challenge of robust programming tremendously [Coburn et al. 2011].

This robust persistence has been addressed in NV-Heaps [Coburn et al. 2011], and
more corresponding work on this issue has been studied recently.

4.5. Summary

In this section, we review the works on designing PCM-based memory systems, which
try to enable PCM to be a good alternative in main memory designs. These works aim
at addressing the challenges from the perspective of performance, lifetime, energy, and
consistency.

When applying PCM to main memory, there are three widely used architectures—
PCM-only memory architecture, caching architecture, and hierarchical architecture.
For PCM-only memory architecture, to overcome its drawbacks of long-access latency
and high-energy consumption, a design with multiple buffer rows can be introduced
to this architecture. For hybrid main memory with caching architecture, some caching
optimization technologies are usually used to enable DRAM to filter frequent data
access to PCM. For example, the lazy-write technology is able to reduce the write
operations to PCM and improve overall performance. In hybrid main memory with
tiering architecture, we need OS supports to place data wisely between DRAM and PCM
according to data-access patterns for better performance. Currently, DRAM and PCM
hybrid memory systems are better than those PCM-only memory systems, because we
can utilize the strengths of both DRAM and PCM. In the future, it is unclear which
architecture of the three is the best. In any event, we can choose the corresponding
architecture according to our given application.

In Tables IV, V, and VI, we summarize the techniques used to improve the lifetime
of PCM main memory systems. As shown in Table IV, there are three categories of
methods for reducing the write operations to PCM. The first is to reduce the unmod-
ified writes to PCM. This can be implemented by hardware, such as cache, memory
controller, and chip. The second is to reduce useless data writes to PCM. This requires
the support of the OS, and is usually harder to implement than reducing unmodified
writes. SoftPCM is an application-specific method, which exploits the feature of video
application to reduce PCM writes. The third is to compress the data to reduce the
writes to PCM. Among those works, DPC will compress all the data to be written to
PCM, while the other two compress the data selectively and more efficiently.

ACM Journal on Emerging Technologies in Computing Systems, Vol. 12, No. 4, Article 33, Publication date: May 2016.



33:26 C. Wu et al.

Table IV. Comparison of Various Techniques of Reducing Writes

Scheme Key idea Implementation
Partial writes Reduce unmodified writes Cache

LLWB Reduce unmodified writes Cache
DCW Reduce unmodified writes Chip

Flip-N-Write Reduce unmodified writes Chip
FlipMin Reduce unmodified writes Memory controller

PLB Reduce unmodified writes Cache
WAPTM Reduce unmodified writes OS, memory controller

Useless cache line Reduce useless data writes OS, memory controller
SoftPCM Reduce useless data writes Memory controller

Frequent-value locality Data compression Memory controller
DPC Data compression Cache, memory controller

Delta-compressed caching Data compression Cache

Table V. Comparison of Various Techniques of Wear Leveling

Scheme Key idea Random Granularity Implementation
Row shifting Random shift within a line Yes Word Memory controller

FGWL All lines within the page are shifted by a
random number

Yes Line Memory controller

ILF Flip the bit mapping to swap writes on hot and
cold bits

No Bits Memory controller

Start-Gap Move one line from its location to a neighboring
location

Yes Line Memory controller

Curling-PCM Move the data of hot areas into the cold areas No Block OS, memory
controller

WRL Distribute writes according to cell’s wear rate No Word OS, memory
controller

SEWL Convert MLC pages to SLC mode dynamically No Page OS, memory
controller

Segment
swapping

Swap memory segments of high- and low-write
accesses

No Segment Memory controller

PDRAM Page write counts combine with memory
management

No Page OS, memory
controller

SWL Use the ODA to generate the data allocation No Page OS, memory
controller

Space-based
wear leveling

Transform writes from a frequently written
variable into an array

No Word Compiler

NVM-Swap A swap area for COWS in smartphone No Block OS, memory
controller

nCode Swap code page in smartphone No Block OS, memory
controller

Security
Refresh

Remap data block using random keys Yes Block Memory controller

AWL Use OAD to detect attack No Line Memory controller

Table VI. Comparison of Various Techniques of Tolerating Fault

Scheme Key idea Reuse Granularity Implement Overhead
ECP Replace bad block with new No Block Hardware 61b/block for ECP6

Pay-As-You-Go Replace bad block with new No Block Hardware 19.5b/block
FREE-p Use bad blocks pair with well No Block OS, Hardware 64b/block
Zombie Use bad blocks pair with well Yes Block Hardware -

LLS Replace bad block with new No Block Hardware 61b/block
SAFER Partition and inversion No Block Hardware 55b/block
Aegis Partition and inversion No Block Hardware 27b/block

ACM Journal on Emerging Technologies in Computing Systems, Vol. 12, No. 4, Article 33, Publication date: May 2016.



Rethinking Computer Architectures and Software Systems for Phase-Change Memory 33:27

Table VII. Comparison of Various Techniques of Consistency

Work Key idea Main tackled issues
BPFS Epoch barriers, short-circuit shadow paging, and

copy-on-write
Persistence ordering,
Persistence atomicity

Mnemosyne Noncached write mode, cache-line flush instructions,
memory barriers, and STM

Persistence ordering,
Persistence atomicity

Cache-line
counter

Applications control the ordering of updates by delaying
making those updates that depend on something still in

the CPU caches

Persistence ordering

Primitive flush A combination of flush with tracking recently written data Persistence ordering
Ordering
primitives

Ensure the update trail of a transaction logged to a
power-safe region of persistent memory before it commits

Persistence ordering

NV-Tree Exploits a consistent and cache-optimized B+Tree variant Persistence ordering
CDDS Implements a persistent multiversioning B-Tree Persistence atomicity

NV-Heaps Provides a set of primitives, automatic garbage collection,
and pointer safety

Persistence protection

Table V lists the works of wear leveling on PCM from the aspects of key idea, granu-
larity, randomness, and implementation. These schemes can be divided into algebraic-
based wear leveling and request-based wear leveling. Request-based methods are usu-
ally easy to implement, but introduce the overhead of storing the write times, while
algebraic-based methods can reduce those overheads. Moreover, the granularity of wear
leveling is another key factor that affects the performance. Generally speaking, coarse-
granularity usually has low implementation overhead, but its global wear-leveling
performance is low. This is contrary to fine-granularity wear leveling. Therefore, the
combination of two granularities may be a better choice and deserves deeper study.

Table VI lists the fault-tolerant schemes to improve the lifetime of PCM. To achieve
this goal, two kinds of methods can be employed: using well bits to correct the fault bits,
and reusing the well bits in fault blocks. As we can see from Table VI, Pay-As-You-Go
and Aegis are good choices to tolerate fault bits since their overheads are the lowest.
For researchers, high-memory utilization and low extra bit overhead for fault tolerance
is a research direction.

When reviewing works in memory energy saving, it is important to note that the
introduction of PCM to main memory will bring great energy consumption. This is
because PCM requires more energy for a single-write operation. Thus, reducing the
writes to PCM can save energy. Since the RESET operation needs 1.5x higher power
than the SET, we can try to exploit this feature to save energy. Further work can be
carried out in this direction to reduce system energy consumption.

Table VII lists works aiming at ensuring data consistency while reducing correspond-
ing overhead. The nonvolatile nature of PCM makes it easy to realize persistent data
structures when power failures and system crashes occur. However, without careful
designs, data may be inconsistent after the recovery from failures. Therefore, consis-
tency is still a challenging problem when we exploit PCM as main memory. Although
a lot of approaches have been proposed to solve this problem, it still deserves deeper
study in the face of reducing consistent cost.

5. USING PCM IN ONLINE STORAGE

PCM’s features of bitwise access and high speed make its performance better than
conventional hard disks or Flash SSDs. Moreover, the emergence of PCM poses new
challenges to traditional file systems, database systems, and so on. It is well known that
those systems were originally designed for the use of HDD. Some have been optimized
for Flash-based SSDs. Thus, they are required to be reconsidered for the introduction
of PCM devices.

ACM Journal on Emerging Technologies in Computing Systems, Vol. 12, No. 4, Article 33, Publication date: May 2016.



33:28 C. Wu et al.

Fig. 10. Atomic updates in BPFS (from Condit et al. [2009]).

5.1. File Systems

The performance will be better by getting a HDD/Flash hybrid with PCM; the systems
composed of PCM only perform much better than those composed of HDD or Flash.
To make full use of device attributes of PCM, it is necessary to design different file
systems specifically for different applications.

PFFS [Park et al. 2008] is a file system composed of a hybrid of PCM and Flash,
which maintains its metadata in a small segment of PCM. There are two advantages
in the design. First, PCM is accessed by bit addressing, which can reduce the wear
overhead of updating metadata greatly. Second, there is no need to scan entire an
Flash drive at mounting time. The reason is that any file can be found via PCM data;
thus, the mounting time is constant. Furthermore, it solves the problem that the time of
mounting a Flash drive increases linearly with the capacity, which provides a scalable
Flash file system. The experiments show that the performance of PFFS for small files
is 25% better than that of the file system YAFFS2, which uses Flash only, and the
complexity of mounting time and memory footprint are both O(1).

BPFS [Condit et al. 2009] is a file system designed for PCM, which enhances the
performance and reliability of the file system, and brings new supports for the appli-
cations. The operations of the file system can be executed atomically and in program
order; the data will be persistent as long as the cache is refreshed. The key technology
of BPFS is short-circuit shadow paging, which takes advantage of in-place modification
and atomic 64B writes to reduce the replications of shadow page. Traditional shadow
paging needs to copy all the nodes from modified locations up to the root of the file
system tree for every write, but since PCM is bit addressable, operations related to
one block can be completed in place (Figure 10(a)(b)). As for general case, it can also
copy all portions modified up to a recent common ancestor, then commit this change
by performing an atomic update of a pointer (Figure 10(c)). In addition, to make sure
that the write operation is executed in order and in granularity of 64B, some hardware
is needed. The experiments show that the performance of BPFS on PCM is typically
twice as high as NTFS on PCM, and 4 to 10 times higher than NTFS on hard disks.
However, BPFS needs dedicated hardware supports. The main drawbacks of BPFS is
that BPFS cannot update in place even for path nodes if the number of pointers to be
updated within a path node becomes larger than the atomic update unit.

Existing versioning file systems do not perform well with the emerging PCM storage.
Specifically, a large amount of additional writes, incurred by maintaining snapshots,
degrade the performance of PCM seriously as write operations are the performance
bottleneck of PCM. B. C. Lee et al. [2013] presented On-Demand Snapshot, a new
versioning file system designed for PCM, which supports large write and reduces the
writing overhead of maintaining a snapshot significantly. Unlike existing versioning
file systems that incur cascaded writes up to the file system root, their scheme breaks
the recursive update chain at the immediate parent level. The experiments show

ACM Journal on Emerging Technologies in Computing Systems, Vol. 12, No. 4, Article 33, Publication date: May 2016.



Rethinking Computer Architectures and Software Systems for Phase-Change Memory 33:29

that the On-Demand Snapshot file system improves the I/O throughput by 144%, on
average, compared to ZFS.

SCMFS [Wu and Reddy 2011] is a file system designed on Storage Class Memory
(SCM), which can be attached to the memory bus directly, thus reducing the latencies
to access persistent storage. Moreover, we can simply access persistent storage through
memory load/store instructions. However, the overheads caused by the file system layer
itself is much lower than that of I/O latency; thus, its performance mainly depends on
device attributes and the performance of the I/O scheduler. In this case, the storage
device will share some critical system resources with the main memory, such as the
memory bus, CPU caches, and TLBs. Therefore, the overhead of the file system will
impact the performance of the whole system. Considering these factors, SCMFS utilizes
the memory management unit (MMU) to map the file system address to the physical
address on SCM. Meanwhile, SCMFS stores each file in continuous space to simplify
the read/write processes.

In contrast to SCMFS, PMFS [Dulloor et al. 2014a] manages SCM completely inde-
pendent of OS VMM. To be more specific, PMFS is a lightweight POSIX file system
that utilizes SCM’s byte addressability to optimize consistency, using a combination of
atomic in-place updates, logging at cache-line granularity, and copy-on-write (COW).
Further, SCMFS uses only clflush/mfence for ordering, and consistency validation is
unclear, while PMFS provides strong consistency guarantees with a simple hardware
primitive that provides software-enforceable guarantees of durability and ordering
of stores to SCM. In addition, PMFS leverages the processor’s write-protect control
to protect the system from stray writes. In the end, memory-mapped I/O provides a
memory-like access to storage, and PMFS implements an optimized memory-mapped
I/O by mapping persistent memory pages directly into an application’s address space.

5.2. Database Systems

Because PCM is nonvolatile, low latency and bitwise addressable, some works tried to
use PCM to optimize the performance of relational databases. In general, the access
speed of PCM is several orders of magnitude faster than that of hard disks. Through
the use of PCM, the transaction log overhead in disk-based relational databases can
be reduced. Gao et al. [2011] designed a logging method used in disk-based databases
called PCMLogging, in which buffered updates and transaction logs are completely
integrated. In this way, the dirty pages cached by PCM can also be used as log. There is
no need to log dedicatedly. The experimental results show that, compared with a basic
buffering and logging scheme, PCMLogging improves disk I/O performance by up to
40%.

In addition to adding PCM in databases to improve performance and reduce energy
consumption, designing a friendly database algorithm is another study topic, which
requires minimizing the number of expensive writes. Chen et al. [2011b] rethought
database algorithms for PCM. They studied B+Tree and Hash join algorithms, which
are applied to PCM. In this work, they found that it is more appropriate for PCM when
improving B+Tree by no longer maintaining the order of leaf nodes and increasing the
number of reads to get a reduction of the number of writes. Hash joins use the virtu-
ally partitioning algorithm instead of the original cache partitioning algorithm. This
work mainly addressed NVM’s write latency, endurance, and write-energy concerns,
generally aiming to reduce the number of modified NVM bits.

The former work [Chen et al. 2011b] did not consider durable consistency for transac-
tion processing. With emerging NVM, Pelley et al. [2013] reconsidered online transac-
tion processing (OLTP) durability management to optimize recovery performance and
forward-process throughput. They utilized cache to effectively reduce NVM read stalls.
Treating NVM as a drop-in replacement for a disk allows near-instantaneous recovery,

ACM Journal on Emerging Technologies in Computing Systems, Vol. 12, No. 4, Article 33, Publication date: May 2016.



33:30 C. Wu et al.

but retains centralized logging overheads. In-place updates offer a simple design and
can reduce these overheads, but introduce synchronization overhead to guarantee the
correct write order to NVM. Therefore, they proposed a new recovery mechanism, NVM
Group Commit, to minimize these stalls while still removing centralized logging and
providing high throughput.

5.3. Persistent Data Structures

Compared with object serialization and accessing data structures by reading and writ-
ing files, persistent data structures can be mapped to user address space directly and
are able to be used instantly. Persistent data structures are an attractive feature that
can help ease the dependence on traditional file I/O. Disk-based systems or databases
use persistent objects, such as Java Persistent API [Biswas and Ort 2006], or persis-
tent data structures that are supported by special object-oriented databases. However,
in contrast to a hard disk, PCM is bitwise addressable and can be accessed quickly.
Therefore, designing a persistent data structure system is not only complex in terms
of the architecture, but also costly in terms of software implementation. With PCM,
therefore, we have to redesign a higher-performance method to access persistent data
structures.

Mnemosyne [Volos et al. 2011] provides two persistent access ways: primitive and
transactional. It uses persistent regions to achieve the user-mode accesses and sup-
ports different consistent-access models (single variable, append, shadow, in-place).
NV-Heaps [Coburn et al. 2011] implements a persistent heap in user space and estab-
lishes robust protection mechanisms to reduce errors of pointers to volatile regions.
Experiments show that, when used to implement the same data structure, NV-Heaps
get a 32× higher performance in efficiency than Berkeley DB [Oracle 2010], and 244×
that of Stasis [Sears and Brewer 2006]. In order to reduce software overhead, it can
only use PCM as storage. Narayanan and Hodson [2012] utilized the residual power to
write the contents of the registers and the cache to PCM only when the system (elec-
tricity) fails. They pointed out that the flush can be completed safely by consuming 35%
of the residual energy at most, and the runtime performance is 1.6 to 13 times better
than a persistent heap.

Journaling is a common technique in file-system and database-system designs, which
logs the update to nonvolatile storage for high reliability and fast recovery. However,
journaling will result in a bulk of storage writes, which deteriorate the system per-
formance benefit of buffer caching. Previous works on this problem added nonvolatile
memory as a separate journal area or as a write buffer of log files to improve perfor-
mance. E. Lee et al. [2013] first proposed a scheme that intelligently incorporates the
journaling functionality into the buffer cache architecture, hence minimizing additional
memory copy and space overhead.

Persistent memory designs exploit logging or copy-on-write mechanisms to update
persistent data, which reduces system performance to roughly half that of a native
system without persistent support. Based on that fact, Zhao et al. [2013] designed Kiln,
a persistent memory design that utilizes nonvolatile last-level cache and a nonvolatile
memory to construct a persistent memory hierarchy. To ensure high efficiency and
data persistence, Kiln allows direct updates to the real in-memory data structures.
In addition, they developed a set of lightweight software and hardware extensions to
facilitate atomicity and consistency support. However, the file cache of Kiln is simply
used as the buffers of the journal, which is still the server for logging or COW, rather
than as a place that enables an in-place update.

Kiln changes the microarchitecture to reduce the cost of logging. Kannan et al.
[2014] focused on the software optimizations for existing hardware (volatile cache).

ACM Journal on Emerging Technologies in Computing Systems, Vol. 12, No. 4, Article 33, Publication date: May 2016.



Rethinking Computer Architectures and Software Systems for Phase-Change Memory 33:31

They analyzed the non-volatile memory (NVM) writes, and found that effective dual-
use (capacity and persistent) NVM requires new methods that address cache sharing
between persistent (consistency and durability) and nonpersistent applications in end-
user devices. They noted that persistent applications will incur high cache miss due
to consistency, durability, and failure recovery. Therefore, to overcome the problem of
high cache misses, they proposed a page-contiguity algorithm that reduces interference-
related cache misses. Moreover, they implemented a cache-efficient NVM write-aware
memory allocator that greatly reduces cache-line flushes of allocator state. Last, they
employed a hybrid logging that substantially reduces durability overheads.

5.4. High-Performance Computing

Applying PCM to high-performance computing can reduce both the energy consumption
of systems and the overhead of operations such as backup, restore, and so on.

Li et al. [2012] considered first the impact of using PCM main memory directly on
the existing scientific computing applications. They carefully studied four applications:
Nek5000, CAM, GTC, and S3D, which can be applied to fluid simulation, weather
forecasting, turbulence simulation, and turbulent combustion, respectively. Moreover,
based on the research of the proportion of read/write and the rate of memory access,
they pointed out that two of the applications, in which 31% and 27% of the data have a
higher read/write ratio, are suitable for PCM. They further pointed out that replacing
DRAM with PCM can save at least 31% of the energy consumption.

Dong et al. [2009b, 2011a] proposed a massively parallel processing (MPP)–oriented
and PCM-based hybrid global/local checkpoint mechanism. It is inefficient to store
a global checkpoint with a hard disk, for example, the checkpoint overhead is up to
236.7% for a system scale up to 10 petaFLOPs. In order to reduce the unacceptable
overhead, they used PCM to store global and local checkpoints. In addition, to improve
the speed of recording the checkpoint, it is necessary to increase the PCM bandwidth.
The ideal situation is that the PCM bandwidth is close to the DRAM bandwidth, which
means that PCM will not become the bottleneck. To achieve this goal, they used 72 par-
allel PCM chips. PCM-DIMM checkpointing enables MPP systems to scale up to 500
petaFlops while keeping the overhead within 10%. By exploiting 3D-stacked technol-
ogy to integrate PCM with DRAM, backup can be completed at very high bandwidth
while less than 5% overhead is needed, even at the level of 1 exaFLOPS.

It is worthwhile to note the use of PCM to design a new architecture for the com-
puting nodes. Ranganathan [2011] proposed another data-center system component—
Nanostore. Each Nanostore consists of one CPU core and multiple 3D-stacked PCMs;
numerous Nanostores are used to build the entire system. The design flattens the hi-
erarchy of main memory and storage into only one layer, which simplifies the whole
system architecture. This design achieves smaller latency and lager bandwidth, which
enable its higher performance. Moreover, the simplified storage architecture and the
use of PCM make it more energy efficient. A single node that groups 9 Nanostores with
8+1 redundancy can provide 0.5TB PCM memory with Tera-ops of local computation
collocated with about 256GB/s of data bandwidth [Ranganathan 2011].

5.5. Summary

Section 5 overviews the works that apply PCM to storage from the perspective of file
system, database, persistent data structures, and high-performance computing. Some
file-system designs mainly exploit the byte addressability of PCM, which can be used
to improve the performance of updating metadata. On the other hand, SCMFS at-
taches SCM to the memory bus directly for better performance. But it is constrained by
some critical system resources (e.g., memory bus, TLB). When using PCM in relational
database designs to improve the performance, we can use a B+Tree algorithm to reduce

ACM Journal on Emerging Technologies in Computing Systems, Vol. 12, No. 4, Article 33, Publication date: May 2016.



33:32 C. Wu et al.

Table VIII. Typical Characteristics of PCM and Their Effect

Characteristics Expected Impact
Density (vs. DRAM) Larger memory

Performance (vs. Disk) Faster storage, hybrid storage (positioned between memory and storage)
Standby power Energy efficiency

Byte accessible (vs. Disk) New storage paradigm (lightweight, low overhead)
Nonvolatile (vs. DRAM) Enable memory-like devices’ usage in storage

Table IX. The PCM Characteristics Used in Different Solutions and Corresponding Impact

Work Field Utilized features Impact
PFFS, use PCM to store
metadata in hybrid disk

File system Byte-accessible,
nonvolatile

Performance

BPFS, file system for PCM File system Byte-accessible,
nonvolatile

Performance, robustness

New versioning file system File system Byte-accessible,
nonvolatile

Support large write, snapshot

SCMF, file system for SCM on
memory bus

File system Byte-accessible,
nonvolatile

Performance

PMFS, file system for PCM on
memory bus

File system Byte-accessible,
nonvolatile

Performance, robustness

Utilize PCM to cache dirty
pages without specialized
logging

Database Performance,
Byte-accessible,
nonvolatile

Performance

Optimize B+Tree, Hash join to
reduce write

Database Write latency
(negative)

Performance

OLTP fast recovery with PCM Database Nonvolatile Performance, robustness
Mnemosyne, NV-Heap Persistent

structure
Byte-accessible,
nonvolatile

Performance, robustness

Replace read-dominant
memory area with PCM

HPC Low standby power Energy consumption

PCM for checkpoint HPC Bandwidth,
non-volatile

Performance, scalability

Computation node with pure
PCM storage

HPC Performance,
Byte-accessible,
non-volatile

Performance, energy

the write operations to PCM. Using PCM as a drop-in replacement for a disk is another
method that can improve the performance by providing fast recovery. The employment
of an in-place update scheme can mitigate logging overhead. The technologies for data
persistence optimize the performance from two aspects—the first is the designs of per-
sistent data structures, and the second is the schemes that support the data persistence
efficiently (e.g., buffering, in-place updates). The schemes, applying PCM to the field
of high-performance computing, either use PCM in existing architectures or design
a new architecture to optimize the performance. Since it remains undecided whether
current PCM technology will be a commercially and technically viable alternative to
entrenched technologies such as Flash-based SSDs, we can get the best performance
within a cost constraint by tiring storage systems with PCM, SSDs, and HDDs [Kim
et al. 2014].

Table VIII summarizes the PCM attributes considered when designing system soft-
ware. Table IX summarizes different solutions based on PCM features as well as the
corresponding impacts. Due to PCM’s low latency and byte-addressable characteris-
tics compared to traditional storage devices, some traditional OS software architecture
techniques (e.g., page cache) should be revised or even redesigned. When using an
HDD + PCM hybrid storage architecture, the system stores the frequently accessed
data in PCM, while storing the infrequently accessed data in the HDD. For example,

ACM Journal on Emerging Technologies in Computing Systems, Vol. 12, No. 4, Article 33, Publication date: May 2016.



Rethinking Computer Architectures and Software Systems for Phase-Change Memory 33:33

the file system stores the metadata in the PCM rather than the HDD. Database soft-
ware stores the log data in the PCM instead of the HDD. Currently, a hybrid secondary
storage architecture may be more promising compared to a pure one, since we can get
the best of them to gain overall performance enhancement. Large-capacity and low-
idle power consumption are two key characteristics of PCM, but the studies employing
both are still relatively rare. Many efforts have taken advantage of PCM’s attributes
of byte-addressability and nonvolatility. With the emergence of storage devices with
the characteristics of main memory, cross-border devices with the features of higher
performance, lower-energy consumption, stronger robustness, less weight, and higher
scalability are available.

6. USING PCM AS BOTH MAIN MEMORY AND STORAGE

Recently, researchers have started to explore schemes that utilize the nonvolatile mem-
ory as both main memory and secondary storage simultaneously. An NVM device is
introduced into a computer system, and divided into two portions logically. One portion
of the NVM device is used as main memory, while the other portion is used as storage.
Furthermore, an integrated management of main memory and storage is explored to
enhance the performance of the entire system.

6.1. System Architectures

Oikawa [2013] first designed and implemented the integrated management of main
memory and storage. In this system, he constructed a file system that is used to
manage the blocks created on NVM. Specifically, the block size of the file system is the
same as the page size of the virtual memory, so that a file system block can be used as a
physical memory page and mapped into a virtual memory address space. This system
can achieve 23% to 26% of the performance gain, which is comparable to the DRAM
case. However, it lacks disposals on NVM’s write-endurance problem.

Baek et al. [2013] mainly focused on energy efficiency and performance of the inte-
grated system. They evaluated energy efficiency by conducting experiments on RAM-
Flash, RAM-SCM (storage-class memory), SCM-Flash, and SCM-only organization.
The results show that applying SCM into memory hierarchy significantly reduces en-
ergy consumption, and the SCM-only organization performs the best. Furthermore, we
can gain more energy efficiency by using the instant on/off scheme that turns systems
off when they are idle. However, the introduction of SCM will degrade system per-
formance, especially for memory-intensive applications. To relieve this problem, they
proposed a metadata in-place scheme that manipulates metadata on SCM directly,
enhancing system performance and reliability. To prevent partial writes of metadata
from causing metadata inconsistency, however, extra operations such as atomic mech-
anism or consistency checking need to be performed. The idea of a metadata in-place
update can also be applied to file data. Further, with SCM, file and memory objects can
be managed as a single object in a unified way, which can make the operating system
simple and efficient.

Jung and Cho [2013] proposed Memorage, a system that manages the PRAM main
memory resource and the PRAM secondary storage resource in an integrated way to
achieve the best trade-off between performance and cost. The motivation of Memorage
is based on the fact that the traditional dichotomy of memory and storage will likely
keep fast PRAM resources underutilized. In addition, according to some previous stud-
ies, a secondary storage device in a system is likely to have substantially unused space
during its lifetime. To effectively address this wastefulness, Memorage’s main memory
borrows directly accessible memory resources from the PRAM storage device, which
saves the overheads that swap operations of conventional OS virtual memory manager
will cause. In addition, it can redistribute write traffic to the main memory and storage

ACM Journal on Emerging Technologies in Computing Systems, Vol. 12, No. 4, Article 33, Publication date: May 2016.



33:34 C. Wu et al.

Table X. Various Schemes when Using PCM as Both Main Memory and Storage

Work Key idea Implement
Oikawa [2013] Integrating the management of memory and storage via a file

system
OS

Baek et al. [2013] Introducing SCM can save energy of a system; in order to
improve performance of an in-place update scheme, a single
object management scheme, and an instant on/off scheme was
exploited.

OS

Jung and Cho [2013] Improving performance by granting more direct access to
physical PRAM capacity, and achieving longer lifetime by
spreading writes to all PRAM capacity without being limited by
the main memory-storage wall.

OS

Liu et al. [2014] Providing consistency and durability for persistent store, while
relaxing these restraints for working memory.

OS

by trading resources between the main memory and storage, by which it can gain a
reasonable lifetime and reliability.

Liu et al. [2014] found that a unified architecture oblivious to consistency and dura-
bility would lead to suboptimal design. Hence, they proposed NVM Duet, a novel unified
memory and storage architecture, which provides the required consistency and dura-
bility guarantees for storage while relaxing these two constraints if accesses to PCM
are for memory. To achieve this goal, they implemented a new hardware/software in-
terface that enables the memory controller to differentiate between the two types of
PCM usage, and proposed a new memory scheduler to fully exploit the bank-level par-
allelism present in the address stream. Moreover, they put forward a smart refreshing
scheme that eliminates unnecessary refresh operations.

6.2. Summary

Table X summarizes different schemes when implementing the integrated manage-
ment of main memory and storage. Using PCM as both main memory and storage, and
managing them in an integrated way, has shown the potential of improving system
performance. This kind of architecture has a large amount of memory; thus, the page
faults can be reduced and the wear-out problem can be eliminated. I/O overheads can
be reduced and both the initialization and termination of program executions can be
accelerated.

The main shortcoming of this integrated management is that critical system re-
sources are limited, such as the memory bus and TLB. Hence, we can explore methods
from both hardware and software to achieve the best trade-off between performance
and cost. This integration of main memory and storage opens up a new research field of
using PCM. Current works in this field are just a starting point; we are looking forward
to seeing more works on this issue.

7. CONCLUSIONS AND FUTURE DIRECTIONS

This article has provided a detailed survey and review of the areas of computer
architectures and software systems that are oriented to the newly emerging PCM
devices. Existing processor cache, main memory systems, and storage software
systems do not adapt to attributes of PCM devices well, because they are designed
for DRAM and HDD. Compared with them, PCM devices have the advantages of
byte accessibility; high-density, low-idle power consumption; and nonvolatility. The
disadvantages are high write latency, limited write lifetime, and high-access power
consumption. When PCM devices are used in computer systems, it is desirable to
revise or even redesign computer architectures and software systems for attributes of

ACM Journal on Emerging Technologies in Computing Systems, Vol. 12, No. 4, Article 33, Publication date: May 2016.



Rethinking Computer Architectures and Software Systems for Phase-Change Memory 33:35

PCM devices. As the survey shows, the past several years have witnessed a dramatic
increase in PCM-related activity, with many new applications being addressed.

Due to the longer access latency and limited write endurance compared to SRAM,
employing PCM to processor cache is comparatively hard. However, existing works in
this direction are inspiring. As described in Section 3, these works provide us with two
available processor-cache hierarchies (hybrid and pure PCM). To make the systems
practical, researchers designed a set of techniques to overcome the two drawbacks of
PCM, such as reducing redundant writes, wear leveling, and so on.

This survey provides a new framework for analyzing the suitability of main mem-
ory management mechanisms to emerging PCM devices. We identified performance
optimization, lifetime prolongation, and energy saving as necessary features of a main
memory system aiming to address this problem. These features form the axes of the
comparison framework that we used to survey selected systems in Section 4.

When designing software systems for a computer system with PCM devices, one
takes account of the PCM attributes such as byte accessibility, nonvolatility, asymme-
try between read and write performances, and low-idle power consumption. The design
objectives include optimizing I/O performance, prolonging write lifetime, saving energy,
and so on. This survey also provides a detailed categorization of file systems, database
systems, and persistent data structures presented in the literature to date. Currently,
one big hurdle for PCM research is the lack of real hardware for performance evalu-
ation. However, there are some good simulation tools available for researchers, such
as Intel’s Persistent Memory Emulation Platform [Dulloor et al. 2014b] and NVMpro
[Sengupta et al. 2015].

The future of PCM is bright. There are many areas to which the techniques associated
with PCM can apply. However, to ensure the wide use of PCM, there are still many
problems to be addressed, such as long write latency, limited write endurance, and high
active energy. Furthermore, since today’s software architectures are based on the fact
that the main memory is volatile, the application of PCM may also affect the existing
software architectures. It is necessary to rethink computer architectures and software
systems when we do the research based on PCM. This detailed analysis of PCM enables
us to identify some missing areas of PCM, some potential techniques that have yet to
be applied, and emerging areas that need to be studied in greater detail.

A lot of studies have been conducted on the emerging new memory technologies, and
the results are promising. Still, there are some interesting and open issues waiting to
be solved. Here, we list some future directions of PCM from the aspects of using PCM
as processor cache, as main memory, as storage, and as both memory and storage.
First, using PCM as processor cache is challenging; we can try to exploit hybrid cache
architecture by using other new memory technologies (e.g., eDRAM, STT-RAM, RRAM)
to conduct our studies. Second, when using PCM as main memory, an optimizing buffer
scheme is a good research direction, since it can help us to hide the long write latency of
PCM. The granularity of the wear-leveling scheme may be another research direction.
We can try to implement different granularities on different system levels for better
performance. Fault tolerance is also an interesting issue. We can conduct our studies
on high memory utilization and low extra overhead based on existing works. Reset and
set operations consume different amounts of energy; we can exploit this discrepancy to
save system energy. Third, according to different application features, we can design a
proper logging mechanism based on the byte addressability of PCM. Another direction
deserves further study, that is, how to relieve the pressure of some critical resources
to obtain good performance, when attaching PCM storage directly to the memory bus.
Last, using PCM as both memory and storage has good prospects to improve system
performance. Current studies in this field are just a starting point. The integrated

ACM Journal on Emerging Technologies in Computing Systems, Vol. 12, No. 4, Article 33, Publication date: May 2016.



33:36 C. Wu et al.

management of memory and storage, as well as nonuniform NVM, deserves further
study.

REFERENCES

W. Arden. 2009. Semiconductor Industries Association - International Technology Roadmap for Semiconduc-
tors. http://www.itrs2.net/itrs-reports.html.

R. Azevedoy, J. D. Davisz, and K. Straussz. 2013. Zombie memory: Extending memory lifetime by reviving
dead blocks. In The 40th Annual International Symposium on Computer Architecture.

S. Baek, J. Choi, D. Lee, and S. H. Noh. 2013. Energy-efficient and high-performance software architecture
for storage class memory. ACM Transactions on Embedding Computing Systems 12, 3, Article 81, 22
pages. DOI:http://dx.doi.org/10.1145/2442116.2442131

S. Baek, H. G. Lee, C. Nicopoulos, and J. Kim. 2012. A dual-phase compression mechanism for hybrid
DRAM/PCM main memory architectures. In Proceedings of the Great Lakes Symposium on VLSI
(GLSVLSI’12). ACM, New York, NY, 345–350. DOI:http://dx.doi.org/10.1145/2206781.2206865

R. Biswas and E. Ort. 2006. The java persistence API - a simpler programming model for entity persis-
tence.Retrieved March 30, 2016 from http://java.sun.com/developer/technicalArticles/J2EE/jpa/.

S. Bock, B. Childers, R. Melhem, D. Mossé, and Y. Zhang. 2011. Analyzing the impact of useless write-backs
on the endurance and energy consumption of PCM main memory. In IEEE International Symposium on
Performance Analysis of Systems and Software (ISPASS’11). IEEE, 56–65.

G. W. Burr, M. J. Breitwisch, M. Franceschini, D. Garetto, K. Gopalakrishnan, B. Jackson B. et al. 2010.
Phase change memory technology. Journal of Vacuum Science and Technology B 28, 223–262.

G. W. Burr, B. N. Kurdi, J. C. Scott, C. H. Lam, K. Gopalakrishnan, and R. S. Shenoy. 2008. Overview of
candidate device technologies for storage-class memory. IBM Journal of Research and Development 52,
4.5, 449–464.

J. Chen, R. C. Chiang, H. H. Huang, and G. Venkataramani. 2011a. Energy-aware writes to non-
volatile main memory. ACM SIGOPS Operating Systems Review 45, 3, 48–52. DOI:http://dx.doi.org/
10.1145/2094091.2094104 ACM New York, NY, USA.

S. Chen, P. B. Gibbons, and S. Nath. 2011b. Rethinking database algorithms for phase change memory. In
CIDR.

S. Cho and H. Lee. 2009. Flip-n-write: A simple deterministic technique to improve PRAM write per-
formance, energy and endurance. In Proceedings of the 42nd Annual IEEE/ACM International
Symposium on Microarchitecture (MICRO’09). ACM, New York, NY, 347–357. DOI:http://dx.doi.org/
10.1145/1669112.1669157

J. Coburn, A. M. Caulfield, A. Akel, L. M. Grupp, R. K. Gupta, R. Jhala, and S. Swanson. 2011. NV-heaps:
Making persistent objects fast and safe with next-generation, non-volatile memories. In Proceedings of
the 16th International Conference on Architectural Support for Programming Languages and Operating
Systems (ASPLOS’11).

J. Condit, E. B. Nightingale, C. Frost, E. Ipek, B. Lee, D. Burger, and D. Coetzee. 2009. Better I/O through
byte-addressable, persistent memory. In Proceedings of the ACM SIGOPS 22nd Symposium on Operating
Systems Principles (SOSP’09). New York, NY, 133–146. DOI:http://dx.doi.org/10.1145/1629575.1629589

G. Dhiman, R. Ayoub, and T. Rosing. 2009. PDRAM: A hybrid PRAM and DRAM main memory system. In
Proceedings of the 46th ACM/IEEE Design Automation Conference (DAC’09). 664–669.

J. Dong, L. Zhang, Y. Han, and Y. Wang. 2011b. Wear rate leveling: Lifetime enhancement of PRAM with
endurance variation. In Proceedings of the 51st Annual Design Automation Conference (DAC’11). ACM,
New York, NY, Article 36, 6 pages.

X. Dong, N. P. Jouppi, and Y. Xie. 2009a. PCRAMsim: System-level performance energy and area modeling
for phase-change RAM. In IEEE/ACM International Conference on Computer-Aided Design.

X. Dong, N. Muralimanohar, N. Jouppi, R. Kaufmann, and Y. Xie. 2009b. Leveraging 3d PCRAM technologies
to reduce checkpoint overhead for future exascale systems. In Super Computing Conference (SC’09).
Portland, OR.

X. Dong, X. Wu, G. Sun, Y. Xie, H. Li, and Y. Chen. 2008. Circuit and microarchitecture evaluation of 3D
stacking magnetic RAM (MRAM) as a universal memory replacement. In Proceedings of the 45th Annual
Design Automation Conference. Anaheim, CA.

X. Dong, Y. Xie, N. Muralimanohar, and N. P. Jouppi. 2011a. Hybrid checkpointing using emerging nonvolatile
memories for future exascale systems. ACM Transactions on Architecture and Code Optimization 8, 6,
1–29.

K. Doshi and P. Varman. 2012. WrAP: Managing byte-addressable persistent memory. In Memory Architec-
ture and Organization Workshop (MEAOW’12).

ACM Journal on Emerging Technologies in Computing Systems, Vol. 12, No. 4, Article 33, Publication date: May 2016.

http://www.itrs2.net/itrs-reports.html
http://dx.doi.org/10.1145/2442116.2442131
http://dx.doi.org/10.1145/2206781.2206865
http://java.sun.com/developer/technicalArticles/J2EE/jpa/
http://dx.doi.org/10.1145/2094091.2094104
http://dx.doi.org/10.1145/2094091.2094104
http://dx.doi.org/10.1145/1669112.1669157
http://dx.doi.org/10.1145/1669112.1669157
http://dx.doi.org/10.1145/1629575.1629589


Rethinking Computer Architectures and Software Systems for Phase-Change Memory 33:37

U. Drepper. 2007. What Every Programmer Should Know About Memory. Retrieved March 30, 2016 from
http://people.redhat.com/drepper/cpumemory.pdf.

Y. Du, M. Zhou, B. R. Childers, R. Melhem, and D. Mosse. 2013. Delta-compressed caching for overcoming
the write bandwidth limitation of hybrid main memory. ACM Transactions on Architecture and Code
Optimization 9, 4.

S. R. Dulloor, S. Kumar, A. Keshavamurthy, P. Lantz, D. Reddy, R. Sankaran, and J. Jackson.
2014a. System software for persistent memory. In Proceedings of the 9th European Conference on
Computer Systems (EuroSys’14). ACM, New York, NY, Article 15, 15 pages. DOI:http://dx.doi.org/
10.1145/2592798.2592814

S. R. Dulloor, S. Kumar, A. Keshavamurthy, P. Lantz, D. Reddy, R. Sankaran, and J. Jackson. 2014b.
System software for persistent memory. In Proceedings of the 9th European Conference on Com-
puter Systems (EuroSys’14). ACM, New York, NY, Article 15, 15 pages. DOI:http://dx.doi.org/10.1145/
2592798.2592814

J. Fan, S. Jiang, J. Shu, L. Sun, and Q. Hu. 2014. WL-reviver: A framework for reviving any wear-leveling
techniques in the face of failures on phase change memory. In Proceedings of the 44th Annual IEEE/IFIP
International Conference on Dependable Systems and Networks.

J. Fan, S. Jiang, J. Shu, H. Zhang, and W. Zhen. 2013. Aegis: Partitioning data block for efficient recovery
of stuck-at-faults in phase change memory. In 46th Annual IEEE/ACM International Symposium on
Microarchitecture.

Y. Fang, H. Li, and X. Li. 2012. SoftPCM: Enhancing energy efficiency and lifetime of phase change memory
in video applications via approximate write. In 2012 IEEE 21st Asian Test Symposium (ATS). IEEE,
131–136.

S. Gao, J. Xu, B. He, B. Choi, and H. Hu. 2011. PCMLogging: Reducing transaction logging overhead with
PCM. In Proceedings of the 20th ACM International Conference on Information and Knowledge Manage-
ment (CIKM’11).

S. Guo, Z. Liu, D. Wang, H. Wang, and G. Li. 2012. Wear-resistant hybrid cache architecture with phase
change memory. In Proceedings of the 2012 IEEE 7th International Conference on Networking, Architec-
ture, and Storage (NAS’12). IEEE Computer Society, Washington, DC, 268–272. DOI:http://dx.doi.org/
10.1109/NAS.2012.37

J. Hu, Q. Zhuge, C. J. Xue, W. Tseng, and E. H.-M. Sha. 2013. Software enabled wear-leveling for hybrid
PCM main memory on embedded systems. In 13th ACM/IEEE Design, Automation and Test in Europe.

A. N. Jacobvitz, R. Calderbank, and D. J. Sorin. 2013. Coset coding to extend the lifetime of mem-
ory. In Proceedings of the 2013 IEEE 19th International Symposium on High Performance Com-
puter Architecture (HPCA’13). IEEE Computer Society, Washington, DC, 222–233. DOI:http://dx.doi.org/
10.1109/HPCA.2013.6522321

ITRS. 2007. Process Integration, Devices and Structures, International Technology Roadmap for Semicon-
ductors. http://www.itrs2.net/itrs-reports.html.

L. Jiang, Y. Du, B. Zhao, Y. Zhang, B. R. Childers, and J. Yang. 2013. Hardware-assisted cooperative integra-
tion of wear-leveling and salvaging for phase change memory. ACM Transactions on Architecture and
Code Optimization 10, 2.

L. Jiang, Y. Zhang, and J. Yang. 2012. ER: Elastic reset for low power and long endurance MLC
based phase change memory. In Proceedings of the 2012 ACM/IEEE International Symposium on
Low Power Electronics and Design (ISLPED’12). ACM, New York, NY, 39–44. DOI:http://dx.doi.org/
10.1145/2333660.2333672

Y. Joo, D. Niu, X. Dong, G. Sun, N. Chang, and Y. Xie. 2010. Energy- and endurance-aware design of
phase change memory caches. In Proceedings of the Conference on Design, Automation and Test in
Europe (DATE’10). European Design and Automation Association, Leuven, Belgium, 136–141. http://
dl.acm.org/citation.cfm?id=1870926.1870961.

J.-Y. Jung and S. Cho. 2013. Memorage: Emerging persistent RAM based malleable main memory and storage
architecture. In Proceedings of the 27th International ACM Conference on International Conference on Su-
percomputing (ICS’13). ACM, New York, NY, 115–126. DOI:http://dx.doi.org/10.1145/2464996.2465005

S. Kannan, A. Gavrilovska, and K. Schwan. 2014. Reducing the cost of persistence for nonvolatile heaps in
end user devices. In IEEE 20th International Symposium on High Performance Computer Architecture
(HPCA’14). IEEE, 512–523.

D. Kau, S. Tang, I. V. Karpov, and R. Dodge. 2009. A stackable cross point phase change memory. In Electron
Devices Meeting (IEDM’09). 1–4. DOI:http://dx.doi.org/10.1109/IEDM.2009.5424263

H. Kim, S. Seshadri, C. L. Dickey, and L. Chiu. 2014. Evaluating phase change memory for enterprise
storage systems: A study of caching and tiering approaches. In Proceedings of the 12th USENIX

ACM Journal on Emerging Technologies in Computing Systems, Vol. 12, No. 4, Article 33, Publication date: May 2016.

http://people.redhat.com/drepper/cpumemory.pdf
http://dx.doi.org/10.1145/2592798.2592814
http://dx.doi.org/10.1145/2592798.2592814
http://dx.doi.org/10.1145/2592798.2592814
http://dx.doi.org/10.1145/2592798.2592814
http://dx.doi.org/10.1109/NAS.2012.37
http://dx.doi.org/10.1109/NAS.2012.37
http://dx.doi.org/10.1109/HPCA.2013.6522321
http://dx.doi.org/10.1109/HPCA.2013.6522321
http://www.itrs2.net/itrs-reports.html
http://dx.doi.org/10.1145/2333660.2333672
http://dx.doi.org/10.1145/2333660.2333672
http://dl.acm.org/citation.cfm?id=1870926.1870961
http://dl.acm.org/citation.cfm?id=1870926.1870961
http://dx.doi.org/10.1145/2464996.2465005
http://dx.doi.org/10.1109/IEDM.2009.5424263


33:38 C. Wu et al.

Conference on File and Storage Technologies (FAST’14). USENIX Association, Berkeley, CA, 33–45.
http://dl.acm.org/citation.cfm?id=2591305.2591309.

M. H. Kryder and C. S. Kim. 2009. After hard drives - what comes next? IEEE Transactions on Magnetics
45, 3406–3413.

B. C. Lee, E. Ipek, O. Mutlu, and D. Burger. 2009. Architecting phase change memory as a scalable DRAM
alternative. In Proceedings of the 36th International Symposium on Computer Architecture (ISCA’09).
Austin, TX, 2–13.

B. C. Lee, P. Zhou, J. Yang, Y. Zhang, B. Zhao, E. Ipek, O. Mutlu, and D. Burger. 2010. Phase-change technology
and the future of main memory. IEEE Micro 30, 1, 131–141.

B. C. Lee, P. Zhou, J. Yang, Y. Zhang, B. Zhao, E. Ipek, O. Mutlu, and D. Burger. 2013. On-demand snapshot:
An efficient versioning file system for phase-change memory. IEEE Transactions on Knowledge and Data
Engineering 25, 12, 2841–2853.

E. Lee, H. Bahn, and S. H. Noh. 2013. Unioning of the buffer cache and journaling layers with non-volatile
memory. In Proceedings of the 11th USENIX Conference on File and Storage Technologies (FAST’13).
USENIX Association, Berkeley, CA, 73–80. http://dl.acm.org/citation.cfm?id=2591272.2591280.

C. Lefurgy, K. Rajamani, F. Rawson, W. Felter, M. Kistler, and T. W. Keller. 2003. Energy management for
commercial servers. Computer 36, 12, 39–48.

D. L. Lewis and H.-H. S. Lee. 2009. Architectural evaluation of 3D stacked RRAM caches. In IEEE Interna-
tional 3D System Integration Conference.

D. Li, J. Vetter, G. Marin, C. McCurdy, C. Cira, Z. Liu, and W. Yu. 2012. Identifying opportunities for
byte-addressable non-volatile memory in extreme-scale scientific applications. In Proceedings of the
International Parallel and Distributed Processing Symposium (IPDPS’12).

J.-T. Lin, Y.-B. Liao, M.-H. Chiang, I.-H. Chiu, C.-L. Lin, W.-C. Hsu, P.-C. Chiang, S.-S. Sheu, W.-H. Hsu,
Y.-Y. Liu, K.-L. Su, M.-J. Kao, and M.-J. Tsai. 2009. Design optimization in write speed of multi-level cell
application for phase change memory. In Proceedings of the IEEE International Conference of Electron
Devices and Solid-State Circuits (EDSSC’09). IEEE, Article 5394196, 4 pages. http://ieeexplore.ieee.org/
xpl/articleDetails.jsp?arnumber=5394196.

D. Liu, T. Wang, Y. Wang, Z. Shao, Q. Zhuge, and E. Sha. 2013. Curling-PCM: Application-specific wear
leveling for phase change memory based embedded systems. In Proceedings of the 18th Asia and South
Pacific Design Automation Conference (ASP-DAC’13).

R.-S. Liu, D.-Y. Shen, C.-L. Yang, S.-C. Yu, and C.-Y. M. Wang. 2014. NVM duet: Unified working memory
and persistent store architecture. In Proceedings of the 19th International Conference on Architectural
Support for Programming Languages and Operating Systems (ASPLOS’14). ACM, New York, NY, 455–
470. DOI:http://dx.doi.org/10.1145/2541940.2541957

L. Long, D. Liu, J. Hu, S. Gu, Q. G. Zhuge, and E. H.-M. Sha. 2014. A space allocation and reuse strategy for
PCM-based embedded systems. Journal of Systems Architecture 60, 8, 655–667. DOI:http://dx.doi.org/
10.1016/j.sysarc.2014.07.002

N. Lu, I.-S. Choi, S.-H. Ko, and S.-D. Kim. 2012. An effective hierarchical PRAM-SLC-MLC hybrid solid state
disk. In IEEE/ACIS 11th International Conference on Computer and Information Science. 113–118.

S. Mittal, J. S. Vetter, and Dong Li. 2015. A survey of architectural approaches for managing embedded
DRAM and non-volatile on-chip caches. IEEE Transactions on Parallel and Distributed Systems 26, 6,
1524–1537. DOI:http://dx.doi.org/10.1109/TPDS.2014.2324563

J. C. Mogul, E. Argollo, M. Shah, and P. Faraboschi. 2009. Operating system support for NVM+DRAM hybrid
main memory. In Proceedings of the 12th Workshop on Hot Topics in Operating Systems (HatOS’09). 18–
20.

I. Moraru, D. G. Andersen, M. Kaminsky, N. Tolia, P. Ranganathan, and N. Binkert. 2013. Consistent,
durable, and safe memory management for byte-addressable non volatile main memory. In Proceedings
of the 1st ACM SIGOPS Conference on Timely Results in Operating Systems (TRIOS’13). ACM, New
York, NY, Article 1, 17 pages. DOI:http://dx.doi.org/10.1145/2524211.2524216

D. Narayanan and O. Hodson. 2012. Whole-system persistence. In Proceedings of the 17th International
Conference on Architectural Support for Programming Languages and Operating Systems (ASPLOS’12).

S. Oikawa. 2013. Integrating memory management with a file system on a non-volatile main memory system.
In Proceedings of the 28th Annual ACM Symposium on Applied Computing (SAC’13). ACM, New York,
NY, 1589–1594. DOI:http://dx.doi.org/10.1145/2480362.2480660

Oracle. 2010. Oracle Berkeley DB downloads. Retrieved March 30, 2016 from http://www.oracle.com/
technology/products/berkeley-db/index.html.

Y. Park, S.-H. Lim, C. Lee, and K. H. Park. 2008. PFFS: A scalable flash memory file system for the hybrid
architecture of phase-change RAM and NAND flash. In Proceedings of the 2008 ACM Symposium on
Applied Computing (SAC’08).

ACM Journal on Emerging Technologies in Computing Systems, Vol. 12, No. 4, Article 33, Publication date: May 2016.

http://dl.acm.org/citation.cfm?id$=$2591305.2591309
http://dl.acm.org/citation.cfm?id$=$2591272.2591280
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=5394196
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=5394196
http://dx.doi.org/10.1145/2541940.2541957
http://dx.doi.org/10.1016/j.sysarc.2014.07.002
http://dx.doi.org/10.1016/j.sysarc.2014.07.002
http://dx.doi.org/10.1109/TPDS.2014.2324563
http://dx.doi.org/10.1145/2524211.2524216
http://dx.doi.org/10.1145/2480362.2480660
http://www.oracle.com/technology/products/berkeley-db/index.html
http://www.oracle.com/technology/products/berkeley-db/index.html


Rethinking Computer Architectures and Software Systems for Phase-Change Memory 33:39

Y. Park, S. K. Park, and K. H. Park. 2010. Linux kernel support to exploit phase change memory. In Linux
Symposium.

S. Pelley, T. F. Wenisch, B. T. Gold, and B. Bridge. 2013. Storage management in the NVRAM era. Proceedings
of the VLDB Endowment 7, 2.

M. K. Qureshi. 2011. Pay-as-you-go: Low-overhead hard-error correction for phase change memories. In
Proceedings of the 44th Annual IEEE/ACM International Symposium on Microarchitecture (MICRO’11).

M. K. Qureshi, J. Karidis, M. Fraceschini, V. Srinivasan, L. Lastras, and B. Abali. 2009. Enhancing lifetime
and security of phase change memories via start-gap wear leveling. In Proceedings of the International
Symposium on Microarchitecture.

M. K. Qureshi, M. F. Michele, and A. L.-M. Luis. 2010. Improving read performance of phase change memories
via write cancellation and write pausing. In HPCA’10.

M. K. Qureshi, A. Seznec, L. A. Lastras, and M. M. Franceschini. 2011. Practical and secure PCM systems by
online detection of malicious write streams. In IEEE 17th International Symposium on High Performance
Computer Architecture (HPCA’11), Vol. 37. 478–489.

M. K. Qureshi, V. Srinivasan, and J. A. Rivers. 2009. Scalable high performance main memory system
using phase-change memory technology. In Proceedings of the 36th Annual International Symposium on
Computer Architecture (ISCA’09). New York, NY, 24–33.

L. Ramos, E. Gorbatov, and R. Bianchini. 2011. Page placement in hybrid memory systems. In ICS’11. 85–95.
P. Ranganathan. 2011. From microprocessors to nanostores: Re- thinking data-centric systems. IEEE Com-

puter 44, 1, 39–48.
S. Raoux, G. W. Burr, M. J. Breitwisch, C. T. Rettner, Y.-C. Chen, R. M. Shelby, M. Salinga, D. Krebs, S.-H.

Chen, H.-L. Lung, and C. H. Lam. 2008. Phase-change random access memory: A scalable technology.
IBM Journal of Research and Development 52, 4.5, 465–479.

S. Raoux, F. Xiong, M. Wuttig, and E. Pop. 2014. Phase change materials and phase change memory. MRS
Bulletin 39, 8, 703–710. DOI:http://dx.doi.org/10.1557/mrs.2014.139

D. A. Roberts. 2011. Efficient Data Center Architectures Using Non-Volatile Memory and Reliability Tech-
niques). Ph.D. Dissertation. The University of Michigan, Ann Arbor, MI.

S. Schechter, H. L. Gabriel, K. Strauss, and D. Burger. 2010. Use ECP, not ECC, for hard failures in resistive
memories. In ISCA.

R. Sears and E. Brewer. 2006. Stasis: Flexible transactional storage. In OSDI’06: Proceedings of the 7th
Symposium on Operating Systems Design and Implementation. USENIX Association, Berkeley, CA,
29C–44. DOI:http://dx.doi.org/10.1109/IEDM.2009.5424263

D. Sengupta, Q. Wang, H. Volos, L. Cherkasova, J. Li, G. Magalhaes, and K. Schwan. 2015. A framework for
emulating non-volatile memory systems with different performance characteristics. In Proceedings of
the 6th ACM/SPEC International Conference on Performance Engineering (ICPE’15). ACM, New York,
NY, 317–320. DOI:http://dx.doi.org/10.1145/2668930.2695529

N. H. Seong, D. H. Woo, and H.-H. S. Lee. 2010a. Security refresh: Prevent malicious wear-out and increase
durability for phase-change memory with dynamically randomized address mapping. In ISCA’10, Vol. 37.

N. H. Seong, D. H. Woo, V. Srinivasan, J. A. Rivers, and H.-H. S. Lee. 2010b. SAFER: Stuck-at-fault error
recovery for memories. In Proceedings of the 43rd Annual IEEE/ACM International Symposium on
Microarchitecture. IEEE Computer Society, 115–124.

N. H. Seong, S. Yeo, and H.-H. S. Lee. 2013. Tri-level-cell phase change memory: Toward an efficient and
reliable memory system. In Proceedings of the 40th Annual International Symposium on Computer
Architecture (ISCA’13). ACM, New York, NY, 440–451. http://dl.acm.org/citation.cfm?id=2485960.

A. Seznec. 2010. A phase change memory as a secure main memory. IEEE Computer Architecture Letters 9,
1, 5–8.

G. Sun, D. Niu, J. Ouyang, and Y. Xie. 2011. A frequent-value based PRAM memory architecture. In Pro-
ceedings of the 16th Asia and South Pacific Design Automation Conference (ASPDAC’11). IEEE Press,
Piscataway, NJ, 211–216. http://dl.acm.org/citation.cfm?id=1950815.1950867.

S. Venkataraman, N. Tolia, P. Ranganathan, and R. H. Campbell. 2011. Consistent and durable data
structures for non-volatile byte-addressable memory. In Proceedings of the 9th USENIX Conference
on File and Stroage Technologies (FAST’11). USENIX Association, Berkeley, CA, 5–5. http://dl.acm.org/
citation.cfm?id=1960475.1960480.

H. Volos, A. J. Tack, and M. M. Swift. 2011. Mnemosyne: Lightweight persistent memory. In SIGARCH
Computer Architecture News, Vol. 39.

J. Wang, X. Dong, G. Sun, D. Niu, and Y. Xue. 2011. Energy-efficient multi-level cell phase-change memory
system with data encoding. In IEEE 29th International Conference on Computer Design (ICCD’11).
IEEE, 175–182.

ACM Journal on Emerging Technologies in Computing Systems, Vol. 12, No. 4, Article 33, Publication date: May 2016.

http://dx.doi.org/10.1557/mrs.2014.139
http://dx.doi.org/10.1109/IEDM.2009.5424263
http://dx.doi.org/10.1145/2668930.2695529
http://dl.acm.org/citation.cfm?id$=$2485960
http://dl.acm.org/citation.cfm?id$=$1950815.1950867
http://dl.acm.org/citation.cfm?id=1960475.1960480
http://dl.acm.org/citation.cfm?id=1960475.1960480


33:40 C. Wu et al.

T. Wang, D. Liu, Y. Wang, and Z. Shao. 2015. Towards write-activity-aware page table management for
non-volatile main memories. ACM Transactions on Embedded Computing Systems 14, 2, Article 34, 23
pages. DOI:http://dx.doi.org/10.1145/2697394

X. Wu, J. Li, L. Zhang, E. Speight, and Y. Xie. 2009a. Hybrid cache architecture with disparate memory
technologies. In Proceedings of the 36th Annual International Symposium on Computer Architecture
(ISCA’09). New York, NY, 34–45.

X. Wu, J. Li, L. Zhang, E. Speight, and Y. Xie. 2009b. Power and performance of read-write aware hybrid
caches with non-volatile memories. In Proceedings of Design Automation and Test in Europe (DATE’09).
737–742.

X. Wu and A. L. N. Reddy. 2011. SCMFS: A file system for storage class memory. In Proceedings of Inter-
national Conference for High Performance Computing, Networking, Storage and Analysis (SC’11). ACM,
New York, NY, Article 39, 11 pages. DOI:http://dx.doi.org/10.1145/2063384.2063436

N. Yamada, E. Ohno, N. Akahira, K. Nishiuchi, K. Nagata, and M. Takao. 1987. High speed overwritable
phase change optical disk material. Japanese Journal of Applied Physics Supplement 26, 8, 61C66.

B. Yang, J. Lee, J. Kim, J. Cho, S. Lee, and B. Yu. 2007. A low power phase change random access memory
using a data comparison write scheme. In ISCAS’07.

J. Yang, Q. Wei, C. Chen, C. Wang, K. L. Yong, and B. He. 2015. NV-tree: Reducing consistency cost
for NVM-based single level systems. In 13th USENIX Conference on File and Storage Technolo-
gies (FAST’15). USENIX Association, Santa Clara, CA, 167–181. https://www.usenix.org/conference/
fast15/technical-sessions/presentation/yang.

D. H. Yoon, N. Muralimanohar, J. Chang, P. Ranganathan, N. P. Jouppi, and M. Erez. 2011. FREE-p: Pro-
tecting non-volatile memory against both hard and soft errors. In HPCA’11.

H. Yoon, J. Meza, R. Ausavarungnirun, R. A. Harding, and O. Mutlu. 2012. Row buffer locality aware caching
policies for hybrid memories. In Proceedings of the 30th IEEE International Conference on Computer
Design (ICCD’12). Montreal, Quebec, Canada, 1–8.

H. Yoon, N. Muralimanohar, J. Meza, O. Mutlu, and N. P. Jouppi. 2013. Techniques for Data Mapping and
Buffering to Exploit Asymmetry in Multi-Level Cell (Phase Change) Memory. SAFARI Technical Report
2013-002. Computer Architecture Lab (CALCM) at Carnegie Mellon University.

J. Zhao, S. Li, D. H. Yoon, Y. Xie, and N. P. Jouppi. 2013. Kiln: Closing the performance gap
between systems with and without persistence support. In Proceedings of the 46th Annual
IEEE/ACM International Symposium on Microarchitecture (MICRO’13). ACM, New York, NY, 421–
432. DOI:http://dx.doi.org/10.1145/2540708.2540744

M. Zhao, L. Jiang, Y. Zhang, and C. J. Xue. 2014a. SLC-enabled wear leveling for MLC PCM considering
process variation. In Proceedings of the 51st Annual Design Automation Conference (DAC’14). ACM,
New York, NY, Article 36, 6 pages. DOI:http://dx.doi.org/10.1145/2593069.2593217

M. Zhao, L. Shi, C. Yang, and C. J. Xue. 2014b. Leveling to the last mile: Near-zero-cost bit level wear
leveling for PCM-based main memory. In Proceedings of the 2014 32nd IEEE International Conference
on Computer Design (ICCD’14). IEEE, 16–21.

M. Zhao, Y. Xue, C. Yang, and C. J. Xue. 2015. Minimizing MLC PCM write energy for free through profiling-
based state remapping. In Proceedings of the 20th Annual Asia and South Pacific Design Automation
Conference (ASP-DAC’15). IEEE, 502–507.

K. Zhong, D. Liu, L. Long, X. Zhu, W. Liu, Q. Zhuge, and E. H.-M. Sha. 2015. nCode: Limiting harmful writes
to emerging mobile NVRAM through code swapping. In Proceedings of the 2015 Design, Automation
& Test in Europe Conference & Exhibition (DATE’15). EDA Consortium, San Jose, CA, 1305–1310.
http://dl.acm.org/citation.cfm?id=2755753.2757117.

K. Zhong, T. Wang, X. Zhu, L. Long, D. Liu, W. Liu, Z. Shao, and E. H.-M. Sha. 2014. Building high-
performance smartphones via non-volatile memory: The swap approach. In Proceedings of the 14th In-
ternational Conference on Embedded Software (EMSOFT’14). ACM, New York, NY, Article 30, 10 pages.
DOI:http://dx.doi.org/10.1145/2656045.2656049

P. Zhou, B. Zhao, J. Yang, and Y. Zhang. 2009. A durable and energy efficient main memory using phase
change memory technology. In 36th International Symposium on Computer Architecture (ISCA’09). 14–
23.

Received July 2015; revised November 2015; accepted February 2016

ACM Journal on Emerging Technologies in Computing Systems, Vol. 12, No. 4, Article 33, Publication date: May 2016.

http://dx.doi.org/10.1145/2697394
http://dx.doi.org/10.1145/2063384.2063436
https://www.usenix.org/conference/fast15/technical-sessions/presentation/yang
https://www.usenix.org/conference/fast15/technical-sessions/presentation/yang
http://dx.doi.org/10.1145/2540708.2540744
http://dx.doi.org/10.1145/2593069.2593217
http://dl.acm.org/citation.cfm?id$=$2755753.2757117
http://dx.doi.org/10.1145/2656045.2656049

